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Abstract

Integrating structured information has long001
improved the quality of abstractive summa-002
rization, particularly in retaining salient con-003
tent. In this work, we focus on a specific004
form of structure: argument roles, which are005
crucial for summarizing documents in high-006
stakes domains such as law. We investigate007
whether instruction-tuned large language mod-008
els (LLMs) adequately preserve this informa-009
tion. To this end, we introduce Argument010
Representation Coverage (ARC), a framework011
for measuring how well LLM-generated sum-012
maries capture salient arguments. Using ARC,013
we analyze summaries produced by three open-014
weight LLMs in two domains where argument015
roles are central: long legal opinions and sci-016
entific articles. Our results show that while017
LLMs cover salient argument roles to some018
extent, critical information is often omitted in019
generated summaries, particularly when argu-020
ments are sparsely distributed throughout the021
input. Further, we use ARC to uncover behav-022
ioral patterns—specifically, how the positional023
bias of LLM context windows and role-specific024
preferences impact the coverage of key argu-025
ments in generated summaries, emphasizing026
the need for more argument-aware summariza-027
tion strategies.028

1 Introduction029

LLMs have made remarkable progress in text sum-030

marization, often generating summaries preferred031

by human evaluators in domains like news (Zhang032

et al., 2024; Liu et al., 2024b). However, sum-033

marization in structured, highly informative do-034

mains presents unique challenges that remain un-035

derexplored. One prominent challenge is preserv-036

ing salient argument roles in the generated sum-037

maries, which can be challenging as arguments can038

be sparsely distributed across the input (Elaraby039

and Litman, 2022). The ability of LLMs to selec-040

tively retain argument roles is therefore a crucial041

test of their utility in generating reliable summaries 042

in high-stakes domains. 043

Prior work in legal summarization has shown 044

that explicitly modeling argument roles—either 045

during finetuning (Fabbri et al., 2021a; Elaraby 046

and Litman, 2022) or through post hoc re-ranking 047

(Elaraby et al., 2023)—improves the coverage of 048

critical argumentative content. These findings sug- 049

gest that pretrained language models (PLMs) may 050

struggle to capture structured discourse elements 051

such as arguments without targeted supervision. 052

However, it remains an open question whether 053

instruction-tuned LLMs, trained with broad and 054

often general-purpose supervision, can inherently 055

identify and preserve salient argumentative infor- 056

mation without explicit signals about saliency or 057

additional tuning. In this work, we go beyond con- 058

ventional summary evaluation metrics such as flu- 059

ency, factuality, and coherence to address a core 060

question: Do LLMs effectively prioritize and pre- 061

serve the most salient argumentative content in 062

their summaries? 063

To address this question, we introduce Argument 064

Representation Coverage (ARC), a framework for 065

evaluating how well LLM-generated summaries 066

capture salient arguments. ARC measures cover- 067

age at three levels of granularity: (1) Argument 068

Set Coverage (ARCfullset), assessing collective cov- 069

erage of full salient argument set; (2) Indepen- 070

dent Role Coverage (ARCrole), evaluating each ar- 071

gument role separately as atomic units; and (3) 072

Subatomic Coverage (ARCatomic), examining fine- 073

grained factual units within roles. Figure 1 presents 074

an example of how ARC operates across multiple 075

levels of abstraction. While ARCfullset provides a 076

single holistic score capturing overall argument 077

coverage, it fails to offer fine-grained insight into 078

which specific arguments are preserved or omit- 079

ted—information critical for downstream analyses 080

such as bias detection. ARCrole addresses this by 081

assessing the preservation of each argument role 082
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A justice of the peace
issued a search warrant for
a dwelling house based on
hearsay information from a

confidential source. The
applicants sought to quash
the warrant, arguing it was
issued without reasonable

grounds. The court
dismissed the application,

citing substantial
compliance with the

relevant section of the
Criminal Code.

ARCfullset = 0.67

Decision: ❌
Score: 0
Explanation: Missing key
details (weapons , attempted
armed robbery)

Decision: ❌
Score: 0
Explanation: 
Missing key details (Judge's
test)

Decision: ✅
Score: 1
Explanation: Fully covered

ARCrole = 0.33

Issue

Reason

Conclusion

✅ Covered:
A warrant was issued 
❌ Missing:
  - The search was for weapons
  - The case involved attempted
robbery

ARCatomic = 0.56

SAF covered 0.33

Generated Summary

Arguments not
covered

Arguments
partially covered

Arguments
mostly covered

Arguments fully
covered

Issue

✅ Covered:
The test involved "reasonable
grounds" 
❌ Missing:
  - The judge applied a test
  - The test was applied by a justice
of the peace

Reason

SAF covered 0.33

✅ Covered:
- Substantial compliance found
- The warrant was upheld 
❌ Missing:
  --

Conclusion

SAF covered 1.0

Warrant issued to
search a dwelling house
for weapons allegedly
used in an attempted
armed robbery

Issue

Judge applied the test
that the justice of the
peace must be satisfied
on reasonable grounds

Reason

Salient Arguments

Substantial compliance
found and warrant
upheld.

Conclusion

Figure 1: Examples of ARC scores at multiple granularities—fullset, role, and atomic (where SAF denotes
subatomic facts)—for a summary generated by LlaMA3.18B on a case from the long-legal opinions dataset.

independently, although it considers an argument083

entirely unsupported if even one element is missing.084

To mitigate this limitation, ARCatomic decomposes085

arguments into subatomic factual units, enabling086

a more continuous and informative scoring mech-087

anism. This multi-level approach is designed to088

overcome the limitations of coarse Likert-scale rat-089

ings, which have been shown to suffer from low090

inter-annotator agreement in prior work (Elaraby091

et al., 2023; Krishna et al., 2023a).092

Prior work highlights that LLMs often exhibit093

positional biases—favoring content from the begin-094

ning or end of long documents (Liu et al., 2024a;095

Ravaut et al., 2024a; Wan et al., 2024). Further-096

more, it remains unclear whether LLMs also fa-097

vor certain types of salient information that share098

the same structure (e.g., argument roles) during099

summarization. Using ARC, we conduct two key100

analyses: (1) How does the position of arguments101

in the source document affect their inclusion in102

summaries? and (2) Are certain argument roles103

disproportionately favored over others? The latter104

analysis is crucial, as uneven role coverage may105

lead to biased or incomplete summaries that mis-106

represent the original discourse. We conduct our107

experiments across two domains where argument108

structure plays a central role in understanding the109

essence of the document: Long Legal Opinions and110

Scientific Articles.111

Our contributions are in two folds: (1) we pro-112

pose ARC, a multi-granularity evaluation frame-113

work for evaluating argument coverage; and (2)114

we present a systematic analysis of how positional115

and role-specific biases affect LLMs’ ability to pre- 116

serve salient argumentative content in summaries. 117

2 Related Work 118

Information Saliency in LLMs. Content selec- 119

tion remains a core challenge in summarization. 120

Trienes et al. (2025) found weak alignment be- 121

tween LLMs’ saliency preferences and human judg- 122

ments. While LLMs can produce summaries pre- 123

ferred over human references in domains like news 124

(Zhang et al., 2024; Liu et al., 2024b), they still ben- 125

efit from content planning. For example, Adams 126

et al. (2023) showed that planning entity mentions 127

improves the information density in GPT-4 gener- 128

ated summaries at the same summary length when 129

compared to summaries generated without entitiy 130

planning. We extend this line of work by treat- 131

ing argument roles as a structured form of saliency 132

and analyzing their preservation in LLM-generated 133

summaries. 134

Limitations of LLMs in Long-Document Sum- 135

marization. LLMs face persistent issues when 136

summarizing long texts, notably the U-shaped po- 137

sitional bias—favoring content at the beginning 138

and end while neglecting the middle (Ravaut et al., 139

2024b). This leads to degraded faithfulness in long- 140

form outputs (Wan et al., 2024). We expand this 141

analysis by quantifying how positional bias affects 142

the coverage of salient argumentative content. 143

Argument Mining and Abstractive Summariza- 144

tion. Incorporating argument structures into sum- 145

marization has shown promise across domains, 146
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Dataset # Docs Input Length Summary Length % Roles in Input % Roles in Summary
CANLII 1049 122/4382/62786 17/273/2072 7.66% 66.51%
DRI 40 3460/6505/11679 67/221/298 74.14% -

Table 1: Statistics of the datasets, including the number of documents, input document length, reference summary
length (min/mean/max words), and the percentage of argument roles in the input and summary. - indicates that

value can’t be directly computed from the corpus.

including dialogues (Fabbri et al., 2021a), legal147

texts (Xu et al., 2020, 2021; Elaraby and Litman,148

2022; Elaraby et al., 2023) and scientific documents149

(Fisas Elizalde et al., 2016). We build on this by as-150

sessing whether instruction-tuned LLMs can cover151

salient arguments without the external argument152

role information, particularly in summarizing legal153

and scientific texts.154

Evaluation Metrics for Long-Form Summariza-155

tion. Standard metrics often fall short in reflect-156

ing human preferences, especially for long docu-157

ments (Fabbri et al., 2021b; Krishna et al., 2023b).158

To improve reliability, recent work has introduced159

unit-based metrics—such as Atomic Content Units160

(ACUs) (Krishna et al., 2023a) and structured factu-161

ality scores (Min et al., 2023; Yang et al., 2024)—to162

reduce subjectivity. Extending this idea, we pro-163

pose ARC, which uses argumentative structures as164

evaluation units and introduces subatomic granu-165

larity to assess fine-grained argument coverage.166

3 Datasets1167

We employ two datasets that include both argument168

role annotations and reference summaries: CANLII169

(Xu et al., 2021), representing the legal domain, and170

DR. INVENTOR (DRI) (Fisas Elizalde et al., 2016),171

representing the scientific domain. An overview172

of dataset statistics is presented in Table 1. Both173

datasets consist of long-form documents paired174

with long-form reference summaries that average175

> 150 words (Krishna et al., 2023b).176

3.1 Legal Opinions: CANLII177

The CANLII dataset consists of 1049 legal cases an-178

notated at the sentence level for argument roles. No-179

tably, only 7.66% of the input text is labeled with180

argument roles, yet these argumentative sentences181

account for 66.51% of the reference summaries182

(Table 1). This substantial mismatch highlights a183

haystack-like challenge: models must accurately184

identify and prioritize the sparse yet highly salient185

argumentative content when generating summaries.186

1More analysis and examples in Appendix A.

Dataset Argument
Role

Example

CANLII

Issue Damage to both vehicles ex-
ceeded the insurance deductibles
and both parties claim damages
against each other.

Conclusion Fault for this accident was at-
tributed 10% to the defendant
and 90% to the plaintiff.

Reason Jurisdictional error is not to be
equated with error of law.

DRI

Own Claim Semi-Lagrangian contouring of-
fers an elegant and effective
means for surface tracking with
advantages over competing meth-
ods.

Background
Claim

Accurate modeling of human mo-
tion remains a challenging task.

Data Animation is constrained due to
hardware constraints.

Table 2: Examples of argument roles from CANLII
(legal domain) and DRI (scientific domain). Colors

distinguish different argument roles.

Argument roles in CANLII are annotated using 187

the IRC scheme (Xu et al., 2021), which catego- 188

rizes roles into three types: Issues: Legal questions 189

raised in the case. Reasons: Justifications pro- 190

vided for judicial decisions. Conclusions: Final 191

rulings addressing the identified issues. These an- 192

notations enable a fine-grained evaluation of argu- 193

ment coverage in generated summaries. Examples 194

of IRCs are shown in Table 2. 195

3.2 Scientific Articles: DRI 196

The DRI dataset consists of 40 computer graph- 197

ics articles, each annotated at the sentence level 198

for 5 rhetorical roles and paired with three human- 199

written summaries. Notably, these rhetorical roles 200

are not necessarily argumentative, making it chal- 201

lenging to assess argument coverage. To address 202

this limitation, the extended version of the dataset, 203

SCI-ARG (Lauscher et al., 2018), enriches the DRI 204

annotations by incorporating argument role annota- 205

tions and their relations. These annotations follow 206

a modification of the 6-argument roles described in 207

Toulmin model (Toulmin, 2003), by reducing them 208
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into three types: Own Claim: Sentences that di-209

rectly support the author’s central argument. Back-210

ground Claim: Sentences that reference prior re-211

search or established domain knowledge. Data:212

Empirical evidence that supports or refutes claims,213

such as experimental results or literature citations.214

An example of each role is shown in Table 2.215

Since the argument annotations are span-based,216

we map them back to complete sentences using217

lexical matching assigning the sentence with argu-218

ment role spans if > 50% of its words falls within219

the sentence boundaries. A motivating feature be-220

hind selecting this corpus for our analysis is the221

sentence-level annotation for relevance scores on222

a Likert scale (1− 5), which indicates the degree223

of relevance to the summary. A relevance score224

of 4 signifies that the sentence is "relevant to the225

summary," while a 5 indicates it is "very relevant226

to the summary." In our evaluation, we focus on227

argument role coverage for sentences with argu-228

ment roles and a Likert score of 5 (indicating high229

relevant argument roles to the summary). Table 1230

shows that unlike legal opinions, where argument231

roles are sparsely distributed, scientific articles con-232

tain argumentative content throughout the docu-233

ment, posing a challenge of selectivity rather than234

retrieval. In DRI, sentences that contain at least235

1 argument role account for 74.14% of the input236

text (shown in Table 1). Although the dataset does237

not provide gold-standard summaries annotated for238

argument roles, we analyze the sentences with a239

Likert score of 5 based on their argument role anno-240

tation. Among these sentences, 91.74% contain at241

least one argument role, reinforcing the strong con-242

nection between argument roles and summarization243

relevance in this domain.244

4 The ARC framework245

4.1 Overview and Notations246

Given a generated summary S and a set of salient247

arguments A = {a1, a2, . . . , an}, we define a cov-248

erage function Φ, where: 0 ≤ Φ(υ, S) ≤ 1. Here,249

υ represents the evaluation unit against S, where:250

υ ∈ {A, ai,mi}. A represents the full set of salient251

arguments in the document. ai is an individual ar-252

gument ai ∈ A. mi is a subatomic factual unit,253

where mi ∈ Mi and Mi is the set of atomic facts254

derived from argument ai.255

Full Argument Set Coverage Following Elaraby256

et al. (2024), we define Φ(A, S) based on a Likert-257

scale annotation (1-4), which is then normalized to 258

a [0, 1] range: Φ(A, S) = ℓ(A,S)−1
3 259

where ℓ(A, S) is the Likert score assigned to the 260

argument set coverage. 261

Independent Argument Role Coverage Each 262

argument ai is evaluated independently as: 263

Φ(ai, S) =

{
1, if ai is fully preserved in S

0, if ai is partially/fully omitted or distorted in S
264

Subatomic Argument Coverage An argument 265

ai ∈ A is further decomposed into subatomic fact 266

units Mi, where for mj ∈Mi: 267

Φ(mi, S) =

{
1, if mi is fully supported in S

0, if mi is missing or unfaithfully represented in S
268

The scores obtained by Φ at different granular 269

levels provide a deeper assessment of model behav- 270

ior on the argument level. Table 3 shows ARC scores 271

computation for an n number of salient arguments. 272

Granularity Computation

Full Set ARCfullset(S) = Φ(A, S)
Individual Roles ARCrole(S) =

1
n

∑n
i=1 Φ(ai, S)

Subatomic Units ARCatomic(S) =
1
n

∑n
i=1

1
Mi

∑
mj∈Mi

Φ(mj , S)

Table 3: ARC scores at different granularity levels.

4.2 Choice of Φ 273

Given the limited availability of large, diverse ar- 274

gument coverage datasets, we use the annotated 275

dataset from Elaraby et al. (2024), comprising 90 276

legal opinions from the CANLII dataset with corre- 277

sponding summaries. Each summary is annotated 278

for argument coverage using a 4-point Likert scale 279

at the full argument set level.2 280

Computing Φ using LLM-judge We use GPT-4o 281

with 0 temperature sampling as an automated eval- 282

uator, following prior work that demonstrated its 283

strong correlation with human judgments in sum- 284

marization tasks (Liu et al., 2023b). 285

ARCfullset: We prompt the model to assign a Lik- 286

ert score (1-4) based on coverage guidelines from 287

Elaraby et al. (2024). Scores are then normalized 288

to [0, 1] for comparability with other metrics. 289

ARCrole: The model assigns binary scores (1 = fully 290

supported, 0 = missing or inconsistent) for each 291

argument ai ∈ A. 292

2See Appendix B for scale definitions.
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Metric Metric Type Expert 1 Expert 2 Average

τ ρ τ ρ τ ρ

ROUGE-1

Lexical

0.3455 0.4809 0.3382 0.4495 0.3757 0.5318
ROUGE-2 0.3233 0.4150 0.2860 0.4132 0.3291 0.4734
ROUGE-L 0.2824 0.3874 0.3463 0.4455 0.3418 0.4764

BERTScore Semantic 0.3187 0.4092 0.2921 0.3977 0.3344 0.4756

SummaCZS (sent)

Entailment

0.3676 0.5157 0.3567 0.4368 0.3204 0.4654
SummaCZS (doc) 0.4512 0.4894 0.2617 0.3438 0.3747 0.4758
SummaCconv (sent) 0.3204 0.4654 0.3567 0.4368 0.3676 0.5157
SummaCconv (doc) 0.4512 0.4894 0.2617 0.3438 0.3747 0.4758

ARCfullset(ΦGPT4-o)

LLM-Judge

0.6713 0.7288 0.4072 0.4793 0.5867 0.6898
ARCrole(ΦGPT4-o) 0.4884 0.6034 0.3453 0.4527 0.4474 0.5971
ARCatomic(ΦGPT4-o) 0.5806 0.7023 0.5135 0.6353 0.6025 0.7560
ARCrole(ΦDeBERTa) 0.5025 0.6026 0.4593 0.5727 0.5142 0.6642
ARCatomic(ΦDeBERTa) 0.5213 0.6507 0.4347 0.5304 0.5202 0.6959

Table 4: Correlations between automatic metrics and expert judgments (τ : Kendall’s tau, ρ: Pearson’s r; all values
statistically significant at p < 0.01, normalized to [0, 1]). Bold indicates highest correlation in each column.

ARCatomic: Building on recent factuality frame-293

works that decompose summaries into atomic fact294

units for grounded evaluation (Min et al., 2023; Lee295

et al., 2024; Tang et al., 2024; Yang et al., 2024),296

ARCatomic instead decomposes key arguments need297

to be retained. This shift focuses evaluation on the298

completeness of argument roles rather than factu-299

ality evaluation. Unlike prior completeness work,300

which treats all information uniformly, argument301

roles impose a structured prioritization, which is302

sparse in legal cases and dense in scientific articles,303

enabling more targeted analysis to indicate if it’s304

still worthy including structured information such305

as argument roles for a more complete summary.306

Following the decomposition method of Yang307

et al. (2024), each argument ai is decomposed into308

a set of factual units Mi = {m1, ...,mj} using309

GPT-4o. Units are filtered by a fine-tuned entail-310

ment model (DeBERTa; (He et al.))3 to keep only311

entailed facts4. Each unit mi is then verified against312

the summary S, yielding (d, e), where d ∈ {0, 1}313

indicates support and e specifies the error type314

(missing or non-factual). This enables fine-grained315

argument coverage evaluation while distinguishing316

hallucination from information loss5.317

Reducing LLM-Judge Cost Evaluating argu-318

ment coverage at scale using GPT-4o is costly, par-319

ticularly for the legal dataset (CANLII), where each320

3https://huggingface.co/cross-encoder/
nli-deberta-v3-base

4Decomposition details in Appendix C.
5Evaluation prompts in Appendix D.

document contains numerous argument units and 321

their subatomic facts. To mitigate this cost, we 322

train classifiers to approximate GPT-4o judgments, 323

thereby reducing reliance on LLM-based evalua- 324

tion. 325

We sample 100 cases from CANLII and use 326

GPT-4o to compute ARCrole and ARCatomic for all 327

models. This data serves as the training set for 328

two classifiers. The first classifier, Crole, is a bi- 329

nary classifier that predicts argument-level support, 330

trained to approximate the judgments of GPT-4o 331

such that ΦCrole(ai,S) ≈ ΦGPT-4o(ai,S). The second 332

classifier, Catomic, is a three-way classifier that pre- 333

dicts whether a subatomic fact is supported, miss- 334

ing, or non-factual, ensuring that ΦCatomic(mj ,S) ≈ 335

ΦGPT-4o(mj ,S). 336

We explored several models, including DeBERTa 337

(base and large), LegalBERT (Chalkidis et al., 338

2020), and BigBirdRoBERTa (Zaheer et al., 2021). 339

Among all models, the DeBERTa-large demon- 340

strated the highest performance, achieving an F1- 341

macro score of 0.7168 for subatomic facts evalu- 342

ation and 0.7938 for role evaluation against sum- 343

mary predictions, using 5-fold cross-validation 6. 344

ARC Scores Against Human Evaluation We 345

compare ARC scores with lexical and semantic 346

metrics from Elaraby et al. (2024), as well as 347

entailment-based metrics, particularly SummaC (La- 348

ban et al., 2022) (both zero-shot and convolution- 349

based), which measures alignment between source 350

6Training setup and evaluation against GPT-4o are pro-
vided in Appendix E.
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Figure 2: Average ARCatomic across CANLII and DRI
datasets.

articles and summaries. For entailment evaluation,351

argument roles are treated as the hypothesis and352

generated summaries as the premise, with SummaC353

computed at both document- and sentence-level354

granularities. Table 4 shows that ARC consistently355

outperforms lexical, semantic, and entailment met-356

rics in correlating with expert annotations, with one357

exception: τ for ARCrole against Expert 2. The lower358

performance of ARCrole suggests that treating a full359

argument as an atomic unit introduces excessive pe-360

nalization for minor omissions and inconsistencies,361

leading to misalignment with holistic human judg-362

ments. In contrast, ARCatomic achieves the highest363

correlations with Expert 2 and the overall expert av-364

erage, enabling getting a nuanced and interpretable365

score without losing the holistic overall coverage.366

When using trained classifiers, we observe a367

drop in ARCatomic performance but an improvement368

in ARCrole, which is likely due to distributional shifts369

between training and human-evaluated summaries.370

Nonetheless, the stricter nature of ARCrole appears371

to amplify small deviations, reducing alignment372

with expert assessments. Given its strong expert373

correlation and interpretable error predictions, we374

adopt ARCatomic as the primary metric for coverage375

evaluation, providing a reliable and fine-grained376

lens on model performance.377

4.3 Obtaining generated summaries378

To handle the long-form nature of argumentative379

texts, we employ open-weight LLMs with extended380

context windows: LlaMA-3.1-8B-instruct381

(LlaMA-3.18-B) (Grattafiori et al., 2024),382

Mistral-8B-instruct(Mistral-8b) (Jiang383

et al., 2024), and Qwen2-7B (qwe, 2024). For384

Qwen2-7B, to support context lengths exceeding385

32k tokens, we integrate YARN embeddings (Peng386
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Figure 3: Error types distribution of ARCatomic.

et al.) into the model configuration prior to deploy- 387

ment. Inference is conducted using VLLM (Kwon 388

et al., 2023) for scalability. Summaries are gener- 389

ated using 0 temperature sampling, capped at 2048 390

tokens to ensure fair long-form generation. Each 391

document d ∈ D is prompted with: "Read the 392

following text and summarize it: {input 393

document}. Summarize in {reference 394

summary word length} words. Summary:". 395

The target length is dynamically set to match 396

reference summaries for comparability. For DRI, 397

the length is fixed to the longest reference summary 398

to encourage maximal argument retention. 399

5 Results and Analysis 400

5.1 Do LLMs cover salient arguments 401

effectively? 402

We compute ARCatomic
7 scores for human reference 403

summaries on both the CANLII and DRI bench- 404

marks using GPT-4o. For CANLII, this evaluation 405

serves to assess the robustness of the metric by 406

verifying whether it assigns near-perfect scores to 407

ideal human-written summaries. For DRI, the goal 408

is to measure how much human references cover 409

salient argument roles compared to LLM-generated 410

summaries. As shown in Figure 2, argument cov- 411

erage remains imperfect across all models, with 412

Mistral-8B lagging behind both LlaMA-3.18B 413

and Qwen2-7B. Coverage for DRI is consistently 414

higher and close to the reference summary com- 415

pared to CANLII across all evaluated models. This 416

pattern highlights the greater challenge of preserv- 417

ing salient argumentative information in legal texts, 418

7Full ARCfull and ARCrole results are in Appendix F.
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Figure 4: Source sentences relative position in the LLM context window across all models and various argument
roles for both CANLII and DRI corpora.

where arguments are often sparsely distributed419

across lengthy and complex contexts.420

Error types We analyze the types of error e ex-421

tracted from Φ(mj , S) of the ARCatomic evaluation.422

Figure 3 shows that the most frequent error is miss-423

ing, indicating that facts in arguments are often424

omitted rather than misrepresented. While factual425

inconsistencies exist, they are less prevalent than426

missing information. These findings emphasize427

that beyond hallucination, ensuring comprehensive428

salient information coverage remains a critical chal-429

lenge in summarization.430

5.2 Do argument positions in the source affect431

their coverage in summaries?432

Positions of arguments in the source from the433

perspective of LLMs Following Ravaut et al.434

(2024b), we start by analyzing the positions where435

included LLMs look at in its context window. We436

leverage the lexical greedy approach for source sen-437

tences identification (Ravaut et al., 2024a; Adams438

et al., 2023) by iteratively adding sentences in the439

source that maximizes ROUGE-1 score until there440

is no further improvement. We analyze the source441

sentence indices by their argument role annota-442

tions.443

Figure 4 reveals a distinct U-shaped context win-444

dow across all models in both datasets, with the ef-445

fect being particularly pronounced in CANLII. An-446

alyzing source sentences based on their argument447

role annotations suggests that argument positions448

are strongly influenced by this U-shaped pattern.449

This is especially concerning for CANLII, where450

reference summaries indicate that arguments do 451

not adhere to a fixed positional pattern. In contrast, 452

reference summaries in DRI more closely align with 453

the LLM context window distribution. 454

Effect of context window positional bias on cov- 455

erage We analyze the positions of salient ar- 456

guments using ARCatomic. For CANLII, we apply 457

greedy sentence selection while restricting the se- 458

lection to the annotated arguments in both the ref- 459

erence summary and the input document, thereby 460

reducing computational cost and ensuring that only 461

arguments in the reference summary are mapped to 462

arguments in the input. For DRI, we directly select 463

the positions of arguments in the input document 464

with a relevance score = 5. We follow Ravaut et al. 465

(2024b) by computing the mean relevant position 466

of salient arguments and measuring the Pearson 467

correlation ρ between this mean and ARCatomic. 468

Model CANLII DRI

LlaMA-3.1-8B -0.230 0.129
Mistral-8B -0.369 -0.055
Qwen2-7B -0.301 -0.223

Table 5: Pearson correlation (ρ) between mean relative
position of salient arguments and ARCatomic (computed

with GPT-4o) across models for CANLII and DRI.
Correlations with p-value > 0.05 are shown in gray .

Table 5 8 shows a significant negative correla- 469

tion in CANLII (p < 0.05), indicating that LLM 470

context windows impact argument coverage. In 471

8Correlation with full ARC scores included in Appendix G.
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Figure 5: Bias score β across multiple argument roles (controlled length and non-controlled length) for both
CANLII and DRI corpora.

DRI, correlations are weaker and not significant,472

with LlaMA-3.1-8B even showing a slight positive473

trend. These patterns align with Figure 4: refer-474

ence summaries in CANLII differ in distribution475

from generated ones, while in DRI, argument roles476

better reflect the U-shaped context window bias.477

This suggests that context-window positional bias478

can hinder argument coverage, especially when479

arguments are sparsely distributed.480

5.3 Do LLMs cover argument roles481

disproportionally?482

We propose a bias score β. This score is grounded483

in the ARCatomic metric. We compute β for each484

argument role by first calculating its ARCatomic score485

and normalizing it by the role’s prior frequency in486

the source document. This adjustment corrects487

for overrepresented roles, ensuring the bias score488

reflects true disparities in coverage. The final bias489

score for an argument role a is defined as:490

βa = ARCatomica ×
1

log
(
1 + |a|D

|args|D

)491

Here, |a|D denotes the frequency of argument492

role a in source document D, and |args|D is the493

total number of arguments in D. To mitigate bias494

from argument length and position—especially in495

CANLII, where longer roles and mid-position argu-496

ments negatively affected coverage—we compute497

β within groups allowing up to 20% word-length498

variation. We also control for position by selecting499

CANLII articles in which at least 80% of arguments500

appear within the first or last 20% of the case.501

Figure 5 9 shows that salient arguments are not502

covered equitably across roles. In CANLII, conclu-503

sions are consistently better covered than issues and504

9Appendix H includes bias analysis without prior fre-
quency normalization to avoid denominator inflation.

reasons across all groups. While length control re- 505

duces some role-related bias, conclusion remain the 506

most covered, even under both length- and position- 507

controlled settings. In contrast, for DRI, own claims 508

are less covered relative to other roles, but when 509

compared to reference summaries, their coverage 510

is comparable. This suggests the lower bias score 511

arises from normalization, reflecting the overrepre- 512

sentation of own claims in the source corpus rather 513

than a true coverage gap. Finally, while there is a 514

bias to human reference in case of CANLII , the gap 515

in argument coverage is notably larger for LLM 516

outputs compared to DRI. 517

6 Conclusion and Future Work 518

We introduced ARC, a novel evaluation framework 519

for evaluating how well LLM-generated summaries 520

preserve salient arguments. Our multi-level formu- 521

lation—spanning full-set, role-level, and subatomic 522

coverage—correlates more strongly with human 523

judgments compared to standard lexical, seman- 524

tic, and entailment-based metrics, with subatomic 525

evaluation showing highest overall correlation with 526

human judgments. Using our proposed metric, we 527

identified two key limitations in summarizing long 528

legal opinions. First is positional bias, where LLMs 529

tend to overrepresent content at the beginning or 530

end of the input context, affecting the coverage 531

of sparsely distributed arguments. Second is role 532

bias, where models disproportionately favor cov- 533

ering conclusions over other roles such as issues 534

and reasons. Future work can build on this work 535

by exploring incorporating explicit argument rep- 536

resentations during training or during prompting 537

LLMs for a more informative summaries in high 538

stakes domains. 539
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Limitations540

While the ARC framework enables a comprehen-541

sive multi-level evaluation of argument coverage,542

several limitations remain. First, our evaluation is543

constrained by the lack of dedicated benchmarks544

explicitly designed for argument coverage. Exist-545

ing datasets offer limited annotation granularity,546

particularly at the subatomic level, which restricts547

the reliability of fine-grained assessments. As a re-548

sult, our decomposition into atomic argument units549

depends on LLM-based prompting and entailment550

filtering, both of which may introduce inaccuracies.551

Second, the relatively small size of the DRI dataset552

(40 documents) limits the generalizability of our553

findings in the scientific domain. While we were554

constrained by the available datasets, developing555

larger, rigorously annotated datasets is an important556

direction for future work, though it is beyond the557

scope of this study. Finally, due to computational558

constraints, our evaluation only includes models559

that fit within available memory resources. We en-560

countered out-of-memory issues with several larger561

models. Future work should consider incorporating562

larger-scale models to determine whether argument563

coverage improves with increased model capacity564

or if the observed limitations persist.565

Ethics Statement566

Our study complies with the ACL Ethics Pol-567

icy. We primarily evaluate academically avail-568

able datasets designed explicitly for research pur-569

poses,which we obtained through license agree-570

ment with the authors of both datasets, thus min-571

imizing privacy risks. Additionally, our work ac-572

knowledges potential biases and inaccuracies in-573

herent to LLM-generated outputs, including mis-574

representation or omission of critical information575

from summaries, which could have significant im-576

plications in high-stakes domains such as law and577

science. Researchers and practitioners utilizing578

our framework should exercise caution and vali-579

date results carefully before applying these models580

in sensitive or consequential decision-making con-581

texts.582
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A Extended analysis on included datasets796

A.1 Examples from included datasets797

Table 6 presents an excerpt from a legal opinion798

in the CANLII dataset, with arguments highlighted799

in both the input and the reference summary. Ta-800

ble 7 provides an excerpt from a scientific article801

in the DRI dataset, with highlighted arguments in802

the input. Although the documents are truncated803

for space, the examples clearly illustrate a key dis-804

tinction: in CANLII, arguments constitute a smaller805

fraction of the input, whereas in DRI, the input is806

densely populated with argumentative content.807
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Figure 6: Distribution of argument roles in the input in
both CANLII and DRI.

A.2 Distribution of arguments across the 808

input 809

Figure 6 illustrates the distribution of argument 810

roles across the source documents. In CANLII, 811

Conclusion statements predominantly appear to- 812

ward the end of the document, while Issue state- 813

ments are concentrated near the beginning. In DRI, 814

Background claims are more frequent at the start 815

of the document, which aligns with the conven- 816

tional structure of scientific writing where liter- 817

ature reviews—typically containing claims from 818

prior work—are introduced early on. 819

A.3 Distribution of salient arguments 820

Figure 7 presents the distribution of argument roles 821

in CANLII reference summaries and in DRI sen- 822

tences annotated with a relevance Likert score of 823

5 (indicating very high likelihood of inclusion in 824

a summary). In CANLII, the distribution of argu- 825

ment roles is relatively balanced across categories, 826

whereas in DRI, own claims—statements made di- 827

rectly by the authors—dominate the content. 828
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Input Article (Truncated)
Q.B. A.D. 1987 No. CS 1159 J.C.R., Regina. Applicants seek to quash a search warrant issued by a justice of the peace. The respondent, a justice of

the peace, issued a search warrant to search a dwelling house for weapons allegedly used in an attempted armed robbery. The applicants claim the
warrant was unlawfully issued without proper grounds. Specifically, the sworn information relied solely on hearsay from an unidentified informant, lacking
corroborating details. The applicants argue that no reasonable or probable grounds were disclosed to believe the weapons would be found at the searched
location. They highlight that the informant’s reliability was not established, nor was there an oath affirming the informant’s credibility. The search warrant
was issued under Section 443(1)(b) of the Criminal Code, which allows a justice to issue a warrant if reasonable grounds exist to believe evidence of an
offence will be found. The court explains that on applications to quash a warrant, the reviewing judge cannot substitute their opinion for that of the
justice of the peace. Instead, the judge must simply determine whether any evidence existed upon which the justice could be satisfied on reasonable grounds.
Reliance on confidential informants is permitted, even if detailed particulars are absent, provided sufficient basis exists for reliability. Past cases (e.g., Re
Lubell, Re Dodge) have accepted similar levels of disclosure to protect informant anonymity. The court notes that substantial compliance with Section 443
is sufficient; perfection in drafting is not required. Given practical constraints faced by peace officers preparing information, reasonable latitude must be
given in interpreting the sworn information. The judge concludes that although more information could have been provided, there was sufficient evidence
upon which the justice could reasonably issue the warrant. Accordingly, the respondent acted within her jurisdiction, and the application to quash the
warrant is dismissed.

Reference Summary
Warrant issued to search a dwelling house for weapons allegedly used in an attempted armed robbery. The affidavit in support referred to an unknown
informant. Judge applied the test that the justice of the peace ‘must be satisfied on reasonable grounds.’ Substantial compliance found and warrant
upheld.

Table 6: Example of an input legal document (non argumentative text are shortened for space) and its reference
summary from CANLII. Highlighted sentences correspond to argumentative roles: Issue, Reason, and Conclusion.

A.4 Rhetorical roles per relevance to829

summary likert score830

To better understand the relationship between831

rhetorical structure and relevance to the summary,832

we compute the percentage of each rhetorical role833

across Likert-rated sentences in the DRI corpus.834

As shown in Figure 8, non-argumentative content835

dominates among sentences rated as totally irrel-836

evant to the summary (Likert score 1). However,837

as the perceived relevance increases, argumenta-838

tive content becomes more prominent, with Own839

Claim consistently emerging as the most frequent840

rhetorical role across all higher-quality categories.841

This trend highlights a clear shift toward structured842

argumentative writing in more relevant reflections.843

B Likert scores based on human844

evaluation845

Table 8 shows the Likert scale from 1 to 4 defini-846

tions.847

C Fact decomposition algorithm848

Algorithm 1 outlines the decomposition process849

for an arbitrary argument ai ∈ A, performed via850

prompting GPT-4o.851

Table 9 presents the prompt used to extract852

atomic facts. Table 10 provides an example de-853

composition from an issue argument role. The854

second fact is not supported by the original argu-855

ment and is thus excluded from the final ARC score856

computation.857

Algorithm 1: Argument Decomposition
and Entailment Filtering
Input: Argument ai, Entailment ModelM,

Entailment Threshold τ
Output: Filtered Atomic Facts F(ai)

1 Initialization:
2 F(ai)← ∅ (Set of filtered atomic facts)
3 Decomposition:
4 Decompose ai into atomic facts:
{m1,m2, . . . ,mn}

5 foreach atomic fact mj do
6 Compute entailment using

M(mj , ai)→ (e, c, n)
7 if e (entailment) is predicted then
8 Add mj to F(ai)

9 Return: Filtered atomic facts F(ai)

D Evaluation Prompts 858

Evaluation prompts for ARCfullset , ARCrole, and 859

ARCatomic are described in Table 11, 12, 13 respec- 860

tively. In each prompt, we ask the LLM to first 861

generate a rationale before assigning a scoring de- 862

cision following standard evaluation with LLMs 863

(Liu et al., 2023a). 864

E Training Catomic and Crole 865

We fine-tune DeBERTa, BigBirdRoBERTa, and 866

LegalBERT using checkpoints obtained from the 867

HuggingFace library (Wolf et al., 2019). All mod- 868

els are trained using 5-fold cross-validation based 869

on 100 case-summary pairs for each model form- 870

ing a total of 300 case-summary pairs, resulting in 871
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Input Article (Truncated)
Our method maintains an explicit polygonal mesh that defines the surface, and an octree data structure that provides both a spatial index for the mesh
and a means for efficiently approximating the signed distance to the surface. At each timestep, a new surface is constructed by extracting the zero set
of an advected signed-distance function. Semi-Lagrangian backward path tracing is used to advect the signed-distance function. One of the primary
advantages of this formulation is that it enables tracking of surface characteristics, such as color or texture coordinates, at negligible additional cost.
We include several examples demonstrating that the method can be effectively used as part of a fluid simulation to animate complex and interesting
fluid behaviors. The fundamental problem of tracking a surface as it is advected by some velocity field arises frequently in applications such as surface
reconstruction, image segmentation, and fluid simulation. Unfortunately, the naive approach of simply advecting the vertices of a polygonal mesh
quickly encounters problems such as tangling and self-intersection. Instead, a family of methods, known as level-set methods, has been developed for
surface tracking. These methods represent the surface implicitly as the zero set of a scalar field defined over the domain. Level-set methods avoid dealing
with topological changes but require high-order conservation law solvers. In contrast, our method constructs a surface directly using semi-Lagrangian
contouring without solving PDEs, preserving surface detail efficiently. Using adaptive octree data structures, we can efficiently and reliably construct the
new surface and corresponding signed-distance function. This allows tracking surface properties such as color or texture coordinates directly on the
polygonal mesh during advection, enabling realistic animation of complex fluids. Prior methods often suffered from volume loss and smoothing artifacts,
particularly in underresolved, high-curvature regions. By using an explicit surface representation, we compute exact distances near the mesh and avoid
substantial interpolation errors. ... Finally, the method produces detailed, flicker-free animations of fluid behavior, demonstrating significant advantages
over traditional level-set and particle-based approaches.

Reference Summary
This article presents a semi-Lagrangian surface tracking method that explicitly represents the surface as a set of polygons. The new surface and corresponding
signed-distance function can be efficiently and reliably constructed using adaptive octree data structures. One of the primary advantages of this method is
that it enables tracking surface characteristics, such as color or texture coordinates, or even simulation variables, accurately at negligible additional cost.
These properties can be easily stored directly on the polygonal mesh and efficiently mapped onto the new surface during semi-Lagrangian advection. At each
timestep, a new surface is constructed by extracting the zero set of an advected signed-distance function. The explicit representation provides advantages
on computing exact signed-distance values near the mesh and storing properties on mesh vertices. It also facilitates other common operations developed
for manipulating and rendering triangle meshes. To avoid the topological difficulties of directly updating an explicit surface representation, the surface
is updated in time through an implicit representation. The implicit representation is then used to construct a new mesh and extracted using a contouring
algorithm. For its simplicity, robustness, and speed, marching-cubes method is used for contouring. After the triangle mesh has been extracted, true distance
values are assigned to the vertices of octree. This process is known as redistancing, which comprises three steps: coarsen the octree; compute exact distances
at vertices; run a fast marching method over the remaining vertices. Finally, this method is able to produce detailed, flicker-free animations of complex fluid
motions.

Table 7: Example from DRI showing an input scientific article and its corresponding reference summary. Sentences
in the input article are highlighted according to their argument role: Own Claim, Background Claim, Data. The

reference summary is unannotated.

Rating scale of the Generated Summary

1. No arguments covered: The generated summary did not cover the highlighted arguments in the reference summary or
covered them only inadequately.

2. Few arguments covered: The generated summary adequately covered only a limited number of the highlighted arguments
in the reference summary.

3. Most arguments covered: The generated summary adequately covered most of the arguments highlighted in the reference
summary.

4. All arguments covered: The generated summary adequately covered all the highlighted arguments in the reference
summary.

Table 8: Likert scale exact meaning for each score based on definitions obtained from Elaraby et al. (2024)

2220 argument-summary pairs for training Crole872

and 4914 atomic fact-summary pairs for training873

Catomic. To handle class imbalance, we leverage874

weighted cross-entropy loss, where class weights875

are proportional to the label distribution across the876

dataset. This is particularly important for Catomic,877

where the (0, non-factual) label is significantly un-878

derrepresented compared to others. All models879

are trained for 25 epochs using the Adam opti-880

mizer with an initial learning rate of 1× 10−5. The881

maximum sequence length is set to 512 for most882

models due to encoder constraints. However, for883

BigBirdRoBERTa, we expand the maximum length884

to 1024 to accommodate longer summaries and885

maintain coverage.886

Table 14 shows that across all models, 887

DeBERTa-Large obtained the best F1 macro av- 888

erage scores. Including encoders that can handle 889

longer lengths didn’t improve the performance of 890

prediction. 891

F ARCfull and ARCrole results 892

Figure 9 presents the results for both ARCfullset and 893

ARCrole across the CANLII and DRI datasets. 894

The ARCfullset results indicate that both 895

LlaMA-3.18B and Qwen2-7B achieve comparable 896

levels of argument coverage from a holistic 897

perspective. In contrast, and consistent with 898

the ARCatomic results presented in Section 5, 899
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Figure 7: Argument role distributions in summaries for
CANLII and DRI (for sentences with relevance score is
5). In CANLII, arguments are less densely represented

compared to DRI, where own claims dominate.

Mistral-8B demonstrates slightly lower per-900

formance than both models. However, a key901

limitation of ARCfullset is its insensitivity to fine-902

grained differences, as it primarily relies on coarse903

Likert-style scores that obscure nuanced variation904

across model outputs.905

By contrast, ARCrole reveals that LlaMA-3.18B906

exhibits a higher number of perfectly covered907

roles compared to both Mistral-8B and Qwen2-7B.908

Nonetheless, due to its stricter definition of com-909

pleteness at the role level, ARCrole underrepresents910

the strength of Qwen2-7B in capturing a greater911

number of atomic facts than Mistral-8B, as evi-912

denced by both ARCfullset and ARCatomic.913

G Correlation with source argument914

positions across full ARC scores915

Table 15 confirms that the LLM context window916

significantly impacts coverage across all scores917

(including ARCfullset and ARCrole) in CANLII (p <918

0.05), with a predominantly negative correlation.919
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Figure 8: Rhetorical roles per each relevance score to
summary from 1 to 5

Prompt Given to GPT4-o for Argument Decomposition

Task:
Extract a set of atomic facts—statements that can be di-
rectly inferred from the argument without interpretation,
assumptions, or redundancy.
Guidelines:

• Extract only explicitly stated atomic facts.

• Do not repeat facts or infer from external knowl-
edge.

• Maintain granularity: each fact should be minimal
yet complete.

• Output a valid Dictionary object where each key
is "fact1", "fact2", etc., and the values are the corre-
sponding atomic facts.

• No additional text or formatting; dictionary object
only.

• Each argument must yield at least one atomic fact.

Example Output Format:
{

"fact1": "First atomic fact",

"fact2": "Second atomic fact",

"fact3": "Third atomic fact"

}

Input:
{argument}

Output:
(Dictionary object only)

Table 9: Prompt provided to GPT4-o for extracting
atomic facts from arguments.
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Figure 9: ARCfull and ARCrole results across models. Higher values indicate better argument coverage.

Argument (Issue):
FIAT. The father applied to have the mother cited for
contempt for denial of access.

✓ Fact 1: The father applied to have the mother cited for
contempt. (Entailed)

✗ Fact 2: The father applied for denial of access. (Not-
entailed)

Table 10: Example of argument decomposition from
CANLII, showing atomic facts with entailment status.

In contrast, its effect in DRI is not statistically sig-920

nificant, and in some cases (e.g., LlaMA-3.1-8B),921

it is slightly positive.922

H Bias analysis for argument coverage923

without argument role normalization924

While our normalization in computing β corrects925

for frequency skew, it may understate coverage926

for dominant argument roles in the source with927

inherently high raw ARCatomic scores. Therefore,928

we also examine role-specific reporting bias by929

directly computing βa = ARCatomica to offer a com-930

plete picture of the role bias analysis. As shown931

in Figure 10, results on CANLII confirm prior find-932

ings: LLMs tend to prioritize covering conclusion933

arguments over issue and reason roles, both in934

the controlled and non-controlled length settings.935

For DRI, removing frequency normalization reveals936

that ARCatomica scores for roles such as background937

claim, own claim, and data are comparable to each938

other. This suggests that without normalization, the939

higher coverage of own claim may stem from its940

over-representation in the source documents, rather941

Prompt Given to GPT4-o for Fullset Evaluation

Task:
Evaluate how well a given summary covers a provided set
of arguments. Assign a score from 1 to 4 based on the
extent of coverage, provide a clear explanation for your
rating, and output the result in a specified JSON format.
Instructions:

• Read the provided arguments and summary care-
fully.

• Rate the extent to which the arguments are covered
by the summary using the scale described in Table 8.

• Format your evaluation as a JSON object with:

– "explanation": A concise explanation of
your rating.

– "rating": The assigned score (1 to 4).

Example Output Format:
{

"explanation": "Place your explanation here",

"rating": "Place your rating here"

}

Input:

• Arguments: {reference_arguments}

• Summary: {generated_summary}

Output:
Provide your evaluation in the specified JSON format.

Table 11: Prompt provided to GPT4-o for fullset-level
argument coverage evaluation.

than a model-level preference. 942
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Figure 10: Bias score without any frequency normalization across multiple argument roles (controlled length and
non-controlled length) for both CANLII and DRI corpus.

Prompt Given to GPT4-o for Argument Role Evaluation

Task:
Determine whether a summary fully supports a given argu-
ment or omits/contradicts key information.
Instructions:

• Output 1 if the summary fully supports the argument
without omissions or contradictions.

• Output 0 if the summary fails to support the argu-
ment or contains contradictory or incorrect details
(e.g., logical errors, entity mismatches).

• Respond in a JSON object with:

– "decision": Either 1 or 0.
– "explanation": A brief justification, noting

missing or conflicting content.

Input:
Argument: {argument}

Summary: {summary}

Output Format:
Respond only with a JSON object structured as:

{

"explanation": "<Brief reasoning for your
decision>",

"decision": <0 or 1>

}

Note: Think critically before deciding. Do not include
any extra text beyond the JSON output.

Table 12: Prompt provided to GPT4-o for role-level
evaluation of argument support in summaries.

Prompt Given to GPT4-o for Atomic-Level Evaluation

Task Description:
Given an argument and a summary, evaluate whether the
argument is supported by the summary and return a valid
tuple in the specified format.
Explanation:
Provide a brief justification for your decision, identifying
any missing, contradictory, or factually incorrect details.
Return Guidelines:

• (1, "supported"): The argument is fully supported
by the summary.

• (0, "missing"): The argument cannot be inferred
from the summary.

• (0, "not-factual"): The summary contradicts or
misrepresents the argument.

Output Format:
Respond only with a JSON object, structured as:

{

"explanation": "<explanation placeholder>",

"decision": (1, "supported") or (0,
"missing") or (0, "not-factual")

}

Input:
Argument: {argument}

Summary: {summary}

Note: Think critically before deciding. Do not generate
any extra text beyond the JSON output.

Table 13: Prompt provided to GPT4-o for atomic-level
argument entailment evaluation.

Model F1 Macro Score (Crole) F1 Macro Score (Catomic)
DeBERTa-base 0.7138 0.7936
DeBERTa-large 0.7202 0.7936
LegalBERT 0.6850 0.7812
BigBirdRoBERTa 0.6629 0.7891

Table 14: F1 Macro Scores for Crole and Catomic

across different models.
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Metric Model CANLII DRI

ARCfullset

LlaMA-3.1-8B -0.137 -0.152
Mistral-8B -0.042 0.250
Qwen2-7B -0.187 -0.174

ARCrole

LlaMA-3.1-8B -0.200 0.202
Mistral-8B -0.244 -0.065
Qwen2-7B -0.216 -0.124

ARCatomic

LlaMA-3.1-8B -0.230 0.323
Mistral-8B -0.369 -0.055
Qwen2-7B -0.301 0.041

Table 15: Pearson correlation (ρ) between mean
relative position of salient arguments and ARC metrics
across models for CANLII and DRI. Correlations with

p-value > 0.05 are shown in gray.
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