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ABSTRACT

Most of the current misinformation detectors display a lack of temporal general-
ization, despite the increasing reported scores in the literature. This phenomenon
can be attributed to classical machine learning evaluation protocols based on
random splits. While widely adopted, these protocols often fail to reflect real-
world model performance, a limitation that is particularly critical in misinforma-
tion detection, where temporal dynamics play a central role. In this paper, we
present a comprehensive analysis of temporal biases across multiple misinforma-
tion datasets, with a specific focus on the temporal distribution of labels. We
also introduce simple yet effective methods to improve performance in scenarios
where temporal generalization is critical for NLP tasks. Our findings show that
classical evaluation protocols tend to overestimate model performance in misin-
formation detection. To address this, we propose FC30, a new dataset, and intro-
duce a general-purpose evaluation metric designed to better assess models under
temporal shift and capture potential temporal bias.

1 INTRODUCTION

Misinformation detection and related sub-tasks, such as fake news detection, rumor detection, or
stance classification, are of utmost importance in the current geopolitical context. Misinformation
has adverse effects on society, ranging from influencing elections to creating a climate of defiance
of the population against institutions.

To counter misinformation, researchers and industrials have proposed solutions based on annotated
data from websites such as Snopes1 or PolitiFact2 to create evaluation datasets with human anno-
tations. These evaluation datasets are then used, following rigorous machine learning protocols, to
measure machine learning systems performance in misinformation detection.

However, the standard NLP practice of randomly splitting data into training, validation, and test sets
may not be well-suited for misinformation detection. This task is particularly prone to knowledge
leakage, as articles covering the same or related events can appear across splits, leading models to
learn event-specific representations rather than generalizable misinformation patterns Wang et al.
(2018). Moreover, some datasets are relatively old, increasing the likelihood that test articles were
seen during the language model pre-training. In practice, a robust misinformation detection system
should perform well not only in articles published after the last article used for training, but also in
those released after the model’s pre-training period.

In this paper, we propose to study how accounting for the temporality of misinformation datasets
can help better evaluate misinformation detection models and learn text representations that remain
relevant over time. By temporality, we refer to the chronological ordering of data based on their
timestamps, which may help capture evolving trends in future data. While this is a common concern
for time series and temporal forecasting, the complexity of learning both text representations and
their temporal dynamics makes traditional time series models hardly usable for NLP tasks. Our
research questions and contributions are the following:

1https://www.snopes.com/
2https://www.politifact.com/
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• Q1. Do current misinformation benchmarks correctly evaluate model performance in
practice? We show, through experiments on a wide range of misinformation datasets, that
classical evaluation methods based on random splits tend to overestimate encoder models
when compared to models trained and evaluated with a temporal test set.

• Q2. How to define a more robust framework for measuring temporal generalization?
1. Metric for temporal bias in labels. e propose a general data-agnostic metric, named
LabDrift to quantify label drift in datasets. This metric differs from standard statistical tests
such as Cramér’s V, focusing more on the theoretical performance of models if labels were
biased. 2. New extended fact-checking dataset. We collect and share FC30, a new dataset
based on claims covering a time period of 30 years, with a large proportion of claims made
after the pre-training of popular language models based on encoders. 3. Approaches for
improving temporal generalization. We propose two new baselines, named Fusion and
TempoGen, to improve temporal generalization and show performance gains in a temporal
setting on several models, including models published before and after the test set period.
These approaches guide what the learned features represent by adequately choosing the
validation split, leading to better-lasting text representations.

2 RELATED WORK

Misinformation detection is usually performed through several tasks, such as detecting fake news
or rumors. Many datasets exist (D’Ulizia et al., 2021), allowing for the training of models to detect
different aspects of misinformation. Fake news detection is a popular task that is often resolved
with approaches that check the consistency between several articles (Fung et al., 2021), or by using
external knowledge in the model (Dun et al., 2021). Another related task is rumor detection, less
based on knowledge and more on stylistic (Shu et al., 2019) and conversational (Zubiaga et al., 2015)
features. Misinformation is also linked to bad practices in journalism, making the task of clickbait
detection (Zheng et al., 2018) also of interest. On social media, the stance of comments responding
to a main post helps detect fake news (Riedel et al., 2018), allowing for leveraging crowd answers
for automatic fake news detection (Taranukhin et al., 2024).

In this paper, we are interested in generalizing to future data (model performance when applied to
data that was not seen during training and that comes from a later time period), also sometimes called
temporal alignment (Luu et al., 2022), which is similar to the task of domain adaptation. However,
the existing literature on temporality and domain adaptation (Chen et al., 2020; Song et al., 2021;
Ragab et al., 2023) is either not transferable to textual tasks or too specific to the characteristics
of the computer vision tasks considered. For misinformation detection, EANN (Wang et al., 2018)
has been proposed to help generalization to new topics, but did not evaluate the temporal context
evolution between the topics, or the temporality of each topic, which may vary. Improving over
EANN, Forecasting Temporal Trends (Hu et al., 2023) attempts to incorporate temporal forecasting
of embeddings to reweight the importance of each sample before training a language model. A
similar approach for graph-based misinformation detection has been proposed (Kim et al., 2025).
Other works on improving generalization exist, but they primarily address the issue of catastrophic
forgetting - where models forget previously learned information when trained on new data (Wang
et al., 2025) - or focus on generalization across different datasets (Qin & Zhang, 2024). For help in
generalization, three axes were identified by Verhoeven et al. (2025): time, content, and publisher.
However, their temporal analysis is limited due to an imbalance in the label distribution.

More focused on temporality, Su et al. (2022) shows that language models perform worse over
time due to lexical semantic change, and that domain adaptation methods only aggravate temporal
misalignment. An extended analysis has been performed that confirms temporal misalignment in
BERT (Röttger & Pierrehumbert, 2021), with degradation in performance when the test set is far
from the training set. The issue of temporal misalignment is also relevant for LLMs, with several
identified biases (Kishore & He, 2024; Zhu et al., 2025). GenBench (Stepanova & Ross, 2023) is a
benchmark designed to analyze the performance of multimodal misinformation detectors over time
on a single misinformation dataset.

In this paper, we focus on the generalization of learned features on future data, in the sense of
unseen data published after training, as in a real application case. The new data covers different
topics, new words, and new entities, and comes from different sources, making the use of time series
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or distribution shifts methods irrelevant, as no trends can be defined. We propose a new rigorous
formalization of this problem to design more robust benchmarks for misinformation detection, better
reflecting the performance obtained in applicative cases, where the evolution of data can not be
predicted.

3 TEMPORAL LABEL BIAS IN MISINFORMATION DATASETS

In this section, we propose and formalize the constraints that a dataset must satisfy to properly
evaluate temporal generalization, present analyses on the impact of such a setting across multiple
misinformation datasets, and introduce a metric to measure temporal label bias distribution, also
called label drift.

3.1 TEMPORAL GENERALIZATION: ASSUMPTIONS, CONSTRAINTS, AND DEFINITIONS

Before going further, we present our definition of temporal generalization. In a classical machine
learning setting, the data is randomly distributed among the training, validation, and testing splits.
The trained model is chosen based on the best score on the validation set, then the score on the test
set is considered the expected performance of the model when deployed, as the test set is composed
of unseen data during training. However, for tasks such as misinformation detection, we propose
adopting a temporal evaluation setting, similar to those used in time series analysis, where models
are trained on past data and evaluated on future instances. This setup better reflects real-world
deployment conditions and helps prevent information leakage over time.

Let us suppose that available data, with N samples (noted (Xk, yk), k ∈ J1, NK, with X the input of
the model and y the corresponding label), is provided with associated timestamps tk. Data samples
can then be Temporally Ordered at the time of splitting the dataset (Constraint TO).

∀(i, j) ∈ J1, NK2, i < j ⇒ ti ≤ tj (TO)

We argue that for some NLP tasks, such as misinformation detection, a temporal split should be
considered for the test split, by applying a Test Condition, as written in Constraint TC, where
Ttrain, Tvalid and Ttest are the lists of timestamps of data used in training, validation and test splits,
respectively. This means that knowledge leakage is not possible from training and validation to the
test split.

max (max (Ttrain) ,max (Tvalid)) < min (Ttest) (TC)

In addition to these constraints, we propose an additional requirement related to the Pre-Training
date of the pre-trained models, namely tpre−training stated in Constraint PT . This would allow for
a more realistic setting, as it guarantees that the test data was never seen during the pre-training of
the model (this is especially important for NLP tasks).

tpre−training < min (Ttest) (PT)

These last two constraints TC and PT account for several concerns we faced in misinformation
detection that could also benefit other classification tasks - generalization to new topics, evolution
of language, and knowledge leakage from random splits.

We consider that a model evaluated in a setting that satisfies the three constraints allows us to mea-
sure temporal generalization, as all data in the test set is unseen by the model in terms of knowl-
edge, context, and language.

While this makes sense in a temporal series or sequential learning context, it has not been explored in
NLP yet, where the complexity of learning text representations has obfuscated the need for temporal
generalization, which is not necessary for most NLP tasks.
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Table 1: Meta-performance of models in a classic (noted C) and temporal (noted T) evaluation
protocol. Difference significance is computed with a t-test and we report p-values (*p < 0.05,
**p < 0.01, ***p < 0.001).

Classical evaluation Realistic temporal evaluation
Dataset C - Acc. C - F1 T - Acc. T - F1

GossipCop 75.04±3.80 74.48±3.73 70.09* 69.94*
ISOT 87.05±0.18 87.01±0.18 86.72** 79.21***

MediaEval 86.14±3.67 86.01±3.70 54.13*** 43.09***
MisInfoText 67.02±7.69 45.02±11.16 77.34* 50.82

PHEME 80.66±9.29 51.14±15.32 56.67*** 36.17
PolitiFact 93.33±5.03 93.14±5.33 92.31 67.95***
Proppy 97.82±0.47 94.46±1.05 51.66*** 45.61***
FC30 72.3±0.78 65.44±0.36 78.08*** 51.22***

3.2 THE MEASURED PERFORMANCE IS OVER-ESTIMATED

Because of the risk of temporal bias for misinformation detection, we aim at measuring whether
the perceived performance of models (which is protocol-dependent, called meta-performance) in
a classical setting and a temporal generalization setting align. To do so, we performed two sets
of experiments on various misinformation detection datasets, including fake news detection, fact-
checking, and stance detection:

• A multiclass classification (binary for all datasets except MisInfoText and FC30, which are
ternary) using deberta-v3-large. The splits (including test) are randomly generated.
These experiments with classic splits are noted C.

• The same multiclass classification problem, but with splits verifying Constraints TO
and TC. The test set consists of the last 10% of the published data, while the remaining
data is randomly split 80/10 for training and validation. Experiments using this split are
labeled T for temporal.

We report the accuracy and F1-score on the test set averaged over five runs in Table 1. The num-
bers reported are not to be considered as standard performance metrics, but as perceived meta-
performance. They only reflect the protocol-dependent metrics in the experimental setting, which
is the expected performance of the model under the protocol assumptions. Random splits assume
that features are equally shared independent of any other factor, while the temporal generalization
(also called temporality-aware in a graphical context by Kim et al. (2025)) assumes that the real
performance of model is measured on the last published data, which is the case for misinformation
detectors. Reported numbers in Table 1 can not be compared for model selection.

We observe that models are significantly over-evaluated in the classic setting, with an average in-
crease of 11.54 accuracy points and 19.08 F1-score points compared to the temporal setting. This
can be explained by possible knowledge leakage that occurs with random split creation, which does
not correspond to real use cases. Furthermore, the significant drop in meta-performance under the
temporal setting suggests that models trained without temporal constraints are less effective at han-
dling future misinformation, limiting their practical utility.

An additional challenge arises with smaller datasets like PolitiFact (only 38 samples in test set),
where the temporal test set may contain very few samples for certain classes —for example, only
one instance of real news—leading to highly biased performance metrics. This issue is mitigated in
larger datasets, with more samples for each label.

In addition to previous observations, there could also be an issue with temporal splits if labels are
not evenly distributed over time. For fake news detection, this could lead to models over-trained on
fake news of a specific time frame, making learned features not robust for temporal generalization.
To avoid this possible issue, we propose a metric for measuring temporal biases in dataset labels in
the next section.
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3.3 LABDRIFT, A NEW MEASURE FOR LABEL DRIFT

Our proposition for measuring whether a dataset is temporally biased is to create a metric valued at 1
if the temporally ordered labels are totally separated and close to 0 if the labels are evenly distributed
over time. This metric measures the concept of label shift proposed by Yee (2025), though it lacks
practical methods for measurement.

Let a list of N temporally ordered labels Y data = (yi)i∈J1,NK with associated timestamps verifying
Constraint TO. If the labels were totally biased, all ‘legitimate’ labels would be grouped first, then
all ‘fake’ labels (or the opposite, depending on the dataset). We note this hypothetical biased list
of labels Y biased. More precisely, Y data and Y biased contain the same labels, but are temporally
ordered for Y data, and grouped by labels for Y biased. The metric measures how well a model can
predict based only on the publication date, assigning one label before a certain date and another
label after that date. The list of predicted labels by a model predicting the first class i times, then
the other (N − i) times, is named Yi. We can plot the performance of this classifier by visualizing
its F1-score with varying i, following the piecewise constant functions defined in Equations 1 and 2.
These functions represent the date-biased predictor F1-score depending on the threshold date used
for predictions. f bias is the performance to predict Y biased, and fdata the performance to predict
Y data.

f bias

(
i− 1

N − 2

)
= F1

(
Yi, Y

biased
)
, ∀i ∈ J1, N − 1K (1)

fdata

(
i− 1

N − 2

)
= F1

(
Yi, Y

data
)
, ∀i ∈ J1, N − 1K (2)

The two curves are plotted and cover an area. The metric, LabDrift, noted λ, is the ratio of the
(absolute) area covered by fdata and the area covered by f bias, as defined in Equation 3.

λ =

∫
[0,1]

∣∣∣fdata(x)− fdata(0)+fdata(1)
2

∣∣∣ dx∫
[0,1]

∣∣∣f bias(x)− fbias(0)+fbias(1)
2

∣∣∣ dx (3)

An example is given in Figure 1 on the PolitiFact dataset, with f bias plotted in orange and fdata

plotted in blue. This dataset has highly temporally biased labels, with performance reaching more
than 89% of F1-score with a threshold date at 46% of the whole temporally ordered dataset, which
is confirmed with the high bias metrics (λ = 0.9310).

Figure 1: Visual explanation of the temporal bias metric on the PolitiFact dataset (λ = 0.9310, ratio
of the area hashed in blue over the orange area). The maximal F1-score achievable by a system
classifying only based on publication date can be read on the blue curve (see dotted lines).

This computation is for binary classification. When the problem is multiclass, the metric has to be
computed for each possible pair of classes, and these partial biases are averaged using a harmonic
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mean, as partial biases are ratios. The advantage of such a metric is that it is data-agnostic and can
be computed using just a list of temporally ordered labels.

We have performed an analysis on many published misinformation datasets and reported the bias
metrics when the dataset and temporal information were available. Results are given in Table 2.
Information about all considered datasets for the analysis are given in Appendix A. About half of
the datasets provide temporal information, and the measured temporal biases vary highly.

Table 2: Review on temporal bias in labels in misinformation datasets, with the λ metric when it is
possible to compute. The closer to 0 the metric is, the less biased the labels of the dataset.

Name LabDrift λ
Buzzface (Santia & Williams, 2018) 0.3123

CREDBANK (Mitra & Gilbert, 2021) 0.8788
GossipCop (Shu et al., 2019) 0.5198

MediaEval (Boididou et al., 2017) 0.1514
MisInfoText (Asr & Taboada, 2019) 0.3958

PHEME (Zubiaga et al., 2015) 0.4236
PolitiFact (Shu et al., 2019) 0.9310

Proppy (Barrón-Cedeño et al., 2019) 0.7961

FC30 (Ours) 0.1130

4 FC30: AN EXTENDED DATASET FOR TEMPORAL BIAS EXPERIMENTS

To the best of our knowledge, there is no existing dataset that allows a setting verifying Con-
straints TO, TC, and PT for the use of popular NLP encoders such as BERT (Devlin et al., 2019),
and DeBERTaV3 (He et al., 2021) (respectively trained in 2018 and 2020). To help bias analysis in a
temporal setting, we propose FC30, a new fact-checking dataset that allows verification of the three
constraints to measure temporal generalization with adequate data splits satisfying the previously
defined constraints (see Section 3.1).

FC30 is based on collected fact-checks from Snopes and PolitiFact, covering a range of 30 years,
from 1995 to 2025. It is composed of 36,619 fact-checks with 25 label types, which can be grouped
into three main labels. More details are provided in Appendix B.

The dataset has several advantages in responding to the limits identified in the literature:

• The time range of the data is large, allowing for evaluation on different time frames, and
the proportion of true, false, and mixed labels is relatively constant over time.

• A large amount of data was published after the training of the most popular NLP encoder
models, with 30% of claims published after 2020, the training cut-off date of DeBERTaV3,
allowing to verify Constraint PT for the most popular NLP encoders - except for Modern-
BERT (Warner et al., 2024) and EuroBERT (Boizard et al., 2025).

• Thanks to the time range, and internationality of topics analyzed by Snopes and Politi-
Fact, new topics and vocabulary appear over time, allowing to perform experiments on new
topics (Covid-19 crisis hit in 2020, and major political events have taken place since 2020).

The dataset with the main labels is available at GITHUB LINK (in supplementary materials).

5 ENHANCING TEMPORAL GENERALIZATION

In this section, we propose Fusion and TempoGen, two approaches that have the advantage of being
both simple and effective to improve temporal generalization as defined in Section 3.1. The proposed
approaches significantly improve performance in a temporal context, reaching levels similar to what
is measured in a classical setting for some models.
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5.1 EXPERIMENTAL SETUP

For the remainder of the paper, we are in a temporal generalization scenario, verifying Con-
straints TO and TC, with the last 10% of data left out for testing. We define two other splits for
the training phase:

• Random split: The remaining 90% of data are randomly split into training and validation.
This is supposed to favor temporally invariant features, which may not be the best choice,
as demonstrated in Section 3.2. Features learned with this split are expected to be time-
invariant, as they appear in all periods of time in the dataset.

• Temporal split: The remaining 90% of data are temporally split, verifying Equation 4. This
split is supposed to favor temporal features that better align with future data.

max (Ttrain) < min (Tvalid) (4)

All the following experiments are conducted as multiclass text classification on FC30, with reported
performance on the temporal test set. We chose to work with encoder models, as they have shown
to be proficient baselines (Pelrine et al., 2021). Experiments were conducted using three families
of models, BERT (Devlin et al., 2019), DeBERTaV3 (He et al., 2021), and EuroBERT (Boizard
et al., 2025). We chose two variants for each family of models (base and large or equivalent). These
models were chosen as BERT in this setting verifies Constraint PT, DeBERTaV3 has been the state-
of-the-art encoder for several years, and EuroBERT was published after the last data of FC30.

Training was performed with the transformers Trainer class, with the model reaching the highest
F1 score on validation being restored before evaluation on the temporal test set. The models trained
on the random and temporal split are named Random and Temporal, respectively (noted R and T
in tables).

5.2 FUSION

After the training on these two splits, we propose to compute all embeddings obtained by the Ran-
dom and Temporal models, and to train a two-layer perceptron model on a concatenation of both
embeddings with a temporal split. This model is called Fusion (noted F in tables) and can leverage
all random and temporal information, but require both inferences from Random and Temporal.

In addition to this model, we propose in the next section TempoGen, an approach to improve gen-
eralization with no additional costs at inference.

5.3 TEMPOGEN

To describe the intuition behind TempoGen, we have to display the learned embeddings by the Ran-
dom and Temporal models (examples are given using DeBERTa large). To do so, all embeddings
are projected onto the principal components of the features obtained with the Random model and
visualized on the same plot (see Figure 2 for embeddings distribution in 3D and corresponding
decision frontier in 2D).

We observe that the random embeddings (on the left) are clearly separated by class. The temporal
embeddings are closer, but have a different decision frontier. Working with both types of embed-
dings (two data samples per article, one from the random split and one from the temporal split), the
decision frontier is a mix between both, conserving temporal and general decision frontiers where it
matters.

The main idea of TempoGen (noted TG in tables) is to use both Random and Temporal embeddings
during training to obtain a modified decision frontier that would fit the two distributions. When
training TempoGen, the Random and Temporal models have to be trained first, doubling the cost of
training. After that, a small two-layer perceptron is trained with both types of embeddings in the
dataset (two samples for each article, one with random embeddings, one with temporal embeddings,
both labeled the same), with minimal additional cost compared to the training of the encoder models.
However, for inference, only the temporal embeddings are used, as they are better aligned with data
to come in the near future, leading to no additional costs after the TempoGen model training.

7
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Figure 2: PolitiFact embeddings distribution on the top and associated decision frontiers on the
bottom. From left to right, the Random embeddings, the Temporal embeddings, and both of them
on the same plot. Fake news labels are in a darker color, and legitimate news labels are lighter.

5.4 RESULTS

The main results are shown in Table 3. Because the number of elements in each class is unbalanced,
the primary metric to prioritize is the F1 score. We report the mean rank of each approach on the six
tested models.

Table 3: Temporal generalization of language models in different training scenarios. Best accuracies
and F1 are in bold, and second-best results are highlighted by the † symbol.

Model R Acc R F1 T Acc T F1 F Acc F F1 TG Acc TG F1
BERT base 78.63 51.56 75.77 47.95 78.27† 54.70 78.10 54.53†

BERT large 78.26 50.21 76.34 48.79 77.54† 55.28 76.30 52.00†

DeBERTa base 79.67 52.50 78.23† 51.30 77.49 55.00 75.30 53.33†

DeBERTa large 78.08† 51.22 80.05 52.99 77.46 58.99† 77.84 60.25
EuroBERT-210M 80.38 54.08† 78.41 51.61 79.69† 59.79 74.53 45.77
EuroBERT-610M 78.61† 51.51† 79.27 52.28 76.86 50.87 74.36 44.60
Mean ranking 1.33 2.83 2.33† 3.16 2.66 1.5 3.66 2.5†

Several observations can be made. Globally, the use of the temporal split alone does not significantly
improve performance, which is lower than the random split in most cases. However, combining both
representation types in the Fusion model is the best approach, achieving the best score in two-thirds
of the experiments. TempoGen is the second-best approach, but has a lower inference cost, half
of the Fusion approach. For models verifying Constraint PT (BERT and DeBERTa), TempoGen
allows to reach performance similar to more recent models not verifying Constraint PT, for which
the impact of the Fusion and TempoGen approaches is less significant. Even with TempoGen and
the Fusion approach, the measured performance with DeBERTa large is still lower than what was
measured in a classical machine learning setting, confirming our observations that traditional ma-
chine learning evaluation over-evaluates misinformation detection models. To further support these
claims, more experiments were conducted on other temporal misinformation datasets, with results
reported in Appendix C, leading to the same conclusions on most datasets. Some tasks (such as
propaganda or rumor detection) are less affected by temporal evolution of features, making repre-
sentations learned on classical split relevant even in the future.

To better understand how the proposed approaches affect performance, we show in Figure 3 the
performance DeBERTa large on five-year time windows of FC30, covering training data first, vali-
dation, and test. The other models have similar curves, given in Appendix D.
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Figure 3: DeBERTa large performance over time for different training scenarios.

For models verifying Constraint PT (BERT and DeBERTaV3), the F1-scores display an m-shaped
curve. All models have difficulties in the 2005-2010 time window. The high performance observed
on non-random approaches between 2015 and 2020 is due to model selection based on temporal
split, leading to a slight loss in performance on the test set from 2020 to 2025. However, this drop
in performance usually reaches a higher performance than a random split, showing the interest of
the proposed approaches in improving temporal generalization. For EuroBERT, which has seen
relevant context during its pre-training, results are mixed, but do not reflect real use cases with test
data published after the model pre-training.

In the general case, combining temporally-selected and classical embeddings in the Fusion approach
improves temporal generalization on new data, but at twice the cost of inference and training. If
speed is more important, the TempoGen approach also improves temporal generalization, with twice
the cost of training, but no additional cost at inference.

6 CONCLUSION AND FUTURE WORK

In this paper, we have introduced a temporal generalization formalization, allowing for a more re-
alistic evaluation of misinformation detection systems. To evaluate models in this configuration,
we proposed FC30, a new extended dataset containing claims covering 30 years of fact-checking,
with a significant part published after the pre-training of popular encoder models. To further support
the measurement of temporal biases, we proposed LabDrift, a data-agnostic metric to assess label
drift, which could hinder training. We then showed that classical machine learning evaluation over-
evaluates misinformation detection systems, based on experiments on eight datasets, and proposed
efficient yet straightforward approaches to improve temporal generalization.

Several challenges remain to be addressed in future work:

• Generally, performance improvements in NLP on benchmarks are difficult to impute. They
may be due to architecture improvements, but also to knowledge leakage due to the addition
of data in the pre-training of models. These two factors are usually modified at the same
time in newly proposed models, making it hard to determine if the architecture is making
a difference or if it is an unexpected effect of adding pre-training data. We hope this work
will help design benchmarks for temporality-sensitive tasks, enabling better evaluation and
comparison of models.

• Extending the formalization to external knowledge-enhanced tasks, with additional con-
straints on retrieved information to guarantee reproducible results, even after the evolution
of the external knowledge base.

• Extending the use of the proposed Fusion and TempoGen approaches to other tasks
solved by encoders that could benefit from temporality in datasets, such as computer vi-
sion (Pégeot et al., 2025).
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ETHICS STATEMENT

This paper deals with the topic of misinformation in a practical context, proposing a robust protocol
for better evaluating misinformation detection systems. This topic is of critical interest for society,
as misinformation has a large impact on individuals and society as a whole.

The proposed benchmark and data can be used to train misinformation detection systems, but con-
tains by nature harmful content for misinformation examples. We do not give examples in the paper,
but the repository can contain offensive or harmful content.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the presented results, we would like to share all components that led
to the production of the reported findings in the following Github GITHUB LINK (in supplementary
materials). This repository contains the following elements:

• Data: for produced datasets (FC30), data is provided with loading functions. More details
on the dataset composition is also given in Appendix B. Other datasets have their own
license so we do not share them. They are however correctly cited in the paper, and are
accessible online at the time of submission.

• Metrics: the LabDrift metric code is provided in its own Python file, as well with examples
in an associated Jupyter notebook

ON THE USE OF LARGE LANGUAGE MODELS

In the writing of this paper, AI-based tools (not based on LLMs) were used to improve readability,
clarity and quality of language. All scientific content has been produced without the help of any
AI-based model, including problem formulation, experiment design, metric and code production, as
well as interpretations of results and analyses.
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cobar. Detection of fake news in a new corpus for the spanish language. Journal of Intel-
ligent & Fuzzy Systems, 36(5):4869–4876, 2019. doi: 10.3233/JIFS-179034. URL https:
//doi.org/10.3233/JIFS-179034.
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A TEMPORAL BIASES IN LABEL DISTRIBUTION OF EXISTING DATASETS

We give the detail of all considered dataset for temporal biases in label distribution in Table 4. It is
the detailed version of Table 2.

Table 4: Review on temporal bias in labels in misinformation datasets, with the λ metric when it is
possible to compute.

Name Data available Timestamps LabDrift λ
Burfoot (Burfoot & Baldwin, 2009) Dead link NA -
Buzzface (Santia & Williams, 2018) Yes (behind API) Yes 0.3123

CREDBANK Yes Yes 0.8788(Mitra & Gilbert, 2021)
EMERGENT Yes No -(Ferreira & Vlachos, 2016)

FacebookHoax (Tacchini et al., 2017) Yes (behind API) Yes -
FCV-2018 (Papadopoulou et al., 2019) Yes No -

FEVER (Thorne et al., 2018) Yes No -
FNC-1 (Riedel et al., 2018) Yes No -

GossipCop (Shu et al., 2019) Yes Yes 0.5198
Horne2017 (Horne & Adali, 2017) Yes No -

LIAR (Wang, 2017) No - -
MediaEval (Boididou et al., 2017) Yes Yes 0.1514

MisInfoText (Asr & Taboada, 2019) Yes Yes 0.3958
NELA-GT-2018 Deaccessioned NA -(Nørregaard et al., 2019)

Ott et al. (Ott et al., 2011) Dead link - -
PHEME (Zubiaga et al., 2015) Yes Yes 0.4236

PolitiFact (Shu et al., 2019) Yes Yes 0.9310
Proppy (Barrón-Cedeño et al., 2019) Yes Yes 0.7961

Spanish fake news Yes No -(Posadas-Durán et al., 2019)
Tam et al. (Tam et al., 2019) No NA -

TSHP-17 (Rashkin et al., 2017) Yes Yes (one class) -
TW info (Jang et al., 2019) No NA -
Vlachos and Riedel dataset No NA -(Vlachos & Riedel, 2014)

Yelp dataset Yes No -(Barbado et al., 2019)
Zheng et al. (Zheng et al., 2018) Yes No -

FC30 (Ours) Yes Yes 0.1130

B THE FC30 DATASET

Data is composed of 36,619 claims collected from PolitiFact (https://www.politifact.com/) and
Snopes (https://www.snopes.com/), covering a time period of approximatively 30 years from
September 24, 1995 to March 4, 2025. Claims are a string that usually contain two information:

• The speaker or origin of the claim. It can be a political figure, or a social media without the
name of the user.

• The content of the claim.

Here is an example of claim, the latest one contained in the dataset: ”A photograph authentically
showed Ukrainian President Volodymyr Zelenskyy and first lady Olena Zelenska posing in front of
stacks of money.”. The structure of the claim can change depending on the source (PolitiFact or
Snopes) and time of publication (the fact-checking template has evolved over time).
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Figure 4: Main labels distribution over time in FC30.

Data is stored in the form of JSON file with the following schema:

{
"claim": str,
"label": str,
"year": int,
"month": int,
"day": int,

}

The originally extracted labels are multiple, but can be grouped into three main categories. We
provide below the dictionary we used to group the 25 fine labels into three larger categories for
experiments.

fine_annotation_to_label = {
’False’: "false",
’Half True’: "mixed",
’Mostly False’: "false",
’True’: "true",
’Mostly True’: "true",
’Pants on Fire’: "false",
’’: "mixed",
’Labeled Satire’: "false",
’Miscaptioned’: "false",
’Fake’: "false",
’Incorrect Attribution’: "false",
’Mixture’: "mixed",
’Unfounded’: "false",
’Correct Attribution’: "true",
’Scam’: "false",
’Research In Progress’: "mixed",
’Unproven’: "false",
’Originated as Satire’: "false",
’Recall’: "mixed",
’Outdated’: "false",
’Legend’: "false",
’Legit’: "true",
’Lost Legend’: "false",
"Mixed": "mixed",
"No label": "mixed",

}

We show the label distribution over time in Figure 4.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C PERFORMANCE OF MODELS ON OTHER DATASETS

Table 5: Temporal generalization of language models in different training scenarios on the Gossip-
Cop dataset. Best accuracies and F1 are in bold, and second-best results are highlighted by the †

symbol.

Model R Acc R F1 T Acc T F1 F Acc F F1 TG Acc TG F1
BERT base 77.78 77.70 67.52 67.40 70.94† 70.94† 70.09 70.09
BERT large 76.07 75.98 73.50 73.43 82.91 82.89 81.20† 81.16†

DeBERTa base 71.79 71.76 75.21 74.74 76.07† 76.05† 76.92 76.92
DeBERTa large 79.49 79.49 73.50 73.43 74.36 74.21 76.92† 76.81†

EuroBERT-210M 71.79† 71.59† 69.23 68.72 74.36 74.21 50.43 35.00
EuroBERT-610M 76.92 76.86 70.09 68.27 75.21† 74.74† 64.96 61.29
Mean ranking 2† 2.16† 3.5 3.5 1.83 1.83 2.66 2.66

Table 6: Temporal generalization of language models in different training scenarios on the ISOT
dataset. Best accuracies and F1 are in bold, and second-best results are highlighted by the † symbol.

Model R Acc R F1 T Acc T F1 F Acc F F1 TG Acc TG F1
BERT base 88.75 81.28 87.46† 80.13† 83.38 76.26 83.83 76.25
BERT large 87.57 79.97 85.94 78.37 85.34 78.38 86.26† 79.19†

DeBERTa base 89.00 81.45 87.66† 79.59† 86.08 78.54 84.70 76.84
DeBERTa large 88.71 81.33 86.75† 79.07 86.66 79.32† 83.38 75.64
EuroBERT-210M 88.39 81.29 88.04† 80.75† 85.41 78.24 82.16 75.08
EuroBERT-610M 87.77 80.51 84.74 76.43 86.43† 79.29† 81.96 74.96
Mean ranking 1 1 2.33† 2.66† 3.16 2.66† 3.5 3.66

Table 7: Temporal generalization of language models in different training scenarios on the Medi-
aEval dataset. Best accuracies and F1 are in bold, and second-best results are highlighted by the †

symbol.

Model R Acc R F1 T Acc T F1 F Acc F F1 TG Acc TG F1
BERT base 68.81† 53.89 59.17 45.57 67.43 50.70† 71.56 50.60
BERT large 53.67 42.81 67.43† 47.17 71.56 52.54 67.43† 48.12†

DeBERTa base 36.70 33.75 66.51† 43.57 57.80 45.97† 90.83 47.60
DeBERTa large 48.62 42.72 22.02 21.85 59.63 48.88 59.63 45.16†

EuroBERT-210M 66.51 52.30† 55.96 43.62 71.10† 53.97 72.48 52.19
EuroBERT-610M 69.27 55.58 81.65† 51.39 65.60 51.68† 84.86 48.74
Mean ranking 3 2.5† 3 3.5 2.33† 1.5 1.17 2.5†
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Table 8: Temporal generalization of language models in different training scenarios on the MisIn-
foText dataset. Best accuracies and F1 are in bold, and second-best results are highlighted by the †

symbol.

Model R Acc R F1 T Acc T F1 F Acc F F1 TG Acc TG F1
BERT base 77.14 53.63 76.99† 53.23 74.00 55.50 75.97 55.30†

BERT large 77.09† 50.72 77.39 50.90 71.72 53.87† 73.39 54.17
DeBERTa base 77.24† 51.05 77.34 50.87 73.65 54.40† 74.15 55.30
DeBERTa large 77.29† 50.79 77.39 50.90 73.50 54.48† 75.16 56.60
EuroBERT-210M 77.34 51.39 73.39 51.76 72.64 55.47 75.92† 54.49†

EuroBERT-610M 76.58† 50.09 76.73 50.11 74.30 56.28 75.37 54.05†

Mean ranking 1.66† 3.66 1.5 3.33 4 1.5 2.83 1.5

Table 9: Temporal generalization of language models in different training scenarios on the PHEME
dataset. Best accuracies and F1 are in bold, and second-best results are highlighted by the † symbol.

Model R Acc R F1 T Acc T F1 F Acc F F1 TG Acc TG F1
BERT base 53.33 34.78 56.67 36.17 56.67 42.22 53.33 40.34†

BERT large 60.00 44.10 56.67† 42.22† 56.67† 36.17 56.67† 36.17
DeBERTa base 56.67 36.17 56.67 36.17 53.33 34.78 56.67 36.17
DeBERTa large 53.33 34.78 56.67† 36.17 60.00 48.86 56.67† 46.65†

EuroBERT-210M 56.67 36.17† 56.67 36.17† 56.67 42.22 53.33 34.78
EuroBERT-610M 56.67 36.17 56.67 36.17 50.00 33.33 50.00 33.33
Mean ranking 1.83† 2.16† 1.33 2 2 2.16† 2.5 2.5

Table 10: Temporal generalization of language models in different training scenarios on the Poli-
tiFact dataset. Best accuracies and F1 are in bold, and second-best results are highlighted by the †

symbol.

Model R Acc R F1 T Acc T F1 F Acc F F1 TG Acc TG F1
BERT base 84.62 58.21 92.31 67.95 87.18 60.76 89.74† 63.89†

BERT large 89.74† 63.89† 84.62 58.21 87.18 60.76 94.87 73.65
DeBERTa base 92.31† 67.95† 92.31† 67.95† 92.31† 67.95† 94.87 73.65
DeBERTa large 94.87 73.65 89.74 63.89 94.87 73.65 89.74 63.89
EuroBERT-210M 72.94 56.10 84.62 58.21† 94.87 73.65 94.87 48.68
EuroBERT-610M 97.44 49.35 94.87† 48.68 94.87† 73.65 94.87† 73.65
Mean ranking 2.33 2.5 2.5 2.66 2† 1.5 1.83 2†

Table 11: Temporal generalization of language models in different training scenarios on the Proppy
dataset. Best accuracies and F1 are in bold, and second-best results are highlighted by the † symbol.

Model R Acc R F1 T Acc T F1 F Acc F F1 TG Acc TG F1
BERT base 16.76 16.74 13.45 13.24 17.54† 17.54† 21.83 21.74
BERT large 19.10 19.10 27.10 26.53 20.08† 20.05† 18.91 18.91

DeBERTa base 54.58† 47.71† 31.77 30.52 53.80 47.15 54.97 47.99
DeBERTa large 60.62 52.04 44.44 40.38 47.76† 42.80† 46.39 41.81
EuroBERT-210M 49.51 44.07 36.65† 34.45† 18.91 18.91 17.15 17.14
EuroBERT-610M 28.65 27.89 28.07 27.38 28.85† 27.99† 31.97 30.60
Mean ranking 2.33 2.16 3.16 3.16 2.33 2.33† 2.33 2.33†
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Table 12: Ranking of the different approaches on the different datasets. The mean ranking over
tested models is used and the best performing model for each dataset (in terms of F1 score) are
reported.

R
an

do
m

Te
m

po
ra

l

Fu
si

on

Te
m

po
G

en

Best approach

GossipCop 2† 4 1 3 Fusion - BERT large
ISOT 1 2† 2† 4 Random - DeBERTa base

MediaEval 2† 4 1 2† Random - EuroBERT-610M
MisInfoText 4 3 1 1 TempoGen - DeBERTa large

PHEME 2† 1 2† 4 Fusion - DeBERTa large
PolitiFact 3 4 1 2† Multiple including Random, Fusion and TempoGen
Proppy 1 4 2† 2† Random - DeBERTa large
FC30 3 4 1 2† TempoGen - DeBERTa large

Mean ranking 2.25† 3.25 1.375 2.5
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D MODELS PERFORMANCE OVER TIME

The performance curves for all tested models on FC30 over time are given in the following Figure 5.
The oberved performance dip for all models in the 2005-2010 time window may be due to the
fast development of the internet at this period, making earlier information historical, and this time
window less documented when compared to the period after 2010.

Figure 5: Models’ performance over time for different training scenarios.
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