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Abstract

In the real world, external domain-specific
knowledge is commonly required, for in-
stance, teachers often apply their expertise
to ask preschoolers educational-crafted, story-
inspired questions beyond the story content dur-
ing interactive storytelling; however, existing
storytelling systems could not effectively sup-
port such activity as the generated questions
are mostly text-based. We formulate this type
of common real-world application as a novel
Real-World Augmented QAG (RA-QAG)
task. This work aims to explore how well
LLMs, equipped with various domain adapta-
tion strategies (e.g., few-shot In-Context Learn-
ing, Chain-of-Thoughts, Retrieval-Augmented
Generation), perform on the RA-QAG task in
the context of children storytelling. We design
and experiment with end-to-end and 2-Step
QAG pipelines with different domain adapta-
tion strategies to explore whether they can iden-
tify real-world knowledge and create QA pairs
aligned with experts’ annotation. Our auto-
matic evaluation and human evaluation show
that 1) RAG is a promising direction to ap-
proach real-world domain-specific tasks; 2) hu-
man experts still have more nuanced knowledge
from which generic LLMs need to learn.

1 Introduction

Generic Large Language Models (LLMs) such
as GPT-3.5, GPT-4 (OpenAl, 2023), and Llama
2 (Touvron et al., 2023) exhibit strong capabili-
ties to generate various types of text solely using
a snippet of narrative as input data, such as narra-
tive question-answering (Shao et al., 2023a) and
text summarization (Zhang et al., 2024). However,
real-world scenarios are much more complicated:
they commonly require additional domain-specific
knowledge, which is often not present in the narra-
tive but mastered by domain experts.

In this paper, we focus on a real-world sce-
nario in the context of preschool children education:

teachers often try to teach real-world knowledge
while reading a storybook with a child through in-
teractive question-and-answer activities (Xu et al.,
2021). These teachers need to decide where to
ask the question so that it is relevant to the story
(i.e., anchored at a particular word in the narrative),
what to ask so that the child can learn better (i.e.,
external knowledge goes beyond the story narra-
tive), and how to ask the question (i.e., the style
and difficulty) so that the question is engaging but
not frustrating. The questions and answers crafted
by human teachers while reading a storybook also
need to align with children’s cognitive development
levels at different ages (Parish-Morris et al., 2013;
Saracho, 2017; Xu et al., 2021). We formulate such
type of real-world application as a novel narrative
question-answer generation (QAG) task, namely
Real-World Augmented QAG (RA-QAG), that
requires external domain knowledge to solve. The
RA-QAG task for children storytelling, differs from
traditional QAG tasks (Yao et al., 2021), demands
models to 1) locate particular words in story nar-
ratives and link them to educationally appropriate
knowledge, and 2) create children-centered and
knowledgeable QA pairs.

Existing children storytelling systems (Shakeri
et al., 2021; Zhang et al., 2022), despite showing
effectiveness in supporting interactive storytelling,
are mostly grounded in a story’s textual content,
thus leading to limited capability in the RA-QAG
task (Yao et al., 2021). The recent advancement in
large language models (LLMs), which encountered
and learned profound world knowledge during the
pre-training process, aroused significant attention
in investigating LLMs’ capabilities for real-world
domain-specific tasks. Moreover, various types of
generation strategies with the shared purpose of
enhancing LLMs’ domain-adaptation capabilities
have emerged recently, including purely prompting-
based strategies like few-shot In-Context Learn-
ing (ICL) (Brown et al., 2020) and Chain-of-



Thoughts (Wei et al., 2022a), as well as Retrieval
Augmented Generation (RAG) (Lewis et al., 2020)
based strategies, which retrieves domain-specific
knowledge from external knowledge resources as
additional guidance for LLMs. Nevertheless, how
well the State-of-The-Art (SoTA) language models,
equipped with a variety of domain adaptation strate-
gies, perform on the RA-QAG task in the context of
children education domain, remains underexplored.
In addition, whether these models will come close
to the performance of human domain experts, and
if not, how close they will come, is also unknown
but of significant practical implication for both the
technical and educational communities.

Our primary contribution in this work aims to
address the aforementioned “known unknowns” of
LLMs’ domain adaptation capabilities on the RA-
QAG task of teacher-children storytelling we for-
mulated using a recently published dataset, namely
FairytaleCQA (Chen et al., 2023). We designed
and experimented with different QAG strategies un-
der end-to-end and two-step generation pipelines,
where the latter one mimics the experts’ annotation
process to come up with a knowledge triple first be-
fore creating the QA pairs. The end-to-end pipeline
comprises both traditional compact models fine-
tuned on the training split of FairytaleCQA as well
as LLMs supported by different prompting strate-
gies (e.g., zero-shot, few-shot ICL, CoT), whereas
the two-step pipeline consists of three strategies
for Triple Selection: generated by LLM, trained
retriever (RAG), and expert-annotated triples (Hu-
man). Our comprehensive benchmark experiment,
along with in-depth analysis, reveals two critical
findings:

* Fine-tuning models with expert annota-
tions and leveraging RAG can enhance the
pipeline’s QAG quality.

» Experts’ annotation remains more effective
in elevating LLM performance on domain-
specific tasks like interactive storytelling.

We further discuss the potential and limitations of
RAG strategies for RA-QAG tasks in different real-
world scenarios.

2 Related Work
2.1 Large Language Models for Domain
Adaptation

Recent advancements in large language models
(LLMs), including notable models like GPT-3.5,

GPT-4 (OpenAl, 2023), and Llama (Touvron et al.,
2023), have demonstrated exceptional capabilities
in generating coherent and contextually relevant
text. Many prompting techniques have been pro-
posed recently to further enhance LLMs’ task-
solving and domain-adaptation capability without
tuning the model parameters, such as few-shot In-
Context Learning, Chain-of-Thought prompting,
etc. Nevertheless, recent work discovered that
LLMs’ adaptability and performance in specialized
domains off-the-shelf, such as in children educa-
tion and mental health (Xu et al., 2023), is com-
monly compromised due to limited domain-specific
knowledge (Cao et al., 2020; He et al., 2022).

Recently, RAG has emerged as a novel and
promising domain-adaptation approach that re-
trieves external information as guidance to gen-
erate more up-to-date, accurate, and reliable re-
sponses (Lewis et al., 2020; Izacard et al., 2022) in
various tasks (Izacard and Grave, 2021; Cai et al.,
2019). The retrieval module in RAG aims to ex-
tract the most helpful external knowledge, which
could be supported by a traditional trainable re-
triever model like BM25 (Robertson and Zaragoza,
2009) and BERT (Devlin et al., 2019), or advanced
embedding models like BGE (Chen et al., 2024). In
this work, we leverage BGE as the retriever model
for RAG throughout the experiments.

2.2 The FairytaleCQA Dataset

General QA datasets such as NarrativeQA (Kocisky
et al., 2018), SQuAD2.0 (Rajpurkar et al., 2018),
CommonsenseQA (Talmor et al., 2018), and SciQA
(Auer et al., 2023) either only consist of text-
grounded, crowd-sourced QA pairs or fall short
at considering children education appropriateness
with incorporated knowledge, leading all these
datasets less suitable for the QAG task augmented
by real-world knowledge in the context of children
education.

FairytaleCQA (Chen et al., 2023) is a recently
published large-scale QA dataset annotated by chil-
dren experts, specifically designed for children’s
interactive storytelling activities. This dataset con-
tains 5, 868 QA pairs derived from children’s fairy-
tale stories and enriched with external real-world
knowledge from ConceptNet (Speer et al., 2017),
a wide-used knowledge graph of structured real-
world knowledge. Such integration of story content
with real-world knowledge appropriate for children
education turns FairytaleCQA an ideal data re-
source for the tasks that require external domain



knowledge to solve, and as a result, we utilize
FairytaleCQA as the benchmark dataset for our
proposed RA-QAG task.

3 Real-World-Augmented QA Pair
Generation for Children Storytelling

In this section, we present the details of our exper-
imental setup and methodology for the RA-QAG
task we formulate from the real-world interactive
storytelling scenario. We designed and experi-
mented with different QAG strategies, including
the utility of experts’ domain knowledge annotation
for RAG, with a particular focus on the following
detailed research questions (RQ):

* RQ1: Can LLMs perform better by emulating
human experts’ QA pair creation process?

* RQ2: Can a compact model fine-tuned with
experts’ annotations outperform LLMs?

* RQ3: To what extent RAG can enhance
LLMs’ domain adaptability, and what is the
gap remaining compared with human experts?

3.1 Dataset Preprocessing for Fine-tuning

FairytaleCQA contains 5,868 QA pairs from 278
children’s fairytale books. Each QA pair in
FairytaleCQA is grounded in a concept from the
story text and a corresponding external knowledge
triple from ConceptNet (Speer et al., 2017), which
represent a real-world knowledge in the format of
(concepty, relation, conceptsy), annotated by chil-
dren’s educational experts.

The fine-tuning process of our retriever model
in two-step QAG pipeline, as described in Sec-
tion 3.2.2, and the compact model for end-to-end
generation follows the original train/validation/split
of FairytaleCQA, comprising 4,300/769/799
QA pairs, accordingly. We leverage supervised con-
trastive training (Khosla et al., 2020) to fine-tune
the retriever model by creating an equal amount of
negative examples paired with positive examples —
expert-annotated real-world knowledge triples for
each story section. Negative examples are ran-
domly sampled from the whole dataset excluding
the expert annotations in the positive examples.
The input for the retriever model becomes the con-
catenation of a story section and its corresponding
positive and negative examples.

3.2 RA-QAG Pipelines

Catering to teachers’ common practice during the
interactive storytelling activity, our RA-QAG ex-
periments aim to come up with the final artifacts of
QA pairs that are associated with a particular con-
cept in the story and related external knowledge, all
of educational appropriateness for children educa-
tion. We designed two types of QAG pipelines: 1)
end-to-end (E2E) pipeline directly generates the
QA pairs with no intermediate outputs, and 2) two-
step (2-step) pipeline that simulates experts’ anno-
tation process for FairytaleCQA. Multiple gener-
ation strategies were further designed under each
type of QAG pipeline. Figure 1 illustrates the struc-
ture of both pipelines, with additional illustrations
of QAG strategies under the 2-Step pipeline.

3.2.1 End-to-end QAG Pipeline (E2E)

The end-to-end pipeline generates both the story-
inspired real-world knowledge and a corresponding
QA pair directly given the input of a story sec-
tion. We follow the instructions provided to hu-
man experts to create FairytaleCQA as the basic
prompt instructions, and collaborate with human
educational experts to iteratively refine the prompt
instructions for LLMs to incorporate educational
guidelines as well as QAG instructions, as reported
in Appendix A.2. The goal is to ask LLMs to gener-
ate diverse triples and corresponding QA pairs that
are appropriate for interactive storytelling activity
with children.

We leverage five robust LLMs for end-to-end
generation, including GPT-4 (OpenAl, 2023),
Llama 2 (Touvron et al., 2023), Mistral (Jiang et al.,
2023), Alpaca (Taori et al., 2023) and FLAN-T5-
XXL (Chung et al., 2022). For each LLM, we
experiment with the following popular prompting
strategies: zero-shot as baseline (denoted as Z.S),
few-shot In-Context Learning (denoted as FS(# OF
SHOT), and Chain-of-Thoughts (denoted as COT).
In addition, we fine-tune a traditional T5-Large
model with expert-annotated triples and QA pairs
for the end-to-end pipeline to compare the perfor-
mance between domain-specific fine-tuned com-
pact model and generic LLMs.

3.2.2 Two-Step QAG Pipeline (2-Step)

The 2-Step pipeline aims to mimic the expert an-
notation process in constructing FairytaleCQA,
which is also aligned with existing works (Yao
et al., 2021; Qu et al., 2021) for multi-step QAG
generation. During the original annotation pro-
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Figure 1: The structure of the end-to-end pipeline and the three QAG strategies under 2-Step pipeline, including the
2-STEP-LLM, 2-STEP-RAG and 2-STEP-HUMAN strategies.

cess, educational experts select a story-related real-
world knowledge triple beyond the story narra-
tive, assisted with a retrieval algorithm that rec-
ommends the most relevant real-world knowledge
triples from ConceptNet. Afterward, the experts
write a QA pair based on the selected knowledge
triple. In both steps, the experts are explicitly in-
structed to consider the educational appropriateness
of selecting triples as well as creating QA pairs.
Similarly, The 2-Step pipeline consists of the fol-
lowing steps: 1) generates an external real-world
knowledge triple based on the story context, and
2) explicitly uses the generated triple as additional
input to create the corresponding QA pair. We aim
to investigate the effectiveness of RAG in support-
ing LLMs to retrieve external knowledge triples
in the 2-Step QAG pipeline, and, as a result, we
design three different knowledge triple generation
strategies, including generated by LLMs directly,
retrieved from ConceptNet via a trained retriever
model, and directly using expert-annotated triples.
Details of each strategy are illustrated below.

LLM Strategy (2-STEP-LLM) This is the basic
strategy that asks the LLMs to only generate a real-
world knowledge triple based on the input story
in the first step, then feed the generated triple as
additional input to the LLMs for the generation
of a QA pair in the second step. For this strategy,
we incorporated GPT-4 and Llama 2 as the LLM
variations and also fine-tuned a T5-Large model for
each step on FairytaleCQA as the compact model
alternative.

Trained Retriever Strategy (2-STEP-RAG)
This strategy represents the RAG approach for
LLMs, where we attempt to mimic the two-step
annotation process of human experts. Specifi-

cally, we follow the same process as reported in
FairytaleCQA to locate associated external knowl-
edge triples for concepts in stories. Firstly, we
generate the list of candidate concepts from the
story content. Then, we acquire the top six related
knowledge triples from ConceptNet for every can-
didate concept as the external knowledge resource
for the current story input. A retriever model was
trained on the training split of FairytaleCQA to se-
lect the most relevant and helpful knowledge triple
annotated by human experts, given the story con-
tent and the external knowledge resource. Once the
retriever returns a triple, we ask the LLM to gener-
ate a corresponding QA pair, which is identical to
the other 2-Step pipelines.

We incorporate two versions of the BGE model
as the retriever: the original BGE, and the other one
fine-tuned with FairytaleCQA. For fine-tuning the
BGE embedding model, we process the data as de-
scribed in Section 3.1, and leverage the BGE model
to calculate the similarity between the embeddings
of the story text and each suggested real-world
knowledge triples.

Expert-Annotated Strategy (2-STEP-HUMAN)
We also design and experiment with the 2-Step-
Human strategy as the upper bound for 2-Step QAG
pipelines by directly using the expert-annotated
triples for the first step. For the second step of
QA pair generation, we also trained a T5-Large
model as the fine-tuned compact model variation.
We aim to compare the performance of the afore-
mentioned 2-Step QAG strategy with this expert
knowledge-based strategy to investigate the gap re-
maining between human experts’ knowledge and
the RAG-enhanced LLMs.



Prompting | Rouge-L | Rouge-L
Model Strategy | (Triple) | (QA pair)
T5-Large fine-tuned

(0.77B) - 0.206 0.279
Llama 2 ZS 0.154 0.177
(7B) FS 0.291 0.269
ZS 0.286 0.243
GPT-4 FS 0.285 0.248
CoT 0.295 0.262

Table 1: QAG performance of LLMs and the fine-tuned
T5-Large in the E2E QAG pipeline. We use 5-shot for
both few-shot ICL methods. Bolded numbers are the
best scores within each setting, and underlined numbers
are the second-best scores within each setting.

4 Evaluation

Following the experiment setting described in Sec-
tion 3, we conduct evaluations on both QAG
pipelines. We carefully designed the prompt in-
puts by incorporating the instructions provided to
the human experts for FairytaleCQA, and empha-
sized the educational appropriateness for generated
QA pairs, as shown in Appendix A.2.

For automatic evaluation, we utilize Rouge-
L (Lin, 2004) to evaluate the quality of the con-
catenated QA pairs between the generated ones
and two ground truths annotated by experts, then
report the average score across all test data. We also
measure Sentence-BERT (SBERT) using Sentence
Transformer (Reimers and Gurevych, 2019) and re-
port the scores in Appendix A.1. We acknowledge
that these similarity-based metrics cannot faith-
fully measure domain specificity, therefore, we con-
ducted a human evaluation with education experts
to further assess the quality of LLM-generated QA
pairs from an educational perspective.

4.1 RQI1: E2E QAG vs. 2-Step QAG

We approach the RA-QAG task using two afore-
mentioned QAG pipelines described in Section 3.2:
end-to-end (E2E) and two-Step (2-Step). Our
end-to-end pipeline comprises six SOTA LLMs:
GPT-3.5, GPT-4 (OpenAl, 2023), FLAN-T5-
XXL (Chung et al., 2022), Alpaca (Taori et al.,
2023), Mistral (Jiang et al., 2023) and Llama
2 (Touvron et al., 2023). To thoroughly examine
LLMs’ performance in the QAG task for interac-
tive storytelling of children, we employed various
popular prompting approaches, including zero-shot,
few-shot In-Context Learning (ICL)(Brown et al.,

2020), and Chain-of-Thought (CoT)(Wei et al.,
2022a).

4.1.1 Experiment Results and Analysis

We report the performance of the aforementioned
LLMs with the end-to-end pipeline in Table 1,
report the two-step pipeline results in Table 2,
and report the complete results in Table 4 in Ap-
pendix A.1, including LLMs that perform worse
than GPT-4, such as Alpaca and Mistral-7B (Jiang
et al., 2023).

In the end-to-end pipeline, models with the 5-
shot ICL approach consistently outperform those
utilizing the zero-shot approach. To harness GPT-4’
full potential under the end-to-end setting, we apply
the Chain-of-Thoughts (Wei et al., 2022b) prompt-
ing strategy for this specialized QAG task, where
we guide GPT-4 to identify real-world knowledge
and create QA pairs like human experts. Table 1
illustrates that GPT-4 achieves superior perfor-
mance in the end-to-end pipeline by asking it to
“think step-by-step” (CoT), which simulates hu-
mans’ thinking process.

Subsequently, we conduct a two-step QAG
pipeline evaluation, where all language models are
asked to locate and link a real-world knowledge
triple from the story first, and then generate a cor-
responding QA pair. Overall, as shown in Table 2,
the two-step QAG pipeline demonstrates superior
performance compared to the end-to-end pipeline.
This result justifies that by emulating human ex-
perts’ real-world knowledge triple identification
and QA pair creation process, LLMs can generate
more educationally appropriate QA pairs.

However, despite the superior performance of
the two-step QAG pipeline, we observed that the
improvement is inconspicuous, particularly for the
2-STEP-LLM and 2-STEP-RAG strategies, where
all models are not directly assisted by human ex-
pertise. Notably, both models in the first step of
the two-step pipeline exhibit better performance
than in the second step. We attribute this to two
main challenges: 1) It is hard for models to cre-
ate real-world knowledge triples as properly and
accurately as human experts in the first step, as ex-
perts rely on structured external knowledge source
ConceptNet to identify and associate real-world
knowledge. 2) When generating QA pairs that inte-
grate the real-world knowledge triple created in the
first step, the quality of the QA pairs is affected by
the appropriateness of the created triple. In addi-
tion, the second step would suffer from more loss



Strategy Model: Step1-Triple Rouge-L Model: Step2-QA pair Rouge-L
T5-Large Fine-Tuned | 0.331 | T5-Large Fine-Tuned | 0.279
2-STEP-LLM Llama 2 0.311 Llama 2 0.263
GPT-4 0.290 GPT-4 0.269
BGE 0.298 GPT-4 0.256
2-STEP-RAG | BGE Fine-Tuned | 0328 GPT-4 0.278
Experts’ Annotation T5-Large Fine-Tuned | 0.510
2-STEP-HUMAN X(pGr od Trath) 1.000 Llama 2 0.413
ound i GPT-4 0.482

Table 2: The 2-Step QAG pipeline performance on both steps, including the 2-STEP-LLM, 2-STEP-RAG and
2-STEP-HUMAN strategies. For all LLMs involved in this setting, we used 5-shot ICL for the corresponding
generation step. Bolded numbers are the best scores within each setting, and underlined numbers are the second-

best scores within each setting.

in terms of using suitable vocabulary for 3-6-year-
olds’ comprehension as properly as human experts.
In other words, the domain experts exhibit much
better “timing” of when and where to provide and
incorporate structured knowledge, whereas generic
LLMs fall short of this nuanced mental behavior in
terms of domain-specific tasks.

4.2 RQ2: Domain-Specific Fine-tuned Models
vs. LLMs

To investigate whether language models can learn
from domain experts’ knowledge, we compare
the performance of a compact model fine-tuned
with domain-specific knowledge retrieved by ex-
perts with generic LLMs without experts’ anno-
tation. Specifically, for both the end-to-end and
2-Step pipeline, we fine-tune a T5-Large model
on FairytaleCQA to generate a real-world knowl-
edge triple and QA pair simultaneously. For each
step in the 2-STEP-LLM strategy, we fine-tune a
T5-Large model on FairytaleCQA and utilize the
model output for the previous step (i.e., generated
triples) as part of the input for the next model (i.e.,
generate QA pairs given the story content and gen-
erated triples). In addition, we fine-tune a BGE
retriever to retrieve real-world knowledge triples
based on story sections for the 2-STEP-RAG strat-

egy.
4.2.1 Experiment Results and Analysis

We present the models’ performance in Table 1
and 2. The fine-tuned T5-Large system consis-
tently outperforms generic LLLMs across both the
end-to-end pipeline and the 2-STEP-LLM strategy
by Rouge-L scores. In the 2-STEP-RAG strat-

egy, the fine-tuned BGE model also exhibits bet-
ter performance when retrieving story-relate and
educational-suitable triples compared to the origi-
nal BGE model.

To thoroughly investigate the real-world knowl-
edge triple identified in the first step of the 2-Step
pipeline, we also investigate the relation distribu-
tions of real-world knowledge triples created by
fine-tuned models and generic LL.Ms, in addition
to QA pair evaluation. As illustrated in Figure 2,
both the fine-tuned T5-Large and BGE models can
create or retrieve real-world triples that are more
closely aligned with expert annotations. In contrast,
the relation distributions of models not fine-tuned
with expert annotations, such as GPT-4, Llama 2,
and the original BGE model, tend to be inconsis-
tent with expert annotations. Also, LLMs generate
a wider variety of triple types, many of which do
not belong to the expert-annotated types (see the
“others” column in Figure 2).

This observation justifies that a smaller lan-
guage model assisted with domain expertise (i.e.,
expert-annotated real-world knowledge) can re-
liably perform better than generic LLMs in
domain-specific scenarios.

4.3 RQ3: Retrieval-Augmented Models vs.
Experts

We explore the potential of RAG compared with
experts’ annotation through two different strategies
within the 2-Step pipeline. The first strategy is the
2-STEP-RAG strategy. Here, we use a retriever to
select a real-world knowledge triple relevant to a
provided story section, and then employ a generator
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Figure 2: The distribution of triple relations in the 2-Step QAG pipeline, including experts’ annotation, and triples
created by fine-tuned T5-Large, fine-tuned BGE, Llama2, original BGE, and GPT-4.

Model Grammar Answer Contextual Educational
Correctness  Relevancy  Consi y  Appropri

T5-Large | o4y 4478 4.656 4.433

fine-tuned

GPT-4 4.878 4.522 4.578 4.389

Table 3: Human evaluation results of GPT-4 and fine-
tuned T5-Large in 2-STEP-HUMAN. Bolded numbers
are the best performance in each dimension.

to create a QA pair based on the retrieved triple. In
the second strategy (i.e., 2-STEP-HUMAN), we pro-
vide language models with expert-annotated struc-
tured knowledge, guiding them to generate QA
pairs based on the experts’ annotations.

4.3.1 Experiment Results and Analysis

As shown in Table 2, the 2-STEP-R AG strategy, es-
pecially when fine-tuned with experts’ annotation,
performs better at retrieving more educationally
appropriate triples compared to LLMs in the 2-
STEP-LLM strategy where models are not assisted
by human experts’ annotations. This justifies that
RAG is promising in terms of retrieving relevant
knowledge for domain-specific tasks like interac-
tive storytelling.

It is worth noting that by employing expert-
annotated structured knowledge in the 2-STEP-
HUMAN strategy, all LLMs as well as the domain-
specific fine-tuned language model, can far exceed
the end-to-end pipeline and 2-STEP-LLM and 2-
STEP-RAG in the RA-QAG task. This proves
that domain expertise is still useful in such real-
world domain-specific tasks. Despite RAG can
improve the model performance to a certain ex-
tent on our QAG task, it cannot yet completely
substitute the domain knowledge of human ex-
perts.

4.4 Human Evaluation

To thoroughly assess the quality of LLM-generated
QA pairs, as well as to comprehensively investi-
gate the helpfulness of expert-annotated structured
knowledge, we conduct a human study to compare
the QA pairs generated by different models.

More specifically, according to the superior per-
formance of fine-tuned T5-Large and GPT-4 in
2-STEP-HUMAN, we selected these two models
for human evaluation. We recruit three education
experts and randomly select 30 story sections of
16 books from the test split of FairytaleCQA. For
each section, there are two QA pairs created based
on the story narrative (experts’ annotation, and QA
pairs generated by GPT-4 and fine-tuned T5-Large),
summing up to 60 QA pairs for the human evalua-
tion. QA pairs are randomized for each section and
the sources are omitted to the human subjects for a
fair evaluation.

Considering teachers’ practice in formulating
questions and feedback during interactive story-
telling (Xu et al., 2021; Zhang et al., 2022), we
ask the experts to evaluate each QA pair on the
following four dimensions with a 5-point Likert
scale:

1. Grammar Correctness: The QA pair uses
comprehensible English Grammar;

2. Answer Relevancy: The answer is correct and
corresponds to a question;

3. Contextual Consistency: The QA pair orig-
inates from the story and goes beyond the
story’s immediate context;

4. Children’s Educational Appropriateness: The
QA pair is appropriate for young children’s
reading experience during interactive story-
telling;



Table 3 illustrates the average scores in each di-
mension. We observe that GPT-4 performs better in
the Grammar Correctness and Answer Relevancy
dimensions, which is reasonable because LLMs
like GPT-4 are trained on vast amounts of diverse
corpora, making it easier for these models to gener-
ate more Grammatical correct text.

For the Contextual Consistency dimension, in
which we assess whether a QA pair is both associ-
ated with the story and external real-world knowl-
edge, the fine-tuned T5-Large outperformed GPT-
4. For the Children’s Educational Appropriate-
ness dimension, the T5-Large model fine-tuned on
FairytaleCQA also exhibits better performance.

This result suggests that fine-tuned with experts’
annotation, the T5-Large model can generate QA
pairs that 1) contain external structured knowledge,
and 2) are appropriate for young children’s inter-
active storytelling experience. Also, this result
proves that our 2-Step pipeline can effectively in-
fuse structured knowledge with free-form narrative,
facilitating similar tasks in other specific domains.

4.5 Discussion

To approach the RA-QAG task we formulate, we
construct comprehensive QAG pipelines and inves-
tigate the potential of various generation strategies
in solving real-world tasks, as well as the effective-
ness of human expertise.

The 2-STEP-RAG strategy, utilizing a fine-
tuned retriever model, significantly enhances the
performance of LLMs compared to 2-STEP-LLM.
Notably, the BGE model only consists of 326 mil-
lion parameters, whereas the T5-Large model con-
sists of 770 million parameters. Fine-tuning a
smaller retriever model like BGE can yield results
almost identical to fine-tuning a larger LM, high-
lighting RAG as a more cost-effective method to
improve LLM performance for real-world tasks.
Comparing 2-STEP-RAG with 2-STEP-HUMAN,
we also observe a notable improvement when mod-
els benefit from expert annotation. This under-
scores that while RAG can impart domain knowl-
edge to LLMs through fine-tuning on expert-
annotated data, it does not obviate the need for
human experts.

By enabling LLMs to mimic teachers’ practices
in interactive storytelling activities and leveraging
human-expert annotated knowledge for fine-tuning,
all models’ performance could be enhanced. This
underscores the effectiveness of incorporating com-
mon human practices and leveraging human knowl-

edge to improve model performance in real-world
applications.

However, we also observe that the overall Rouge-
L of QAG system evaluation is relatively low across
all pipelines, even with GPT-4. We attribute this
to human experts’ grasp of the timing. During
the creation of QA pairs, human experts strate-
gically decide when to provide structured knowl-
edge and what structured knowledge to incorporate.
However, in the case of automatic QAG, the ab-
sence of this nuanced timing limits LLMs to pro-
vide appropriate structured knowledge for QAG.
This illustrates the challenging nature of the QAG
for interactive storytelling given SoTA language
models, leaving significant space for future im-
provement.

5 Conclusion and Future Work

In this work, we focus on a common and critical
real-world scenario: teachers attempting to impart
real-world knowledge by posing story-inspired, ed-
ucationally crafted questions and providing respon-
sive feedback during interactive storytelling with
preschool children. We formulate this real-world
application into a novel QAG task, namely Real-
world Augmented QAG (RA-QAG), and explore
LLMs’ performance when equipped with various
domain adaptation strategies compared with human
expertise. By employing few-shot ICL, Chain-of-
Thoughts, and Retrieval-Augmented Generation,
our QAG pipeline experiments demonstrate that: 1)
RAG shows great potential for tackling real-world,
domain-specific tasks; 2) Human experts still mas-
ter domain expertise and intricate knowledge that
generic LLMs need to learn from.

One future direction involves leveraging our
pipeline designs to further develop human-Al col-
laborative educational systems, such as interactive
storytelling systems, to better facilitate children’s
story-based learning of real-world knowledge, ad-
dressing parents’ or teachers’ practical constraints,
such as limited time, expertise, and educational
resources. In addition, we could further explore
advanced QAG pipeline designs and generation
strategies to enhance LLMs’ domain adaptation
ability in other real-world settings such as health-
care, law, and finance, to further investigate the
RA-QAG task we propose in this work.



6 Limitations

This work primarily focuses on employing vari-
ous generation strategies, including few-shot ICL,
Chain-of-Thoughts, and Retrieval-Augmented Gen-
eration, to approach the RA-QAG task we formu-
late from the real-world interactive storytelling sce-
nario, and investigate their effectiveness compared
with human expertise. There are several limita-
tions.

First, we experimented with the few-shot ICL,
Chain-of-Thoughts, and Retrieval-Augmented Gen-
eration strategies; however, we are aware that
there are more generatstrategies,gies as well as
some instruction-finetuned LLMs, such as Instruct-
GPT (Ouyang et al., 2022), can be further explored.

Second, for the 2-STEP-RAG strategy, we ex-
periment with an original version of the BGE
model and a fine-tuned one. We acknowledge that
there exist many other Retriever models, such as
LLM-Embedder (Zhang et al., 2023), and RAG
approaches, such as Iterative Retrieval (Shao et al.,
2023b), that could be implemented.

Third, we experiment with two different QAG
pipeline designs. Although we investigate three
variations in the 2-Step pipeline, more novel
pipeline designs, such as multi-step generation
pipelines, could be implemented to further explore
their performance on our RA-QAG task.
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A Appendix
A.1 Complete QAG pipeline Results

We demonstrate the complete performance of
LLMs in our end-to-end QAG pipeline in Table 4,
and the full results for 2-Step QAG is presented in
Table 5.

Models Prompting Triple QA pair
Strategy | Rouge-L SBERT Rouge-L SBERT
T5-Large 0206 0318 0279 0263
fine-tuned

Al zero-shot 0.139 0.301 0.266 0.207
paca 1-shot 0276 0321 0239  0.186
zero-shot 0.209 0.348 0.209 0.229
Mistral 1-shot 0.240 0.363 0.231 0.241
5-shot 0.280 0.372 0.257 0.251
zero-shot 0.154 0.340 0.177 0.225
Llama 2 1-shot 0.200 0.367 0.206 0.237
5-shot 0.291 0.370 0.269 0.253
Flan-T5-XXL 1-shot 0.275 0.375 0.194 0.209
zero-shot | 0.219 0.373 0.220 0.252
1-shot 0.245 0.386 0.252 0.271
GPT-3.5 5-shot 0.274 0.384 0.264 0.266
CoT 0.259 0.280
zero-shot | 0.286 0.385 0.243 0.261
GPT4 1-shot 0.289 0.413 0.251 0.292
) 5-shot 0.285 0.398 0.248 0.283
CoT 0.295 0.404 0.262 0.292

Table 4: Rouge-L and SentenceBERT scores of LLMs
in the end-to-end QAG pipeline. Bolded numbers are
the best performance within each setting in each metric.
Underlined numbers are the second-best scores within
each setting.

A.2 GPT propmts

To thoroughly harness GPT’s generation capabili-
ties, we collaborated with educational experts, and
iteratively designed and refined the prompts with
clear and informative instructions.

For our QAG pipelines, there are three different
variations:

* End-to-end QAG setting: Directly generate
a real-world knowledge triple and QA pair
from an input story section (Table 6).

Chain-of-Thought QAG approach: Gener-
ate a real-world knowledge triple and QA pair
by thinking step by step from an input story
section (Table 7).

two-step QAG setting: Generate a real-world
knowledge triple in the first step from a story
section, and generate a QA pair based on the
generated triple in the second step (Table 8
and Table 9).
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A.3 Hyper-parameters and Experiment
Settings

We conducted our experiments on Google Colab
with A100. Following common practice when fine-
tuning the T5-Large model, we use the learning
rate of le-4 and train our model on 3 epochs.



Model Model

Strategy (Stepl-Triple) Rouge-.  SBERT (Step2-QA pair) Rouge-. SBERT
T5-Large fine-tuned | 0.331 0.402 | T5-Large fine-tuned | 0.279  0.263

2-STEP-LLM Llama 2 0311 0353 Llama 2 0263 0247
GPT-4 0290  0.398 GPT-4 0269  0.279

BGE 0.298  0.395 GPT-4 0256  0.268

2-STEP-RAG BGE fine-tuned | 0328  0.384 GPT-4 0278 0267
Experts’ annotation T5-Large fine-tuned | 0.510  0.834

2-STEP-HUMAN (1(’; s nad Tf i‘h)" 1.000  1.000 Llama 2 0413 0.690
ound tru GPT-4 0482  0.794

Table 5: The complete 2-Step QAG pipeline performance on both steps, including the 2-STEP-LLM, 2-STEP-RAG
and 2-STEP-HUMAN strategies. For all LLMs involved in this setting, we used 5-shot ICL for the corresponding
generation step. Bolded numbers are the best performance within each setting on each metric. Underlined numbers
are the second-best scores within each setting on each metric.

13



Prompt for GPT in the end-to-end QAG pipeline

I need you to help generate a question and answer pair for young children aged three to six. I will
provide you with a short section of a story delimited by triple quotes. Please follow these steps:
1. For each sentence, identify one key word that meets the following criteria: it is relatively complex, it
is considered tier 1 or tier 2 vocabulary, and it is a concrete noun, verb, or adjective.
2. After this, you need to completely forget about the story that I gave you, remembering only the
words you identified.
3. Based on each selected word, generate one real-world relation based on the selected word. This
real-world relation should go beyond the context of the stories. For example, if your identified word is
“apple’, your real-world relation could be: apple grows on trees; apples are red. The real-world,
fact-based knowledge should be based on the selected word and is in the form of a triple such as *A
relation B’, where A and B are two concepts and the selected word can be either A or B. You should
use one of the following relations for the real-world knowledge:

causes

desires

has context of

has property

has subevent

isa

is at location of

is capable of

is created by

is made of

is part of

is the antonym of

is used for
4. After this, generate a question and answer pair based on the real-world, fact-based knowledge you
generated. Either the question or the answer should contain that identified word. Each question should
have one single correct answer that would be the same regardless of the children’s experiences. The
questions should be focused on real-world, fact-based knowledge and beneficial to educate children
during storytelling.
5. After this, select one question-answer pair that you think best meet my criteria. Please note that the
question should be answerable without reading the story.
The answer should only be a concrete noun, verb, or adjective.
Return the generated real-world knowledge and selected question-answer pair in the following format:
real-world knowledge triple: (A, relation, B)
question: ...
answer: ...

(story ):
{storyl for few-shot}

(response ):
{responsel for few-shot}

(story ):
{story for the current data}

(response ):

Table 6: Prompt for GPT in the QAG task with generating real-world knowledge triple and QA pairs directly from
story.
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Chain-of-Thoughts Prompt for GPT in the QAG pipeline

Q: Now, generate a question and answer pair containing real-world, fact-based knowledge associated
with the following story for young children aged three to six.
<story>: {storyl for few-shot}

A: Let’s think step by step.
First, a key word can be identified from the story text, which meets the following criteria: it is relatively
complex, it is considered tier 1 or tier 2 vocabulary, and it is a concrete noun, verb, or adjective.
The identified key word is: {concept wordl for few-shot}
Then, based on the identified key word, one piece of real-world, fact-based knowledge can be
generated in the form of a triple,
such as A relation B, where A and B are two concepts and the selected word can be either A or B.
The triple should use one of the following relations for the real-world knowledge:

causes

desires

has context of

has property

has subevent

isa

is at location of

is capable of

is created by

is made of

is part of

is the antonym of

is used for
The generated real-world knowledge is: {real-world knowledge for few-shot}
Finally, a question and answer pair can be generated based on the generated real-world, fact-based
knowledge.
Either the question or the answer should contain that identified word. Each question should have one
single correct answer that would be the same regardless of the children’s experiences.
The generated question-answer pair is:
question: {questionl for few-shot}
answer: {answerl for few-shot}

Q: Now, generate a question and answer pair containing real-world, fact-based knowledge associated
with the following story for young children aged three to six:
<story>: {story for the current data}

Table 7: Chain-of-Thoughts Prompt for GPT in the QAG task with generating real-world knowledge triple and QA
pairs directly from story.
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Prompt for GPT in two-step pipeline: Step 1

I need you to help generate real-world knowledge for young children aged three to six. The real-world
knowledge you should write can be seen as a relation about two concepts. I will provide you with a
short section of a story delimited by triple quotes. Please follow these steps:
1. For each sentence, identify one key word that meets the following criteria: it is relatively complex, it
is considered tier 1 or tier 2 vocabulary, and it is a concrete noun, verb, or adjective.
2. After this, you need to completely forget about the story that I gave you, remembering only the
words you identified.
3. Based on each selected word, generate a real-world, fact-based knowledge.
For example, if your identified word is "apple’, your real-world relation could be: apple is a fruit; apple
is used for eating.
The real-world, fact-based knowledge should be based on the selected word and is in the form of a
triple such as ’A relation B’, where A and B are two concepts and the selected word can be either A or
B. You should use one of the following relations for the real-world knowledge:

causes

desires

has context of

has property

has subevent

isa

is at location of

is capable of

is created by

is made of

is part of

is the antonym of

is used for
Return the generated real-world knowledge in the following format:

real-world knowledge triple: (A, relation, B)

(story ):
{storyl for few-shot}

(response ):
{responsel for few-shot}

(story ):
{story for the current data}

(response ):

Table 8: Prompt for step 1 in GPT two-step QAG pipeline.
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Prompt for GPT in two-step pipeline: Step 2

I need you to help generate a question and answer pair for young children aged three to six. I will
provide you with a piece of real-world knowledge. Please follow these steps:

1. Based on provided real-world knowledge, generate a question and answer pair that either the
question or the answer contains a concept in the real-world knowledge.

The questions should be focused on real-world, fact-based knowledge.

For example, given the real-world knowledge of ’apple is used for eating’, your question could be:
what is apple used for?

Each question should have one single correct answer that would be the same regardless of the
children’s experiences. The answer should only be a concrete noun, verb, or adjective.

Return the generated question-answer pair in the following format:

question: ...
answer: ...

(story ):
{storyl for few-shot}

(real-world knowledge triple ):
{real-world knowledge triplel for few-shot}

(response ):
{responsel for few-shot}

(story ):
{story for the current data}

(real-world knowledge triple):
{real-world knowledge triple generated by GPT in Step 1 for the current data}

(response ):

Table 9: Prompt for step 2 in GPT two-step QAG pipeline.
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