
Multi-Head Low-Rank Attention

Songtao Liu1∗ Hongwu Peng2 Zhiwei Zhang1 Zhengyu Chen3 Yue Guo4

1The Pennsylvania State University 2University of Connecticut
3Carnegie Mellon University 4University of California, Los Angeles

Abstract

Long-context inference in large language models is bottlenecked by Key-Value
(KV) cache loading during the decoding stage, where the sequential nature of
generation requires repeatedly transferring the KV cache from off-chip to on-
chip memory at each step. Recent architectures like Multi-Head Latent Attention
(MLA) significantly reduce the KV cache size to 4.5dh per token per layer while
maintaining high model quality. However, when using tensor parallelism (TP)
with sufficient devices for inference, MLA still decodes slower than Grouped-
Query Attention (GQA) because its single latent vector cannot be sharded, forc-
ing each device to load 4.5dh versus 2dh for GQA. In this work, we propose
Multi-Head Low-Rank Attention (MLRA), a TP-friendly attention mechanism
that slashes the per-device KV cache under TP to just 1.5dh. Extensive experi-
ments show that MLRA achieves state-of-the-art perplexity and downstream task
performance, while also delivering a 2.8× decoding speedup over MLA.

1 Introduction

Inference-time scaling (OpenAI et al., 2024) is critical for large language models (LLMs) to pro-
duce high-quality responses. Both retrieval-augmented generation (RAG) (Lewis et al., 2020) and
long chain-of-thought (CoT) reasoning (Wei et al., 2022) rely on maintaining long context before
generating the final answer, substantially increasing the number of tokens that must be processed
at each decoding step. Sequential token generation under Multi-Head Attention (MHA) (Vaswani
et al., 2017) requires reloading the Key-Value (KV) cache from high-bandwidth memory every step,
so data movement (Ivanov et al., 2021; Ootomo and Yokota, 2023; Gholami et al., 2024), not com-
putation, dominates latency for long-context inference (Sadhukhan et al., 2025). The small amount
of compute per step relative to this data movement leads to low arithmetic intensity (Williams et al.,
2009) and poor GPU utilization (He and Zhai, 2024; Zadouri et al., 2025).

Recent work (Zadouri et al., 2025) proposes to analyze the performance and decoding efficiency of
inference-aware attention mechanisms (Hu et al., 2024; Sun et al., 2025b; Zheng et al., 2025) along
four axes: (1) model quality, (2) KV cache footprint per token, (3) arithmetic intensity, and (4) the
degree of tensor parallelism (TP) (Pope et al., 2023) across attention heads. Multi-Query Attention
(MQA) (Shazeer, 2019) shares single key and value heads across all query heads, reducing the KV
cache to one head (2dh) yet maintaining the same floating point operations per second (FLOPs) as
MHA. Despite the higher arithmetic intensity and smaller KV cache than MHA, it often leads to
noticeable quality degradation. Grouped-Query Attention (GQA) (Ainslie et al., 2023) shares single
key and value heads within a group of query heads, improving model quality over MQA while
achieving higher arithmetic intensity than MHA. However, its KV cache of 2gdh still scales with
the group size (with g=8 in LLaMA-3-70B (Llama et al., 2024) and Grok-2), which can be memory
intensive. As a result, reaching the fastest decoding (2dh per device) typically requires g-way TP.

Multi-Head Latent Attention (MLA) (DeepSeek et al., 2024a) compresses the KV cache into a latent
vector (4.5dh per token). By absorbing the up-projection matrices into the queries during decoding,

∗Correspondence to: Songtao Liu <skl5761@psu.edu>.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

ℎ!

… 𝑐!

…

{𝑘!,#$%&
' /𝑣!

(')}

KV	Cache

ℎ! …

{𝑐!
(')}𝑈!

MLA MLRA

ℎ! …

{𝑘!,#$%&
' /𝑣!

(')}

Shard

{𝑐!
(')}

{𝑘!,#$%&
' ,*+,&/𝑣!

' ,*+,&} {𝑘!,#$%&
' ,-$.+/𝑣!

' ,-$.+}

Figure 1: Illustration of MLA, Shard, and MLRA. MLRA adopts a balanced design that achieves
TP through the low-rank path while maintaining model quality via the base path.

its attention computation is similar to that of MQA with shared KV states, which increases arith-
metic intensity by 2× over MQA and delivers better model quality compared with GQA and MHA.
However, MLA is unfriendly to TP because its single latent vector cannot be sharded. To mitigate
this, Grouped Latent Attention (GLA) (Zadouri et al., 2025) compresses the KV cache into two
latent vectors, each 2dh, plus an additional 0.5dh for partial RoPE (Su et al., 2024). Nevertheless,
its per-device 2.5dh KV cache still leaves decoding slower than GQA when enough devices are
available. In this work, we target a high TP degree with per-device KV cache below 2dh.

0 20 40 60 80 100
Training tokens (B)

2.6

2.7

2.8

2.9

3.0

3.1

Tr
ai

ni
ng

lo
ss

Training Loss Curves

MLA
Shard

Figure 2: Training loss curves on
FineWeb-Edu (100B tokens) for 354M
models: MLA vs. Shard. Shard splits the
latent vector into 16 smaller vectors.

A simple and straightforward approach is to split
MLA’s single high-dimensional latent vector into h
smaller latent vectors (illustrated in the middle of Fig-
ure 1), as in GLA, which splits the latent vector into
two smaller vectors. However, this simple approach can
cause a significant drop in model quality, as illustrated
by the 354M-model training loss curves in Figure 2. To
address this limitation, we introduce Multi-Head Low-
Rank Attention (MLRA), a dual-path attention mecha-
nism shown on the right of Figure 1, which can achieve
a small per-device KV cache under TP and high model
quality. In the low-rank path, the KV cache is com-
pressed to h tiny latent vectors, each of which is up-
projected to single key and value heads, and can be par-
titioned across devices to support TP. In the base path,
we follow MLA by compressing the KV cache into a
base latent vector whose dimension matches the per-
head query (dh), then up-project it to produce h key
and value heads. We then sum the attention outputs from the two paths. Therefore, our proposed
MLRA can achieve a per-device KV cache of 1.5dh with 4-way TP. Based on our 2.9B scale exper-
iments, MLRA achieves the lowest perplexity (12.998 vs. 13.115 for MLA and 13.399 for GQA)
and highest downstream accuracy (57.06% vs. 55.46% for MLA and 55.68% for GQA). Our kernel
delivers a 1.05-1.26× speedup over GQA in long-context decoding.

2 Preliminaries

2.1 Tensor Parallelism

Long-context decoding is bottlenecked by KV cache loading from high-bandwidth memory at each
step. Given the sequential nature of generation, we can only accelerate inference by distributing
the KV cache and model weights across devices via tensor parallelism. With high-bandwidth GPU
interconnects such as NVLink, the synchronization overhead in TP can be substantially reduced.

2

2.2 Translation Equivariance

Equivariance is a fundamental property in geometric systems such as molecules, where vector fea-
tures such as atomic forces or dipole moments must transform consistently with the coordinate sys-
tem (Thomas et al., 2018; Weiler et al., 2018; Fuchs et al., 2020; Satorras et al., 2021). In the context
of sequence models, a common transformation is sequence translation. Let x = (x1,x2, . . . ,xn) ∈
X be a sequence of tokens, and define a translation operator Ts : X → X that translates the entire
sequence by s positions. Let ϕ : X → Y be a function that maps a sequence to a matrix of atten-
tion scores ϕ (x) ∈ Rn×n, where each element ϕ (x)i,j = A (xi,xj) denotes the attention score
between tokens xi and xj . We say that ϕ is translation equivariant if there exists a corresponding
output-space transformation Ss : Y → Y such that:

ϕ (Ts (x)) = Ss (ϕ (x)) , ∀s. (1)

This property ensures that the attention score between two tokens depends only on their relative
positions, not their absolute positions. That is crucial for batch inference using left padding, where
sequences of different lengths are offset to align ends. The first non-padding token of a sequence is
no longer at position 0, yet attention scores remain invariant to this translation.

2.3 Rotary Position Embedding

Rotary Position Embedding (RoPE) (Su et al., 2024) is a positional encoding method designed to
incorporate relative position information directly into the attention mechanism. We show in this
section that RoPE is translation equivariant.
Theorem 1. Given two tokens with query q and key k at positions m and n, respectively, and ap-
plying RoPE to obtain RoPE (q,m) and RoPE (k, n), we aim to prove that RoPE is translation
equivariant with respect to the inner product. In the definition of translation equivariance (Eq.(1)),
this corresponds to setting the output transformation Ss as the identity map, i.e., Ss = I. Specifi-
cally, we show that translating both positions by an offset s leaves the inner product unchanged:

⟨RoPE (q,m+ s) ,RoPE (k, n+ s)⟩ = ⟨RoPE (q,m) ,RoPE (k, n)⟩ .

Proof can be found in Appendix A.
Remark 1. While RoPE is translation equivariant, applying a linear projection W after RoPE
generally breaks this property. Specifically, suppose we define the inner product after RoPE and
linear projection as:

⟨RoPE (q,m)WQ, RoPE (k, n)WK⟩ = qRmWQW
⊤
K R⊤

nk
⊤. (2)

The term WQW
⊤
K breaks translation equivariance by disrupting the expression’s dependence on the

relative position m−n. The property would only be preserved in the specific case where WQW
⊤
K =

I, which would reduce the expression to its original form. However, since this constraint is difficult to
enforce during training, translation equivariance is generally lost when applying a linear projection
after RoPE.

3 Multi-Head Low-Rank Attention

3.1 Implementation

As noted in Remark 1, applying a linear projection after RoPE destroys translation equivariance.
Therefore, we employ MLA’s partial RoPE (DeepSeek et al., 2024a). We first apply a linear down-
projection over the hidden states H ∈ Rn×d for an n-token sequence:[

UKV, CKV, K̃RoPE

]
= HAKV, (3)

where AKV ∈ Rd×(du+hr+dR
h) is a down-projection matrix. By default we set du = dh, r = 3dh

h ,
and dRh = 0.5dh so that the total KV cache size matches that of MLA. The projected output is then
partitioned as follows: a base latent head UKV ∈ Rn×du for the base path; CKV ∈ Rn×hr, reshaped
to CKV ∈ Rn×h×r to yield h tiny latent heads for the low-rank path; and K̃RoPE ∈ Rn×dR

h , which is
RoPE-encoded to obtain KRoPE .

3

Base Path. We up-project the base latent head UKV ∈ Rn×du with the up-projection matrix
Bbase ∈ Rdu×(2hdh) to produce concatenated keys and values:[

Kbase, Vbase
]
= UKV Bbase ∈ Rn×(2hdh). (4)

We then split and reshape this output to obtain h heads of keys K̃base ∈ Rn×h×dh and values
Ṽbase ∈ Rn×h×dh for the base path.

Low-Rank Path. We up-project the h tiny latent heads using a head-wise matrix Blora ∈
Rh×r×2dh to form concatenated keys and values via Einstein summation over the latent dimension:[

Klora, Vlora
]
= einsum ("nhr,hrd→ nhd", CKV, Blora) , (5)

where the result is then split along the last dimension to obtain h heads of keys K̃lora ∈ Rn×h×dh

and values Ṽlora ∈ Rn×h×dh for the low-rank path.

Attention. To preserve translation equivariance, we concatenate the keys with partial RoPE KRoPE
in both the base and low-rank paths.

Kbase = Concat
[
K̃base, repeat (KRoPE, h)

]
, Klora = Concat

[
αK̃lora, repeat (KRoPE, h)

]
,

(6)
where repeat (KRoPE, h) replicates the partial RoPE across h heads to match the dimensionality
required for concatenation. The scalar α is a tunable hyperparameter that controls the scale of the
low-rank keys. Finally, we sum the base and low-rank attention outputs for each head i:

head(i) = Attention
(
Q(i),K

(i)
base,V

(i)
base

)
+Attention

(
Q(i),K

(i)
lora, αV

(i)
lora

)
, (7)

where the computation of Q can be found in Appendix B.

3.2 Decoding without KV Materialization

We refer to the DeepSeek official inference implementation (DeepSeek et al., 2024b) to illustrate
how to “absorb” up-projection matrices into the queries and attention output to avoid explicit KV
materialization in our MLRA decoding. Assume we have a query q = Concat

[
qNoPE, qRoPE

]
and

KV cache UKV, CKV, KRoPE. We split the up-projection matrices Bbase and Blora into per-head
blocks, yielding B

(i)
base,K,B

(i)
base,V ∈ Rdu×dh and B

(i)
lora,K,B

(i)
lora,V ∈ Rr×dh . We likewise partition

CKV along the head dimension as CKV =
[
C

(1)
KV · · ·C

(h)
KV

]
with C

(i)
KV ∈ Rn×r. For head i, letting

τ = 1√
dh+dR

h

, we compute the attention output for the base path:

Softmax

(
τ Concat

[
q
(i)
NoPE,q

(i)
RoPE

] (
Concat

[
UKVB

(i)
base,K,KRoPE

])⊤
)(

UKVB
(i)
base,V

)
=Softmax

(
τq

(i)
NoPE

(
UKVB

(i)
base,K

)⊤
+ τq

(i)
RoPEK

⊤
RoPE

)(
UKVB

(i)
base,V

)
=Softmax

(
τq

(i)
NoPE

(
B

(i)
base,K

)⊤
U⊤

KV + τq
(i)
RoPEK

⊤
RoPE

)(
UKVB

(i)
base,V

)

=Softmax

τ q
(i)
NoPE

(
B

(i)
base,K

)⊤

︸ ︷︷ ︸
q̃
(i)
base∈Rdu

U⊤
KV + τq

(i)
RoPEK

⊤
RoPE

UKVB
(i)
base,V.

(8)

4

Similarly, we compute the attention output for the low-rank path:

Softmax

(
τ Concat

[
q
(i)
NoPE,q

(i)
RoPE

] (
Concat

[
αC

(i)
KVB

(i)
lora,K,KRoPE

])⊤
)(

αC
(i)
KVB

(i)
lora,V

)
=Softmax

(
ταq

(i)
NoPE

(
C

(i)
KVB

(i)
lora,K

)⊤
+ τq

(i)
RoPEK

⊤
RoPE

)(
αC

(i)
KVB

(i)
lora,V

)
=Softmax

(
ταq

(i)
NoPE

(
B

(i)
lora,K

)⊤ (
C

(i)
KV

)⊤
+ τq

(i)
RoPEK

⊤
RoPE

)(
αC

(i)
KVB

(i)
lora,V

)

=Softmax

τ αq
(i)
NoPE

(
B

(i)
lora,K

)⊤

︸ ︷︷ ︸
q̃
(i)
lora∈Rr

(
C

(i)
KV

)⊤
+ τq

(i)
RoPEK

⊤
RoPE

(
αC

(i)
KVB

(i)
lora,V

)
.

(9)

Below, we show how to avoid materializing h heads of keys and values during decoding by exploit-
ing matrix multiplication associativity.

Step 1 (Keys/Logits). We exploit matrix-multiplication associativity by multiplying the query and
the key up-projection matrix:

q̃
(i)
base = q

(i)
NoPE

(
B

(i)
base,K

)⊤ ∈ R1×du , λ
(i)
base = Softmax

(
τ q̃

(i)
baseU

⊤
KV + τq

(i)
RoPEK

⊤
RoPE

)
, (10)

q̃
(i)
lora = αq

(i)
NoPE

(
B

(i)
lora,K

)⊤ ∈ R1×r, λ
(i)
lora = Softmax

(
τ q̃

(i)
lora

(
C

(i)
KV

)⊤
+ τq

(i)
RoPEK

⊤
RoPE

)
. (11)

This absorbs the key up-projection matrices into queries and avoids explicitly materializing keys
K

(i)
base = UKVB

(i)
base,K ∈ Rn×1×dh , K(i)

lora = αC
(i)
KVB

(i)
lora,K ∈ Rn×1×dh . Note that UKV and KRoPE are

shared across the h absorbed-query heads, so the base-path KV cache load is only n×
(
du + dRh

)
.

Step 2 (Values/Output). After computing the attention scores, we use them to perform a weighted
aggregation of compressed KV, then up-project the aggregated output:

z̃
(i)
base = λ

(i)
base UKV ∈ R1×du , z

(i)
base = z̃

(i)
base B

(i)
base,V ∈ R1×dh , (12)

z̃
(i)
lora = λ

(i)
lora C

(i)
KV ∈ R1×r, z

(i)
lora = α z̃

(i)
lora B

(i)
lora,V ∈ R1×dh . (13)

By deferring the up-projection for values with B
(i)
base,V and B

(i)
lora,V, we never materialize V

(i)
base =

UKVB
(i)
base,V ∈ Rn×1×dh or V

(i)
lora = C

(i)
KVB

(i)
lora,V ∈ Rn×1×dh . While the KV states are shared

(K = V), FlashMLA (Jiashi Li, 2025) uses online softmax to load them once and avoid reloading.

3.3 Analysis

Translation Equivariance. We analyze the translation equivariance property of MLRA. Let
q
(i)
m = Concat (QNoPE [m, i, :] , QRoPE [m, i, :]) and k

(i)
n = Concat (KNoPE [n, i, :] , KRoPE [n, :])

denote the query and key vectors for head i at positions m and n, respectively. KNoPE is either Kbase
or Klora. The attention score for this head is given by the inner product:〈

q(i)
m , k(i)

n

〉
= ⟨QNoPE [m, i, :] , KNoPE [n, i, :]⟩+ ⟨QRoPE [m, i, :] , KRoPE [n, :]⟩ . (14)

Between the two terms, the second term with RoPE is position-dependent yet translation equivariant,
due to RoPE’s translation equivariance. The first term is position-independent and thus unchanged
under joint translations of m and n. Therefore, the attention score

〈
q
(i)
m , k

(i)
n

〉
is invariant to trans-

lation in input positions. Although MLRA introduces positional inductive bias via partial RoPE and
is translation equivariant, we refer to this property as semi-translation equivariance to distinguish it
from the full RoPE with translation equivariance. Further details on other attention mechanisms and
their translation equivariance analysis are provided in Appendix C.

5

Table 1: Comparison of parameters and KV cache among attention mechanisms. Some results are
taken from Zhang et al. (2025) and Zadouri et al. (2025). For attention mechanism details, refer to
Appendix C.

Method KV Cache # Parameters # Query Heads # KV Heads
MHA (Vaswani et al., 2017) 2hdh 4dhdh h h

MQA (Shazeer, 2019) 2dh (2d+ 2dh)hdh h 1
GQA (Ainslie et al., 2023) 2gdh (2d+ 2gdh)hdh h g

MLA (DeepSeek et al., 2024a) dc + dRh
d′c
(
d+ hdh + hdRh

)
+ ddRh

+ dc(d+ 2hdh) + dhdh
h h

TPA (Zhang et al., 2025) 2RKV (h+ dh) d(RQ + 2RKV) (h+ dh) + dhdh h h

GLA (Zadouri et al., 2025) dc + dRh
d′c
(
d+ hdh + hdRh

)
+ ddRh

+ dc(d+ hdh) + dhdh
h h

MLRA du + hr + dRh

d
(
du + hr + dRh

)
+ 2duhdh + 2hrdh

+ d(d′u + hr′) + d′uh
(
dh + dRh

)
+hr′

(
dh + dRh

)
+ dhdh

h h

Method KV Cache Per Token KV Cache Per Token
Per Device (2 GPUs)

KV Cache Per Token
Per Device (4 GPUs)

KV Cache per token
Per Device (8 GPUs)

MHA (Vaswani et al., 2017) 64dh 32dh 16dh 8dh
MQA (Shazeer, 2019) 2dh 2dh 2dh 2dh

GQA (Ainslie et al., 2023) 16dh 8dh 4dh 2dh
MLA (DeepSeek et al., 2024a) 4.5dh 4.5dh 4.5dh 4.5dh

TPA (Zhang et al., 2025) 4dh + 256 4dh + 128 4dh + 64 4dh + 32
GLA (Zadouri et al., 2025) 4.5dh 2.5dh 2.5dh 2.5dh

MLRA 4.5dh 2.5dh 1.5dh 1.5dh

Table 2: Comparison of arithmetic intensity among attention mechanisms.

Method MHA MQA GQA MLA TPA GLA MLRA

Arithmetic
Intensity

4nhdh

4nhdh

4nhdh

4ndh

4nhdh

4ngdh

4nhdc+2nhdR
h

2n(dc+dR
h)

4nhRKVdh+4nhdh

4nRKV(h+dh)
2nhdc+2nhdR

h

2n(dc+dR
h)

4nhr+4nhdh+2nhdR
h

2n(hr+dh+dR
h)

≈ 1 ≈ h ≈ h
g ≈ 2h ≈ 3h

4 ≈ h ≈ h
2

KV Cache. We cache UKV,CKV, and KRoPE during inference. Table 1 summarizes the total KV
cache and parameters for the different attention mechanisms. While CKV can be sharded across
heads, UKV cannot. To support TP, we place UKV on one device and partition CKV across several
other devices; consequently, KRoPE is replicated on every device. Therefore, KV cache under φ-
way (φ > 1) TP is du+hr

φ + dRh per device for the low-rank path and 1.5dh for the base path. We
evaluate per-device KV cache under TP using LLaMA-3-70B (Llama et al., 2024) and Grok-2 as
base models. Both models have 64 query heads and 8 key-value heads, so g = 8 for GQA. For GLA,
we follow the paper’s setup and consider two latent heads, each with a dimension of 2dh. For TPA,
we follow the paper’s setup and consider RKV = 2.

Table 1 summarizes the per-device KV cache under TP as the number of devices varies. To sup-
port TP, the official MLA decoding implementation, FlashMLA (Jiashi Li, 2025), distributes up-
projection matrices across devices by head. However, this approach replicates the KV cache on each
device, so the per-device KV cache remains 4.5dh. TPA constructs its h key-value heads as linear
combinations of RKV shared heads. It supports TP only for the combination coefficients, while the
shared heads are replicated across devices. So the per-device KV cache is 4dh+ 256

φ . GLA splits the
latent vector into two smaller latent vectors, and the per-device KV cache is 2.5dh with 2-way TP.
Note that for MLA with TP > 1 and for GLA with TP > 2, the KV cache is replicated, so the per-
device KV cache remains 4.5dh and 2.5dh, respectively. For MLRA, when TP > 4, we can shard
CKV across additional devices and only replicate the partial RoPE. While GQA needs 8-way TP to
reach 2dh per device, MLRA achieves 1.5dh with just 4-way TP, yielding the lowest per-device KV
cache and faster decoding than other attention mechanisms.

Arithmetic Intensity. Arithmetic intensity (AI) is measured through the ratio of arithmetic oper-
ations to memory access (FLOPs per byte), which helps determine whether a workload is memory-
bound or compute-bound (Zadouri et al., 2025). We evaluate the arithmetic intensity of the attention
mechanisms with dh = h = 128 and RKV = 2. Our analysis focuses on the long-context de-
coding, where the context length n dominates all other factors. We report AI of MLA, GLA, and
MLRA without KV materialization. Implementation details of MLA decoding are provided in Ap-
pendix C.3. As shown in Table 2, our MLRA achieves relatively high AI. Under TP, the workload

6

0 20 40 60 80 100
Training tokens (B)

2.3

2.4

2.5

2.6

2.7

2.8

Tr
ai

ni
ng

lo
ss

Training Loss Curves for 1.3B
MHA
MQA
GQA
MLA
TPA
GLA
MLRA

0 20 40 60 80 100
Training tokens (B)

2.2

2.3

2.4

2.5

2.6

2.7

Tr
ai

ni
ng

lo
ss

Training Loss Curves for 2.9B
MHA
MQA
GQA
MLA
TPA
GLA
MLRA

Figure 3: Training loss curves at the 1.3B and 2.9B scales for various attention mechanisms on the
FineWeb-Edu 100B dataset.

is imbalanced across devices. In the base path, the AI is approximately 2h, matching that of MLA.
In the low-rank path, if inference uses p devices, the AI is about h

p+6 . This asymmetry motivates
a heterogeneous deployment (Zhao et al., 2024b; Griggs et al., 2024; Jiang et al., 2024c, 2025).
We can run the base path on a high-end GPU (e.g., H100) and distribute the low-rank path across
multiple lower-cost GPUs (e.g., RTX 4090). Their reduced bandwidth and compute capabilities are
sufficient given the low-rank path’s low arithmetic intensity and the fact that its KV cache can be
sharded, provided that the latency of the low-rank path does not exceed that of the base path.

4 Experiments

4.1 Experimental Setup

We train models at three scales: 354M, 1311M (1.3B), and 2873M (2.9B), on FineWeb-Edu-
100B (Penedo et al., 2024). We report main results at the 1.3B and 2.9B scales, and use the
354M model for initialization ablations (Appendix E.2). Each model is pretrained from scratch
on 98.3B tokens with an additional 0.1B tokens for validation. We adopt the LLaMA-3 architec-
ture (Appendix D) and use six attention mechanisms as baselines: MHA (Vaswani et al., 2017),
MQA (Shazeer, 2019), GQA (Ainslie et al., 2023), MLA (DeepSeek et al., 2024a), TPA (Zhang
et al., 2025), and GLA (Zadouri et al., 2025). Architectural hyperparameters and training setup fol-
low the GPT-3 configuration (Appendices E.1 and E.2). All models are trained on 8 NVIDIA H100
80G GPUs. Figure 3 shows the training loss curves for all attention mechanisms at the 1.3B and
2.9B scales.

4.2 Experimental Results

4.2.1 Model Quality

Validation Perplexity. We report validation perplexity for all attention mechanisms across six
datasets (FineWeb-Edu (Penedo et al., 2024), Wikipedia, C4, Common Crawl, Pile (Gao et al.,
2020), and Arxiv), using 100M tokens per dataset. As Table 3 shows, MLRA achieves the lowest
average perplexity at the 2.9B (12.998) scale across six datasets. It achieves the best results on
FineWeb-Edu, Wikipedia, and Pile, while placing second on C4, Common Crawl, and Arxiv. At the
1.3B scale, MLRA remains highly competitive (second-best average) and is best on Pile.

Downstream Evaluation. We evaluate zero-shot performance on standard benchmarks, including
ARC-Easy (ARC-E) (Yadav et al., 2019), ARC-Challenge (ARC-C), BoolQ (Clark et al., 2019),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and MMLU (Hendrycks et al., 2021),
using the lm-evaluation-harness (Gao et al., 2024) package. We report normalized accuracy
for ARC-Easy, ARC-Challenge, HellaSwag, and PIQA, and standard accuracy for the remaining
tasks. As Table 4 shows, MLRA achieves the highest zero-shot average accuracy at both scales:

7

Table 3: Validation perplexity (lower is better) at the 1.3B and 2.9B scales on six datasets: FineWeb-
Edu, Wikipedia, C4, CommonCrawl, Pile, and Arxiv. Best is bold; second best is underlined.

1.3B
Method FineWeb-Edu Wikipedia C4 Common Crawl Pile Arxiv Avg
MHA 10.462 16.754 17.851 16.419 13.262 14.039 14.798
MQA 10.592 17.039 18.113 16.580 12.701 14.161 14.864
GQA 10.456 16.857 17.889 16.405 13.197 13.918 14.787
MLA 10.449 15.881 17.758 16.143 12.240 13.657 14.355
TPA 10.365 16.505 17.761 16.156 12.575 13.875 14.539
GLA 10.395 16.548 17.725 16.057 12.463 13.595 14.464

MLRA 10.402 16.170 17.787 16.186 12.234 13.705 14.414
2.9B

Method FineWeb-Edu Wikipedia C4 Common Crawl Pile Arxiv Avg
MHA 9.368 14.814 16.372 14.864 11.941 12.600 13.326
MQA 9.499 15.232 16.664 15.173 11.886 12.972 13.571
GQA 9.356 15.089 16.466 14.937 11.858 12.690 13.399
MLA 9.280 14.901 16.278 14.673 11.190 12.370 13.115
TPA 9.235 15.088 16.355 14.804 11.702 12.574 13.293
GLA 9.298 14.368 16.381 14.792 11.242 12.417 13.083

MLRA 9.224 14.214 16.287 14.702 11.147 12.412 12.998

Table 4: Downstream evaluation at the 1.3B and 2.9B scales on six datasets: ARC-Easy, ARC-
Challenge, BoolQ, HellaSwag, PIQA, and MMLU. Best is bold; second best is underlined.

1.3B
Method ARC-E ARC-C BoolQ HellaSwag PIQA MMLU Avg

MHA 64.69 38.23 63.39 57.96 73.50 25.06 53.80
MQA 63.68 37.63 61.50 57.31 73.99 23.32 52.91
GQA 65.57 37.88 59.36 57.89 73.61 23.39 52.95
MLA 64.44 36.52 58.59 57.60 73.61 24.57 52.55
TPA 64.69 38.48 61.56 58.22 74.70 25.37 53.84
GLA 65.53 36.86 63.33 57.93 73.99 25.69 53.89

MLRA 66.08 37.29 63.09 57.76 74.27 25.26 53.96
2.9B

Method ARC-E ARC-C BoolQ HellaSwag PIQA MMLU Avg
MHA 68.14 41.13 63.39 61.97 75.30 25.79 55.95
MQA 69.49 40.27 63.12 61.11 75.14 23.69 55.47
GQA 69.74 40.36 62.05 61.83 75.52 24.58 55.68
MLA 70.58 41.04 59.24 62.20 75.03 24.65 55.46
TPA 70.12 40.70 64.50 62.27 76.33 27.04 56.83
GLA 69.65 40.96 63.55 62.44 75.79 25.35 56.29

MLRA 70.88 43.77 63.33 62.31 75.63 26.43 57.06

53.96% at 1.3B and 57.06% at 2.9B. At the 2.9B scale, it leads ARC-Easy and ARC-Challenge and
places second on HellaSwag and MMLU. At the 1.3B scale, it leads ARC-Easy and places second
on PIQA.

4.2.2 Efficiency

Decoding Speed. We benchmark decoding speed for GQA, MLA, GLA, and MLRA in long-
context settings. All models use 64 heads with a head dimension of 128; for MLA, GLA, and
MLRA, the partial RoPE dimension is 64. MLA is evaluated using DeepSeek’s official implementa-
tion FlashMLA (Jiashi Li, 2025). GQA and GLA use FlashAttention kernels (Dao et al., 2022; Dao,
2024; Shah et al., 2024). We implement our MLRA kernel based on FlashAttention. We evaluate
decoding speed across sequence lengths from 131,072 to 2,097,152 tokens (128K-2M). As shown
in Figure 4, MLRA consistently outperforms all baselines at every length, yielding 1.05×-1.26×
speedups over GQA. The gap grows with context length against GQA and GLA, while the speedup
over MLA remains steady at about 2.8×, indicating that MLRA with TP=4 substantially reduces
long-context decoding latency.

8

256 512 768 1024 1280 1536 1792 2048
Sequence Length (K)

150

300

450

600

750

900

L
at

en
cy

(µ
s)

Decoding Latency

GQA (TP=8)
MLA (DP)
GLA (TP=2)
MLRA (TP=4)

Figure 4: Decoding latency (lower is better) ver-
sus sequence length (batch=1) for GQA, MLA,
GLA, and MLRA.

2 4 6 8 10 12 14 16
Sequence Length (K)

150

300

450

600

750

900

T
hr

ou
gh

pu
t(

to
ke

ns
/m

s)

Decoding Throughput

GQA (TP=8)
MLA (DP=8)
GLA (TP=2, DP=4)
MLRA (TP=4, DP=2)

Figure 5: Decoding throughput versus sequence
length (batch=128) for GQA, MLA, GLA, and
MLRA.

Decoding Throughput. We evaluate decoding throughput for GQA, MLA, GLA, and MLRA on
eight NVIDIA H100 80G GPUs, fixing the number of attention heads to 128 and the hidden size
to 7168, following DeepSeekV3 (DeepSeek et al., 2024c). We set g = 16 for GQA. For MLA
decoding deployment, there is a trade-off between data parallelism (DP) and tensor parallelism.
With DP, we assign different requests to different devices, so attention parameters are replicated
across devices and load can become imbalanced due to varying sequence lengths. With TP, the up-
projection parameters are sharded by head, but the KV cache is replicated across devices. Following
SGLang (Zheng et al., 2024), we otherwise strive to avoid KV cache duplication. Therefore, we use
DP=8 for MLA, TP=2/DP=4 for GLA, TP=4/DP=2 for MLRA, and TP=8 for GQA. Throughput
is reported for sequence lengths ranging from 1,024 to 16,384 tokens, and our end-to-end mea-
surements include both the pre-attention stage that prepares inputs for the attention kernel and the
attention computation itself. We accelerate pre-attention with torch.compile (Paszke et al., 2019) for
MLA, GLA, and MLRA, and with custom Triton kernels for GQA. As shown in Figure 5, MLRA
achieves the highest decoding throughput across both short and long sequence lengths. This sug-
gests that MLRA with TP=4/DP=2 reduces parameter redundancy relative to MLA’s DP=8, while
introducing only modest partial RoPE duplication, thereby yielding higher throughput than MLA.
For short sequences, GQA outperforms MLA and GLA because pre-attention dominates latency.
However, MLRA remains competitive with GQA due to having even fewer query, key, and value
parameters, as shown in Appendix E.1.

5 Conclusion

In this work, we propose Multi-Head Low-Rank Attention (MLRA), a TP-friendly dual-path atten-
tion mechanism. In the base path, we compress the KV cache into a single latent head and up-project
it to produce multiple keys and values. In the low-rank path, we compress the KV cache into several
tiny latent heads, each up-projected to generate its key and value. Our MLRA supports TP, reduc-
ing the per-device KV cache to 1.5dh, which is lower than that of GQA. At the 2.9 B scale, MLRA
achieves state-of-the-art model quality across our benchmarks, including perplexity and downstream
evaluations. We implement MLRA kernel based on FlashAttention. For long-context decoding (up
to 2M tokens), MLRA achieves the lowest latency with 4-way TP and delivers the highest decoding
throughput across sequence lengths from 1K to 16K tokens. Future work is to train MLRA at larger
scales, such as 70B, to validate its effectiveness.

Acknowledgement

We thank Songlin Yang for helpful discussion.

9

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebron, F., and Sanghai, S. (2023). GQA:

Training generalized multi-query transformer models from multi-head checkpoints. In Empirical
Methods in Natural Language Processing.

Anagnostidis, S., Pavllo, D., Biggio, L., Noci, L., Lucchi, A., and Hofmann, T. (2023). Dynamic
context pruning for efficient and interpretable autoregressive transformers. In Advances in Neural
Information Processing Systems.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y. (2020). Piqa: Reasoning about physical
commonsense in natural language. In AAAI Conference on Artificial Intelligence.

Cai, R., Tian, Y., Wang, Z., and Chen, B. (2024). Lococo: Dropping in convolutions for long context
compression. In International Conference on Machine Learning.

Chang, C.-C., Lin, W.-C., Lin, C.-Y., Chen, C.-Y., Hu, Y.-F., Wang, P.-S., Huang, N.-C., Ceze, L.,
Abdelfattah, M. S., and Wu, K.-C. (2025). Palu: KV-cache compression with low-rank projection.
In International Conference on Learning Representations.

Chen, R., Wang, Z., Cao, B., Wu, T., Zheng, S., Li, X., Wei, X., Yan, S., Li, M., and Liang, Y.
(2024a). Arkvale: Efficient generative LLM inference with recallable key-value eviction. In
Advances in Neural Information Processing Systems.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and Jia, J. (2024b). LongloRA: Efficient
fine-tuning of long-context large language models. In International Conference on Learning
Representations.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins, M., and Toutanova, K. (2019). BoolQ:
Exploring the surprising difficulty of natural yes/no questions. In North American Association for
Computational Linguistics.

Dao, T. (2024). FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Re, C. (2022). Flashattention: Fast and memory-
efficient exact attention with IO-awareness. In Advances in Neural Information Processing Sys-
tems.

DeepSeek et al. (2024a). Deepseek-v2: A strong, economical, and efficient mixture-of-experts
language model. arXiv preprint arXiv:2405.04434.

DeepSeek et al. (2024b). Deepseek-v3 technical report. https://github.com/deepseek-ai/
DeepSeek-V3.

DeepSeek et al. (2024c). Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). Qlora: Efficient finetuning of
quantized llms. In Advances in Neural Information Processing Systems.

Dong, H., Yang, X., Zhang, Z., Wang, Z., Chi, Y., and Chen, B. (2024). Get more with less:
Synthesizing recurrence with kv cache compression for efficient llm inference. In International
Conference on Machine Learning.

Fuchs, F., Worrall, D., Fischer, V., and Welling, M. (2020). Se (3)-transformers: 3d roto-translation
equivariant attention networks. In Advances in Neural Information Processing Systems.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A.,
Nabeshima, N., et al. (2020). The pile: An 800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi, A., Foster, C., Golding, L., Hsu,
J., Le Noac’h, A., Li, H., McDonell, K., Muennighoff, N., Ociepa, C., Phang, J., Reynolds, L.,
Schoelkopf, H., Skowron, A., Sutawika, L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou, A.
(2024). A framework for few-shot language model evaluation.

10

https://github.com/deepseek-ai/DeepSeek-V3
https://github.com/deepseek-ai/DeepSeek-V3

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao, J. (2024). Model tells you what to discard:
Adaptive KV cache compression for LLMs. In International Conference on Learning Represen-
tations.

Gholami, A., Yao, Z., Kim, S., Hooper, C., Mahoney, M. W., and Keutzer, K. (2024). Ai and
memory wall. IEEE Micro.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics.

Griggs, T., Liu, X., Yu, J., Kim, D., Chiang, W.-L., Cheung, A., and Stoica, I. (2024). Mélange:
Cost efficient large language model serving by exploiting gpu heterogeneity. arXiv preprint
arXiv:2404.14527.

He, J. and Zhai, J. (2024). Fastdecode: High-throughput gpu-efficient llm serving using heteroge-
neous pipelines. arXiv preprint arXiv:2403.11421.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., and Steinhardt, J. (2021).
Measuring massive multitask language understanding. In International Conference on Learning
Representations.

Hooper, C. R. C., Kim, S., Mohammadzadeh, H., Mahoney, M. W., Shao, S., Keutzer, K., and
Gholami, A. (2024). KVQuant: Towards 10 million context length LLM inference with KV
cache quantization. In Advances in Neural Information Processing Systems.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2022).
LoRA: Low-rank adaptation of large language models. In International Conference on Learning
Representations.

Hu, J., Li, H., Zhang, Y., Wang, Z., Zhou, S., Zhang, X., Shum, H.-Y., and Jiang, D. (2024). Multi-
matrix factorization attention. arXiv preprint arXiv:2412.19255.

Ivanov, A., Dryden, N., Ben-Nun, T., Li, S., and Hoefler, T. (2021). Data movement is all you need:
A case study on optimizing transformers. In Machine Learning and Systems.

Jiang, H., Li, Y., Zhang, C., Wu, Q., Luo, X., Ahn, S., Han, Z., Abdi, A. H., Li, D., Lin, C.-Y.,
Yang, Y., and Qiu, L. (2024a). MInference 1.0: Accelerating pre-filling for long-context LLMs
via dynamic sparse attention. In Advances in Neural Information Processing Systems.

Jiang, T., Huang, S., Luo, S., Zhang, Z., Huang, H., Wei, F., Deng, W., Sun, F., Zhang, Q., Wang,
D., et al. (2024b). Mora: High-rank updating for parameter-efficient fine-tuning. arXiv preprint
arXiv:2405.12130.

Jiang, Y., Yan, R., Yao, X., Zhou, Y., Chen, B., and Yuan, B. (2024c). Hexgen: Generative infer-
ence of large language model over heterogeneous environment. In International Conference on
Machine Learning.

Jiang, Y., Yan, R., and Yuan, B. (2025). Hexgen-2: Disaggregated generative inference of LLMs in
heterogeneous environment. In International Conference on Learning Representations.

Jiashi Li, S. L. (2025). Flashmla: Efficient mla decoding kernels. https://github.com/
deepseek-ai/FlashMLA.

Kim, J.-H., Yeom, J., Yun, S., and Song, H. O. (2024). Compressed context memory for online
language model interaction. In International Conference on Learning Representations.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez, J., Zhang, H., and Stoica,
I. (2023). Efficient memory management for large language model serving with pagedattention.
In Symposium on Operating Systems Principles.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kuttler, H., Lewis, M., tau
Yih, W., Rocktäschel, T., Riedel, S., and Kiela, D. (2020). Retrieval-augmented generation for
knowledge-intensive nlp tasks. In Advances in Neural Information Processing Systems.

11

https://github.com/deepseek-ai/FlashMLA
https://github.com/deepseek-ai/FlashMLA

Li, X., Ren, W., Qin, W., Wang, L., Zhao, T., and Hong, R. (2025). Analyzing and reducing
catastrophic forgetting in parameter efficient tuning. In International Conference on Acoustics,
Speech and Signal Processing.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A., Ye, H., Cai, T., Lewis, P., and Chen, D.
(2024). SnapKV: LLM knows what you are looking for before generation. In Advances in Neural
Information Processing Systems.

Lialin, V., Muckatira, S., Shivagunde, N., and Rumshisky, A. (2024). ReloRA: High-rank training
through low-rank updates. In International Conference on Learning Representations.

Liang, Y.-S. and Li, W.-J. (2024). Inflora: Interference-free low-rank adaptation for continual learn-
ing. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Lin, C.-H., Gao, S., Smith, J. S., Patel, A., Tuli, S., Shen, Y., Jin, H., and Hsu, Y.-C. (2025).
ModeGPT: Modular decomposition for large language model compression. In International Con-
ference on Learning Representations.

Liu, Y., Li, H., Cheng, Y., Ray, S., Huang, Y., Zhang, Q., Du, K., Yao, J., Lu, S., Ananthanarayanan,
G., Maire, M., Hoffmann, H., Holtzman, A., and Jiang, J. (2024a). Cachegen: Kv cache com-
pression and streaming for fast large language model serving. In Conference of the ACM Special
Interest Group on Data Communication.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z., Kyrillidis, A., and Shrivastava, A. (2023).
Scissorhands: Exploiting the persistence of importance hypothesis for LLM KV cache compres-
sion at test time. In Advances in Neural Information Processing Systems.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman, V., Chen, B., and Hu, X. (2024b). KIVI: A
tuning-free asymmetric 2bit quantization for KV cache. In International Conference on Machine
Learning.

Llama et al. (2024). The llama 3 herd of models. arXiv preprint arXiv:2407.21783.

Loshchilov, I. and Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Malladi, S., Wettig, A., Yu, D., Chen, D., and Arora, S. (2023). A kernel-based view of language
model fine-tuning. In International Conference on Machine Learning.

Meng, F., Tang, P., Tang, X., Yao, Z., Sun, X., and Zhang, M. (2025). Transmla: Multi-head latent
attention is all you need. arXiv preprint arXiv:2502.07864.

Nawrot, P., Łańcucki, A., Chochowski, M., Tarjan, D., and Ponti, E. (2024). Dynamic memory com-
pression: Retrofitting LLMs for accelerated inference. In International Conference on Machine
Learning.

Ootomo, H. and Yokota, R. (2023). Reducing shared memory footprint to leverage high through-
put on tensor cores and its flexible api extension library. In International Conference on High
Performance Computing in Asia-Pacific Region.

OpenAI et al. (2024). Openai o1 system card. arXiv preprint arXiv:2412.16720.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems, volume 32.

Penedo, G., Kydlı́ček, H., allal, L. B., Lozhkov, A., Mitchell, M., Raffel, C., Werra, L. V., and Wolf,
T. (2024). The fineweb datasets: Decanting the web for the finest text data at scale. In Advances
in Neural Information Processing Systems Datasets and Benchmarks Track.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury, J., Heek, J., Xiao, K., Agrawal, S., and
Dean, J. (2023). Efficiently scaling transformer inference. In Machine Learning and Systems.

12

Sadhukhan, R., Chen, J., Chen, Z., Tiwari, V., Lai, R., Shi, J., Yen, I. E.-H., May, A., Chen, T., and
Chen, B. (2025). Magicdec: Breaking the latency-throughput tradeoff for long context generation
with speculative decoding. In International Conference on Learning Representations.

Satorras, V. G., Hoogeboom, E., and Welling, M. (2021). E (n) equivariant graph neural networks.
In International Conference on Machine Learning.

Shah, J., Bikshandi, G., Zhang, Y., Thakkar, V., Ramani, P., and Dao, T. (2024). Flashattention-3:
Fast and accurate attention with asynchrony and low-precision. In Advances in Neural Informa-
tion Processing Systems.

Shazeer, N. (2019). Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Shi, Y., Wei, J., Wu, Y., Ran, R., Sun, C., He, S., and Yang, Y. (2024). Loldu: Low-rank adap-
tation via lower-diag-upper decomposition for parameter-efficient fine-tuning. arXiv preprint
arXiv:2410.13618.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. (2024). Roformer: Enhanced transformer
with rotary position embedding. Neurocomputing.

Sun, H., Chang, L.-W., Bao, W., Zheng, S., Zheng, N., Liu, X., Dong, H., Chi, Y., and Chen, B.
(2025a). ShadowKV: KV cache in shadows for high-throughput long-context LLM inference. In
International Conference on Machine Learning.

Sun, L., Deng, C., Jiang, J., Wu, X., Zhang, H., Chen, L., Ni, L., and Wang, J. (2025b). Gta:
Grouped-head latent attention. arXiv preprint arXiv:2506.17286.

Sun, Y., Dong, L., Zhu, Y., Huang, S., Wang, W., Ma, S., Zhang, Q., Wang, J., and Wei, F. (2024).
You only cache once: Decoder-decoder architectures for language models. In Advances in Neural
Information Processing Systems.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and Han, S. (2024). QUEST: Query-aware sparsity
for efficient long-context LLM inference. In International Conference on Machine Learning.

Tang, X., Meng, F., Tang, P., Wang, Y., Yin, D., Sun, X., and Zhang, M. (2025). Tpla: Tensor
parallel latent attention for efficient disaggregated prefill & decode inference. arXiv preprint
arXiv:2508.15881.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., and Riley, P. (2018). Tensor
field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv
preprint arXiv:1802.08219.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing
Systems.

Wang, X., Zheng, Y., Wan, Z., and Zhang, M. (2025). SVD-LLM: Truncation-aware singular value
decomposition for large language model compression. In International Conference on Learning
Representations.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., and Zhou, D. (2022).
Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural
Information Processing Systems.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and Cohen, T. S. (2018). 3d steerable cnns:
Learning rotationally equivariant features in volumetric data. In Advances in Neural Information
Processing Systems.

Williams, S., Waterman, A., and Patterson, D. (2009). Roofline: an insightful visual performance
model for multicore architectures. Communications of the ACM.

Xiao, G., Tang, J., Zuo, J., junxian guo, Yang, S., Tang, H., Fu, Y., and Han, S. (2025). Duoatten-
tion: Efficient long-context LLM inference with retrieval and streaming heads. In International
Conference on Learning Representations.

13

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. (2024). Efficient streaming language models
with attention sinks. In International Conference on Learning Representations.

Yadav, V., Bethard, S., and Surdeanu, M. (2019). Quick and (not so) dirty: Unsupervised selection
of justification sentences for multi-hop question answering. In Empirical Methods in Natural
Language Processing.

Yue, Y., Yuan, Z., Duanmu, H., Zhou, S., Wu, J., and Nie, L. (2024). Wkvquant: Quantizing weight
and key/value cache for large language models gains more. arXiv preprint arXiv:2402.12065.

Zadouri, T., Strauss, H., and Dao, T. (2025). Hardware-efficient attention for fast decoding. In
Conference on Language Modeling.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y. (2019). Hellaswag: Can a machine
really finish your sentence? In Association for Computational Linguistics.

Zeng, Y. and Lee, K. (2024). The expressive power of low-rank adaptation. In International Con-
ference on Learning Representations.

Zhang, H. (2024). Sinklora: Enhanced efficiency and chat capabilities for long-context large lan-
guage models. arXiv preprint arXiv:2406.05678.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y., Chen, W., and Zhao, T. (2023a). Adaptive
budget allocation for parameter-efficient fine-tuning. In International Conference on Learning
Representations.

Zhang, Y., Du, Y., Luo, G., Zhong, Y., Zhang, Z., Liu, S., and Ji, R. (2024). Cam: Cache merging
for memory-efficient LLMs inference. In International Conference on Machine Learning.

Zhang, Y., Liu, Y., Yuan, H., Qin, Z., Yuan, Y., Gu, Q., and Yao, A. C.-C. (2025). Tensor product
attention is all you need. arXiv preprint arXiv:2501.06425.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai, R., Song, Z., Tian, Y., Re, C., Barrett, C.,
Wang, Z., and Chen, B. (2023b). H2o: Heavy-hitter oracle for efficient generative inference of
large language models. In Advances in Neural Information Processing Systems.

Zhao, H., Ni, B., Fan, J., Wang, Y., Chen, Y., Meng, G., and Zhang, Z. (2024a). Continual for-
getting for pre-trained vision models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

Zhao, J., Wan, B., Wu, C., Peng, Y., and Lin, H. (2024b). Poster: Llm-pq: Serving llm on heteroge-
neous clusters with phase-aware partition and adaptive quantization. In Symposium on Principles
and Practice of Parallel Programming.

Zheng, C., Sun, J., Gao, Y., Wang, Y., Wang, P., Xiong, J., Ren, L., Cheng, H., Kulkarni, J., Shen,
Y., et al. (2025). Sas: Simulated attention score. arXiv preprint arXiv:2507.07694.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H., Cao, S., Kozyrakis, C., Stoica, I., Gonzalez,
J. E., Barrett, C., and Sheng, Y. (2024). SGLang: Efficient execution of structured language model
programs. In Advances in Neural Information Processing Systemss.

Zhu, J., Greenewald, K., Nadjahi, K., Borde, H. S. D. O., Gabrielsson, R. B., Choshen, L., Ghassemi,
M., Yurochkin, M., and Solomon, J. (2024). Asymmetry in low-rank adapters of foundation
models. In International Conference on Machine Learning.

14

Appendix

A Theorem 16

B Query Computation in MLRA 16

C Attention Mechanism 17

C.1 Multi-Head Attention (MHA) . 17

C.2 Multi-Query Attention (MQA) and Grouped-Query Attention (GQA) 17

C.3 Multi-Head Latent Attention (MLA) . 18

C.4 Tensor Product Attention (TPA) . 19

D Llama-3 Architecture 20

E Experimental Setup 20

E.1 Model Hyperparameters . 20

E.2 Training Setup . 22

F Related Work 22

15

A Theorem

Theorem 1. Given two tokens with query q and key k at positions m and n, respectively, and ap-
plying RoPE to obtain RoPE (q,m) and RoPE (k, n), we aim to prove that RoPE is translation
equivariant with respect to the inner product. In the definition of translation equivariance (Eq.(1)),
this corresponds to setting the output transformation Ss as the identity map, i.e., Ss = I. Specifi-
cally, we show that translating both positions by an offset s leaves the inner product unchanged:

⟨RoPE (q,m+ s) ,RoPE (k, n+ s)⟩ = ⟨RoPE (q,m) ,RoPE (k, n)⟩ .

Proof. We compute the inner product under RoPE as:

(qRm) (kRn)
⊤
= qRmR⊤

nk
⊤ = Re

d/2∑
i=1

q[2i−1:2i+1]k
∗
[2i−1:2i+1]e

i(m−n)θi

 ,

where Rm is the rotary matrix at position m. Now consider translating both tokens by an offset s.
The difference in positions becomes:

(m+ s)− (n+ s) = m− n,

which leaves the term ei(m−n)θi unchanged. Therefore, the inner product remains invariant under a
translation of both tokens, and we have:

ϕ(Tt(x)) = ϕ(x), with Ss = I,

which proves that RoPE is translation equivariant with respect to the inner product.

B Query Computation in MLRA

The hidden states H ∈ Rn×d are first passed through a linear down-projection AQ ∈ Rd×(d′
u+hr′)

yielding two parts [
UQ, CQ

]
= HAQ ∈ Rn×(d′

u+hr′).

By default, we set d′u = 2dh and r′ = 6dh

h . The base latent head UQ ∈ Rn×d′
u is up-projected by a

weight matrix BQ
base ∈ Rd′

u×h(dh+dR
h) producing

Qbase = UQ BQ
base ∈ Rn×h(dh+dR

h),

which reshapes and splits into

Qbase,NoPE ∈ Rn×h×dh , Qbase,RoPE ∈ Rn×h×dR
h .

CQ is reshaped to expose the head dimension to obtain h latent heads,

CQ = reshape
(
CQ, [n, h, r

′]
)
∈ Rn×h×r′ ,

and up-projected head-wise by a weight matrix BQ
lora ∈ Rh×r′×(dh+dR

h). This produces an interme-
diate query tensor

Qlora = einsum
(
"nhr,hrd→ nhd",CQ, B

Q
lora

)
∈ Rn×h×(dh+dR

h),

which is split into
Qlora,NoPE ∈ Rn×h×dh , Qlora,RoPE ∈ Rn×h×dR

h .

The low-rank and base paths are fused:

QNoPE = γQlora,NoPE +Qbase,NoPE, Q̃RoPE = γQlora,RoPE +Qbase,RoPE.

RoPE is applied to Q̃RoPE to obtain QRoPE. This result is then concatenated with the other query
components to form the final query:

Q = Concat [QNoPE, QRoPE] ∈ Rn×h×(dh+dR
h).

16

C Attention Mechanism

C.1 Multi-Head Attention (MHA)

Consider a sequence of n tokens with hidden states H ∈ Rn×d. We first project these hidden states
into query, key, and value representations using projection matrices WQ,WK,WV ∈ Rd×(hdh):

Q = RoPE (HWQ) , K = RoPE (HWK) , V = HWV,

where Q,K,V ∈ Rn×(hdh), h is the number of attention heads, and dh is the dimensionality of
each head. Next, we reshape these matrices to separate the head dimension:

Q = reshape(Q, [n, h, dh]), K = reshape(K, [n, h, dh]), V = reshape(V, [n, h, dh]),

such that Q,K,V ∈ Rn×h×dh . In MHA, the keys K and values V from previous tokens are cached
to accelerate inference.

Remark 2. Let Q,K ∈ Rn×h×dh denote the RoPE-encoded queries and keys after projection and
reshaping, and define per-head query and key vectors as:

q(i)
m := Q[m, i, :], k(i)

n := K[n, i, :],

where m and n are token positions and i is the attention head index. Then, for any translation t, it
follows from Theorem 1 that: 〈

q
(i)
m+t, k

(i)
n+t

〉
=

〈
q(i)
m , k(i)

n

〉
.

C.2 Multi-Query Attention (MQA) and Grouped-Query Attention (GQA)

Both MQA and GQA reduce the number of key and value heads compared to MHA, while maintain-
ing the full number of query heads. MQA takes this to the extreme by using a single key-value head
for all query heads, whereas GQA partitions the query heads into groups that each share a key-value
head. Given a sequence of n tokens with hidden states H ∈ Rn×d, the queries are computed using
the same projection as in MHA:

Q = RoPE (HWQ) , Q ∈ Rn×(hdh).

To reduce KV cache footprint, we use projection matrices WK,WV ∈ Rd×dhg , where g < h (e.g.,
g = 1 for MQA), to compute:

KC = RoPE (HWK) , VC = HWV, KC,VC ∈ Rn×dhg.

These are then reshaped into per-head form:

KC = reshape(KC, [n, g, dh]), VC = reshape(VC, [n, g, dh]).

We cache KC and VC during inference. During decoding, we first repeat them along the head axis
to match the h query heads (repeat factor r = h/g):

K = RepeatInterleave (KC, r, dim = 1) ∈ Rn×h×dh , V = RepeatInterleave (VC, r, dim = 1) .

Remark 3. Let Q ∈ Rn×h×dh and KC ∈ Rn×g×dh denote the RoPE-encoded queries and keys,
respectively. For attention head i, we define the query and key vectors at positions m and n as:

q(i)
m := Q[m, i, :], k(i)

n := KC[n, j, :] for some j ∈ {1, . . . , g}.

Since each k
(j)
n is obtained via RoPE, and RoPE preserves inner products under joint position

translations, we have, for any offset t:〈
q
(i)
m+t, k

(i)
n+t

〉
=

〈
q(i)
m , k(i)

n

〉
,

where k
(i)
n = KC[n, j, :] for some j ∈ {1, . . . , g}.

17

C.3 Multi-Head Latent Attention (MLA)

Given a sequence of n tokens with hidden states H ∈ Rn×d, MLA first computes queries as:

CQ = HAQ, QNoPE = CQBQ, QRoPE = RoPE (CQBQR) ,

AQ ∈ Rd×d′
c , BQ ∈ Rd′

c×(hdh), BQR ∈ Rd′
c×dR

h h,

where d′c ≪ hdh is a low-rank latent dimension.

We then reshape the query to separate heads:

QNoPE = reshape(QC, [n, h, dh]), QRoPE = reshape(QRoPE, [n, h, d
R
h]),

where QNoPE ∈ Rn×h×dh and QRoPE ∈ Rn×h×dR
h . These are concatenated along the last dimension

to form the final query:

Q = Concat [QNoPE, QRoPE] ∈ Rn×h×(dh+dR
h).

To reduce the KV cache, MLA obtains shared compressed KV states via a down-projection:

CKV = HAKV, AKV ∈ Rd×dc , CKV ∈ Rn×dc ,

KRoPE = RoPE (HAKR) , AKR ∈ Rd×dR
h , KRoPE ∈ Rn×dR

h .

where dc ≪ hdh is the latent dimension. Both CKV and KRoPE are stored in the KV cache during
inference.

At runtime, MLA reconstructs the full keys and values using learned up-projection matrices:

KNoPE = CKVBK, V = CKVBV, BK,BV ∈ Rdc×(hdh).

These are reshaped into per-head form:

KNoPE = reshape(KNoPE, [n, h, dh]), V = reshape(V, [n, h, dh]),

where KNoPE ∈ Rn×h×dh and V ∈ Rn×h×dh .

To obtain per-head position-aware keys, MLA repeats the position encoding across heads:

K = Concat [KNoPE, repeat (KRoPE, h)] .

The translation equivariance analysis is the same as in MLRA.

Decoding without KV materialization. Given a query q = Concat [qNoPE,qRoPE] ∈
Rh×(dh+dR

h) and KV cache: CKV ∈ Rn×dc ,KRoPE ∈ Rn×dR
h , MLA avoids KV materialization

and instead operates in the compressed space. Let BK,BV ∈ Rdc×(hdh) be partitioned per head as
BK =

[
B

(1)
K · · ·B

(h)
K

]
,BV =

[
B

(1)
V · · ·B

(h)
V

]
with B

(i)
K ,B

(i)
V ∈ Rdc×dh . For head i we compute

with scale τ = 1√
dh+dR

h

:

Softmax

(
τ Concat

[
q
(i)
NoPE,q

(i)
RoPE

] (
Concat

[
CKVB

(i)
K ,KRoPE

])⊤
)(

CKVB
(i)
V

)
,

=Softmax

(
τq

(i)
NoPE

(
CKVB

(i)
K

)⊤
+ τq

(i)
RoPEK

⊤
RoPE

)(
CKVB

(i)
V

)
,

=Softmax

(
τq

(i)
NoPE

(
B

(i)
K

)⊤
C⊤

KV + τq
(i)
RoPEK

⊤
RoPE

)(
CKVB

(i)
V

)
,

=Softmax

τ q
(i)
NoPE

(
B

(i)
K

)⊤

︸ ︷︷ ︸
q̃(i)∈Rdc

C⊤
KV + τq

(i)
RoPEK

⊤
RoPE

CKVB
(i)
V .

We compute attention without materializing per-head K,V by exploiting matrix multiplication as-
sociativity.

18

Step 1 (Keys/Logits): We absorb the key’s up-projection matrix into the query, resulting in a score
computation that mimics MQA with shared KV states. For head i,

q̃(i) = q
(i)
NoPE

(
B

(i)
K

)⊤
, λ(i) = Softmax

(
τ q̃(i)C⊤

KV + τq
(i)
RoPEK

⊤
RoPE

)
.

This avoids forming K
(i)
NoPE = CKVB

(i)
K , and the RoPE keys KRoPE are shared across heads (no

head-wise repeat).

Step 2 (Values/Output): Aggregate with shared KV, then up-project once:

z̃(i) = λ(i) CKV, z(i) = z̃(i) B
(i)
V .

By deferring the right multiplication by B
(i)
V , we never materialize V(i) = CKVB

(i)
V . Consequently,

decoding maintains only CKV ∈ Rn×dc and KRoPE ∈ Rn×dR
h caches instead of per-head full K,V.

C.4 Tensor Product Attention (TPA)

TPA achieves KV cache compression through low-rank factorization. It decomposes the keys and
values into two components: a set of r shared basis vectors (or “attention heads”) and token-specific
coefficient matrices. The keys and values are reconstructed by linearly combining the shared basis
vectors according to these coefficients. This allows storing only the coefficients and basis vectors in
the cache.

Given a sequence of n tokens with hidden states H ∈ Rn×d, TPA first computes the query, key, and
value as follows:

AQ = HWAQ, WAQ ∈ Rd×RQh, AQ ∈ Rn×RQh,

BQ = HWBQ, WBQ ∈ Rd×RQdh , BQ ∈ Rn×RQdh ,

AK = HWAK, WAK ∈ Rd×RKVh, AK ∈ Rn×RKVh,

BK = HWBK, WBK ∈ Rd×RKVdh , BK ∈ Rn×RKVdh ,

AV = HWAV, WAV ∈ Rd×RKVh, AV ∈ Rn×RKVh,

BV = HWBV, WBV ∈ Rd×RKVdh , BV ∈ Rn×RKVdh ,

We reshape the projections into 3D tensors:

AQ = reshape
(
AQ, [n, RQ, h]

)
, BQ = reshape

(
BQ, [n, RQ, dh]

)
,

AK = reshape
(
AK, [n, RKV, h]

)
, BK = reshape

(
BK, [n, RKV, dh]

)
,

AV = reshape
(
AV, [n, RKV, h]

)
, BV = reshape

(
BV, [n, RKV, dh]

)
,

so that AQ ∈ Rn×RQ×h, BQ ∈ Rn×RQ×dh , AK ∈ Rn×RKV×h, BK ∈ Rn×RKV×dh , AV ∈
Rn×RKV×h, and BV ∈ Rn×RKV×dh . The final query, key, and value are computed as:

Q[i,:,:] =
1

RQ
AQ [i, :, :]

⊤
RoPE (BQ [i, :, :]) , Q[i,:,:] ∈ Rh×dh ,

K[i,:,:] =
1

RKV
AK [i, :, :]

⊤
RoPE (BK [i, :, :]) , K[i,:,:] ∈ Rh×dh ,

V[i,:,:] =
1

RKV
AV [i, :, :]

⊤
BV [i, :, :] , V[i,:,:] ∈ Rh×dh ,

where AK, BK, BV, and AV are cached during inference.

Remark 4. We analyze the translation equivariance of TPA by focusing on a single attention head.
Let qm ∈ Rdh and kn ∈ Rdh denote the query and key vectors for the i-th head at positions m and
n, respectively. In TPA, they are computed as:

q(i)
m =

1

RQ

RQ∑
rq=1

α
(m,rq,i)
Q · b̃(m,rq)

Q , k(i)
n =

1

RKV

RKV∑
rkv=1

α
(n,rkv,i)
K · b̃(n,rkv)

K ,

19

where we define the shorthand notations:

α
(m,rq,i)
Q := AQ [m, rq, i] , α

(n,rkv,i)
K := AK [n, rkv, i] ,

b̃
(m,rq)
Q := RoPE (BQ [m, rq, :]) , b̃

(n,rkv)
K := RoPE (BK [n, rkv, :]) .

Then, the inner product between query and key becomes:〈
q(i)
m , k(i)

n

〉
=

〈
1

RQ

RQ∑
rq=1

α
(m,rq,i)
Q · b̃(m,rq)

Q ,
1

RKV

RKV∑
rkv=1

α
(n,rkv,i)
K · b̃(n,rkv)

K

〉

=
1

RQRKV

RQ∑
rq=1

RKV∑
rkv=1

α
(m,rq,i)
Q · α(n,rkv,i)

K ·
〈
b̃
(m,rq)
Q , b̃

(n,rkv)
K

〉
.

Since αQ and αK are position-independent and RoPE satisfies translation equivariance, we have,
for any rq and rkv: 〈

b̃
(m+t,rq)
Q , b̃

(n+t,rkv)
K

〉
=

〈
b̃
(m,rq)
Q , b̃

(n,rkv)
K

〉
.

Therefore, the query-key inner product is invariant under joint position translations:〈
q
(i)
m+t, k

(i)
n+t

〉
=

〈
q(i)
m , k(i)

n

〉
.

This confirms that TPA preserves translation equivariance.

D Llama-3 Architecture

Given hidden states H ∈ Rn×d for a sequence of n tokens, we first compute the attention output

Oattn = Attention(H) ∈ Rn×(hdh),

then project back to the model dimension and add a residual:

H← H+OattnWO,attn, WO,attn ∈ R(hdh)×d.

Next, an MLP block (gated form) is applied:

Omlp = σ (HW1)⊙ (HW2) , W1,W2 ∈ Rd×di ,

followed by the output projection and residual:

H← H+OmlpWO,mlp, WO,mlp ∈ Rdi×d,

where σ(·) is an elementwise nonlinearity function such as SiLU and ⊙ denotes elementwise multi-
plication.

E Experimental Setup

E.1 Model Hyperparameters

We adopt a Llama-3 architecture and a GPT-2 tokenizer with a 50k vocabulary. Following Zadouri
et al. (2025), we initialize our MHA baseline using the GPT-3 configuration at each target model
size; this baseline serves as the anchor for parameter count. For all other attention variants, we
widen the MLP layers until each model’s total parameters match the MHA baseline. We re-
port architecture hyperparameters for MHA, MQA, GQA, MLA, TPA, MLA, and MLRA in Ta-
bles 5, 6, 7, 8, 9, 10, 11. For GQA we set g = h

4 . For MLA, we follow the paper’s setup with
d′c = 12dh, d′c = 4dh, and dRh = 0.5dh. For GLA, we follow the paper’s setup with d′c = 8dh,
d′c = 4dh, and dRh = 0.5dh. For TPA, we follow the paper’s setup with RQ = 6 and RKV = 2. For
MLRA, we set d′u = 2dh, d′u = dh, r′ = 3dh

h , and r = 6dh

h .

20

Table 5: Model configuration for the three model sizes for MHA in our experiments.

Model Size # Parameters # Layers h d dh di

354M 353.94M 24 16 1024 64 2736
1.3B 1311.48M 24 16 2048 128 5464
2.9B 2872.59M 24 24 3072 128 8192

Table 6: Model configuration for the three model sizes for MQA in our experiments.

Model Size # Parameters # Layers h g d dh di

354M 353.94M 24 16 1 1024 64 3376
1.3B 1311.48M 24 16 1 2048 128 6744
2.9B 2872.00M 24 24 1 3072 128 10152

Table 7: Model configuration for the three model sizes for GQA in our experiments.

Model Size # Parameters # Layers h g d dh di

354M 353.94M 24 16 4 1024 64 3248
1.3B 1311.48M 24 16 4 2048 128 6488
2.9B 2872.59M 24 24 6 3072 128 9728

Table 8: Model configuration for the three model sizes for MLA in our experiments.

Model Size # Parameters # Layers h d′
c dc d dh dR

h di

354M 353.58M 24 16 768 256 1024 64 32 2848
1.3B 1311.13M 24 16 1536 512 2048 128 64 5696
2.9B 2872.05M 24 24 1536 512 3072 128 64 9448

Table 9: Model configuration for the three model sizes for TPA in our experiments.

Model Size # Parameters # Layers h RQ RKV d dh di

354M 354.14M 24 16 6 2 1024 64 3496
1.3B 1311.48M 24 16 6 2 2048 128 7032
2.9B 2873.18M 24 24 6 2 3072 128 10760

Table 10: Model configuration for the three model sizes for GLA in our experiments.

Model Size # Parameters # Layers h d′
c dc d dh dR

h di

354M 353.96M 24 16 512 256 1024 64 32 3152
1.3B 1311.51M 24 16 1024 512 2048 128 64 6296
2.9B 2872.63M 24 24 1024 512 3072 128 64 10048

Table 11: Model configuration for the two model sizes for MLRA in our experiments.

Model Size # Parameters # Layers h d′
u du r′ r d dh dR

h di α γ

1.3B 1311.88M 24 16 256 128 48 24 2048 128 64 6728 2 2
2.9B 2872.01M 24 24 256 128 32 16 3072 128 64 10488 2 1

21

E.2 Training Setup

Training Configuration. For pretraining, we adopt GPT-3 settings. We use AdamW (Loshchilov
and Hutter, 2017) with (β1, β2) = (0.9, 0.95), ϵ = 10−8, weight decay 0.1 , and gradient clipping
at 1.0 . The learning rate is linearly warmed up for the first 2,000 steps, then annealed with cosine
decay (Loshchilov and Hutter, 2016) to 10% of the peak. Peak learning rates are 3×10−4, 2×10−4,
and 1.6×10−4 for the 354M , 1.3B, and 2.9B models, respectively. We use a context length of 2,048
tokens and a global batch of 240 sequences, yielding 491,520 tokens per step (≈ 0.5M). We train for
200,000 steps, totaling 98.3B tokens. By contrast, GPT-3 uses 1.0M tokens/step for 1.3B and 2.9B
experiments.

Table 12: Training configuration for the three model sizes in our experiments.

Model Size Micro-batch Size Batch Size Peak Learning Rate Total Steps

354M 120 240 3× 10−4 200,000
1.3B 40 240 2× 10−4 200,000
2.9B 8 240 1.6× 10−4 200,000

Initialization. For MHA, MQA, GQA, MLA, and GLA, all learnable parameters are initialized
with a normal distribution N (0, σ = 0.02).

For TPA, we follow the paper’s setup. The matrices WAQ,WBQ,WAK,WBK,WAV,WBV
use Xavier uniform initialization (Glorot and Bengio, 2010): each entry is sampled from
U (−bound, bound) with bound =

√
6

din+dout
, where din and dout are the input and output di-

mensions of the respective matrix. The output projections WO, attn and WO, mlp are zero-initialized,
while all remaining parameters use N (0, σ = 0.02).

In MLRA, we also zero-initialize WO, attn and WO, mlp; all other parameters are initialized with
N (0, σ = 0.02).

We conduct an ablation study on the baseline mechanisms comparing zero vs. N (0, σ = 0.02)
initialization for WO,attn and WO,mlp. Medium-size models are trained for 100B tokens using the
configuration in Appendix E.2. We evaluate perplexity on 6 datasets: FineWeb-Edu (Penedo et al.,
2024), Wikipedia, C4, Common Crawl, Pile (Gao et al., 2020), and ArXiv, each evaluated using
100M tokens. Results are reported in Table 13. We find that N (0, 0.02) performs better for MHA,
MQA, GQA, MLA, and GLA, whereas zero initialization is better for TPA.

Table 13: Ablation study on initialization (N (0, σ = 0.02) vs. zero) for WO, attn and WO, mlp.

Method Initialization FineWeb-Edu Wikipedia C4 Common Crawl Pile ArXiv Avg
MHA N (0, σ = 0.02) 13.159 20.369 21.732 20.230 15.974 17.836 18.217
MHA 0 13.604 20.579 22.432 20.838 15.812 18.255 18.586

MQA N (0, σ = 0.02) 13.375 20.261 22.157 20.625 15.380 17.947 18.291
MQA 0 13.563 21.468 22.471 21.129 16.157 18.632 18.903

GQA N (0, σ = 0.02) 13.158 19.862 21.810 20.239 16.253 17.969 18.215
GQA 0 13.352 20.360 22.074 20.604 15.730 17.861 18.330

MLA N (0, σ = 0.02) 13.095 19.693 21.604 19.860 14.914 17.176 17.724
MLA 0 13.184 20.599 21.768 20.136 15.609 17.228 18.087

TPA 0 13.140 19.856 21.770 20.187 15.138 17.554 17.941
TPA N (0, σ = 0.02) 13.486 20.511 22.336 20.788 15.279 17.849 18.375

GLA N (0, σ = 0.02) 13.057 18.932 21.575 19.926 14.477 17.140 17.518
GLA 0 13.133 19.651 21.684 19.975 14.680 17.217 17.723

F Related Work

KV Cache Compression. Recent works (Liu et al., 2023; Anagnostidis et al., 2023; Zhang et al.,
2023b; Ge et al., 2024; Xiao et al., 2024; Kim et al., 2024; Zhang et al., 2024; Nawrot et al., 2024;

22

Tang et al., 2024; Liu et al., 2024b; Dong et al., 2024; Yue et al., 2024; Cai et al., 2024; Liu et al.,
2024a; Hooper et al., 2024; Sun et al., 2024; Chen et al., 2024a; Jiang et al., 2024a; Li et al., 2024;
Xiao et al., 2025; Sun et al., 2025a; Meng et al., 2025; Tang et al., 2025) don’t introduce new
attention mechanisms; instead, they compress the KV cache for the pretrained models. Some of
these works (Liu et al., 2024b; Hooper et al., 2024; Yue et al., 2024) use quantization to store the
KV cache in low-bit formats. Some other approaches (Zhang et al., 2023b; Xiao et al., 2024; Li
et al., 2024; Xiao et al., 2025) retain important tokens and discard others to compress the KV cache.

Low-Rank Approximation. Low-rank approximation approaches (Hu et al., 2022; Malladi et al.,
2023; Zhang et al., 2023a; Dettmers et al., 2023; Lialin et al., 2024; Zhu et al., 2024; Zeng and
Lee, 2024; Chen et al., 2024b; Zhang, 2024; Liang and Li, 2024; Zhao et al., 2024a; Shi et al.,
2024; Jiang et al., 2024b; Lin et al., 2025; Wang et al., 2025; Chang et al., 2025; Li et al., 2025)
are widely used to compress representations to a low-dimensional latent, then up-project to recover
full representations. These methods greatly reduce trainable parameters (Hu et al., 2022; Dettmers
et al., 2023) during fine-tuning and decrease the number of parameters (Lin et al., 2025; Wang et al.,
2025) for pretrained models.

System for Attention. FlashAttention (Dao et al., 2022; Dao, 2024; Shah et al., 2024) uses tiling
and online softmax to minimize reads and writes between high-bandwidth memory and on-chip
SRAM, shifting attention from a memory bottleneck to a compute bottleneck. FlashMLA (Ji-
ashi Li, 2025) avoids explicit KV materialization during decoding by absorbing the key and value
up-projection matrices into the query and attention output. The following attention computation is
similar to MQA with shared KV states. Inspired by classical virtual memory and paging in operating
systems, PagedAttention (Kwon et al., 2023) and vLLM use block-level memory management and
preemptive request scheduling to reduce fragmentation and redundant duplication.

23

	Introduction
	Preliminaries
	Tensor Parallelism
	Translation Equivariance
	Rotary Position Embedding

	Multi-Head Low-Rank Attention
	Implementation
	Decoding without KV Materialization
	Analysis

	Experiments
	Experimental Setup
	Experimental Results
	Model Quality
	Efficiency

	Conclusion
	Theorem
	Query Computation in MLRA
	Attention Mechanism
	Multi-Head Attention (MHA)
	Multi-Query Attention (MQA) and Grouped-Query Attention (GQA)
	Multi-Head Latent Attention (MLA)
	Tensor Product Attention (TPA)

	Llama-3 Architecture
	Experimental Setup
	Model Hyperparameters
	Training Setup

	Related Work

