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Abstract

Mobile devices have become essential enablers for AI applications, particularly in
scenarios that require real-time performance. Vision Transformer (ViT) has become
a fundamental cornerstone in this regard due to its high accuracy. Recent efforts
have been dedicated to developing various transformer architectures that offer im-
proved accuracy while reducing the computational requirements. However, existing
research primarily focuses on reducing the theoretical computational complexity
through methods such as local attention and model pruning, rather than considering
realistic performance on mobile hardware. Although these optimizations reduce
computational demands, they either introduce additional overheads related to data
transformation (e.g., Reshape and Transpose) or irregular computation/data-access
patterns. These result in significant overhead on mobile devices due to their limited
bandwidth, which even makes the latency worse than vanilla ViT on mobile. In this
paper, we present ECP-ViT, a real-time framework that employs the core-periphery
principle inspired by the brain functional networks to guide self-attention in ViTs
and enable the deployment of ViT models on smartphones. We identify the main
bottleneck in transformer structures caused by data transformation and propose a
hardware-friendly core-periphery guided self-attention to decrease computation
demands. Additionally, we design the system optimizations for intensive data
transformation in pruned models. ECP-ViT, with the proposed algorithm-system
co-optimizations, achieves a speedup of 4.6× to 26.9× on mobile GPUs across
four datasets: STL-10, CIFAR100, TinyImageNet, and ImageNet.

1 Introduction

In recent decades, there has been a significant increase in applying deep neural network (DNN)
architectures across various fields, including autonomous driving [23], natural language processing [9],
extended reality (XR) [13], image processing [22], and View Synthesis [32]. Along with significant
progress in hardware performance and public datasets, more and more complex DNN architectures
have been proposed, including Convolution Neural Network [52], RNN [36], Transformer [51]. These
architectures have led to groundbreaking breakthroughs in various application domains by leveraging
their powerful feature extraction abilities. Meanwhile, mobile devices have become essential for
deploying these applications, especially in scenarios that demand real-time performance. The mobile
GPU on Oneplus 11 can achieve a theoretical peak performance of over 3T FLOPS (floating point
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Figure 1: Accuracy-Latency-MACs comparison among various models on ImageNet-1K. Latency is
measured on Oneplus 11 (Snapdragon 8 Gen 2 SoC). The radius of each circle represents the model’s
MACs (Multiply-Accumulate Operations). Our ECP-ViT-Base achieves the highest top-1 accuracy
and offers the fastest inference speed among transformer-based models, providing 6× faster than
ViT-Base. We simplify the notation as “Base" = B, “Small" = S, and “Tiny" = T.

operations per second) [1]. Their widespread availability and increasing computational capabilities
make them ideal platforms for extending the impact of these algorithm innovations.

Compared to traditional convolutional neural networks (CNNs), transformers have recently become
widely used across various areas and tasks due to their high accuracy. The attention mechanism in
the transformer allows neurons to exchange messages effectively and efficiently, leading to promising
results in natural language processing [48, 16] and computer vision domains [17, 53]. However,
transformer architectures also known for their deeper network layers and require frequent reshaping
and transposing of the feature maps. This results in more intermediate results and leads to a memory
bound for the computation. Optimizing transformers for efficient execution becomes particularly
challenging in environments where memory bandwidth is limited.

Advancements in transformer architecture design, including Vision Transformer (ViT) [17], have
focused on improving message exchange mechanisms among spatial tokens through different Token
Mixers. Other efforts include the shifted window attention in Swin [34], the token-mixing MLP
in Mixer [44], and the pooling in MetaFormer [57]. These designs aim to enhance self-attention
accuracy and hardware efficiency compared to the original vanilla ViT [17], enabling more effective
and efficient execution on various hardware platforms. Despite the significant progress made in
transformer architecture, particularly in reducing theoretical computation demands, achieving real-
time performance for transformer-based models on mobile devices remains a major challenge.
Figure 1 illustrates the latency, accuracy, and floating-point operations (FLOPs) comparison of
different models on a mobile GPU. Despite having fewer FLOPs, Swin-T (local attention) is even
more than 3× slower than ViT-T (global attention). This is because local attention requires more
frequent data transformation to reorganize tokens, which accounts for 69% of execution time in
Swin. In contrast, these numbers are 43% in ViT and only 0.8% in VGG16. Similarly, DeiT has a
broadly similar structure to ViT, but it involves more complex data layout transformations and larger
intermediate results, as illustrated in Table 1. Unlike powerful server platforms, mobile devices have
limited memory bandwidth [24], making it challenging to benefit from reduced theoretical FLOPs.
There has been a fundamental lack of general principles that involve co-designing model architecture
and system optimizations.

In this work, we present an integrated framework that incorporates co-optimizations by revisiting the
model design and system optimizations. First, we propose a hardware-efficient and computational-
friendly sparse scheme (guided by the Core-Periphery principle in brain networks) [61, 59, 60, 58,
62] that can be applied to guide the message exchange in self-attention. This scheme also helps
reduce bandwidth pressure for the subsequent Softmax operation. Secondly, we develop a set
of comprehensive compiler-based optimizations supporting the proposed pruning scheme and
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Table 1: Comparison between ViT and DeiT. All data is measured on Oneplus 11 (Snapdragon 8 Gen
2 SoC). Layout Transformation indicates the time spent on transforming the tensor’s layout, such as
Transpose and Reshape. Computation indicates the time spent on pure tensor computation.

Model Layout Transformation (ms) Computation (ms) Intermediate Results (MB)
ViT-Base [17] 324 286 106.47

DeiT-Base [46] 1303 633 125.42

fully eliminate the overhead for Transpose and Reshape. Enabled by the advanced compiler
optimizations, it is possible to achieve both high accuracy and high acceleration simultaneously. We
demonstrate that, 1) our proposed fine-grained structured core-periphery guided self-attention offers
advantages in both accuracy and speed, and 2) our compiler framework exhibits superior end-to-end
acceleration performance for both the original and proposed ECP-ViT models.

We summarize our contributions in three aspects:

• We incorporate the organizational principle of brain functional networks—specifically, the core-
periphery principle—to guide self-attentions in ViTs. Additionally, we introduce a compiler code
generation framework that efficiently supports the core-periphery structures on mobile devices.

• We develop comprehensive compiler-based optimizations that can fully eliminate the overhead of
data transformation, bridging the gap between accuracy and latency.

• We build ECP-ViT, an end-to-end framework that combines algorithm and system design to achieve
real-time performance on mobile devices. ECP-ViT achieves the significant speedup on off-the-
shelf mobile devices, reaching up to 16.1× on ImageNet inference while maintaining an accuracy
of 84.51%.

2 Background and Motivation

Mixed blessing of attention. ViTs are widely utilized as robust backbones across various tasks. The
two primary types of attention are Global Attention [3, 33] and Local Attention [39, 41, 6, 42, 7].
Global Attention, as seen in standard transformer models, allows each token to attend to every other
token in the input sequence. This mechanism ensures comprehensive context capture, leading to high
accuracy. However, the downside is its computational intensity, as it scales quadratically with the
input length, making it less efficient for longer sequences or resource-constrained platforms.

Local Attention [64, 49] restricts the focus of each token to a subset of adjacent tokens (or with specific
patterns), resulting in the reduction of computational complexity. However, local Attention does not
always translate into proportionate realistic speedups when compared to the theoretical reduction in
floating-point operations (FLOPs). This approach significantly reduces the computational complexity
but at the cost of more layout transformations. These factors offset the expected gains from reduced
computational complexity, particularly in environments like mobile GPUs where memory bandwidth
and efficient data handling are critical, as reflected in Figure 1. The actual performance gains need to
be evaluated in the context of specific hardware and application requirements. Compared to the above
two types of attention, ECP-ViT is the first work to explore a speed-aware end-to-end framework that
achieves real-time performance on real-world mobile devices for ViTs.

Efficient network design and architecture search. In this category, a significant methodology is
Neural Architecture Search (NAS) [67, 40, 18, 31]. Some of the work leverages network pruning and
sparse training to further reduce the theoretical FLOPs. At the token level, Tang et al. [43] introduces
a patch slimming method to remove redundant tokens. Evo-ViT [54] updates selected informative
and uninformative tokens through distinct computation paths, while VTP [66] reduced embedding
dimensionality by introducing control coefficients. At the model architecture level, UP-ViTs [56]
adopts a unified approach to prune channels in ViTs. SViTE [10] dynamically extracts and trains
sparse sub-networks instead of training the entire model. Despite the significant progress made
by these methods, both token-sampling and data-driven strategies may heavily depend on specific
datasets and tasks, limiting the generalization capability of vision transformers. Additionally, these
token-level pruning or selection introduce additional operations for the Reshape and Transpose to the
feature map, leading to fewer benefits from reduced computation complexity. In contrast, ECP-ViT
achieves a significant speedup on mobile platforms through two key components: 1) the more efficient
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Figure 2: Co-Design of Core-Periphery Principle Guided self-attention mechanism in ECP-ViT. At
the software-level design, the rescheduled interactions between patches in ECP-ViT are guided by
the generated Core-Periphery (CP) graphs. Moreover, the multiplication of query, key, and value
matrices in the self-attention mechanism of ECP-ViT is also under the guidance of the core-periphery
graph. At the hardware-level design, the slice and transpose reshape operations are eliminated.

self-attention guided by the Core-Periphery principle, and 2) our compiler-based optimizations that
eliminate data transformation overhead (i.e., Reshape and Transpose).

DNN frameworks on mobile devices. Recently, there has been a dedicated focus on developing
inference acceleration frameworks for mobile devices from both academia and industry. Some efforts
include MCDNN [21], DeepSense [55], MobiSR [30], and PatDNN [38]. However, none of these
frameworks support the execution of transformer models on mobile devices. Other efforts have
been made to optimize the execution of transformer models on mobile devices, include TFLite [2],
TVM [11], MNN [26], Pytorch-Mobile [25], and DNNFusion [37]. They support optimizations
including operator fusion, constant folding, and quantization on mobile devices. However, they are
not able to eliminate the intensive Reshape and Transpose operations in transformer models. In
this work, our goal is to find the most appropriate CP pruning scheme for mobile ViT acceleration
and the corresponding full-stack acceleration framework.

3 Methodology

The entire framework of co-design for ECP-ViT is illustrated in Figure 2. It comprises software-
level design (algorithm) and hardware-level design, both of which we will discuss in detail in the
subsequent sections.

3.1 Problem Definition and Research Issues

As mentioned earlier, the attention mechanism in transformer models involves a large amount of data
transformation, which poses significant challenges to hardware efficiency and deployment on mobile
devices. This is because (i) data transformation is memory-bound, requiring high memory bandwidth.
On mobile devices, which typically have restricted memory bandwidth, this leads to increased time
consumption for processing these transformations; and (ii) data transformation in transformers,
especially within the multi-head attention mechanism, often results in irregular data access patterns.
This is typically observed during operations like tensor reorganization. Such irregular access patterns
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cates connections between nodes, while white
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can significantly degrade performance, particularly in the absence of sufficient concurrent processing
threads.

We classify the data transformation into two categories (as shown in Figure 3), Explicit and
Implicit. Explicit transformations (red color operators in round boxes) are designed by the
algorithm developer to ensure the model follows its intended computational logic. On the other hand,
Implicit transformations adopt data layouts that best suit layout-sensitive operators for increased
effectiveness. Implicit focuses more on performance optimization tailored to specific hardware
platforms and depends on the inference framework. For instance, TFLite may prefer using NHWC
layout for MatMul layer, while others may prefer NCHW ones. Based on the classification mentioned
above, ECP-ViT specifically answers these three questions to achieve computation efficiency and
data transformation elimination:

• How to design a hardware-friendly pruning scheme for ViTs without compromising accuracy?
• How to effectively minimize the data transformation overhead without affecting accuracy?
• How to flexibly reduce the memory pressure on mobile?

3.2 Core-Periphery Guided Self-Attention in ViT

The design of ECP-ViT, as shown in Figure 4, is inspired by Brain Neural Networks. Specifically, Fig-
ure 4 illustrates the selection of various CP graphs referenced in Figure 2 (a). The workflow involves
CP graph generation, CP-guided self-attention, and CP-guided QKV multiplication, corresponding to
Figure 2 (a), Figure 2 (b1), and Figure 2 (b2). In these networks, the core nodes maintain connections
to all other core nodes, while edge nodes only connect to a subset (or empty) of the core nodes. We
employ Grad-CAM to identify important regions of the images and assign the core nodes to those
regions during training. Accordingly, the QKV matrices of these patches are divided into core and
peripheral components. For example, for images with a resolution of 224x224 and a patch size of
16x16, there are a total of 196 patch tokens as nodes. For a core ratio of 10%, around 20 patch tokens
are considered as cores, and we choose the top 20 important regions as cores. This partitioning method
is inspired by human brain networks [60], where different networks exhibit different core ratios. This
architecture allows BNNs to effectively enhance information transmission and communication for
integrative processing [5, 19]. To incorporate the Core-Periphery principle into the self-attention
mechanism of ViT, we redefined the self-attention operations based on the generated Core-Periphery
(CP) graphs, where the patches are regarded as nodes, and the new self-attention relationships are
represented by edges in the CP graph. Following this representation paradigm, a complete graph can
depict the self-attention of the vanilla ViT. Similarly, the infusion of the Core-Periphery principle
into the ViT architecture is achieved by enhancing the complete graph with the generated CP graphs
effectively and conveniently. The new self-attention rules can then be redefined: CP graph can be
represented by G = (V, E), with nodes set V = {ν1, ..., νn}, edges set E ⊆ {(νi, νj)|νi, νj ∈ V},
and adjacency matrix A. The CP graph guided self-attention for a specific node i at r-th layer of
ECP-ViT is defined as:

x
(r+1)
i = σ(r)({(

q
(r)
i (K

(r)
j )T

√
dk

)V
(r)
j ,∀j ∈ N(i)}), (1)
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where σ(·) is the softmax function, q(r)i is the query of patches in the i-th node in G, N(i) =
{i|i ∨ (i, j) ∈ E} are the neighborhood nodes of node i, dk is the dimension of queries and keys, and
K

(r)
j and V

(r)
j are the key and value of patches in node j.

In ECP-ViT, each node can contain a single
patch or a set of multiple patches. We propose
the following patch-assigning pipeline to map
the original patches to the nodes of the CP
graph. In vanilla ViT with patch size 16× 16,
one input image with resolution 224 × 224
is divided into 196 patches. When we use
a CP graph with n nodes to design the self-
attention mechanism, 196 mod n nodes will
be assigned ⌊196/n⌋+ 1 patches and the re-
maining n − (196 mod n) nodes will be as-
signed ⌊196/n⌋ patches. For example, if we
use a 5 node CP graph, the 5 nodes will have
40, 39, 39, 39, and 39 patches, respectively;
and if we use a 196 nodes CP graph in another
case, each node will contain a single patch.
Based on the above discussion, the CP graph-
guided self-attention that is conducted at the
node level can be formulated as:

Vanilla Self-Attention
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Figure 5: The Core-Periphery Principle guides
Self-Attention, where the Query, Key, and Value
matrices are partitioned into core (C) and pe-
riphery (P) components. The conventional self-
attention mechanism is transformed into Core-
Periphery (CP) attention through the guidance of
Core-Periphery graphs.

CPAttention(Q,K, V ) =

concat(softmax(
QcK

T

√
dk

)V, softmax(
QpK

T
c√

dk
)Vc),

(2)

where queries, keys, and values of all patches are packed into matrices Q, K, and V , respectively,
and subscript c and p represent the core parts and periphery parts of the matrices. The graphical
illustration of CPAttention is shown in Figure 5. Similar to the multi-head attention in transformers
[48], our proposed CP multi-head attention is formulated as:

MultiHead(Q,K, V ) = concat(head1, ..., headh)W
o,

where headi = CPAttention(QWQ
i ,KWK

i , V WV
i ),

(3)

where the parameter matrices WQ
i , WK

i , WV
i and WO are the projections. Multi-head attention

helps the model to jointly aggregate information from different representation subspaces at various
positions. In this work, we apply the CP principle to each representation subspace. Therefore,
the self-attention guided by CP graphs in ECP-ViT reduces the computational budgets, while still
maintaining the hardware-friendly computation pattern, i.e., converting the traditional self-attention
into two small parts of matrix multiplication.

3.3 Flexible Data Layout Selection

DNN execution on mobile devices is in a manner of layer-wise computational graph (CG). The CG
consists of nodes and edges, each node is an operator such as MatMul or LayerNorm, and the edge
is an indicator to show the direction of the data flow. The main idea behind our optimization for
eliminating data transformation is that, in a CG, each operator (such as MatMul or Convolution) has
both producers and consumers. The producer generates a layout based on the consumer’s preferred
data layout, resulting in relatively low additional overhead compared to explicitly reorganizing the
data. For instance, if a MatMul is followed by a Transpose and another MatMul, we can make
the first MatMul directly generate the desired data layout for the second MatMul, thus avoiding the
need for explicit data reorganization within Transpose. Our compiler optimizations consist of three
steps: (i) Identify nodes to fuse; (ii) Determine possible data layouts for the key nodes; (iii) Evaluate
possible data layouts. We elaborate on them in the following sections.

Identify nodes to eliminate starts by classifying the operator in CG into two types: 1) key nodes
(nodes that perform the actual computation such as MatMul, Softmax, and Add are called key
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nodes; and 2) nodes that only do layout transformation such as Slice and Transpose are called
transformative nodes, which are the targets to eliminate. We first use the transformative node
as a breaking point to partition the graph into a set of sub-graphs. We also apply the fusion rules
similar to [37] to identify all fusion opportunities within the sub-graphs. To fully eliminate the
data transformation operations, our general strategy is to find a common data layout which works
efficiently for both contiguous sub-graphs. Note that, in this step, transformative nodes are still
kept in the sub-graph because key nodes’ data layouts are not the same.

Determine and evaluate possible data layouts
are to find out the best intermediate data layout
to eliminate the necessity of introducing addi-
tional operators solely for layout transformations.
We conduct an exhaustive evaluation of all feasi-
ble data format selections, intending to optimize
hardware accelerations. It is worth noting that
varying data layouts result in distinct access pat-
terns within the mobile GPU, as shown in Figure
6. Notably, noncontinuous data access patterns
yield inferior data locality, thereby leading to in-
creased latency. Our dimension reduction heuris-
tic is aiming to find the reduction dimension(s)
from both ends and group the reducing dimen-
sion continuously in the memory, in order to
avoid the undesired data accessing pattern. For
example, in a Matmul operation with Am,k and
Bk,n, the k dimension is our reducing dimension.

Transpose

Matmul

Slice Slice Slice

Transpose Transpose

Input
Tensor

Matmul

Softmax

Matmul

Fused
Attention

Input
Tensor

Fused
Attention

Input
Tensor

Original
Attention

Fused
Attention

Add Add Add
ECP

Attention

Figure 6: Data Access Pattern Comparisons. On
the leftmost, it is the naive attention computa-
tional flow graph. In the middle part, it is the
strided access pattern without any optimizations,
and the rightmost graph is our optimized data
access pattern.

Furthermore, specific operators in the subsequent operators may suitable for specific data formats.
Take the LayerNorm operation as an example, it usually applies the calculation in one dimension only,
we generally arrange the target dimension in the width continuously, and group other dimensions
into the height dimension. It gives better data locality and GPU utilization. After using our heuristic
algorithm to find the best data layout for each key node, we are then able to calculate the index
transformation from the current node to its child nodes and map the index at the kernel level, which
essentially eliminates all the trans-formative operations. Additionally, we store the whole intermediate
results within the GPU texture memory to mitigate the time required for data transfer between the
CPU and GPU during inter-operator operations. This adjustment is critical, given that data transfer
speed between the GPU and CPU remains a persistent bottleneck in mobile device performance.

3.4 Compression-compilation co-design in ViT

We evaluate the speed of pruned models by utilizing compiler code generation and on-device latency
measurement before performing a time-consuming pruning process. The compiler does not need
absolute weight values for code generation and latency measurement, making the process more
streamlined. Code generation with the compiler is much faster than Deep Neural Network (DNN)
training. Therefore, before actually pruning the models, we use the compiler to evaluate them with
different pruning ratios, using synthesized weights instead of real ones. This approach helps us
establish a predictive curve that shows how pruning ratios correlate with expected latency. Such a
strategy is crucial in determining the optimal pruning ratio that balances model performance and
computational efficiency. It allows for a more effective decision on pruning before undertaking the
computationally intensive DNN training process.

4 Evaluation

In this section, we evaluate the performance of our compiler-assisted framework with our ECP-ViT
model deployed on mobile devices. We use CP-Level and core ratio interchangeably in the following
section.
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4.1 Setting

Models and datasets. The ECP-ViT is implemented based on the ViT architecture [17] and evaluated
on 4 different datasets, STL-10 [12], CIFAR-100 [27], TinyImageNet [29], and ImageNet-1K [15].
TinyImageNet is a subset of ImageNet-1k containing 100,000 images distributed across 200 classes.
The parameters of ECP-ViT were initialized and fine-tuned from ViT-B/16 trained on ImageNet-21K
[28] for TinyImageNet and ImageNet, and used parameters from pre-trained ViT-S/16 for STL-10
and CIFAR-100. We trained the ECP-ViT for 50 epochs with batch size 256 for STL-10, CIFAR-100,
and 128 for TinyImageNet and ImageNet-1K, and used AdamW optimizer and cosine learning rate
schedule [35] with an initial learning rate of 5e−4 and minimum of 1e−7.

Evaluation environment. We compare the latency of ECP-ViT on off-the-shelf mobile devices
against three state-of-the-art deep learning frameworks: Alibaba MNN [26], Tencent TNN, and
Apache TVM [11].

We do not include emerging DNN inference frameworks like TFLite[2] and PyTorch Mobile[25]
because they do not support ViT on mobile GPUs yet due to unsupported operators or insufficient
resources (e.g., memory capacity). Our evaluation focuses on GPU instead of CPU or NPU for two
reasons. Firstly, compared to mobile CPUs, mobile GPUs offer higher computational capacity with
better power efficiency. Secondly, compared to mobile NPUs, the NPUs backend is often invoked
via a system call provided by the Android Runtime System or specific hardware vendors which does
not provide an interface for independent developers to support or optimize certain operators yet. We
leave this as a future research direction.

The evaluations are conducted on a Oneplus 11
cell phone, which features a high-end Qualcomm
Kryo octa-core CPU and a Qualcomm Adreno
740 GPU with 16 GB of unified memory. To
demonstrate the portability of our methods, we
also present results from testing on a low-end cell
phone - Xiaomi 6 with limited memory and com-
putation capacity, as shown in Figure 7. Xiaomi
6 is equipped with an ARM Octa-core CPU, an
Adreno 540 GPU, and 6 GB of unified memory.
We use 16-bit floating point precision across all
frameworks and models on the mobile GPU. All
latency data is collected from running the tests
50 times. However, since the variance is small,
we only report averages.

ViT-B ViT-S ViT-T ECP-B ECP-S ECP-T
0

2

4

6

8

Sp
ee
du
p

MNN Ours

Figure 7: Latency Speedup Comparison Over
Low-end Device (Xiao Mi 6). B, S, T short for
Base, Small, and Tiny models, respectively.

4.2 Accuracy Comparison

The accuracy comparison with other works (with pruning and without pruning) is presented in
Table 2. Notably, the accuracy of ECP-ViT is under the best ratio, showcasing its effectiveness. The
core-periphery principle guided self-attention of ECP-ViT proves to be competitive with self-attention
in a complete graph form. This demonstrates that the message exchange of core-periphery, derived
from brain function networks, leverages the message communication in ViT.

We also assess the performance of the proposed ECP-ViT on ImageNet-1K with varying core ratios,
and the results are detailed in Table 3. The baseline, denoted as vanilla ViT, featuring self-attention in
a complete graph form, is considered to possess a core ratio of 1.0. Notably, for the ViT-base model
scale, our ECP-ViT-base, integrating the core-periphery principle, demonstrates superior performance
compared to ViT-base across a spectrum of core ratios (0.7, 0.8, and 0.9). ECP-ViT surpasses the
baseline by 0.73% under a ratio of 0.9, suggesting that the sparsity of self-attention could enhance
performance, with the core-periphery principle guiding self-attention proving to be an effective means
of achieving this sparsity.

It’s worth noting that our baseline is fine-tuned by us and already stands out compared to that
reported in other works [65, 17, 47, 14]. Even for smaller model scales, such as ECP-ViT-small
and ECP-ViT-tiny, the drop in accuracy is minimal when compared to vanilla ViT. Additionally, we
conducted a comparative analysis of ECP-ViT with other competitive models on TinyImageNet, as
depicted in Table 4. The results highlight the advantages of ECP-ViT in terms of prediction accuracy.
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Table 2: Comparisons of results on the ImageNet dataset. All reported model results are based on
pre-trained weights from ImageNet-21K. The accuracy, parameters, and MACs of ECP-ViT are under
the best core ratio.

Model Top-1 (%) # Params. # MACs
LTMP [8] 75.4 5.7M 1.5G
PVT-Tiny [50] 75.1 13.2M 1.97G
ECP-ViT-Tiny 75.8 5.83M 1.1G
PVT-Small [50] 79.8 24.5M 3.89G
ViT-S [17] 81.1 22M 4.62G
T2T-ViTt-14 [63] 80.7 22M 4.8G
ECP-ViT-Small 80.9 21.7M 4.3G
ViT-Base/16 [17] 83.9 86.6M 17.6G
PVT-Large [50] 83.8 82.0M 11.84G
TNT-B [20] 84.1 66.0M 14.16G
DeiT-Base/16 [45] 84.2 86.6M 17.76G
ECP-ViT-Base 84.6 86.5M 16.96G

Table 3: Performance evaluation of ECP-ViT on ImageNet under different core ratios. We fine-tune
the ECP-ViT using the pre-trained weights on ImageNet-21K. Top-1 accuracy is reported and shown
in percentage. T, S, and B represents ECP-ViT-T, ECP-ViT-S, ECP-ViT-B, respectively.

Ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 (base)
T/16 65.50 69.14 69.39 69.75 71.38 73.13 74.55 75.48 75.84 75.90
S/16 73.24 74.42 74.98 76.32 77.82 78.78 79.82 80.34 80.88 81.12
B/16 76.15 77.98 79.40 80.51 81.80 83.22 84.03 84.51 84.62 83.89

Table 4: Comparison between ECP-ViT with other ViT variants on TinyImageNet. Top-1 Accuracy
is shown in percentage. The best result of ECP-ViT under different core ratios is selected.

Model Top1 Acc. Params. Image Res.
ViT-B/16 [17] 89.16 86.55M 224 × 224

DeiT-B/16 [46] 87.29 87.34M 224 × 224
BeiT-B/16 [4] 88.64 86.53M 224 × 224

ConViT-B/16 [14] 90.52 86.54M 224 × 224
ECP-ViT-B/16 90.55 86.50M 224 × 224

Table 5: Comparisons between ECP-ViT and vanilla ViT on STL10 and CIFAR100. The performance
evaluation is under the best core ratio. Top-1 accuracy is reported and shown in percentage.

Model STL-10 CIFAR-100
ViT-S/16 [17] 96.36 89.51
ECP-ViT-S/16 98.18 (+1.82) 89.56 (+0.05)

Furthermore, we extend our evaluation to STL10 and CIFAR-100, with detailed results provided in
Table 5.

4.3 End-to-end Latency and Memory Comparison

Table 6 compares peak memory, latency, and cache miss rates between ViT-Base and ECP-ViT.
Table 7 presents a comparison of latency among ECP-ViT, MNN, TNN, and TVM for vanilla ViT
models. As the models retain their dense structure after CP pruning, they can still be executed on
other frameworks. ‘-’ means the model is not supported on the framework, due to lack of operator
implementation or limited memory/computation resources. As shown in Table 7, compared to other
state-of-the-art frameworks, ECP-ViT achieves an average speedup ranging from 4.8× to 5.3× for
vanilla ViTs. This is because our compiler optimizations, such as data transformation elimination and
operator fusion, help significantly reduce memory pressure and bandwidth demands. Moreover, our
compiler optimizations for ECP-ViTs leverage the decreased computational complexity and yield a
speedup ranging from 10.6× to 16.1× compared to vanilla ViT within our framework. Additionally,
ECP-ViT outperforms other frameworks with a speedup ranging from 4.6× to 26.9×. TVM exhibits
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even higher latency for ECP-ViT due to the absence of systematic optimizations. The extra data
transformation resulting from CP pruning leads to heightened demands on memory bandwidth. Our
framework achieves real-time performance for small and tiny variants of ECP-ViT, meeting the
requirement for real-time execution at 30 frames per second.

Table 6: Comparison of Peak Memory, Latency, and Miss Rates for ViT-Base and ECP-ViT.

Model Peak Memory (MB) Latency (ms) Cache Miss Rate (%)

L1 L2 L3

ViT-Base[48] 454 421.25 0.77 5.94 15.12
ECP-ViT 403 99.84 0.66 5.38 15.05

Table 7: Latency comparison of 4 end-to-end frameworks on vanilla ViTs and CP-enabled ViTs using
the GPU on Oneplus 11. We use CP level of 80% for all 3 variants (base, small and tiny). ‘-’ means
the models is not supported on the framework.

Model TNN (ms) TVM (ms) MNN (ms) Ours (ms) Speedup (avg)

VIT-tiny 300.0 54.7 115.3 17.6 4.8
VIT-small - 176.2 191.9 37.7 4.9
VIT-base - 780.3 610.3 131.9 5.3
ECP-VIT-tiny - 380.1 110.1 15.2 16.1
ECP-VIT-small - 837.6 157.9 31.1 16.0
ECP-VIT-base - 2033 563.2 122.8 10.6

5 Conclusion

This paper introduces ECP-ViT, a framework that enhances the deployment of Vision Transformer
(ViT) models on mobile devices for real-time AI applications. Our approach includes a hardware-
friendly pruning method inspired by the brain network and a set of compiler optimizations to eliminate
data transformation bottlenecks. The results show that ECP-ViT not only reduces computational
size but also improves prediction accuracy. It achieves up to 26.9x speedup compared to other
state-of-the-art frameworks, enabling real-time performance on off-the-shelf mobile devices.

6 Impact Statement

This paper aims to advance the real-time implementation of brain-inspired AI on mobile devices. The
integration of the brain-inspired core-periphery principle contributes to reducing the computation
budget and enhancing prediction accuracy. Additionally, the optimization of hard-level data layout
could significantly improve inference speed on mobile devices. This work has the potential to boost
the development of brain-inspired AI on mobile devices.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Main claims and brief results are in the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: Due to space space limit, we only have a little discussion in the appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: We do not have any theory to prove.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided all the essential parts in 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Because of copyright issues, we cannot make the framework public.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All training and test details are in 2 and 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specified all the information in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and confirmed to conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: we put this section in 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper has no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all the assets and works as required.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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