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Abstract

In the real world, external domain-specific001
knowledge is commonly required, for in-002
stance, teachers often apply their expertise003
to ask preschoolers educational-crafted, story-004
inspired questions beyond the story content dur-005
ing interactive storytelling; however, existing006
storytelling systems could not effectively sup-007
port such activity as the generated questions008
are mostly text-based. We formulate this type009
of common real-world application as a novel010
Real-World Augmented QAG (RA-QAG)011
task. This work aims to explore how well012
LLMs, equipped with various domain adapta-013
tion strategies (e.g., few-shot In-Context Learn-014
ing, Chain-of-Thoughts, Retrieval-Augmented015
Generation), perform on the RA-QAG task in016
the context of children storytelling. We design017
and experiment with end-to-end and 2-Step018
QAG pipelines with different domain adapta-019
tion strategies to explore whether they can iden-020
tify real-world knowledge and create QA pairs021
aligned with experts’ annotation. Our auto-022
matic evaluation and human evaluation show023
that 1) RAG is a promising direction to ap-024
proach real-world domain-specific tasks; 2) hu-025
man experts still have more nuanced knowledge026
from which generic LLMs need to learn.027

1 Introduction028

Generic Large Language Models (LLMs) such029

as GPT-3.5, GPT-4 (OpenAI, 2023), and Llama030

2 (Touvron et al., 2023) exhibit strong capabili-031

ties to generate various types of text solely using032

a snippet of narrative as input data, such as narra-033

tive question-answering (Shao et al., 2023a) and034

text summarization (Zhang et al., 2024). However,035

real-world scenarios are much more complicated:036

they commonly require additional domain-specific037

knowledge, which is often not present in the narra-038

tive but mastered by domain experts.039

In this paper, we focus on a real-world sce-040

nario in the context of preschool children education:041

teachers often try to teach real-world knowledge 042

while reading a storybook with a child through in- 043

teractive question-and-answer activities (Xu et al., 044

2021). These teachers need to decide where to 045

ask the question so that it is relevant to the story 046

(i.e., anchored at a particular word in the narrative), 047

what to ask so that the child can learn better (i.e., 048

external knowledge goes beyond the story narra- 049

tive), and how to ask the question (i.e., the style 050

and difficulty) so that the question is engaging but 051

not frustrating. The questions and answers crafted 052

by human teachers while reading a storybook also 053

need to align with children’s cognitive development 054

levels at different ages (Parish-Morris et al., 2013; 055

Saracho, 2017; Xu et al., 2021). We formulate such 056

type of real-world application as a novel narrative 057

question-answer generation (QAG) task, namely 058

Real-World Augmented QAG (RA-QAG), that 059

requires external domain knowledge to solve. The 060

RA-QAG task for children storytelling, differs from 061

traditional QAG tasks (Yao et al., 2021), demands 062

models to 1) locate particular words in story nar- 063

ratives and link them to educationally appropriate 064

knowledge, and 2) create children-centered and 065

knowledgeable QA pairs. 066

Existing children storytelling systems (Shakeri 067

et al., 2021; Zhang et al., 2022), despite showing 068

effectiveness in supporting interactive storytelling, 069

are mostly grounded in a story’s textual content, 070

thus leading to limited capability in the RA-QAG 071

task (Yao et al., 2021). The recent advancement in 072

large language models (LLMs), which encountered 073

and learned profound world knowledge during the 074

pre-training process, aroused significant attention 075

in investigating LLMs’ capabilities for real-world 076

domain-specific tasks. Moreover, various types of 077

generation strategies with the shared purpose of 078

enhancing LLMs’ domain-adaptation capabilities 079

have emerged recently, including purely prompting- 080

based strategies like few-shot In-Context Learn- 081

ing (ICL) (Brown et al., 2020) and Chain-of- 082
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Thoughts (Wei et al., 2022a), as well as Retrieval083

Augmented Generation (RAG) (Lewis et al., 2020)084

based strategies, which retrieves domain-specific085

knowledge from external knowledge resources as086

additional guidance for LLMs. Nevertheless, how087

well the State-of-The-Art (SoTA) language models,088

equipped with a variety of domain adaptation strate-089

gies, perform on the RA-QAG task in the context of090

children education domain, remains underexplored.091

In addition, whether these models will come close092

to the performance of human domain experts, and093

if not, how close they will come, is also unknown094

but of significant practical implication for both the095

technical and educational communities.096

Our primary contribution in this work aims to097

address the aforementioned “known unknowns” of098

LLMs’ domain adaptation capabilities on the RA-099

QAG task of teacher-children storytelling we for-100

mulated using a recently published dataset, namely101

FairytaleCQA (Chen et al., 2023). We designed102

and experimented with different QAG strategies un-103

der end-to-end and two-step generation pipelines,104

where the latter one mimics the experts’ annotation105

process to come up with a knowledge triple first be-106

fore creating the QA pairs. The end-to-end pipeline107

comprises both traditional compact models fine-108

tuned on the training split of FairytaleCQA as well109

as LLMs supported by different prompting strate-110

gies (e.g., zero-shot, few-shot ICL, CoT), whereas111

the two-step pipeline consists of three strategies112

for Triple Selection: generated by LLM, trained113

retriever (RAG), and expert-annotated triples (Hu-114

man). Our comprehensive benchmark experiment,115

along with in-depth analysis, reveals two critical116

findings:117

• Fine-tuning models with expert annota-118

tions and leveraging RAG can enhance the119

pipeline’s QAG quality.120

• Experts’ annotation remains more effective121

in elevating LLM performance on domain-122

specific tasks like interactive storytelling.123

We further discuss the potential and limitations of124

RAG strategies for RA-QAG tasks in different real-125

world scenarios.126

2 Related Work127

2.1 Large Language Models for Domain128

Adaptation129

Recent advancements in large language models130

(LLMs), including notable models like GPT-3.5,131

GPT-4 (OpenAI, 2023), and Llama (Touvron et al., 132

2023), have demonstrated exceptional capabilities 133

in generating coherent and contextually relevant 134

text. Many prompting techniques have been pro- 135

posed recently to further enhance LLMs’ task- 136

solving and domain-adaptation capability without 137

tuning the model parameters, such as few-shot In- 138

Context Learning, Chain-of-Thought prompting, 139

etc. Nevertheless, recent work discovered that 140

LLMs’ adaptability and performance in specialized 141

domains off-the-shelf, such as in children educa- 142

tion and mental health (Xu et al., 2023), is com- 143

monly compromised due to limited domain-specific 144

knowledge (Cao et al., 2020; He et al., 2022). 145

Recently, RAG has emerged as a novel and 146

promising domain-adaptation approach that re- 147

trieves external information as guidance to gen- 148

erate more up-to-date, accurate, and reliable re- 149

sponses (Lewis et al., 2020; Izacard et al., 2022) in 150

various tasks (Izacard and Grave, 2021; Cai et al., 151

2019). The retrieval module in RAG aims to ex- 152

tract the most helpful external knowledge, which 153

could be supported by a traditional trainable re- 154

triever model like BM25 (Robertson and Zaragoza, 155

2009) and BERT (Devlin et al., 2019), or advanced 156

embedding models like BGE (Chen et al., 2024). In 157

this work, we leverage BGE as the retriever model 158

for RAG throughout the experiments. 159

2.2 The FairytaleCQA Dataset 160

General QA datasets such as NarrativeQA (Kočiský 161

et al., 2018), SQuAD2.0 (Rajpurkar et al., 2018), 162

CommonsenseQA (Talmor et al., 2018), and SciQA 163

(Auer et al., 2023) either only consist of text- 164

grounded, crowd-sourced QA pairs or fall short 165

at considering children education appropriateness 166

with incorporated knowledge, leading all these 167

datasets less suitable for the QAG task augmented 168

by real-world knowledge in the context of children 169

education. 170

FairytaleCQA (Chen et al., 2023) is a recently 171

published large-scale QA dataset annotated by chil- 172

dren experts, specifically designed for children’s 173

interactive storytelling activities. This dataset con- 174

tains 5, 868 QA pairs derived from children’s fairy- 175

tale stories and enriched with external real-world 176

knowledge from ConceptNet (Speer et al., 2017), 177

a wide-used knowledge graph of structured real- 178

world knowledge. Such integration of story content 179

with real-world knowledge appropriate for children 180

education turns FairytaleCQA an ideal data re- 181

source for the tasks that require external domain 182
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knowledge to solve, and as a result, we utilize183

FairytaleCQA as the benchmark dataset for our184

proposed RA-QAG task.185

3 Real-World-Augmented QA Pair186

Generation for Children Storytelling187

In this section, we present the details of our exper-188

imental setup and methodology for the RA-QAG189

task we formulate from the real-world interactive190

storytelling scenario. We designed and experi-191

mented with different QAG strategies, including192

the utility of experts’ domain knowledge annotation193

for RAG, with a particular focus on the following194

detailed research questions (RQ):195

• RQ1: Can LLMs perform better by emulating196

human experts’ QA pair creation process?197

• RQ2: Can a compact model fine-tuned with198

experts’ annotations outperform LLMs?199

• RQ3: To what extent RAG can enhance200

LLMs’ domain adaptability, and what is the201

gap remaining compared with human experts?202

3.1 Dataset Preprocessing for Fine-tuning203

FairytaleCQA contains 5,868 QA pairs from 278204

children’s fairytale books. Each QA pair in205

FairytaleCQA is grounded in a concept from the206

story text and a corresponding external knowledge207

triple from ConceptNet (Speer et al., 2017), which208

represent a real-world knowledge in the format of209

(concept1, relation, concept2), annotated by chil-210

dren’s educational experts.211

The fine-tuning process of our retriever model212

in two-step QAG pipeline, as described in Sec-213

tion 3.2.2, and the compact model for end-to-end214

generation follows the original train/validation/split215

of FairytaleCQA, comprising 4, 300/769/799216

QA pairs, accordingly. We leverage supervised con-217

trastive training (Khosla et al., 2020) to fine-tune218

the retriever model by creating an equal amount of219

negative examples paired with positive examples –220

expert-annotated real-world knowledge triples for221

each story section. Negative examples are ran-222

domly sampled from the whole dataset excluding223

the expert annotations in the positive examples.224

The input for the retriever model becomes the con-225

catenation of a story section and its corresponding226

positive and negative examples.227

3.2 RA-QAG Pipelines 228

Catering to teachers’ common practice during the 229

interactive storytelling activity, our RA-QAG ex- 230

periments aim to come up with the final artifacts of 231

QA pairs that are associated with a particular con- 232

cept in the story and related external knowledge, all 233

of educational appropriateness for children educa- 234

tion. We designed two types of QAG pipelines: 1) 235

end-to-end (E2E) pipeline directly generates the 236

QA pairs with no intermediate outputs, and 2) two- 237

step (2-step) pipeline that simulates experts’ anno- 238

tation process for FairytaleCQA. Multiple gener- 239

ation strategies were further designed under each 240

type of QAG pipeline. Figure 1 illustrates the struc- 241

ture of both pipelines, with additional illustrations 242

of QAG strategies under the 2-Step pipeline. 243

3.2.1 End-to-end QAG Pipeline (E2E) 244

The end-to-end pipeline generates both the story- 245

inspired real-world knowledge and a corresponding 246

QA pair directly given the input of a story sec- 247

tion. We follow the instructions provided to hu- 248

man experts to create FairytaleCQA as the basic 249

prompt instructions, and collaborate with human 250

educational experts to iteratively refine the prompt 251

instructions for LLMs to incorporate educational 252

guidelines as well as QAG instructions, as reported 253

in Appendix A.2. The goal is to ask LLMs to gener- 254

ate diverse triples and corresponding QA pairs that 255

are appropriate for interactive storytelling activity 256

with children. 257

We leverage five robust LLMs for end-to-end 258

generation, including GPT-4 (OpenAI, 2023), 259

Llama 2 (Touvron et al., 2023), Mistral (Jiang et al., 260

2023), Alpaca (Taori et al., 2023) and FLAN-T5- 261

XXL (Chung et al., 2022). For each LLM, we 262

experiment with the following popular prompting 263

strategies: zero-shot as baseline (denoted as ZS), 264

few-shot In-Context Learning (denoted as FS(# OF 265

SHOT), and Chain-of-Thoughts (denoted as COT). 266

In addition, we fine-tune a traditional T5-Large 267

model with expert-annotated triples and QA pairs 268

for the end-to-end pipeline to compare the perfor- 269

mance between domain-specific fine-tuned com- 270

pact model and generic LLMs. 271

3.2.2 Two-Step QAG Pipeline (2-Step) 272

The 2-Step pipeline aims to mimic the expert an- 273

notation process in constructing FairytaleCQA, 274

which is also aligned with existing works (Yao 275

et al., 2021; Qu et al., 2021) for multi-step QAG 276

generation. During the original annotation pro- 277
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Figure 1: The structure of the end-to-end pipeline and the three QAG strategies under 2-Step pipeline, including the
2-STEP-LLM, 2-STEP-RAG and 2-STEP-HUMAN strategies.

cess, educational experts select a story-related real-278

world knowledge triple beyond the story narra-279

tive, assisted with a retrieval algorithm that rec-280

ommends the most relevant real-world knowledge281

triples from ConceptNet. Afterward, the experts282

write a QA pair based on the selected knowledge283

triple. In both steps, the experts are explicitly in-284

structed to consider the educational appropriateness285

of selecting triples as well as creating QA pairs.286

Similarly, The 2-Step pipeline consists of the fol-287

lowing steps: 1) generates an external real-world288

knowledge triple based on the story context, and289

2) explicitly uses the generated triple as additional290

input to create the corresponding QA pair. We aim291

to investigate the effectiveness of RAG in support-292

ing LLMs to retrieve external knowledge triples293

in the 2-Step QAG pipeline, and, as a result, we294

design three different knowledge triple generation295

strategies, including generated by LLMs directly,296

retrieved from ConceptNet via a trained retriever297

model, and directly using expert-annotated triples.298

Details of each strategy are illustrated below.299

LLM Strategy (2-STEP-LLM) This is the basic300

strategy that asks the LLMs to only generate a real-301

world knowledge triple based on the input story302

in the first step, then feed the generated triple as303

additional input to the LLMs for the generation304

of a QA pair in the second step. For this strategy,305

we incorporated GPT-4 and Llama 2 as the LLM306

variations and also fine-tuned a T5-Large model for307

each step on FairytaleCQA as the compact model308

alternative.309

Trained Retriever Strategy (2-STEP-RAG)310

This strategy represents the RAG approach for311

LLMs, where we attempt to mimic the two-step312

annotation process of human experts. Specifi-313

cally, we follow the same process as reported in 314

FairytaleCQA to locate associated external knowl- 315

edge triples for concepts in stories. Firstly, we 316

generate the list of candidate concepts from the 317

story content. Then, we acquire the top six related 318

knowledge triples from ConceptNet for every can- 319

didate concept as the external knowledge resource 320

for the current story input. A retriever model was 321

trained on the training split of FairytaleCQA to se- 322

lect the most relevant and helpful knowledge triple 323

annotated by human experts, given the story con- 324

tent and the external knowledge resource. Once the 325

retriever returns a triple, we ask the LLM to gener- 326

ate a corresponding QA pair, which is identical to 327

the other 2-Step pipelines. 328

We incorporate two versions of the BGE model 329

as the retriever: the original BGE, and the other one 330

fine-tuned with FairytaleCQA. For fine-tuning the 331

BGE embedding model, we process the data as de- 332

scribed in Section 3.1, and leverage the BGE model 333

to calculate the similarity between the embeddings 334

of the story text and each suggested real-world 335

knowledge triples. 336

Expert-Annotated Strategy (2-STEP-HUMAN) 337

We also design and experiment with the 2-Step- 338

Human strategy as the upper bound for 2-Step QAG 339

pipelines by directly using the expert-annotated 340

triples for the first step. For the second step of 341

QA pair generation, we also trained a T5-Large 342

model as the fine-tuned compact model variation. 343

We aim to compare the performance of the afore- 344

mentioned 2-Step QAG strategy with this expert 345

knowledge-based strategy to investigate the gap re- 346

maining between human experts’ knowledge and 347

the RAG-enhanced LLMs. 348
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Model Prompting
Strategy

Rouge-L
(Triple)

Rouge-L
(QA pair)

T5-Large fine-tuned
(0.77B)

- 0.206 0.279

Llama 2
(7B)

ZS 0.154 0.177
FS 0.291 0.269

GPT-4
ZS 0.286 0.243
FS 0.285 0.248

COT 0.295 0.262

Table 1: QAG performance of LLMs and the fine-tuned
T5-Large in the E2E QAG pipeline. We use 5-shot for
both few-shot ICL methods. Bolded numbers are the
best scores within each setting, and underlined numbers
are the second-best scores within each setting.

4 Evaluation349

Following the experiment setting described in Sec-350

tion 3, we conduct evaluations on both QAG351

pipelines. We carefully designed the prompt in-352

puts by incorporating the instructions provided to353

the human experts for FairytaleCQA, and empha-354

sized the educational appropriateness for generated355

QA pairs, as shown in Appendix A.2.356

For automatic evaluation, we utilize Rouge-357

L (Lin, 2004) to evaluate the quality of the con-358

catenated QA pairs between the generated ones359

and two ground truths annotated by experts, then360

report the average score across all test data. We also361

measure Sentence-BERT (SBERT) using Sentence362

Transformer (Reimers and Gurevych, 2019) and re-363

port the scores in Appendix A.1. We acknowledge364

that these similarity-based metrics cannot faith-365

fully measure domain specificity, therefore, we con-366

ducted a human evaluation with education experts367

to further assess the quality of LLM-generated QA368

pairs from an educational perspective.369

4.1 RQ1: E2E QAG vs. 2-Step QAG370

We approach the RA-QAG task using two afore-371

mentioned QAG pipelines described in Section 3.2:372

end-to-end (E2E) and two-Step (2-Step). Our373

end-to-end pipeline comprises six SoTA LLMs:374

GPT-3.5, GPT-4 (OpenAI, 2023), FLAN-T5-375

XXL (Chung et al., 2022), Alpaca (Taori et al.,376

2023), Mistral (Jiang et al., 2023) and Llama377

2 (Touvron et al., 2023). To thoroughly examine378

LLMs’ performance in the QAG task for interac-379

tive storytelling of children, we employed various380

popular prompting approaches, including zero-shot,381

few-shot In-Context Learning (ICL)(Brown et al.,382

2020), and Chain-of-Thought (CoT)(Wei et al., 383

2022a). 384

4.1.1 Experiment Results and Analysis 385

We report the performance of the aforementioned 386

LLMs with the end-to-end pipeline in Table 1, 387

report the two-step pipeline results in Table 2, 388

and report the complete results in Table 4 in Ap- 389

pendix A.1, including LLMs that perform worse 390

than GPT-4, such as Alpaca and Mistral-7B (Jiang 391

et al., 2023). 392

In the end-to-end pipeline, models with the 5- 393

shot ICL approach consistently outperform those 394

utilizing the zero-shot approach. To harness GPT-4’ 395

full potential under the end-to-end setting, we apply 396

the Chain-of-Thoughts (Wei et al., 2022b) prompt- 397

ing strategy for this specialized QAG task, where 398

we guide GPT-4 to identify real-world knowledge 399

and create QA pairs like human experts. Table 1 400

illustrates that GPT-4 achieves superior perfor- 401

mance in the end-to-end pipeline by asking it to 402

“think step-by-step” (CoT), which simulates hu- 403

mans’ thinking process. 404

Subsequently, we conduct a two-step QAG 405

pipeline evaluation, where all language models are 406

asked to locate and link a real-world knowledge 407

triple from the story first, and then generate a cor- 408

responding QA pair. Overall, as shown in Table 2, 409

the two-step QAG pipeline demonstrates superior 410

performance compared to the end-to-end pipeline. 411

This result justifies that by emulating human ex- 412

perts’ real-world knowledge triple identification 413

and QA pair creation process, LLMs can generate 414

more educationally appropriate QA pairs. 415

However, despite the superior performance of 416

the two-step QAG pipeline, we observed that the 417

improvement is inconspicuous, particularly for the 418

2-STEP-LLM and 2-STEP-RAG strategies, where 419

all models are not directly assisted by human ex- 420

pertise. Notably, both models in the first step of 421

the two-step pipeline exhibit better performance 422

than in the second step. We attribute this to two 423

main challenges: 1) It is hard for models to cre- 424

ate real-world knowledge triples as properly and 425

accurately as human experts in the first step, as ex- 426

perts rely on structured external knowledge source 427

ConceptNet to identify and associate real-world 428

knowledge. 2) When generating QA pairs that inte- 429

grate the real-world knowledge triple created in the 430

first step, the quality of the QA pairs is affected by 431

the appropriateness of the created triple. In addi- 432

tion, the second step would suffer from more loss 433

5



Strategy Model: Step1-Triple Rouge-L Model: Step2-QA pair Rouge-L

2-STEP-LLM
T5-Large Fine-Tuned 0.331 T5-Large Fine-Tuned 0.279

Llama 2 0.311 Llama 2 0.263
GPT-4 0.290 GPT-4 0.269

2-STEP-RAG
BGE 0.298 GPT-4 0.256

BGE Fine-Tuned 0.328 GPT-4 0.278

2-STEP-HUMAN
Experts’ Annotation

(Ground Truth)
1.000

T5-Large Fine-Tuned 0.510
Llama 2 0.413
GPT-4 0.482

Table 2: The 2-Step QAG pipeline performance on both steps, including the 2-STEP-LLM, 2-STEP-RAG and
2-STEP-HUMAN strategies. For all LLMs involved in this setting, we used 5-shot ICL for the corresponding
generation step. Bolded numbers are the best scores within each setting, and underlined numbers are the second-
best scores within each setting.

in terms of using suitable vocabulary for 3-6-year-434

olds’ comprehension as properly as human experts.435

In other words, the domain experts exhibit much436

better “timing” of when and where to provide and437

incorporate structured knowledge, whereas generic438

LLMs fall short of this nuanced mental behavior in439

terms of domain-specific tasks.440

4.2 RQ2: Domain-Specific Fine-tuned Models441

vs. LLMs442

To investigate whether language models can learn443

from domain experts’ knowledge, we compare444

the performance of a compact model fine-tuned445

with domain-specific knowledge retrieved by ex-446

perts with generic LLMs without experts’ anno-447

tation. Specifically, for both the end-to-end and448

2-Step pipeline, we fine-tune a T5-Large model449

on FairytaleCQA to generate a real-world knowl-450

edge triple and QA pair simultaneously. For each451

step in the 2-STEP-LLM strategy, we fine-tune a452

T5-Large model on FairytaleCQA and utilize the453

model output for the previous step (i.e., generated454

triples) as part of the input for the next model (i.e.,455

generate QA pairs given the story content and gen-456

erated triples). In addition, we fine-tune a BGE457

retriever to retrieve real-world knowledge triples458

based on story sections for the 2-STEP-RAG strat-459

egy.460

4.2.1 Experiment Results and Analysis461

We present the models’ performance in Table 1462

and 2. The fine-tuned T5-Large system consis-463

tently outperforms generic LLMs across both the464

end-to-end pipeline and the 2-STEP-LLM strategy465

by Rouge-L scores. In the 2-STEP-RAG strat-466

egy, the fine-tuned BGE model also exhibits bet- 467

ter performance when retrieving story-relate and 468

educational-suitable triples compared to the origi- 469

nal BGE model. 470

To thoroughly investigate the real-world knowl- 471

edge triple identified in the first step of the 2-Step 472

pipeline, we also investigate the relation distribu- 473

tions of real-world knowledge triples created by 474

fine-tuned models and generic LLMs, in addition 475

to QA pair evaluation. As illustrated in Figure 2, 476

both the fine-tuned T5-Large and BGE models can 477

create or retrieve real-world triples that are more 478

closely aligned with expert annotations. In contrast, 479

the relation distributions of models not fine-tuned 480

with expert annotations, such as GPT-4, Llama 2, 481

and the original BGE model, tend to be inconsis- 482

tent with expert annotations. Also, LLMs generate 483

a wider variety of triple types, many of which do 484

not belong to the expert-annotated types (see the 485

“others” column in Figure 2). 486

This observation justifies that a smaller lan- 487

guage model assisted with domain expertise (i.e., 488

expert-annotated real-world knowledge) can re- 489

liably perform better than generic LLMs in 490

domain-specific scenarios. 491

4.3 RQ3: Retrieval-Augmented Models vs. 492

Experts 493

We explore the potential of RAG compared with 494

experts’ annotation through two different strategies 495

within the 2-Step pipeline. The first strategy is the 496

2-STEP-RAG strategy. Here, we use a retriever to 497

select a real-world knowledge triple relevant to a 498

provided story section, and then employ a generator 499
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Figure 2: The distribution of triple relations in the 2-Step QAG pipeline, including experts’ annotation, and triples
created by fine-tuned T5-Large, fine-tuned BGE, Llama2, original BGE, and GPT-4.

Model Grammar
Correctness

Answer
Relevancy

Contextual
Consistency

Educational
Appropriateness

T5-Large
fine-tuned

4.867 4.478 4.656 4.433

GPT-4 4.878 4.522 4.578 4.389

Table 3: Human evaluation results of GPT-4 and fine-
tuned T5-Large in 2-STEP-HUMAN. Bolded numbers
are the best performance in each dimension.

to create a QA pair based on the retrieved triple. In500

the second strategy (i.e., 2-STEP-HUMAN), we pro-501

vide language models with expert-annotated struc-502

tured knowledge, guiding them to generate QA503

pairs based on the experts’ annotations.504

4.3.1 Experiment Results and Analysis505

As shown in Table 2, the 2-STEP-RAG strategy, es-506

pecially when fine-tuned with experts’ annotation,507

performs better at retrieving more educationally508

appropriate triples compared to LLMs in the 2-509

STEP-LLM strategy where models are not assisted510

by human experts’ annotations. This justifies that511

RAG is promising in terms of retrieving relevant512

knowledge for domain-specific tasks like interac-513

tive storytelling.514

It is worth noting that by employing expert-515

annotated structured knowledge in the 2-STEP-516

HUMAN strategy, all LLMs as well as the domain-517

specific fine-tuned language model, can far exceed518

the end-to-end pipeline and 2-STEP-LLM and 2-519

STEP-RAG in the RA-QAG task. This proves520

that domain expertise is still useful in such real-521

world domain-specific tasks. Despite RAG can522

improve the model performance to a certain ex-523

tent on our QAG task, it cannot yet completely524

substitute the domain knowledge of human ex-525

perts.526

4.4 Human Evaluation 527

To thoroughly assess the quality of LLM-generated 528

QA pairs, as well as to comprehensively investi- 529

gate the helpfulness of expert-annotated structured 530

knowledge, we conduct a human study to compare 531

the QA pairs generated by different models. 532

More specifically, according to the superior per- 533

formance of fine-tuned T5-Large and GPT-4 in 534

2-STEP-HUMAN, we selected these two models 535

for human evaluation. We recruit three education 536

experts and randomly select 30 story sections of 537

16 books from the test split of FairytaleCQA. For 538

each section, there are two QA pairs created based 539

on the story narrative (experts’ annotation, and QA 540

pairs generated by GPT-4 and fine-tuned T5-Large), 541

summing up to 60 QA pairs for the human evalua- 542

tion. QA pairs are randomized for each section and 543

the sources are omitted to the human subjects for a 544

fair evaluation. 545

Considering teachers’ practice in formulating 546

questions and feedback during interactive story- 547

telling (Xu et al., 2021; Zhang et al., 2022), we 548

ask the experts to evaluate each QA pair on the 549

following four dimensions with a 5-point Likert 550

scale: 551

1. Grammar Correctness: The QA pair uses 552

comprehensible English Grammar; 553

2. Answer Relevancy: The answer is correct and 554

corresponds to a question; 555

3. Contextual Consistency: The QA pair orig- 556

inates from the story and goes beyond the 557

story’s immediate context; 558

4. Children’s Educational Appropriateness: The 559

QA pair is appropriate for young children’s 560

reading experience during interactive story- 561

telling; 562
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Table 3 illustrates the average scores in each di-563

mension. We observe that GPT-4 performs better in564

the Grammar Correctness and Answer Relevancy565

dimensions, which is reasonable because LLMs566

like GPT-4 are trained on vast amounts of diverse567

corpora, making it easier for these models to gener-568

ate more Grammatical correct text.569

For the Contextual Consistency dimension, in570

which we assess whether a QA pair is both associ-571

ated with the story and external real-world knowl-572

edge, the fine-tuned T5-Large outperformed GPT-573

4. For the Children’s Educational Appropriate-574

ness dimension, the T5-Large model fine-tuned on575

FairytaleCQA also exhibits better performance.576

This result suggests that fine-tuned with experts’577

annotation, the T5-Large model can generate QA578

pairs that 1) contain external structured knowledge,579

and 2) are appropriate for young children’s inter-580

active storytelling experience. Also, this result581

proves that our 2-Step pipeline can effectively in-582

fuse structured knowledge with free-form narrative,583

facilitating similar tasks in other specific domains.584

4.5 Discussion585

To approach the RA-QAG task we formulate, we586

construct comprehensive QAG pipelines and inves-587

tigate the potential of various generation strategies588

in solving real-world tasks, as well as the effective-589

ness of human expertise.590

The 2-STEP-RAG strategy, utilizing a fine-591

tuned retriever model, significantly enhances the592

performance of LLMs compared to 2-STEP-LLM.593

Notably, the BGE model only consists of 326 mil-594

lion parameters, whereas the T5-Large model con-595

sists of 770 million parameters. Fine-tuning a596

smaller retriever model like BGE can yield results597

almost identical to fine-tuning a larger LM, high-598

lighting RAG as a more cost-effective method to599

improve LLM performance for real-world tasks.600

Comparing 2-STEP-RAG with 2-STEP-HUMAN,601

we also observe a notable improvement when mod-602

els benefit from expert annotation. This under-603

scores that while RAG can impart domain knowl-604

edge to LLMs through fine-tuning on expert-605

annotated data, it does not obviate the need for606

human experts.607

By enabling LLMs to mimic teachers’ practices608

in interactive storytelling activities and leveraging609

human-expert annotated knowledge for fine-tuning,610

all models’ performance could be enhanced. This611

underscores the effectiveness of incorporating com-612

mon human practices and leveraging human knowl-613

edge to improve model performance in real-world 614

applications. 615

However, we also observe that the overall Rouge- 616

L of QAG system evaluation is relatively low across 617

all pipelines, even with GPT-4. We attribute this 618

to human experts’ grasp of the timing. During 619

the creation of QA pairs, human experts strate- 620

gically decide when to provide structured knowl- 621

edge and what structured knowledge to incorporate. 622

However, in the case of automatic QAG, the ab- 623

sence of this nuanced timing limits LLMs to pro- 624

vide appropriate structured knowledge for QAG. 625

This illustrates the challenging nature of the QAG 626

for interactive storytelling given SoTA language 627

models, leaving significant space for future im- 628

provement. 629

5 Conclusion and Future Work 630

In this work, we focus on a common and critical 631

real-world scenario: teachers attempting to impart 632

real-world knowledge by posing story-inspired, ed- 633

ucationally crafted questions and providing respon- 634

sive feedback during interactive storytelling with 635

preschool children. We formulate this real-world 636

application into a novel QAG task, namely Real- 637

world Augmented QAG (RA-QAG), and explore 638

LLMs’ performance when equipped with various 639

domain adaptation strategies compared with human 640

expertise. By employing few-shot ICL, Chain-of- 641

Thoughts, and Retrieval-Augmented Generation, 642

our QAG pipeline experiments demonstrate that: 1) 643

RAG shows great potential for tackling real-world, 644

domain-specific tasks; 2) Human experts still mas- 645

ter domain expertise and intricate knowledge that 646

generic LLMs need to learn from. 647

One future direction involves leveraging our 648

pipeline designs to further develop human-AI col- 649

laborative educational systems, such as interactive 650

storytelling systems, to better facilitate children’s 651

story-based learning of real-world knowledge, ad- 652

dressing parents’ or teachers’ practical constraints, 653

such as limited time, expertise, and educational 654

resources. In addition, we could further explore 655

advanced QAG pipeline designs and generation 656

strategies to enhance LLMs’ domain adaptation 657

ability in other real-world settings such as health- 658

care, law, and finance, to further investigate the 659

RA-QAG task we propose in this work. 660
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6 Limitations661

This work primarily focuses on employing vari-662

ous generation strategies, including few-shot ICL,663

Chain-of-Thoughts, and Retrieval-Augmented Gen-664

eration, to approach the RA-QAG task we formu-665

late from the real-world interactive storytelling sce-666

nario, and investigate their effectiveness compared667

with human expertise. There are several limita-668

tions.669

First, we experimented with the few-shot ICL,670

Chain-of-Thoughts, and Retrieval-Augmented Gen-671

eration strategies; however, we are aware that672

there are more generatstrategies,gies as well as673

some instruction-finetuned LLMs, such as Instruct-674

GPT (Ouyang et al., 2022), can be further explored.675

Second, for the 2-STEP-RAG strategy, we ex-676

periment with an original version of the BGE677

model and a fine-tuned one. We acknowledge that678

there exist many other Retriever models, such as679

LLM-Embedder (Zhang et al., 2023), and RAG680

approaches, such as Iterative Retrieval (Shao et al.,681

2023b), that could be implemented.682

Third, we experiment with two different QAG683

pipeline designs. Although we investigate three684

variations in the 2-Step pipeline, more novel685

pipeline designs, such as multi-step generation686

pipelines, could be implemented to further explore687

their performance on our RA-QAG task.688
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A Appendix943

A.1 Complete QAG pipeline Results944

We demonstrate the complete performance of945

LLMs in our end-to-end QAG pipeline in Table 4,946

and the full results for 2-Step QAG is presented in947

Table 5.948

Models Prompting
Strategy

Triple QA pair
Rouge-L SBERT Rouge-L SBERT

T5-Large
fine-tuned

- 0.206 0.318 0.279 0.263

Alpaca
zero-shot 0.139 0.301 0.266 0.207
1-shot 0.276 0.321 0.239 0.186

Mistral
zero-shot 0.209 0.348 0.209 0.229
1-shot 0.240 0.363 0.231 0.241
5-shot 0.280 0.372 0.257 0.251

Llama 2
zero-shot 0.154 0.340 0.177 0.225
1-shot 0.200 0.367 0.206 0.237
5-shot 0.291 0.370 0.269 0.253

Flan-T5-XXL 1-shot 0.275 0.375 0.194 0.209

GPT-3.5

zero-shot 0.219 0.373 0.220 0.252
1-shot 0.245 0.386 0.252 0.271
5-shot 0.274 0.384 0.264 0.266
CoT 0.259 0.280

GPT-4

zero-shot 0.286 0.385 0.243 0.261
1-shot 0.289 0.413 0.251 0.292
5-shot 0.285 0.398 0.248 0.283
CoT 0.295 0.404 0.262 0.292

Table 4: Rouge-L and SentenceBERT scores of LLMs
in the end-to-end QAG pipeline. Bolded numbers are
the best performance within each setting in each metric.
Underlined numbers are the second-best scores within
each setting.

A.2 GPT propmts949

To thoroughly harness GPT’s generation capabili-950

ties, we collaborated with educational experts, and951

iteratively designed and refined the prompts with952

clear and informative instructions.953

For our QAG pipelines, there are three different954

variations:955

• End-to-end QAG setting: Directly generate956

a real-world knowledge triple and QA pair957

from an input story section (Table 6).958

• Chain-of-Thought QAG approach: Gener-959

ate a real-world knowledge triple and QA pair960

by thinking step by step from an input story961

section (Table 7).962

• two-step QAG setting: Generate a real-world963

knowledge triple in the first step from a story964

section, and generate a QA pair based on the965

generated triple in the second step (Table 8966

and Table 9).967

A.3 Hyper-parameters and Experiment 968

Settings 969

We conducted our experiments on Google Colab 970

with A100. Following common practice when fine- 971

tuning the T5-Large model, we use the learning 972

rate of 1e-4 and train our model on 3 epochs. 973
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Strategy Model
(Step1-Triple) Rouge-L SBERT Model

(Step2-QA pair) Rouge-L SBERT

2-STEP-LLM
T5-Large fine-tuned 0.331 0.402 T5-Large fine-tuned 0.279 0.263

Llama 2 0.311 0.353 Llama 2 0.263 0.247
GPT-4 0.290 0.398 GPT-4 0.269 0.279

2-STEP-RAG
BGE 0.298 0.395 GPT-4 0.256 0.268

BGE fine-tuned 0.328 0.384 GPT-4 0.278 0.267

2-STEP-HUMAN
Experts’ annotation

(Ground Truth)
1.000 1.000

T5-Large fine-tuned 0.510 0.834
Llama 2 0.413 0.690
GPT-4 0.482 0.794

Table 5: The complete 2-Step QAG pipeline performance on both steps, including the 2-STEP-LLM, 2-STEP-RAG
and 2-STEP-HUMAN strategies. For all LLMs involved in this setting, we used 5-shot ICL for the corresponding
generation step. Bolded numbers are the best performance within each setting on each metric. Underlined numbers
are the second-best scores within each setting on each metric.
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Prompt for GPT in the end-to-end QAG pipeline

I need you to help generate a question and answer pair for young children aged three to six. I will
provide you with a short section of a story delimited by triple quotes. Please follow these steps:
1. For each sentence, identify one key word that meets the following criteria: it is relatively complex, it
is considered tier 1 or tier 2 vocabulary, and it is a concrete noun, verb, or adjective.
2. After this, you need to completely forget about the story that I gave you, remembering only the
words you identified.
3. Based on each selected word, generate one real-world relation based on the selected word. This
real-world relation should go beyond the context of the stories. For example, if your identified word is
’apple’, your real-world relation could be: apple grows on trees; apples are red. The real-world,
fact-based knowledge should be based on the selected word and is in the form of a triple such as ’A
relation B’, where A and B are two concepts and the selected word can be either A or B. You should
use one of the following relations for the real-world knowledge:

causes
desires
has context of
has property
has subevent
is a
is at location of
is capable of
is created by
is made of
is part of
is the antonym of
is used for

4. After this, generate a question and answer pair based on the real-world, fact-based knowledge you
generated. Either the question or the answer should contain that identified word. Each question should
have one single correct answer that would be the same regardless of the children’s experiences. The
questions should be focused on real-world, fact-based knowledge and beneficial to educate children
during storytelling.
5. After this, select one question-answer pair that you think best meet my criteria. Please note that the
question should be answerable without reading the story.
The answer should only be a concrete noun, verb, or adjective.
Return the generated real-world knowledge and selected question-answer pair in the following format:
real-world knowledge triple: (A, relation, B)
question: ...
answer: ...

〈story 〉:
{story1 for few-shot}

〈response 〉:
{response1 for few-shot}

... ...

〈story 〉:
{story for the current data}

〈response 〉:

Table 6: Prompt for GPT in the QAG task with generating real-world knowledge triple and QA pairs directly from
story.
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Chain-of-Thoughts Prompt for GPT in the QAG pipeline

Q: Now, generate a question and answer pair containing real-world, fact-based knowledge associated
with the following story for young children aged three to six.
<story>: {story1 for few-shot}

A: Let’s think step by step.
First, a key word can be identified from the story text, which meets the following criteria: it is relatively
complex, it is considered tier 1 or tier 2 vocabulary, and it is a concrete noun, verb, or adjective.
The identified key word is: {concept word1 for few-shot}
Then, based on the identified key word, one piece of real-world, fact-based knowledge can be
generated in the form of a triple,
such as A relation B, where A and B are two concepts and the selected word can be either A or B.
The triple should use one of the following relations for the real-world knowledge:

causes
desires
has context of
has property
has subevent
is a
is at location of
is capable of
is created by
is made of
is part of
is the antonym of
is used for

The generated real-world knowledge is: {real-world knowledge for few-shot}
Finally, a question and answer pair can be generated based on the generated real-world, fact-based
knowledge.
Either the question or the answer should contain that identified word. Each question should have one
single correct answer that would be the same regardless of the children’s experiences.
The generated question-answer pair is:
question: {question1 for few-shot}
answer: {answer1 for few-shot}
... ...

Q: Now, generate a question and answer pair containing real-world, fact-based knowledge associated
with the following story for young children aged three to six:
<story>: {story for the current data}

Table 7: Chain-of-Thoughts Prompt for GPT in the QAG task with generating real-world knowledge triple and QA
pairs directly from story.
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Prompt for GPT in two-step pipeline: Step 1

I need you to help generate real-world knowledge for young children aged three to six. The real-world
knowledge you should write can be seen as a relation about two concepts. I will provide you with a
short section of a story delimited by triple quotes. Please follow these steps:
1. For each sentence, identify one key word that meets the following criteria: it is relatively complex, it
is considered tier 1 or tier 2 vocabulary, and it is a concrete noun, verb, or adjective.
2. After this, you need to completely forget about the story that I gave you, remembering only the
words you identified.
3. Based on each selected word, generate a real-world, fact-based knowledge.
For example, if your identified word is ’apple’, your real-world relation could be: apple is a fruit; apple
is used for eating.
The real-world, fact-based knowledge should be based on the selected word and is in the form of a
triple such as ’A relation B’, where A and B are two concepts and the selected word can be either A or
B. You should use one of the following relations for the real-world knowledge:

causes
desires
has context of
has property
has subevent
is a
is at location of
is capable of
is created by
is made of
is part of
is the antonym of
is used for

Return the generated real-world knowledge in the following format:

real-world knowledge triple: (A, relation, B)

〈story 〉:
{story1 for few-shot}

〈response 〉:
{response1 for few-shot}
... ...

〈story 〉:
{story for the current data}

〈response 〉:

Table 8: Prompt for step 1 in GPT two-step QAG pipeline.
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Prompt for GPT in two-step pipeline: Step 2

I need you to help generate a question and answer pair for young children aged three to six. I will
provide you with a piece of real-world knowledge. Please follow these steps:
1. Based on provided real-world knowledge, generate a question and answer pair that either the
question or the answer contains a concept in the real-world knowledge.
The questions should be focused on real-world, fact-based knowledge.
For example, given the real-world knowledge of ’apple is used for eating’, your question could be:
what is apple used for?
Each question should have one single correct answer that would be the same regardless of the
children’s experiences. The answer should only be a concrete noun, verb, or adjective.
Return the generated question-answer pair in the following format:

question: ...
answer: ...

〈story 〉:
{story1 for few-shot}

〈real-world knowledge triple 〉:
{real-world knowledge triple1 for few-shot}

〈response 〉:
{response1 for few-shot}
... ...

〈story 〉:
{story for the current data}

〈real-world knowledge triple〉:
{real-world knowledge triple generated by GPT in Step 1 for the current data}

〈response 〉:

Table 9: Prompt for step 2 in GPT two-step QAG pipeline.
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