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Abstract

Quantifying the amount, content and direction of communication between brain
regions is key to understanding brain function. Traditional methods to analyze
brain activity based on the Wiener-Granger causality principle quantify the overall
information propagated by neural activity between simultaneously recorded brain
regions, but do not reveal the information flow about specific features of interest
(such as sensory stimuli). Here, we develop a new information theoretic mea-
sure termed Feature-specific Information Transfer (FIT), quantifying how much
information about a specific feature flows between two regions. FIT merges the
Wiener-Granger causality principle with information-content specificity. We first
derive FIT and prove analytically its key properties. We then illustrate and test
them with simulations of neural activity, demonstrating that FIT identifies, within
the total information propagated between regions, the information that is transmit-
ted about specific features. We then analyze three neural datasets obtained with
different recording methods, magneto- and electro-encephalography, and spiking
activity, to demonstrate the ability of FIT to uncover the content and direction of
information flow between brain regions beyond what can be discerned with tradi-
tional analytical methods. FIT can improve our understanding of how brain regions
communicate by uncovering previously unaddressed feature-specific information
flow.
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1 Introduction

Cognitive functions, such as perception and action, emerge from the processing and routing of
information across brain regions [10, 48, 56, 57, 41]. Methods to study within-brain communication
[11, 12, 51] are often based on the Wiener-Granger causality principle, which identifies propagation of
information between simultaneously recorded brain regions as the ability to predict the current activity
of a putative receiving region from the past activity of a putative sending region, discounting the self-
prediction from the past activity of the receiving region [21, 61]. While early measures implementing
this principle, such as Granger causality [51], capture only linear interactions, successive information
theoretic measures (the closely-related Directed Information [35] and Transfer Entropy [50]) are
capable of capturing both linear and nonlinear time-lagged interactions between brain regions
[6, 7, 58]. Using such measures has advanced our understanding of brain communication [7, 9, 12, 31,
54, 55, 59, 44]; however, they are designed to capture only the overall information propagated across
regions, and are insensitive to the content of information flow. Assessing the content of information
flow, not only its presence, would be invaluable to understand how complex brain functions, involving
distributed processing and flow of different types of information, arise.

Here, we leverage recent progress in Partial Information Decomposition (PID; [62, 32]) to develop a
new non-negative measure (Feature-specific Information Transfer; FIT) that quantifies the directed
flow of information about a specific feature of interest between neural populations (Fig. 1A). The PID
decomposes the total information that a set of source variables encodes about a specific target variable
into components representing shared (redundant) encoding between the variables, unique encoding
by some of the variables, or synergistic encoding in the combination of different variables. FIT
isolates features-specific information flowing from one region to another by identifying the part of the
feature information encoded in the current activity of the receiving region that is shared (redundant)
with information present in the past activity of the sending region (because a piece of transmitted
information is first found in the sender and then in the receiver) and that is new and unique with
respect to the information encoded in the past activity of the receiver (because information already
encoded would not have come from the sender).

We first mathematically derive a definition of FIT based on PID. We then use it to demonstrate,
on simulated data, that it is specifically sensitive to the flow of information about specific features,
correctly discarding feature-unrelated transmission. We then demonstrate that FIT is able to track the
feature-specific content and direction of information flow using three different types of simultaneous
multi-region brain recordings (electroencephalography - EEG, magnetoencephalography - MEG,
and spiking activity). We also address how introducing appropriate null hypotheses and defining
conditioned versions of FIT can deal with potential confounding factors, such as the time-lagged
encoding of information in two regions without actual communication between them.

2 Defining and Computing Feature-specific Information Transfer (FIT)

We consider two time-series of neural activity X and Y simultaneously recorded from two brain
regions over several experimental trials. X and Y might carry information about a feature S varying
from trial to trial, e.g. a feature of a sensory stimulus or a certain action. The activity measured
in each region, X and Y , may be any type of brain signal, e.g. the spiking activity of single or
multiple neurons, or the aggregate activity of neural populations, such as EEG or MEG. We call
Ypres the activity of Y at the present time point t , and Xpast and Ypast the past activity of X
and Y respectively (Fig. 1). Established information theoretic measures such as TE [50] use the
Wiener-Granger principle to quantify the overall information propagated from a putative sender X to
a putative receiver Y as the mutual information I between the receiver’s present neural activity Ypres

and the sender’s past activity Xpast, conditioned on the receiver’s past activity Ypast (Fig. 1):

TE(X → Y ) = I(Xpast;Ypres|Ypast) (1)

(see Supplementary Material, SM1.1 for how TE depends on probabilities of past and present
activity). TE captures the overall information propagated across regions but lacks the ability to isolate
information flow about specific external variables. To overcome this limitation, here we define FIT,
which quantifies the flow of information specifically about a feature S from a putative sending area
X to a putative receiving area Y (Fig. 1A). We define FIT using the PID [62]. PID decomposes the
joint mutual information I(S;X), that a set of N source variables X = (X1, X2, ..., XN ) carries
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about a target variable S, into non-negative components called information atoms (see SM1.2).
For N = 2, PID breaks down the joint mutual information I(S;X1, X2) into four atoms: the
Shared (or redundant) Information SI(S : X1, X2) that both X1 and X2 encode about S; the two
pieces of Unique Information about S, UI(S : X1 \X2) and UI(S : X2 \X1), provided by one
source variable but not by the other ; and the Complementary (synergistic) information about S,
CI(S : X1, X2), encoded in the combination of X1 and X2. Several measures have been proposed
to quantify information atoms [62, 5, 18, 30]. Here we use the measure Imin originally defined in
[62], which guarantees non-negative values for information atoms for any N (see SM1.2).

Using Imin, the Shared Information that X1 and X2 carry about S is defined as follows:

SI(S : X1, X2) =
∑
s∈S

p(s) min
Xi∈{X1,X2}

I(S = s;Xi) (2)

where I(S = s;Xi) is the specific information that source Xi carries about a specific outcome of the
target variable s ∈ S, and is defined as:

I(S = s;Xi) =
∑

xi∈Xi

p(xi|s)
[
log

p(s|xi)

p(s)

]
(3)

Intuitively, the shared information computed as in eq. 2 quantifies redundancy as the similarity
between X1 and X2 in discriminating individual values of the feature S. In the general case of
N source variables, information atoms are hierarchically ordered in a lattice structure, and Imin

can be used to quantify any atom in the decomposition (including the Unique and Complementary
information atoms introduced above for the case N = 2; see SM1.2).
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Figure 1: Sketch of FIT and TE. (A) TE is the established information-theoretic measure to quantify
the overall information propagated between two simultaneously recorded brain regions X (sender)
and Y (receiver). FIT measures the information flowing from X to Y about the stimulus feature S.
(B) TE and FIT incorporate content-unspecific and content-specific versions of the Wiener-Granger
causality principle. TE is the mutual information between the past activity of X and the present
activity of Y conditioned on the past of Y . FIT is the feature information in the present of Y shared
with the past information of X and unique with respect to the past information of Y .

We wanted FIT to measure the directed flow of information about S between X and Y , rather than
the overall propagation of information measured by TE (Fig. 1A). We thus isolated the information
about a feature S in the past of the sender X that Y receives at time t. Because of the Wiener-
Granger causality principle, such information should not have been present in the past activity
of the receiver Y . Therefore, we performed the PID in the space of four variables S, Xpast,
Ypast, and Ypres to compute information atoms that combine Shared, Unique and Complementary
Information carried by three sources about one target [62]. One natural candidate atom to measure
FIT is the information about S that Xpast shares with Ypres and is unique with respect to Ypast:
SUI(S : Xpast, Ypres \ Ypast) (Fig. 1B; Fig. S1B). This atom is defined as the difference between
the shared information that the two source variables Xpast and Ypres carry about S, and the shared
information that the three source variables Xpast, Ypres and Ypast carry about S. Redundancy
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can only decrease when adding more sources. Hence by removing the information that is also
redundant with Ypast, SUI(S : Xpast, Ypres \ Ypast) quantifies a non-negative component of shared
information between Xpast and Ypres about S that is unique with respect to Ypast. Importantly,
using unique information to remove the feature information in Ypast is more conservative than
conditioning on Ypast as in TE [27] . SUI(S : Xpast, Ypres \ Ypast) intuitively captures what we
are interested in, and satisfies two desirable mathematical properties: it is upper bounded by the
feature information encoded in the past of X (I(S;Xpast)) and in the present of Y (I(S;Ypres)).
This is because the PID defines redundancy between source variables as sub-components of the
information about the target carried by each of the sources (see SM1.3.1). However, the information
atom SUI(S : Xpast, Ypres \ Ypast) has two undesirable properties. The first is that its value can
exceed the total amount of information propagated from X to Y (TE). This can happen since the
unique information in the PID decomposition is a component of the conditional mutual information
about the target. However, the target in SUI(S : Xpast, Ypres \ Ypast) is the feature S, which means
that this atom is not constrained to be smaller than the TE, which is independent of S (see eq. 1 and
SM1.3.4). This property is undesirable, because the overall information propagation must be an upper
bound to the information transmitted about a specific feature. The second is that by construction
(see SM1.3.1) this atom depends on Xpast, Ypres, S only through the pairwise marginal distributions
P (Xpast, S) and P (Ypres, S), but not through the marginal distribution P (Xpast, Ypres), which
implies that this atom by itself cannot identify confounding scenarios where both sender and receiver
encode feature information at different times with no transmission taking place (see SM1.3.1).

To address these limitations, following [42] we considered the alternative PID taking S, Ypast, and
Xpast as source variables and Ypres as a target. In this second PID (Fig. S1B), the atom that intuitively
relates to FIT is SUI(Ypres : Xpast, S \Ypast), the information about Ypres that Xpast shares with S
that is unique with respect to Ypast. While being intuitively similar to SUI(S : Xpast, Ypres \Ypast),
SUI(Ypres : Xpast, S\Ypast) has Ypres as target variable and hence is upper bounded by TE (but not
by I(S;Xpast)) and depends on the pairwise marginal distribution P (Xpast, Ypres) (see SM1.3.2).
Thus, this second atom has useful properties that complement those of the first atom. Importantly,
Shannon information quantities impose constraints that relate PID atoms across decompositions with
different targets. We [42] demonstrated that, for PID with N = 2 sources, these constraints reveal the
existence of finer information components shared between similar atoms of different decompositions.
Here, we extended this approach (see SM1.3.3) to N = 3 sources and demonstrated that the second
atom is the only one in the second PID that has a pairwise algebraic relationship with the first atom,
indicating that these atoms share a common, finer information component. Therefore we defined FIT
by selecting this finer common component by taking the minimum between these two atoms:

FIT = min[SUI(S : Xpast, Ypres \ Ypast), SUI(Ypres : Xpast, S \ Ypast)] (4)

With this definition, FIT is upper bounded by I(S;Xpast), by I(S;Ypres) and by TE(X → Y ).
That FIT satisfies such bounds is essential to interpret it as transmitted information. If FIT could be
larger than the feature information encoded by sender X or receiver Y , or than the total information
transmitted (TE(X → Y )), then FIT could not be interpreted as feature information transmitted
from X to Y . Additionally, FIT depends on the joint distribution P (S,Xpast, Ypres) through all
the pairwise marginals P (S,Xpast), P (S, Ypres), and P (Xpast, Ypres), implying that it can rule out,
using appropriate permutation tests, false-communication scenarios in which X and Y encode the
stimulus independently with a temporal lag, without any within-trial transmission (see SM1.3.4).

Note that the definition of FIT holds when defining present and/or past activity as multidimensional
variables, potentially spanning several time points. However, use of multidimensional neural re-
sponses requires significantly more data for accurate computation of information. For this reason,
following [7, 39, 38], in all computations of TE and FIT we computed the present of Y at a single
time point t and the past of X and of Y at individual time points lagged by a delay δ: Xpast = Xt−δ

and Ypast = Yt−δ . Note also that in all calculations of FIT and TE, we estimated probabilities from
empirical occurrences after discretizing both features and neural activities. SM1.6 reports details of
the procedure and Table S1 the number of bins used for each analysis. Simulations of accuracy of
these estimates as function of the data size are reported in SM2.5 and Fig. S6.

3 Validation of FIT on simulated data

To test the ability of FIT to measure feature-specific information flow between brain regions, we
performed simulations in scenarios of feature-related and feature-unrelated information transfer.
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We performed (Fig. 2A-B) a simulation (details in SM2.1) in which the encoded and transmitted
stimulus feature S was a stimulus-intensity integer value (1 to 4) . The activity of the sender X
was a two-dimensional variable with one stimulus-feature-informative Xstim and one stimulus-
uninformative component Xnoise. The stimulus-feature-informative dimension had temporally-
localized stimulus-dependent activity from 200 to 250ms and had multiplicative Gaussian noise
(similar results were found with additive noise, see SM2.1 and Fig. S3). The stimulus-unrelated
component was, at any time point, a zero-mean Gaussian noise. The activity of the receiver Y was
the weighted sum of Xstim and Xnoise with a delay δ, plus Gaussian noise . The delay δ was chosen
randomly in each simulation repetition in the range 40-60ms. Here and in all simulations, we averaged
information values across simulation repetitions we determined their significance via non-parametric
permutation tests [33, 7, 19, 29]. For TE, we permuted X across all trials to test for the presence of
significant within-trial transmission between X and Y [7, 33]. For FIT, we conducted two different
permutation tests: one for the presence of feature information in X and Y (shuffling S across trials),
and another for the contribution of within-trial correlations between X and Y to the transmission of
S (shuffling X across trials at fixed stimulus). We set the threshold for FIT significance as the 99th
percentile of the element-wise maximum between the two permuted distributions (see SM1.7).
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Figure 2: Testing FIT on simulated data. (A) FIT and TE as function of stimulus-feature-related
(wstim) and -unrelated (wnoise) transmission strength. * indicate significant values (p < 0.01,
permutation test) for the considered parameter set. (B) Dynamics of FIT and TE in a simulation with
time-localized stimulus-feature-information transmission. Red area shows the window of stimulus-
feature-related information transfer. Results plot mean (lines) and SEM (shaded area) across 50
simulations (2000 trials each). (C) Different neural encoding functions used for the simulations
in panels D-E. δ: separation of responses to different features; σ: Gaussian noise SD. (D) Sketch
of simultaneous stimulus feature information profiles. Different types of information content are
color-coded. (E) FIT in the X → Y (cyan) and Y → X (grey) directions as a function of SNR δ/σ
(plot in log scale). Results plot mean (lines) and SEM (shaded area) across 100 simulations (2000
trials each). Yellow dots in B, E show points with significant FIT (p < 0.01, permutation test).

We investigated how FIT and TE from X to Y depended on the amount of stimulus-feature-related
transmission (increased by increasing wstim) and of -unrelated transmission (increased by increasing
wnoise). We report values at the first time point in which information in Y was received from X ,
but similar results hold for later time points. Both FIT and TE increased when increasing wstim

(Fig. 2A). However, TE increased with wnoise (Fig. 2A), as expected from a measure that captures
the overall information propagation. In contrast, FIT decreased when increasing wnoise, indicating
that FIT specifically captures the flow of information about the considered feature.

We then investigated how well TE and FIT temporally localize the stimulus-feature-related infor-
mation transmitted from X to Y (Fig. 2B). We simulated a case in which stimulus-feature-related
information was transmitted from X to Y only in a specific window ([240, 310]ms) and computed
FIT and TE at each time point (see SM2.1 for details). FIT was significant only in the time window
in which Y received the stimulus information from X . In contrast, TE was significant at any time
point, reflecting that noise was transmitted from X to Y throughout the whole simulation time.
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Importantly, FIT can detect feature-specific information flow even when information is encoded in
the sender and receiver with an overlapping timecourse (see SM2.2 for details). To illustrate this,
we simulated the activity of two regions X and Y encoding an integer stimulus feature S with the
same time course of stimulus-feature information (Fig. 2D), but with feature specific transmission
taking place only from X to Y . Because FIT could correctly detect that the format of information
representation of S in the present of Y was equal to that of the past of X but different to that of the
past of Y (Fig. 2D), it could correctly detect that feature information flows from X to Y (Fig. 2E).

We also performed simulations to investigate whether the non-parametric permutation test described
above can correctly rule out as non-significant feature-specific transmission the scenario in which
X and Y independently encode S without actual communication occurring between them. We
simulated a scenario in which feature information was encoded with a temporal lag in X and Y , with
no transmission from X to Y . We found that the resulting values were always non-significant (see
SM2.6.1 and Fig. S7C) when tested against a surrogate null-hypothesis distribution (pairing X and
Y in randomly permuted trials with the same feature) that destroy the within-trial communication
between X and Y without changing the feature information encoded in X and Y (see SM1.7).
Importantly, this null hypothesis also ruled out false communication scenarios where the measured
FIT and TE were only due to the presence of instantaneous mixing of sources (see SM 2.7).

Finally, we addressed how to remove the confounding effect of transmission of feature information
to Y not from X but from a third region Z. In Granger causality or TE analyses, this is addressed
conditioning the measures on Z [1, 37]. In an analogous way, we developed a conditioned version
of FIT, called cFIT (see SM1.4), which measures the feature information transmitted from X to
Y that is unique with respect to the past activity of a third region Z. We tested its performance in
simulations in which both X and Z transmitted feature information to Y and found that cFIT reliably
estimated the unique contribution of X in transmitting feature information to Y , beyond what was
transmitted by Z (see SM2.6.2 and Fig. S7D).

4 Analysis of real neural data

We assessed how well FIT detects direction and specificity of information transfer in real neural data.

4.1 Flow of stimulus and choice information across the human visual system

We analyzed a previously published dataset ([63], see also SM3.1 for details) of source-level MEG
data recorded while human participants performed a visual decision-making task. At the beginning
of each trial, a reference stimulus was presented (contrast 50%), followed by a test stimulus that
consisted of a sequence of 10 visual samples with variable contrasts (Fig. 3A). After the test stimulus
sequence, participants reported their choice of whether the average contrast of the samples was
greater or smaller than the reference contrast. The previous study on these data ([63]) analyzed the
encoding of stimulus and choice signals in individual areas, but did not study information transfer.
We focused on gamma-band activity (defined as the instantaneous power of the 40-75Hz frequency
band), because it is the most prominent band for visual contrast information encoding [24, 45, 17]
and information propagation [7, 3] in the visual system. Previous work has demonstrated that gamma-
band transmission is stronger in the feedforward (from lower to higher in the visual cortical hierarchy)
than in the feedback (from higher to lower in the visual cortical hierarchy) direction [55, 3, 36],
suggesting that gamma is a privileged frequency channel for transmitting feedforward information.
However, these previous studies did not determine the content of the information being transmitted.

To address this question, we quantified FIT in a network of three visual cortical areas (Fig. 3B) that
we selected because they encoded high amounts of stimulus information and because they were
sufficiently far apart (≥ 2.8cm) to minimize leakage in source reconstruction (see SM3.1.1 Fig. S9)
[63, 23]. The areas, listed in order of position, from lower to higher, in the cortical hierarchy were:
primary visual cortex (V1), area V3A, and area LO3. Because participants made errors (behavioral
performance was 75% correct), in each trial the stimulus presented could differ from the participant’s
choice. We thus assessed the content of the information flow by computing FIT about either the
sensory stimulus (FITS ; using as feature the mean contrast across all 10 visual samples) or the
reported choice (FITC), in each instant of time in the [−100, 500]ms peri-stimulus time window
(because stimulus information was higher in the first 500ms post-stimulus, see SM3.1.4 and Fig.
S9) and across a range of putative inter-area delays δ. In Fig. 3C we show the resulting FITS
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time-delay information maps for the example pair of regions V1 and V3A. A cluster-permutation
analysis [34, 14] revealed significant feedforward stimulus-specific information transmission from
V1 to V3A (but no significant feedback from V3A to V1) localized 200-400ms after the stimulus
onset, with an inter-area communication delay between 65 and 250ms (see SM3.1.4 and Fig. S9).
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Figure 3: Information flow across the human visual hierarchy with MEG. (A) Sketch of task. (B)
Cortical surface map of the location of the three considered visual regions. (C) Temporal profiles
of stimulus information and time-delay stimulus FIT maps for an example regions pair (V1, V3A).
Top to bottom: stimulus information in V1; time-delay FIT map in the feedforward (V1 → V3A)
direction; time-delay FIT map in the feedback (V3A → V1) direction; stimulus information in
V3A. (D) Comparison between FIT about stimulus (FITS) and FIT about choice (FITC) in the
visual network in the feedforward (left) and feedback (right) directions. (E) Comparison between
feedforward and feedback transmission in the network for TE (left) and stimulus FIT (right). (F)
Same as E but for feedforward transmission on correct vs error trials. In all panels, lines and image
plots show averages and errorbars SEM across participants, experimental sessions and regions pairs
(in case of FIT and TE) or regions (in case of mutual information). *: p<0.05, **: p<0.01, ***:
p<0.001. Information-theoretic quantities were computed from the gamma band ([40-75]Hz) power
of source-level MEG, first computed separately for the left and right hemisphere and then averaged.

We compared properties of overall information propagation (computed with TE) and feature-specific
information flow (computed with FIT) across all pairs of areas within the considered visual cortical
network. To determine the prevalent content of information flow in the network, we compared FITS

and FITC transmitted in the feedforward and in the feedback directions (Fig. 3D). Gamma-band
transmitted more information about the stimulus than about choice (i.e. FITS > FITC) in both the
feedforward (p < 10−3 two-tailed paired t-test) and in the feedback (p < 0.01 two-tailed paired
t-test) direction, with a larger difference for the feedforward direction. This result is supported by
simulations where we show that, in presence of multiple simultaneously transmitted features, FIT
ranks correctly the features about which most information is transmitted (see SM2.3 and Fig. S4).
Thus, we focused on stimulus-specific information flow in the following FIT analyses. We then
studied the leading direction of information flow. Both the total amount of information propagation
(TE) and the stimulus-specific information flow (FITS) were larger in the feedforward than in the
feedback direction (Fig. 3E), but with a larger effect for FITS (p < 10−6 two-tailed paired t-test)
compared to TE (p < 0.05 two-tailed paired t-test). Together, these results show that gamma-band
activity in the visual system carries principally information about the stimulus (rather than choice)
and propagates it more feedforward than feedback.

We next assessed the behavioral relevance of the feedforward stimulus information transmitted by the
gamma band. A previous study showed that the overall (feature-unspecific) strength of feedforward
gamma band information propagation negatively correlates with reaction times, indicating that
stronger feedforward gamma activity propagation favors faster decisions [46]. However, no study
has addressed whether stimulus information transmitted forward in the gamma band promotes
decision accuracy. We addressed this question by comparing how FITS varied between trials when
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participants made a correct or incorrect choice (Fig. 3F). We matched the number of correct and
error trials to avoid data size confounds [40]. FITS in the feedforward direction was significantly
lower in error than in correct trials (Fig. 3F, right; p = 0.001 two-tailed paired t-test), while TE did
not vary between correct and error trials (Fig. 3F, left; p = 0.38 two-tailed paired t-test). Feedback
information transmission (both in terms of overall information propagation, TE, and stimulus specific
information flow, FITS), did not vary between correct and incorrect trials. This indicates that the
feedforward flow of stimulus information, rather than the overall information propagation, is key for
forming correct choices based on sensory evidence.

These results provide the new discovery that the gamma band transmits feedfoward stimulus informa-
tion of behavioral relevance, and highlight the power of FIT in revealing the content and direction of
information flow between brain areas.

4.2 Eye-specific interhemispheric information flow during face detection

We next tested the ability of FIT to detect feature-specific information flow between brain hemispheres.
We analyzed a published EEG dataset recorded from human participants detecting the presence of
either a face or a random texture from an image covered by a bubble mask randomly generated
in each trial ([47]; see SM3.2.1 for details). Previous analysis of these data [26] showed that eye
visibility in the image (defined as the proportion of image pixels in the eye region visible through
the mask) is the most relevant image feature for successful face discrimination. It then showed that
eye-specific information appears first at ∼120ms post-image presentation in the Occipito-Temporal
(OT) region of the hemisphere contra-lateral with respect to the position of the eye, and then appears
∼20-40ms later in the ipsi-lateral OT region (Fig. 4A). However, this study did not determine if the
eye information in the ipsi-later hemisphere is received from the contra-lateral hemisphere. To address
this issue, we computed FIT transmission of eye-specific information between the Left OT (LOT)
and Right OT (ROT) regions (using the electrodes within these regions that had most information
as in [26], see SM3.2.2). Left Eye (LE) FIT from the contra- to the ipsi-lateral OT (ROT to LOT)
peaked between 150 to 190ms after image onset with transfer delays of 20-80ms (Fig. 4B). Right
eye (RE) FIT from the contra- to the ipsi-lateral OT (LOT to ROT) peaked with similar times and
delays (Fig. 4C). Both contra-to-ipsi-lateral LE and RE had statistically significant FIT peaks in the
time-delay maps (cluster-permutation analysis, p < 0.01; see SM3.2.2 and Fig. S10). Thus, FIT
determined the communication window for contra-lateral flow of eye-specific information with high
precision.
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Figure 4: Inter-hemispheric eye-specific information flow during face detection using human EEG.
(A) Schematic of the putative information flow. LOT (ROT) denote Left (Right) occipito-temporal
regions. LE (RE) denote the Left (Right) Eye visibility feature. (B) Information (lines) carried by the
EEG in each region, and FIT (image plot) about LE contra-lateral transfer. (C) Same as B for RE. (D)
Contra- to ipsi-lateral vs ipsi- to contra-lateral transfers for TE and FIT for both LE and RE. Dots and
images plot averages and errorbars plot SEM across participants (N=15).

To gain further insight about the directionality and feature-specificity of the information flow across
hemispheres, we compared FIT and TE across transfer directions and/or eye-specific visibility
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conditions (Fig. 4D, middle and right). Right-to-left LE FIT was significantly larger than left-to-right
LE FIT (p < 0.001 two-tailed paired t-test) or right-to-left RE FIT (p < 0.01 two-tailed paired t-test).
Left-to-right RE FIT was significantly larger than right-to-left RE FIT (p < 0.05 two-tailed paired
t-test) or left-to-right LE FIT (p < 0.05 two-tailed paired t-test). In contrast, we found no significant
difference between directions for the overall propagated information (TE), Fig. 4D, left). Thus, the use
of FIT revealed a temporally localized flow of eye information across hemispheres that was feature-
selective (i.e. about mainly the contra-lateral eye) and direction-specific (contra-to-ipsi-lateral),
without direction specificity in the overall information propagation (TE) across hemispheres.

Finally, to more tightly localize the origin of eye-specific contra-lateral information flow, we asked
whether the contra-lateral OT electrodes selected in our analyses were the sole senders of inter-
hemispheric eye-specific information. We used the conditioned version of FIT, cFIT, to compute
the amount of transfer of eye information from the contra- to the ipsi-lateral OT after removing the
effect of eye-specific information possibly routed through alternative sending locations (see SM3.4).
We found (Fig. S12A) that the effect we measured with FIT was robust even when conservatively
removing with cFIT the information that could have been routed through other locations.

4.3 Stimulus-specific information flow in a thalamocortical network

We finally used FIT to measure the feature- and direction-specificity of information flow in the
thalamocortical somatosensory and visual pathways. We analyzed a published dataset in which
multi-unit spiking activity was simultaneously recorded in anaesthetized rats from the primary visual
and somatosensory cortices, and from first-order visual and somatosensory thalamic nuclei ([8], see
SM3.3.1 for details), during either unimodal visual, unimodal tactile, or bimodal (visual and tactile)
stimulation. This analysis tests FIT on another major type of brain recordings (spiking activity).
Moreover, due to the wealth of knowledge about the thalamocortical network [53, 16], we can validate
FIT against the highly-credible predictions that information about basic sensory features flows from
thalamus to cortex, and that somatosensory and visual pathways primarily transmit tactile and visual
information, respectively. Using FIT, we found (see SM3.3.3 and Fig. S11) that sensory information
flowed primarily from thalamus to cortex, rather than from cortex to thalamus. We also found
that the feedforward somatosensory pathway transmits more information about tactile- than about
visually-discriminative features, and that the feedforward visual pathway transmits more information
about visually- than tactile-discriminative features. Importantly, TE was similarly strong in both
directions, and when considering tactile- or visually-discriminative features. This confirms the power
of FIT for uncovering stimulus-specific information transfer, and indicates a partial dissociation
between overall information propagation and neural transfer of specific information.

5 Comparison with previously published measures

We finally examine how FIT differs from alternative methods for identifying components of the flow
of information about specific features. We focus on measures that implement the Wiener-Granger
discounting of the information present in the past activity of the sender. Other methods, that do not
implement this (and thus just correlate past information of the sender with present information of
the receiver), erroneously identify information already encoded in the past activity of the receiver as
information transmitted from a sender (see SM4.3).

A possible simple proxy for identifying feature-specific information flow is quantifying how the total
amount of transmitted information (TE) is modulated by the feature [7]. For the case of two feature
values, this amounts to the difference of TE computed for each individual value. We show in SM4.1,
using simulations, that this measure can fail in capturing feature-related information flow even in
simple scenarios of feature information transmission. Additionally, when tested on MEG data, it
could not assess the directionality of information transmission within brain networks (see SM4.1).

A previous study [25] defined a measure, Directed Feature Information (DFI), which computes feature-
specific information redundant between the present activity of the receiver and the past activity of the
sender, conditioned on the past activity of the receiver. However, DFI used a measure of redundancy
that conflated the effects of redundancy and synergy (see SM1.5). Because of this, DFI is, both on
real and on simulated data, often negative and thus not interpretable as measure of information flow
(see SM4.2). In contrast, FIT is non-negative and uses PID to consider only redundant information
between sender and receiver, as appropriate to identify transmission of information. Moreover,
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because DFI discounts only past activity of the sender rather than its feature-specific information,
it was less precise, conservative and sensitive in localizing direction and timing of feature-specific
information flow (as shown in SM4.2 and Fig. S15 with simulated and real data).

Finally, a study defined feature-specific information using PID in the space of four variables S, Xpast,
Ypast, and Ypres [4]. However, this measure was not upper bounded by either feature information
encoded in the past of the sending region or the total information flowing between regions.

6 Discussion

We developed and validated FIT, an information theoretic measure of the feature-specific information
transfer between a sender X and a receiver Y . FIT combines the PID concepts of redundancy and
uniqueness of information [62] with the Wiener-Granger causality principle [11] to isolate, within
the overall transmitted information (TE), the flow of information specifically related to a feature S.

The strengths and limitations of FIT as a neural data analysis tool stem from those of information
theory for studying neural information processing. Information theory has led to major advances
to neural coding because of its ability to capture linear and non-linear interactions at all orders
making little assumptions [43, 15]. This is important because deviations from linearity and order
of interactions vary in often unknown ways between brain areas, stimulus types and recording
modalities [13, 28, 20]. Using such a general formalism avoids potentially biasing results with wrong
assumptions. However, the price to pay for the fact that information theory includes full probability
distributions is that it is data hungry. While our definitions of FIT and cFIT are straightforwardly
valid for multivariate analyses including conditioning on the information of multiple regions [37] (as
in cFIT) or obtaining more conservative estimates of information transmission on which information
in the receiver Y is requested to be unique with respect to the information of the sender and receiver
at multiple past time points [58], for data sampling reasons in practice in real data these analyses
are confined to conditioning to one region or a single past time point [7, 39, 38]. In future work, we
aim to make FIT applicable to analyses of multiple regions or time points coupling it with advanced
non-parametric [49] methods to robustly estimate its multivariate probability distributions.

The generality of our approach lends itself to further developments. Importantly, we defined FIT
directly at the level of PID atoms. This means that, although here we implemented FIT using the
original definition of redundancy in PID [62] because it has the advantage of being non-negative for
all information atoms, FIT can be easily implemented also using other PID redundancy measures
[22, 5, 2, 18, 30] with complementary advantages and disadvantages (see SM1.2).

We individuate two directions for improvement. First, even though the surrogate permutation test we
developed to assess FIT significance provided reasonable results on real data and worked work well
also with artefacts due to instantaneous mixing of sources (see SM2.7), further research is needed
to generate more refined surrogate data generation techniques to rule out more conservatively false
feature-specific communication scenarios [52]. Second, how best to select the time of past activity to
compute FIT, an issue of significance in Wiener-Granger measures [60], remains to be determined.

To demonstrate the properties of FIT, we performed numerical simulations in different communication
scenarios and compared FIT against TE (Fig. 2). These simulations confirmed that TE effectively
detected the overall propagation of information, but it did not detect the flow of feature-specific
information. FIT, in contrast, reliably detected feature- and direction-specific information flow with
high temporal sensitivity. We confirmed the utility of FIT in applications to neural data. In three brain
datasets spanning the range of electrophysiological recordings (spiking activity, MEG and EEG), FIT
credibly determined the directionality and feature specificity of information flow. Importantly, in most
of these datasets this happened in the absence of variations in the overall information propagation
between the same brain regions (measured with TE). The partial dissociation between overall activity
flow and feature-specific flow found consistently in simulations and data has important implications.
First, it highlights the need of introducing a specific measure of feature information transfer such
as FIT, as it resolves question unaddressed by content-unspecific measures. Second, it establishes
that measuring feature-specific components of information flow between brain regions is critical to
go beyond the measurement of overall neural activity propagation and uncover aspects of cross-area
communication relevant for ongoing behavior. Thus, as methods to record from multiple brain
regions rapidly advance, FIT is well suited to uncover fundamental principles in how brain regions
communicate.
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Supplementary Material for An information-theoretic
quantification of the content of communication between

brain regions

SM1 Definitions, derivations, and properties of the information theoretic
quantities

In this section, we first define the basic information theoretic quantities that we use in the paper.
We next introduce basic concepts of the PID theory needed for our derivations. We then use these
concepts to derive a mathematical definition of FIT and then prove some of its key mathematical
properties.

SM1.1 Definition of the Shannon information quantities used in this study

In the following we describe and provide analytical expression for the quantities of Shannon’s
information theory that we used in this paper. These are the mutual information between the stimulus
and the neural activity, and the Transfer Entropy (TE), which are estimated based on the probabilities
of activities of neural signals X and Y and of stimulus features S.

The mutual information I(S;Xpres) between the stimulus feature S and the neural activity Xpres

of X at the present time is a non-parametric measure that quantifies the full single-trial statistical
relationship between S and Xpres. It captures the effect of all linear and nonlinear interactions
between these variables. It is defined as follows [35]:

I(S;Xpres) =
∑

s,xpres

p(s, xpres) log
p(s, xpres)

p(s)p(xpres)
(S1)

where p(s, xpres) is the joint probability, sampled across experimental trials, of observing in a given
trial the joint occurrence of stimulus feature value s ∈ S, and activity xpres ∈ Xpres. The sum
spans all possible events. I(S;Xpres) is non-negative, and it is zero if and only if S and Xpres are
independent. Similar expressions and properties hold for the information I(S;Xpast) , I(S;Ypast)
between the stimulus and the past activity Xpast, Ypast of X and Y , respectively.

TE [34] is an information theoretic measure that utilizes the Wiener-Granger principle to quantify the
overall propagation of information by neural activity from a putative sender X to a putative receiver
Y as the mutual information between the present neural activity of the receiver Ypres and the past
activity of the sender Xpast, conditioned upon the past activity of the receiver Ypast. The expression
of TE as a function of the joint probability distribution P (Xpast, Ypres, Ypast) is as follows:

TE(X → Y ) = I(Xpast;Ypres|Ypast)

=
∑

xpast,ypres,ypast

p(xpast, ypres, ypast) log
p(xpast, ypres|ypast)

p(xpast|ypast)p(ypres|ypast)
(S2)

where p(xpast, ypres, ypast) is the joint probability, sampled across experimental trials, of observing
the joint occurrence of xpast ∈ Xpast, ypres ∈ Ypres, and ypast ∈ Ypast, and the sum spans all
possible events. Importantly, TE does not depend on the stimulus feature S and thus cannot tell how
much of the overall information being transmitted from X to Y is about S or about other factors
unrelated to S.
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SM1.2 Elements of the PID theory

PID was introduced first in Ref [38] and is a very active field of research [21]. To make our paper
self-standing, here we briefly summarize the basic concepts of PID that are most needed for our
reasoning and derivations.

In the general case of N source variables X = (X1, . . . , XN ), PID dissects the joint mutual
information that the source variables jointly carry about a target variable T , I(X;T ), into non-
overlapping pieces of redundant, unique, and synergistic information. Let A1, . . . , AM be all the
non-empty and potentially overlapping subsets of X , that we call sources in the following. PID
considers the collections of sources α ∈ P1(P1(X)), where P1(X) denotes the set of all non-empty
subsets of X . That is, a collection α corresponds to a non-empty subset of sources, namely to a
non-empty subset of non-empty subsets of source variables. In the following, for brevity, we will
call collections the collections of sources. Collections α are indicated using a bracketed notation
(e.g., α = {X1X2}{X1X3} represents the collection of the two overlapping sources {X1X2} and
{X1X3}). Importantly, pieces of unique and synergistic information can be defined and computed
algorithmically once the redundant information is identified and computed. Thus, in what follows we
focus principally on defining and computing redundancies. For each α, PID defines the amount of
information about T that is redundant between all sources in the collection: I∩(T ;α). Conceptually,
the redundancy of any collection α for which a source Ai ∈ α is a subset of another source Aj ∈ α
(i ̸= j) should be equal to the redundancy of the same collection after removing the superset Aj

[38]. Therefore, the collections of interest to compute I∩(T ;α) are only those for which no source
is a superset of any other, and hence removing any source Ai ∈ α could potentially reduce the
redundancy. These collections form a domain called A(X):

A(X) = {α ∈ P1(P1(X)) : ∀Ai, Aj ∈ α,Ai ⊈ Aj} (S3)

It is possible to define a partial order over the collections of A(X). A collection α precedes another
collection β if for each source B in β it exists a source A in α that is a subset of B, formally:

∀α, β ∈ A(X)(α ⪯ β ⇔ ∀B ∈ β ∃A ∈ α |A ⊆ B) (S4)

Applying the order relationship in eq. S4 to the elements of A(X) produces redundancy lattices, in
which a collection that succeeds α provides at least as much redundant information about T as α [38]
(see Fig. S1A,B for the lattices for N = 2 and N = 3 source variables). PID allows quantifying
the amount of redundant information I∂(T ;α) that a specific collection α contributes to the joint
mutual information about T, and that is not already redundant in any collections preceding α (in
the following, we will call I∂(T ;α) the information atom provided by collection α). I∂(T ;α) is
implicitly defined by the following relationship [38]:

I∩(T ;α) =
∑
β⪯α

I∂(T ;β) (S5)

Due to the so-called self-redundancy axiom of the PID theory [38], if an individual source Ai appears
in collection α, the redundancy computed on collection α is equal to the mutual information between
all source variables in Ai and the target variable T :

I∩(T ;α) = I∩(T ; {Ai}) = I(T ;Ai) (S6)

By combining eqs. S5 and S6 we can write Shannon information theoretic quantities as the sum of
partial information atoms:

I(T ;Ai) =
∑
β⪯Ai

I∂(T ;β) (S7)

Eq. S7 will be fundamental to provide upper bounds for FIT in terms of Shannon information
quantities. When applied to the trivariate system (S,X1, X2), taking S as target and (X1, X2) as
source variables, eq. S7 provides the decomposition of the joint mutual information I(S;X,Y ) that
we discussed in the main text:

I(S;X1, X2) = I∂(S; {X1}{X2}) + I∂(S; {X1}) + I∂(S; {X2}) + I∂(S; {X1X2}) (S8)

where in the main text we called I∂(S; {X1}{X2}) = SI(S : X1, X2), I∂(S; {X1}) = UI(S :
X1 \X2), I∂(S; {X2}) = UI(S : X2 \X1), I∂(S; {X1X2}) = CI(S : X1, X2) to improve clarity
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for readers not familiar with PID. SI is shorthand for Shared (that is, redundant) Information; UI
is short-hand for Unique information; CI is shorthand for Complementary (that is, synergistic)
information.

Thus far we covered elements of PID theory that hold for a generic redundancy measure I∩, but
did not discuss how to compute I∩(T ;α) for a specific collection α. Several measures of redundant
information have been proposed [16; 3; 11; 20], in this work we use the original measure Imin from
Williams and Beer [38], as it has the fundamental property of being non-negative for any information
atoms for any number N of source variables (not only for N = 2) (for a proof, see Appendix D of
Ref [38]). The redundant information Imin for a collection α is defined as follows:

Imin(T ;α) =
∑
t∈T

p(t) min
Ai∈α

I(T = t;Ai) (S9)

where I(T = t;Ai) is the specific information that source Ai carries about a specific outcome of the
target variable t ∈ T , and is defined as:

I(T = t;A) =
∑
a

p(a|t)
[
log

p(t|a)
p(t)

]
(S10)

Intuitively, Imin quantifies redundancy as the overlap between the sources in the distributions of
specific information across individual values of target variable. This corresponds to quantifying the
degree to which all sources in collection α are similarly discriminative about individual values of the
target. We decided to use Imin because of its advantages in terms of being defined for an arbitrary
number of source variables N (something that is needed because FIT is defined in terms of N = 3
source variables and cFIT in terms of N = 4 source variables) and being non-negative for all atoms
(which is important to guarantee that FIT is interpretable as a measure of information transmission).
Importantly, similarly to other redundancy measures [20], Imin satisfies the pairwise marginals
property, meaning that Imin(T ;α) only depends on the pairwise marginals distributions p(T,Ai)
between the target T and each source Ai ∈ α.

Alternative redundancy measures proposed so far are either not straightforward to generalize beyond
N = 2 source variables [3; 16] or can provide negative information atoms [11]. However, these alter-
native measures have complementary advantages with respect to Imin, such as satisfying the identity
property I∩(X,Y ; (X,Y )) = I(X;Y ) which guarantees that, in a system made of two independent
variables, the two variables cannot carry redundant information about the whole system. Despite
not satisfying this property, the Imin measure has been applied to study information processing in
simulated neural networks [2], providing insightful and interpretable results.

SM1.3 Derivation of FIT

In this subsection, we derive the definition of FIT. In the main text, we used the notation SUI(S :
Xpast, Ypres \ Ypast) to denote the atom of information that is shared by variables Xpast and Ypres

about target S but is unique with respect to a third variable Ypast. Using the bracketed notation
introduced in Section SM1.2 to denote information atoms, SUI(S : Xpast, Ypres\Ypast) corresponds
to I∂(S; {Xpast}{Ypres}). From eq. S5, this atom is the difference between the information that
Xpast and Ypres share about S minus the information that Xpast, Ypast and Ypres share about S
(see also eq. S14). In the PID literature, information redundant in set of sources about a target that
is not redundant with information from another set, has been termed shared unique information
[6; 23]. Therefore, using the bracketed notation to denote the two atoms of shared unique information
SUI(S : Xpast, Ypres \ Ypast) and SUI(Ypres : Xpast, S \ Ypast), we can write the definition of
FIT as:

FIT = min[I∂(S; {Xpast}{Ypres}), I∂(Ypres; {Xpast}{S})] (S11)

We first discuss the mathematical properties of I∂(S; {Xpast}{Ypres}), the first atom appear-
ing in FIT definition. We then discuss the complementary mathematical properties met by
(I∂(Ypres; {Xpast}{S})), the second atom appearing in FIT definition. To keep our reasoning
as general as possible, we discuss properties of the atoms that are valid when the atom is computed
using any of the redundancy measures that satisfy the pairwise marginal property (which include the
Imin redundancy measure that we implemented here). We then demonstrate that a specific pairwise
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Figure S1: Schematic of the concepts of PID. (A) The information I(S;X,Y ) that two source
variables X,Y carry about a target variable S can be decomposed into four PID atoms. Left: a
set-theoretic diagram of the decomposition. Shared information {X}{Y }, darkest shade of blue;
unique information {X} and {Y }, lighter shade of blue; synergistic information {X,Y }, lightest
blue. Right: the same decomposition plotted as lattice. A link between two regions symbolizes
the ordering relationship of eq. S4. (B) FIT is defined on two PID lattices with three sources and
one target. Left: The PID lattice with S as target and (Xpast, Ypast, Ypres) as sources. Right: the
PID with Ypres as target and (S,Xpast, Ypast) as sources. FIT is the minimum between the two
atoms highlighted in red. Classical Shannon information theoretic quantities are mapped on the
two lattices with different colors (i.e. the sum of all the atoms bounded by a given color is equal
to a classical information-theoretic quantity). I(S;Ypres) is mapped using blue, I(S;Xpast) using
purple, TE(X → Y ) using yellow, and I(Xpast;Ypres) using green. The p and t subscript in the
Figure is a shorthand for past and pres respectively.

algebraic relationship exists between these two atoms. This relationship is derived from the Shan-
non information theoretic quantities that relate atoms in the two decompositions. Importantly, this
relationship uncovers the presence of a more refined information component that is shared between
the two atoms. Finally, we discuss how taking the minimum between these two atoms ensures that
FIT fulfills simultaneously a series of fundamental properties, including being upper bounded at the
same time by the feature information encoded in the past activity of the sender X , I(S;Xpast), and
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in the present activity of the receiver Y , I(S;Ypres), and by the total information flowing from X to
Y , namely TE(X → Y ).

SM1.3.1 Properties of the first atom in the FIT definition

Our intuitive definition is that FIT should be the information shared between the past activity of a
sender region Xpast and the present activity of a receiver region Ypres about S that is unique with
respect to the past activity of the receiver Ypast. Thus, within PID of the (S,Xpast, Ypres, Ypast)
system the most natural candidate is the first atom in eq. S11 (I∂(S; {Xpast}{Ypres})) coming from
the decompisition taking (Xpast, Ypast, Ypres) as source variable and S as target variable. Using
eq. S7, we show that the two Shannon information quantities I(S;Xpast) and I(S;Ypres) (i.e., the
feature information encoded in the past values of the sender X and of the receiver Y , respectively)
set an upper bound on I∂(S; {Xpast}{Ypres}). Indeed, I(S;Xpast) and I(S;Ypres) can be written
as the sum of information atoms appearing on the lattice having S as target:

I(S;Xpast) = I∂(S; {Xpast}{Ypres}{Ypast}) + I∂(S; {Xpast}{Ypast})
+I∂(S; {Xpast}{Ypres}) + I∂(S; {Xpast}{YpastYpres})

+I∂(S; {Xpast}) ≥ I∂(S; {Xpast}{Ypres})
(S12)

I(S;Ypres) = I∂(S; {Xpast}{Ypres}{Ypast}) + I∂(S; {Ypres}{Ypast})
+I∂(S; {Xpast}{Ypres}) + I∂(S; {Ypres}{YpastXpast})

+I∂(S; {Ypres}) ≥ I∂(S; {Xpast}{Ypres})
(S13)

which proves that I∂(S; {Xpast}{Ypres}) is upper bounded by both quantities (see Fig. S1B for a
graphical depiction of I(S;Ypres), in blue, and I(S;Xpast), in purple, upper bound the first atom).
However, eq. S7 does not establish any relationship between I∂(S; {Xpast}{Ypres}) and Shannon
information between the source variables of the decomposition, including TE(X → Y ). Therefore,
the value of the first atom can exceed the total amount of information transmitted from X to Y
TE(X → Y ).

Next we prove that, when computed using a redundancy measure that satisfies the pairwise marginals
property (see Section SM1.2), I∂(S; {Xpast}{Ypres}) only depends on the probability distribution
P (S,Xpast, Ypres) through the pairwise marginal distributions P (S,Xpast) and P (S, Ypres),
and does not depend explicitly on P (Xpast, Ypres). Indeed, using eq. S5 we can express
I∂(S; {Xpast}{Ypres}) as the difference between the redundancy about S computed on collection
{Xpast}{Ypres} minus the redundancy computed on collection {Xpast}{Ypres}{Ypast}:

I∂(S; {Xpast}{Ypres}) = I∩(S; {Xpast}{Ypres})− I∩(S; {Xpast}{Ypres}{Ypast}) (S14)

If I∩ satisfies the pairwise marginals property, then the right-hand side of eq. S14 only depends on
the full probability distribution P (S,Xpast, Ypast, Ypres) through the pairwise marginal distributions
between the target S and the individual sources P (S,Xpast), P (S, Ypast), and P (S, Ypres), but
not through the pairwise marginals between the sources, including P (Ypres, Xpast). This implies
that if we partially disrupt the dependency structure of our data to create surrogate data, where the
individual dependencies of X and of Y on S are preserved (i.e., the pairwise marginals P (S,Xpast)
and P (S, Ypres) do not change) and the within-trial correlations at a fixed stimulus are disrupted (i.e.,
the conditional distribution P (Xpres, Ypast|S) changes), this atom will retain the same value it had
in the original data. Therefore, this atom alone cannot rule out confounding scenarios where X and
Y encode S independently with a temporal lag, with no information transfer at fixed stimulus value.

SM1.3.2 Properties of the second atom in the FIT definition

Atoms satisfying mathematical properties that are complementary to the ones of
I∂(S; {Xpast}{Ypres}) exist on the decomposition with Yt as target. On this decomposi-
tion one atom that intuitively captures feature-specific information flow is I∂(Ypres; {Xpast}{S}),
i.e. the information that the past activity of the sender X and the feature S share about the present
activity of the receiver Y that is unique with respect to the past activity of the receiver Y . We first
prove that this atom is upper bounded by the value of TE(X → Y ), and then that this atom depends
on P (Ypres, Xpast).

To prove that the value of TE(X → Y ) sets an upper bound to I∂(Ypres; {Xpast}{S}), we first use
the information-theoretic chain rule [9], to write the conditioned mutual information in eq. S2 as
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the difference between the joint mutual information that Xpast and Ypast carry about Ypres minus
the mutual information between Ypres and Ypast. Then, we use eq. S7 to write the two information
quantities as the sum of non-negative information atoms, including I∂(Ypres; {Xpast}{S}):

TE(X → Y ) = I(Ypres;Xpast, Ypast)− I(Ypres;Ypast)

= I∂(Ypres; {S}{Xpast}) + I∂(Ypres; {Xpast}{SYpast})
+I∂(Ypres; {S}{XpastYpast}) + I∂(Ypres; {Xpast})

+I∂(Ypres; {XpastS}{YpastS}{XpastYpast})
+I∂(Ypres; {XpastS}{XpastYpast}) + I∂(Ypres; {YpastS}{XpastYpast})

+I∂(Ypres; {XpastYpast}) ≥ I∂(Ypres; {S}{Xpast})

(S15)

which proves that I∂(Ypres; {Xpast}{S}) is upper bounded by TE(X → Y ) (see Fig. S1B for a
graphical depiction of the mapping of TE(X → Y ), in yellow, on the lattice to which this second
atom belongs).

Similarly to the first atom, this second atom is also upper bounded by I(S;Ypres) (not proven, but
see the blue quantity in Fig. S1B for a graphical depiction of this property), however it is not upper
bounded by Shannon information quantities between the source variables of the decomposition with
Ypres as target, and in particular by I(S;Xpast). This is important because it proves that neither
the second atom alone satisfies all the properties that we require for a measure of feature-specific
information transfer.

We then prove that the second atom depends on P (Ypres, Xpast), a property which makes it suited to
rule out confounding scenarios where X and Y independently encode the S but no communication
occurs between the two. To do so, we use eq. S5 to write the second atom as the difference between
two redundancy terms:

I∂(Ypres; {Xpast}{S}) = I∩(Ypres; {Xpast}{S})− I∩(Ypres; {Xpast}{S}{Ypast}) (S16)

If I∩ satisfies the pairwise marginals property, then the right-hand side. of eq. S14 depends on the
full probability distribution P (S,Xpast, Ypast, Ypres) through the marginal distributions between
the target Ypres and the individual sources P (Ypres, Xpast), P (Ypres, S), and P (Ypres, Ypast). This
implies that if we partially disrupt the dependency structure of our data and create surrogate data
where the individual dependencies of X and of Y on S are preserved (i.e., the pairwise marginals
P (S,Xpast) and P (S, Ypres) do not change) and the within-trial correlations at a fixed stimulus are
disrupted (i.e., the conditional distribution P (Xpres, Ypast|S) changes), the value of the referenced
atom may differ from its original value. This change occurs because this operation generally disrupts
P (Xpres, Ypast). Therefore, this atom can rule out confounding scenarios where X and Y encode S
independently with a temporal lag, with no information transfer at fixed stimulus value.

SM1.3.3 The two atoms in the FIT definition are related by Shannon Information theoretic
quantities

This Section is structured as follows. First, we present some basic findings from Ref. [27] where, the
authors showed that atoms from different decompositions are algebraically constrained by Shannon’s
information-theoretic quantities and used these constraints to identify, specifically for a trivariate
system, a reduced set of finer information components which could describe all atoms across different
decompositions. Next, we express the algebraic constraints between two decompositions as a
homogeneous linear system of equations. We demonstrate that the reduced set of information
components derived for two decompositions in Ref. [27] can be obtained as solutions to this
homogeneous system. Finally, we derive the analogous homogeneous system in the case of four
variables. One solution to this system relates specifically the two atoms appearing in the FIT
definition.

Ref [27] showed that atoms belonging to different decompositions are algebraically constrained
by information-theoretic quantities. These constraints derive from fundamental axioms of PID
theory, specifically the fact that in the system (X1, . . . , XN ), we can use eq. S7 to express the
mutual information between two variables Xi and Xj (conditioned on up to N − 2 other variables)
as the sum of information atoms from both the decomposition with Xi and the decomposition
with Xj as target variable. For the trivariate system (S,X, Y ), Shannon information quantities
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impose two linear constraints between the 4 atoms of information having S as target and the 4
atoms of information having Y as target (all atoms are: I∂(S; {X}{Y }), I∂(S; {Y }), I∂(S; {X}),
I∂(S; {XY }), I∂(Y ; {X}{S}), I∂(Y ; {S}), I∂(Y ; {X}), I∂(Y ; {XS})):

I(S;Y ) = I∂(S; {X}{Y }) + I∂(S; {Y }) = I∂(Y ; {X}{S}) + I∂(Y ; {S})
I(S;Y |X) = I∂(S; {XY }) + I∂(S; {Y }) = I∂(Y ; {XS}) + I∂(Y ; {S}) (S17)

Combining the two equations in the system of eqs. S17 reveals an equality among the differences in the
amount of information carried by pairs of similar atoms (the two redundancies I∂(S; {X}{Y }) and
I∂(Y ; {X}{S}), the two synergies I∂(S; {XY }) and I∂(Y ; {XS}), and the two unique information
I∂(Y ; {S}) and I∂(S; {Y })):

I∂(S; {X}{Y })− I∂(Y ; {X}{S})
= I∂(Y ; {S})− I∂(S; {Y }) = I∂(S; {XY })− I∂(Y ; {XS}) (S18)

Therefore, 6 atoms of the 8 atoms belonging to the two decompositions (those appearing in eq S17)
are not independent, while I∂(S; {X}) and I∂(Y ; {X}) are independent from all other atoms. In
Ref. [27] the authors showed that, due to the two constraints of eq. S17, the 8 atoms can be described
by 6 finer independent information components (that they called information subatoms). In Ref.
[27] they quantify these 6 subatoms as follows: three subatoms are the minimum between pairs of
similar atoms belonging to the two decomposition (i.e., the two redundancies I∂(S; {X}{Y }) and
I∂(Y ; {X}{S}), the two synergies I∂(S; {XY }) and I∂(Y ; {XS}) and the two unique information
I∂(S; {Y }) and I∂(Y ; {S})); one subatom is equal to the difference between the maximum and the
minimum in each of the above pairs (which is equal for the three pairs, see eq. S18); two subatoms
are equal to the unconstrained atoms not appearing in eq. S17 (I∂(S; {X}) and I∂(Y ; {X})).
A novel perspective on the relationships between the amounts of information carried by specific
sets of atoms from different decompositions is to conceptualize the eight atoms as forming an
eight-dimensional vector space, V . We can represent a generic column vector in V as v and the
2 × 8 matrix of constraints imposed by Shannon information quantities relating the atoms of the
two decompositions as B. With these definitions, we can express the system of eqs. S17 as a
homogeneous linear system:

Bv = 0 (S19)
Specifically, the coefficients of B are obtained by taking the difference between the middle- and
the right-term in the two eqs. S17. Ordering the dimensions of V as (I∂(S; {X}{Y }), I∂(S; {Y }),
I∂(S; {X}), I∂(S; {XY }), I∂(Y ; {X}{S}), I∂(Y ; {S}), I∂(Y ; {X}), I∂(Y ; {XS})), B has the
following form:

B =

[
1 1 0 0 −1 −1 0 0
0 1 0 1 0 −1 0 −1

]
(S20)

It can easily be verified that, for instance, I∂(S; {X}{Y }) = I∂(Y ; {X}{S}), is a solution of the
homogeneous system in eq. S19 for the matrix B defined as in eq. S20. Consider a matrix multi-
plication between B and the vector vSI , whose only non-zero components are I∂(S; {X}{Y })
and I∂(Y ; {X}{S}) (i.e., vSI = (I∂(S; {X}{Y }), 0, 0, 0, I∂(Y ; {X}{S}), 0, 0, 0)). This ma-
trix multiplication is equivalent to multiplying the coefficients in columns 1 and 5 of B by the
two atoms, respectively, and doing the element-wise sum of the two resulting vectors. This
sum is zero if and only if I∂(S; {X}{Y }) = I∂(Y ; {X}{S}). Put simply, columns of B with
element-wise opposite coefficients correspond to pairs (or triplets) of atoms that form a solution
of eq. S19 when they have equal value. As a result, the following are all nontrivial solutions
of the homogeneous system in eq. S19, or equivalently, they belong to the null space of B:
I∂(S; {X}{Y }) = I∂(Y ; {X}{S}), I∂(S; {Y }) = I∂(Y ; {S}), I∂(S; {XY }) = I∂(Y ; {XS}),
I∂(S; {X}), I∂(Y ; {X}), and I∂(S; {X}{Y }) = I∂(S; {XY }) = I∂(Y ; {S}). These solutions
uncover specific relationships between pairs or triplets of atoms across different decompositions.
Importantly, considering that the eight atoms are not independent and can be represented by six finer,
independent quantities, these solutions lend support to the notion that these finer components of
information are shared among the atoms linked by a single solution. Remarkably, the atoms identified
as related by a solution precisely correspond to the six subatoms previously defined in Ref [27].

Similar to the case of N = 2 source variables, for N = 3 source variables, there are 36 information
atoms (18 per lattice) that belong to two decompositions with different targets. Shannon information
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quantities impose constraints relating these 36 atoms, implying the existence of finer information
components (or subatoms) that can describe the two decompositions even when there are N = 3
source variables. Our goal here is not to uncover the complete set of components that describe all
atoms belonging to the two decompositions. Rather, we aim to demonstrate that a specific algebraic
relationship, similar to the ones discussed above, exists between the two atoms present in the FIT
definition. To do this, we generalize the homogeneous linear system in eq. S19 to the four-variable
case (S,Xpast, Ypast, Ypres). In this scenario, the two decompositions that have S and Ypres as their
respective targets (represented by the two lattices in Fig. S1B) are constrained by the following four
Shannon information quantities:

I(S;Ypres)

I(S;Ypres|Xpast)

I(S;Ypres|Ypast)

I(S;Ypres|Ypast, Xpast)

(S21)

Similarly to eq. S17, we can use eq. S7 to express the 4 quantities in eq. S21 as sums of atoms either
belonging to the decomposition with S as target, or the one with Ypres as target. As an example, in
Fig. S1B, we demonstrate that I(S;Ypres) is the sum of atoms belonging to both decompositions,
which together consist of 36 atoms (18 per decomposition). In general, each quantity in eq. S21
imposes constraints between two sets of many atoms from the two decompositions.

To numerically study the solutions of S19 for these 36 atoms, we wrote a MATLAB script named
FIT_nullB.m. This script computes the four quantities in eq. S21 as the sum of atoms from either the
decomposition with S or Ypres as target. It then constructs the 4× 36 matrix B (Fig. S2) in a similar
way to how we derived the 2×8 matrix in eq. S20 from the eqs. in S17. From Fig. S2, it is clear that in
this four-variable case, some atoms, such as I∂(Ypres; {Xpast}{Ypast}), are not constrained by B and
can vary independently (analogously to how for N = 2 the two terms I∂(S; {X}) and I∂(Y ; {X}))
were unconstrained). However, there are also pairs of atoms that are not independent when considered
individually, but that are specifically related by eq. S19 (i.e. the equality between the two atoms in
the pair is a solution of eq. S19). A notable example of these pairwise solutions is made by the pair
of atoms appearing in the FIT definition: I∂(S; {Xpast}{Ypres}) = I∂(Ypres; {Xpast}{S}). This
relationship can be easily verified from Fig. S2, where the first and the second atom are highlighted
in red and white, respectively. Indeed, drawing from the intuition developed in the N = 2 source
variables case, these two atoms belong to columns of B with element-wise opposite coefficients. This
solution (Fig. S2) reveals a specific pairwise relationship between the two atoms appearing in the FIT
definition and supports the existence of a finer component of information shared by these two atoms.
It is actually apparent from the plot in Fig. S2 that this is the only pairwise relationship involving any
of the two atoms. We quantify this finer component of information by taking the minimum between
the two related atoms.

SM1.3.4 Proofs and summary of the main mathematical properties of FIT

Here we prove that FIT defined as in eq. S11 satisfies the two following properties:

1. FIT is simultaneously upper bounded by I(S;Xpast), I(S;Ypres), and TE(X → Y ).

2. FIT depends on P (S,Xpast, Ypres) through all the pairwise marginal distributions
P (S,Xpast), P (S, Ypres), and P (Xpast, Ypres). Thus, FIT can rule out confounding sce-
narios where X and Y independently encode S with a temporal lag in absence of within-trial
correlations between X and Y at fixed stimulus.

To prove that FIT is simultaneously upper bounded by I(S;Xpast), I(S;Ypres), and TE(X → Y ),
it is sufficient to note that FIT is simultaneously upper bounded by all quantities that set an upper
bound to the two atoms appearing in its definition. This can be seen from eqs. S12, S13, and S15,
which show:

FIT ≤ I∂(S; {Xpast}{Ypres}) ≤ I(S;Xpast)

FIT ≤ I∂(S; {Xpast}{Ypres}) ≤ I(S;Ypres)

FIT ≤ I∂(Ypres; {Xpast}{S}) ≤ TE(X → Y )

(S22)

A particularly important consequence of the upper bound set by TE(X → Y ) is that if X and Y
are independent, then FIT = 0. Indeed, if X is independent of Y , then Xpast is independent of
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Figure S2: Matrix of constraints imposed by Shannon information-theoretic quantities relating
the PID having (Ypres, Xpast, Ypast) as source variables and S as target variable to the PID hav-
ing (S,Xpast, Ypast) as source variables and Ypres as target variable. For brevity, we used the
notation Yt = Ypres, Xp = Xpast, Yp = Ypast and denoted each atom (y axis) directly with the
collection it is computed on, with a subscript indicating the target variable of the decomposition
(e.g. {Xp}{Yt}S = I∂(S; {Xpast}{Ypres})). For better visibility, we plotted the transpose of the
4 × 36 matrix appearing in eq. S19. The red dashed line highlights the first atom appearing in
FIT definition I∂(S; {Xpast}{Ypres}), the white line highlights the second atom in FIT definition
I∂(Ypres; {Xpast}{S}). Importantly, only atom highlighted in red has coefficients that are opposite
to the ones of the atom highlighted in white.

(Ypast, Ypres), and therefore I(Xpast;Ypast, Ypres) = 0. By applying the information theoretic chain
rule [9] to I(Xpast;Ypast, Ypres), we obtain:

I(Xpast;Ypast, Ypres) = I(Xpast;Ypres|Ypast) + I(Xpast;Ypast)

≥ I(Xpast;Ypres|Ypast) ≥ FIT
(S23)

Proving that, if X and Y are independent, then FIT = 0. Another important point is that none
of the 36 atoms belonging to either decomposition with S or decomposition with Ypres as target
satisfies the first property. Indeed eq. S7 does not establish any relationship between atoms of the
decomposition with S as target and Shannon information between the sources of the decomposition,
including TE(X → Y ) (see Fig. S1B, left), nor between atoms of the decomposition with Ypres as
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target and Shannon information between the sources of the decomposition, including I(S;Xpast) (see
Fig. S1B, right). Therefore it is necessary to simultaneously consider atoms belonging to different
decompositions to obtain a quantity that satisfies the first property.

To prove that FIT depends on P (S,Xpast, Ypres) through all the pairwise marginal distributions
P (S,Xpast), P (S, Ypres), and P (Xpast, Ypres) we also leveraged on the simultaneous depen-
dence of FIT on I∂(S; {Xpast}{Ypres}) and on I∂(Ypres; {Xpast}{S}). I∂(S; {Xpast}{Ypres})
and I∂(Ypres; {Xpast}{S}) depend of P (S,Xpres, Ypast) through the marginals P (S,Xpres) and
P (S, Ypast), and P (Ypres, Xpres) and P (S, Ypast), respectively (see SM1.3.1 and SM1.3.2). There-
fore:

FIT = f(P (S,Xpres, Ypast)) = f(P (S,Xpast), P (S, Ypres), P (Xpast, Ypres)) (S24)

This implies that if we partially disrupt the dependency structure of our data and create surrogate data
where the individual dependencies of X and of Y on S are preserved (i.e., the pairwise marginals
P (S,Xpast) and P (S, Ypres) do not change) and the within-trial correlations at a fixed stimulus
are disrupted (i.e., the conditional distribution P (Xpres, Ypast|S) changes), the value of the FIT
can differ from its original value. This change occurs because this operation generally disrupts
P (Xpres, Ypast). Therefore, FIT can rule out confounding scenarios where X and Y encode S
independently with a temporal lag, with no information transfer at fixed stimulus value.

SM1.4 The conditional feature specific information cFIT

Here we discuss the definition and the properties of the conditioned version of FIT, termed cFIT.

SM1.4.1 Definition and derivation of cFIT

We defined a conditioned version of FIT, to remove from the feature information transmitted from
X to Y (that in this Section we term FITX ) the information potentially routed through the past
activity of a third region Z (Z can, in principle, also be the multivariate activity of a set of regions).
To do so, we identified subcomponents of the two atoms in the FIT definition that quantified pieces
of information that were also shared with the past of Z, and removed them from FIT.

In this subsection, we will be working with atoms computed on collections belonging to decomposi-
tions with N = 3 and N = 4 source variables. To avoid any confusion, we will explicitly denote the
number of source variables of each collection in the following discussion. For example, we will use
the notation {Xpast}{Ypres}(3) to indicate the collection on which the first atom in the FIT definition
is computed. This collection refers to the PID with N = 3 source variables (Xpast, Ypres, Ypast) and
target variable S.

Previous studies showed that, using eq. S7 , atoms on the PID with target T and N source variables
XN = (X1, . . . , XN ) can be written as the sum of finer atoms belonging to the PID with same target
and an additional source variable XN+1 = (X1, . . . , XN , XN+1)[7]. Importantly, collections α
present in the PID with N source variables, denoted as α(N), also exist in the PID with N + 1 source
variables, denoted as α(N+1), since XN ⊂ XN+1. However, the opposite does not necessarily hold.

The atom I∂(T ;α(N)) is the sum of atoms I∂(T ;β(N+1)), where β(N+1) simultaneously pre-
cedes α(N+1) in the PID with N + 1 source variables (as per the ordering relationship of eq.
S4, in which precedence includes equality), but does not precede any collections γ(N+1) such
that γ(N) precedes α(N) [7]. For example, the collection {Xpast}{Ypres}(3), present in the PID
with N = 3 source variables (Xpast, Ypast, Ypres) and target S, is preceded only by the collec-
tion {Xpast}{Ypres}{Ypast}(3) (i.e., the information that all source variables (Xpast, Ypast, Ypres)
share about S) and by itself (see Fig.S1B, left). When adding Zpast to the set of source
variables, the collection {Xpast}{Ypres}(4) is preceded by four collections (additionally to it-
self): {Xpast}{Ypres}{Ypast}(4), {Xpast}{Ypres}{Ypast}{Zpast}(4), {Xpast}{Ypres}{Zpast}(4),
and {Xpast}{Ypres}{ZpastYpast}(4) (see Fig.S7A, right). Collection {Xpast}{Ypres}{Ypast}(4)),
which was not preceded by any collection apart from itself in the PID with N = 3 variables, is
preceded also by {Xpast}{Ypres}{Ypast}{Zpast}(4)). Therefore:

I∂(S; {Xpast}{Ypres}{Ypast}(3))
= I∂(S; {Xpast}{Ypres}{Ypast}(4)) + I∂(S; {Xpast}{Ypres}{Ypast}{Zpast}(4))

(S25)
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which intuitively means that, when considering also the past of a third region Z, the information that
(Xpast, Ypast, Ypres) share about S breaks down into a component that is also shared with Zpast and
a component that is unique with respect to Zpast.

The other two collections {Xpast}{Ypres}{Zpast}(4)) and {Xpast}{Ypres}{ZpastYpast}(4)) pre-
cede {Xpast}{Ypres}(4)) but do not precede {Xpast}{Ypres}{Ypast}}(4)) (Fig.S7A). Therefore:

I∂(S; {Xpast}{Ypres}(3)) = I∂(S; {Xpast}{Ypres}(4))
+I∂(S; {Xpast}{Ypres}{YpastZpast}(4)) + I∂(S; {Xpast}{Ypres}{Zpast}(4))

(S26)

which shows how the first atom in FIT definition (eq. S11) breaks down into three components in the
PID with (Xpast, Ypres, Ypast, Zpast) as source variables and S as target variable (one component
that is unique with respect to Ypast but shared with Zpast, one that is unique with respect to both Ypast

and Zpast but shared with {YpastZpast}, and one that is also unique with respect to {YpastZpast}).
One of these atoms is the information that Xpast, Ypres, and Zpast share about S, i.e. the component
of the first FIT atom that is also shared with Zpast: I∂(S; {Xpast}{Ypres}{Zpast}(4)).
Similarly, the second atom appearing in the FIT definition, is the sum of finer atoms belonging to the
PID with (Xpast, S, Ypast, Zpast) as source variables and Ypres as target variable:

I∂(Ypres; {Xpast}{S}(3)) = I∂(Ypres; {Xpast}{S}(4))+
+I∂(Ypres; {Xpast}{S}{YpastZpast}(4)) + I∂(Ypres; {Xpast}{S}{Zpast}(4))

(S27)

One of these atoms is the information that Xpast, S, and Zpast share about Ypres, i.e. the component
of the second FIT atom that is also shared with Zpast: I∂(Ypres; {Xpast}{S}{Zpast}(4)).
To remove from FIT the information that is also shared with Zpast we defined the conditional FIT
(cFIT) from X to Y conditioned to Z as:

cFITX|Z = min[I∂(S; {Xpast}{Ypres}(3)), I∂(Ypres; {Xpast}{S}(3))]+
−min[I∂(S; {Xpast}{Ypres}{Zpast}(4)), I∂(Ypres; {Xpast}{S}{Zpast}(4))]

(S28)

Therefore cFITX|Z is equal to FIT from X to Y (cf. eq. S11) minus a term that is the minimum
between two similar information atoms (both quantifying intuitively the feature information about S
that both the past of X and the past of Z share with the present of Y , but is unique with respect to the
past of Y ) on the two PID having S and having Ypres as target variables, respectively.

SM1.4.2 Properties of cFIT

In this Section we prove two properties of cFIT, under the assumption that we compute PID atoms
using a redundancy measure (such as Imin) that is non-negative for each atom. The first property
we prove (i) is that cFITX|Z is upper bounded by FITX and is lower bounded by the maximum
between 0 and FITX − FITZ (where we denote as FITX the feature information transmitted from
X to Y and FITZ the one transmitted from Z to Y ). The second property that we prove (ii) is that if
S → Zpast → Ypres is a Markov chain (i.e. P (S;Ypres|Zpast) = P (S|Zpast)P (Ypres|Zpast)) then
cFITX|Z = 0. This second property is important because it means that if the present of Y received
all its feature information from the past of a recorded region Z, then there is no residual FIT through
X once any contribution from Z is eliminated.

We start by proving property (i). From eq. S28, since we subtract from FIT the minimum between two
non-negative quantities, it immediately follows that cFITX|Z ≤ FITX . This proves that cFITX|Z
is upper bounded by FITX . Then, since from eqs. S26 and S27 we have that

I∂(S; {Xpast}{Ypres}(3)) ≥ I∂(S; {Xpast}{Zpast}{S}(4))
I∂(Ypres; {Xpast}{Ypres}(3)) ≥ I∂(Ypres; {Xpast}{Zpast}{S}(4))

(S29)

from which it follows that:

min[I∂(S; {Xpast}{Zpast}{Ypres}(4)), I∂(Ypres; {Xpast}{Zpast}{S}(4))]
≤ min[I∂(S; {Xpast}{Ypres}(3)), I∂(Ypres; {Xpast}{S}(3))]

(S30)

Eq. S30 shows that the term that we subtract from the right-hand side in eq. S28 is lower or equal to
the first one, proving that cFITX|Z ≥ 0.
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Finally, we prove that cFITX|Z ≥ FITX − FITZ . We do so by proving that the term we subtract
from FITX in the definition of cFITX|Z (eq. S28) is smaller than FITZ . FITZ is defined on the
two decompositions having (Ypres, Ypast, Zpast) as sources and S as target variable, and the one
having (S, Ypast, Zpast) as sources and Ypres as target variable:

FITZ = min[I∂(S; {Zpast}{Ypres}(3)), I∂(Ypres; {Zpast}{S}(3))] (S31)

Similarly to eqs. S26 and S27, the two atoms in S31 break down into the sum of finer information
atoms - when adding variable Xpast to the respective sets of source variables (in Fig.S7A we show a
graphical depiction of the decomposition of the first atom in FITZ definition, depicted in light blue):

I∂(S; {Zpast}{Ypres}(3)) = I∂(S; {Zpast}{Ypres}(4))
+I∂(S; {Zpast}{Ypres}{YpastXpast}(4)) + I∂(S; {Zpast}{Ypres}{Xpast}(4))

(S32)

I∂(Ypres; {Xpast}{S}(3)) = I∂(Ypres; {Xpast}{S}(4))
+I∂(Ypres; {Xpast}{S}{YpastZpast}(4)) + I∂(Ypres; {Xpast}{S}{Zpast}(4))

(S33)

From eqs. S32 and S33 it follows that I∂(S; {Zpast}{Ypres}(3)) ≥
I∂(S; {Zpast}{Xpast}{Ypres}(4)) (i.e. the information the past of Z and the present of Y
share about S is larger than the information that they both share also with the past of X about S) and
I∂(Ypres; {Zpast}{S}}(3)) ≥ I∂(Ypres; {Zpast}{Xpast}{S}}(4)). Thus:

FITZ ≥ min[I∂(S; {Zpast}{Ypres}{Xpast}(4)), I∂(Ypres; {Xpast}{S}{Zpast}(4))] (S34)

The above proves that cFITX|Z ≥ FITX − FITZ . This is important because it assures that the
component that we subtract from FITX when removing from it any contribution potentially due to
Zpast cannot exceed the feature information transmitted from Z to Y (if we only remove the FITZ

that is shared with FITX ). To summarize, we proved that cFITX|Z ≤ FITX , that cFITX|Z ≥ 0
and that cFITX|Z ≥ FITX − FITZ , meaning that cFITX|Z is upper bounded by FITX and is
lower bounded by max[0, F ITX − FITZ ].

We now prove property (ii): if S → Zpast → Ypres is a Markov chain (i.e. I(S;Ypres|Zpast) = 0)
then cFITX|Z = 0). If S → Zpast → Ypres is a Markov chain, that is P (S;Ypres|Zpast) =
P (S|Zpast)P (Ypres|Zpast), then I(S;Ypres|Zpast) = 0 [9]. Using the information-theoretic chain
rule [9] we can write:

I(S;Ypres|Zpast) = I(S;Ypres, Zpast)− I(S;Zpast) =

= I(Ypres;S,Zpast)− I(Ypres;Zpast)
(S35)

Therefore I(S;Ypres|Zpast) = 0 implies I(S;Ypres, Zpast) = I(S;Zpast) (meaning that all
PID atoms that are a subpart of I(S;Ypres, Zpast), but not of I(S;Zpast), are zero) and
also I(Ypres;S,Zpast) = I(Ypres;Zpast) (meaning that all PID atoms that are a subpart of
I(Ypres;S,Zpast), but not of I(Ypres;Zpast), are zero). In particular, in eqs. S26 all atoms
are computed on collections preceding (according to eq. S4) collection {YpresZpast}, mean-
ing that, due to eq. S7, they are all a subcomponent of I(S;Ypres, Zpast). However, among
these atoms, only the collection in I∂(S; {Xpast}{Ypres}{Zpast}(4)) precedes collection {Zpast}
on this decomposition and, therefore, is a subcomponent of I(S;Zpast). Since in our case
I(S;Ypres, Zpast) = I(S;Zpast), the other two atoms on the right-hand side of S26 are zero. Thus, if
S → Zpast → Ypres is a Markov chain, the following identity holds for the first atom in FIT definition
I∂(S; {Xpast}{Ypres}(3)) = I∂(S; {Xpast}{Ypres}{Zpast}(4)). Similarly, in eqs. S27 all atoms are
computed on collections preceding collection {SZpast} (meaning that, they are a subcomponent of
I(Ypres;S,Zpast)). However, among these atoms, only I∂(Ypres; {Xpast}{S}{Zpast}(4)) precedes
collection {Zpast} on this decomposition and, therefore, is a subcomponent of I(Ypres;Zpast). Since
in our case I(Ypres;S,Zpast) = I(Ypres;Zpast), the other two atoms on the r.h.s. of S26 are zero.
Thus, if S → Zpast → Ypres is a Markov chain, the following identity holds for the second atom
in FIT definition I∂(Ypres; {Xpast}{S}(3)) = I∂(Ypres; {Xpast}{S}{Zpast}(4)). Altogether, we
found that, if S → Zpast → Ypres is a Markov chain, the two atoms appearing in FIT definition (eq.
S11) are exactly equal to the two atoms between which we minimize to remove the effect of Z from
FITX in eq. S28, proving that in this scenario cFITX|Z = 0.
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SM1.5 PID decomposition of DFI

We next use PID to examine a previously introduced measure of the information about a specific
stimulus feature S flowing from X to Y , called Directed Feature Information (DFI) [17].

This measure was defined by reasoning to first consider TE between X and Y as a measure of the
overall information transmitted from X to Y and then to subtract out from it the information that is
not due to changes in the value of the stimulus feature. The latter was estimated as TE(X → Y |S),
the value of TE conditioned on the stimulus feature, that is the expected value of the TE when it is
conditioned on the value of a particular stimulus feature. The reasoning of [17] is that the conditioning
removes information not related to variations of the stimulus feature, and that thus TE(X → Y |S)
quantifies the amount of information transferred from X to Y that is not related to the variations in the
stimulus feature. With this reasoning, the authors of [17] defined the DFI to measure stimulus-feature
specific information transfer by subtracting out from the total information their estimate of the one
that is not related to variations in stimulus features [17]:

DFI(X → Y ) = TE(X → Y )− TE(X → Y |S) (S36)

The authors of Ref [17] showed that DFI is equivalent to the difference between the sum of the
information about S that each of Xpast and Ypres individually carry, minus the information about S
jointly carried by Xpast and Ypres, with all the information quantities conditioned on Ypast:

DFI(X → Y ) = I(S;Xpast|Ypast) + I(S;Ypres|Ypast)− I(S;Xpast, Ypres|Ypast) (S37)

The difference between information individually carried and information jointly carried is often
referred to as co-information [38; 3]. This measure of co-information has been used in the literature
as a measure of the net effect of redundancy and synergy and it indicates prevalent redundancy when
positive and prevalent synergy when negative [33; 30]. In this rewriting, DFI has some similarities
with FIT, in that it uses a measure of redundancy (although conflating synergy and redundancy)
between stimulus information in the past of X and in the present of Y , as well as a discounting, by
conditioning, of the past activity of Y .

Previous work on PID has shown that co-information can be expressed as the difference between
two non-negative pieces of information which properly quantify synergy and redundancy [38; 3].
Therefore a simple difference between DFI and FIT is that DFI possibly also includes terms of
synergy between Xpast and Ypres than should not be included in a definition of transmission of
feature information from X to Y . Moreover, given that DFI conditions on the past activity of Y rather
requiring uniqueness with respect to the past feature information of Y (as in FIT), it does not isolate
information in the present activity of Y that has not been present before in Y . To understand better
the consequences of these facts in terms of the difference between DFI and FIT, we reformulated DFI
as a sum of the partial information terms from the PID, as follows:

DFIX→Y = I(S;Xpast|Ypast) + I(S;Ypres|Ypast)

−I(S;Ypres, Ypast, Xpast) + I(S;Ypast)

= I∂(S; {Xpast, Ypast}{Ypres, Ypast})
+I∂(S; {Xpast, Ypast}{Ypres, Ypast}{Xpast, Ypres})+

+I∂(S; {Xpast}{Ypres, Ypast}) + I∂(S; {Ypres}{Xpast, Ypast})
+I∂(S; {Xpast}{Ypres})− I∂(S; {Xpast, Ypres})− I∂(S; {Xpast, Ypast, Ypres})

(S38)

Note that in the above expression all terms involving pieces of redundant information are positive
and those only involving synergistic information are negative. Thus this decomposition of DFI
demonstrates that it is the linear combination of (mostly) redundant information terms appearing with
a positive sign and synergistic information terms appearing with a negative sign. This explains why,
as a result of not separating redundancy from synergy, DFI can be negative and difficult to interpret
as information about a stimulus feature transmitted from X to Y .

The fact that DFI can become negative also shows that using TE(X → Y |S) to remove from the
total transmitted information the one not about the stimulus feature S (as done in DFI, see [17])
is incorrect. This is because TE(X → Y |S) does not really quantify the information from X
to Y which is not about S, as conceptualized in Ref [17]. It actually quantifies the information
transmitted on average within each feature condition. This can overestimate the information from X
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to Y which is not about S. In simple terms, when using data from the same feature conditions, some
information sent from X to Y in this subset of data could be about the specific value of the feature in
the considered set of trials. When the strength of communication about S between X and Y varies
from one feature value to another, this overestimation may become even more severe, because in this
case additional information about S is encoded synergistically within the network of X ad Y by their
feature-dependent relationship [30].

SM1.6 Numerical computation of FIT and other information quantities

FIT and all other information theoretic quantities were computed from both simulated and real data
by plugging into the corresponding equations the numerical evaluation of the response probabilities
from the data. We computed the response probabilities by discretizing neural activity into a number
R of equipopulated bins [22] and then computing empirically the frequency of occurrence of each
binned response across all available trials.

In Table S1 we summarize the number of bins we used to discretize neural activity for each figure
in the paper. In Section SM2.5 we study the accuracy of the FIT and TE estimates with the number
of available trials and we show that the estimates of FIT and TE are accurate and unbiased for the
number of bins and number of trials used for all analyses. However, in the code we provide to
compute FIT and TE, we also implemented limited-sampling bias correction routines that can be
used to obtain more accurate estimates when data are more scarce (see Section SM2.5).

Number of bins 2 3 4

Figures

Fig.3
Fig.S8
Fig.S9

Fig.S11
Fig.S12B
Fig.S13B
Fig.S14B

Fig.S15D-E

Fig.2A,B,E
Fig.S3
Fig.S4
Fig.S5
Fig.S7

Fig.S13A
Fig.S14A

Fig.S15A-B

Fig.2C
Fig.4

Fig.S10
Fig.S12A
Fig.S15C

Table S1: Number of bins used to discretize neural activity for information-theoretic analyses of
simulated and real data, for each main text and SM figure

SM1.7 Permutation-based non-parametric null hypotheses for FIT and TE

To test for significance of the information theoretic quantities, we used non-parametric permutation
tests, described below.

To test for the significance of mutual information values about the feature of interest, we used
established non-paramametric procedures [8; 12; 19]. We constructed surrogate datasets in which
we destroyed any feature information by randomly permuting across trials the values of S, and then
we recomputed information on the surrogate data to obtain a null-hypothesis distribution of null
information values.

To test for the significance of FIT, we developed a permutation test in which we created surrogate data
in which we preserve the feature information in the past of X and the present of Y while destroying
the communication of this information between X and Y . We shuffled X within trials with the same
value of the feature S, destroying any within-trial statistical relationship between the activity of X and
the activity of Y at fixed values of S, and recomputed FIT on the surrogate data. This data shuffling
preserves the marginal distributions between the feature and the past activity of X and between the
stimulus and the present activity of Y , thereby preserving the information about the stimulus that
each carries. However, it destroys the within-trial statistical relationship at fixed stimulus between
X and Y that would be present if X sends stimulus information to Y . Because FIT depends on
P (Xpast, Ypres) (see mathematical proof in Section SM1.3.4), the values of FIT on the permuted data
will be smaller than the ones on the original data whenever there is direct within-trial communication
of stimulus information between X and Y , but will be similar to the value of the original data when
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there is no such direct within-trial communication. As shown by numerical simulations (see Section
SM2.6) the so generated null hypothesis distribution of FIT values when X and Y encode but do
not communicate stimulus feature information is more conservative (see Fig. S7C) than the simpler
one that would be obtained by a permutation test destroying all information about S in X and Y
by randomly permuting S across all trials, as for the mutual information quantities above. (This
permutation test would implement the idea that if no stimulus-feature information is present, it cannot
be transmitted). However, in limiting cases in which the stimulus information in the neural data is
absent, we found it numerically better to perform this second random permutation of the label of
S across trials (because more possible independent data permutation are available in this second
permutation, which therefore may have some advantages in the case of zero or negligible stimulus
information, see Fig. S7E). To reduce the probability of false positives in such cases of no information
present in the network, we computed and then intersected the two above describe possible permuted
distributions by taking the element-wise maximum between the two distributions, and obtained a null
distribution for FIT. (In practice, in real data and simulations with stimulus information present, the
maximum of the two permuted values coincided in all simulations with the maximum of the first
permutation. This is exemplified in Fig. S7C, in which for higher value of the parameter WZY some
information about the stimulus is created in both X and Y in absence of communication between X
and Y , the null hypothesis for FIT taking the maximum between the first and second permutation has
values not only larger than the FIT value measures in the simulation, but also much larger values then
the ones based on only shuffling S. In simulations with null information, the maximum value of the
permuted data in each simulation could instead belong to either permutation.)

An identical procedure was applied to test for the significance of DFI. For TE, since by design the
measure captures the total amount of information flowing from X to Y , we permuted the neural
activity of the sender X across all trials.

Since in all simulations and real data analyses we wanted to test for the significance of the infor-
mation values averaged either across simulations or participants, we computed the average over
simulations and participants of the information values in each realization of the random permutation
and we used this distribution of null hypothesis of averaged values for testing the significance of the
averaged information value. (To compute the null-hypothesis distribution, we generated 500 different
realizations of the permuted average information for each test we conducted.)

In some analyses (e.g. Fig. 3C and 4B,C) we had to identify the cluster of post-stimulus times and
transmission delays for which FIT or TE were significantly different from zero (shown, e.g., in Figs.
S9G, S10A,B). We individuated these clusters of points in the time-delay space using a cluster-based
permutation test [24; 8] using as null hypothesis values those obtained from the permutation test
described above. We computed the cluster forming threshold as the 99th percentile of information
values in the surrogate data. We created information clusters in the original and shuffled datasets
by summing together all adjacent information values above the cluster forming threshold. We then
determined a null distribution for information clusters using the maximum cluster value from each
shuffled dataset. Finally, we assigned significance to clusters in the original dataset if their value was
larger than the 99th percentile of the clusters null distribution (p < 0.01).

SM2 Details of simulations and and additional analyses of simulated data

SM2.1 Simulations of FIT and TE as a function of signal and noise transmission

This section pertains to the description of Fig. 2A-B of the main text.

The goal of the first simulation (whose results are reported in Fig. 2A) was to evaluate the dependence
of FIT and TE on stimulus-feature-related and -unrelated transmission. The goal of the second
simulation (whose results are reported Fig. 2B) was to test the ability of FIT and TE to localize
in time the stimulus-feature-related information transmission. The setting of both simulations was
identical and is described in the following.

We simulated 500ms of activity of activity of X and Y , in time steps of 10ms. The sending region X
encoded a stimulus S over time and transmitted stimulus-feature-related and -unrelated activity to the
receiver Y with a given temporal lag δ. The stimulus feature S being encoded by X and transmitted
to Y was an integer (between 1 and 4) drawn independently and uniformly in each trial (500 trials
per stimulus for each of the 50 simulations). The activity of the sender was a two-dimensional
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variable with one feature-informative Xstim and one feature-uninformative component Xnoise. The
stimulus-feature-informative dimension had a temporally-localized feature-dependent bump in the
activity (from 200 to 250ms) and multiplicative Gaussian noise

X(t)stim = S(t)(1 +N (0, σstim)) (S39)

where S(t) was a function equal to the value of the stimulus s ∈ [1, 4] during the time window
[200, 250]ms and was zero outside of this window. The presence of noise in X(t)stim was needed to
test for the impact of within-trial encoding of S in X on the within-trial encoding of S in Y , at fixed
values of S (i.e., when X encodes S incorrectly, also Y encodes S in a similar way). If X(t)stim
encoded the stimulus perfectly (no noise in X(t)stim, therefore X(t)stim = S for t ∈ [200, 250]ms),
it would be impossible to determine whether Y is receiving stimulus information from X or directly
from S. We choose the noise in the stimulus-feature-informative dimension to be multiplicative
because it made it a more challenging scenario for FIT. In fact using multiplicative noise X developed
a stimulus-dependent noise in the encoding of S. The stimulus-dependent noise in the encoding of S
leads to stimulus-dependent within-trial correlations between X and Y , which potentially induces
synergies in the encoding of S in X and Y [30]. Since FIT computes information transmission by
identifying a component of redundant information between the past of X and the present of Y , using
simulations that have both redundancy between X and Y induced by information transmission and
synergy between X and Y induced by stimulus-dependent amount of noise encoded and transmitted
(using this kind of multiplicative noise), makes it potentially harder for a measure of feature-specific
information transmission to separate out the redundant information that was transmitted. In fact, we
will see that measures that do not separate well redundancy and synergy, such as DFI, will suffer
under such conditions (leading to negative values of transmitted information (Fig. S15A), whereas
FIT seems to work well even under this condition because it uses PID to only include redundant
time-lagged information about S in X and Y , discarding synergy. (However, we found similar results
for TE and FIT by replacing the multiplicative noise with an additive noise in Eq. S39 (Fig. S3)).
The stimulus-feature-unrelated component was, at any time point, a zero-mean Gaussian noise
X(t)noise = N (0, σ). The activity of the receiver Y was the weighted sum of Xstim and Xnoise

with a delay δ, plus a Gaussian noise: Y (t) = WstimXstim(t−δ)+WnoiseXnoise(t−δ)+N (0, σ).
The delay δ was chosen randomly in each repetition from a uniform distribution in the range
between 40ms and 60ms, in steps of 10ms. Therefore, across repetitions of the simulation, Y
received information from X only in the time window [240, 310]ms. In all simulations we set a
standard deviation σ = 2 for the additive Gaussian noise in Xnoise and Y , and a standard deviation
σstim = σ/5 = 0.4 for the multiplicative Gaussian noise in Xstim.

In the first simulation, we computed FIT and TE at the first time instant in which Y received
information from X (t = 200ms+ δ), and at the ground truth delay δ, for all combinations of Wstim

and Wnoise in the range between 0 and 1, in steps of 0.1. In the second simulation we set Wstim = 0.5
and Wnoise = 1 and computed FIT and TE at all time points, in a rage of communication delays
between 0 and 100ms, and averaged their values over delays to obtain temporal profiles of transmitted
information.

SM2.2 FIT can detect feature specific information flow even with overlapping time courses of
stimulus information

This section pertains to the description of Fig. 2C-E of the main text.

One often used method to infer hierarchical flow of information across ares is to consider the timing of
neural activation or of stimulus selectivity of activity across brain regions [32]. However, this method
is neither necessary nor sufficient to determine real communication. On the one hand time lagged
information selectivity between two regions may arise in absence of communication for example if
the two regions received a partly shared input signal with a different delay (see also Section SM4.3).
On the other hand, as we will exemplify in this section, real features-specific communication between
two brain regions could take place even without detectable differences in timing of information across
the considered regions. The purpose of this subsection is to illustrate that this can happen and also
to show that in such case FIT has power to discriminate between cases in which feature-specific
information flow does or does not take place. We will show that this is because FIT can assess that in
cases of real communication the format of information encoding is the same in the past activity of the
sender and in the present activity of the receiver.
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Figure S3: Further tests of FIT on simulated data with additive noise in X . This figure is similar to Fig.
2 of the main text except that the results are now obtained with additive (rather than multiplicative)
noise in X . (A) FIT and TE as function of stimulus-feature-related (Wstim) and -unrelated (Wnoise)
transmission strength. * indicate significant values (p < 0.01, permutation test) for the considered
parameter set. (B) Dynamics of FIT and TE in a simulation with time-localized stimulus-feature-
information transmission. The red area shows the window of stimulus-feature-related information
transfer. Yellow dots show time points with significant information (p < 0.01, permutation test).
Results plot mean (lines) and SEM (shaded area) across 50 simulations (2000 trials each).

We simulated a scenario where a sending regions X encodes and transmits to a receiving region Y
information about an integer stimulus-feature S (ranging between 1 and 4). Importantly, the past
of Y and the present of X carry the same amount of feature information of the past of X and the
present of Y , but encode the information with different formats.

The feature encoding format of each region is determined by the encoding function f(S) controlling
the average response of each region to individual stimulus values s = [1, 2, 3, 4]. We simulated
responses with three different encoding functions:

f1(S) = 1 + δ[0, 1, 2, 3]

f2(S) = 1 + δ[1, 0, 2, 3]

f3(S) = 1 + δ[0, 1, 3, 2]

(S40)

where δ is a parameter controlling the separation of the average responses to different stimuli, and
therefore the amount of feature information carried by each region at a specific time point. We set
δ = 1 in all simulations. The three encoding functions f1(S), f2(S), f3(S) are depicted in Fig.2C
in blue, green and red, respectively. The encoding function determined the feature values that each
region preferentially encodes at each specific time point. Specifically, due to the presence of additive
Gaussian noise, regions were most informative (according to Eq. S10) about stimulus values for
which the response was either minimum (i.e. equal to 1 in eq. S40) or maximum (i.e. equal to 1 + 3δ
in eq. S40). Indeed, activity distributions in response to these stimulus values were less overlapped
with activity in response to other stimuli. For example, regions encoding the stimulus as f1(S) would
carry high specific information about stimulus values 1 and 4, and low specific information about
stimulus values 2 and 3. On the other hand, regions encoding the stimulus as f2(S) would carry high
specific information about stimulus values 2 and 4, and low specific information about stimulus values
1 and 3. Therefore, since the Imin measure quantifies redundancy as the overlap in the distributions
of specific information across individual values of target variable, the responses of two regions X and
Y would be maximally redundant if they encoded the feature with the same encoding format (e.g.,
fX(S) = fY (S) == f1(S)), partially redundant if they both carried high specific information about
one stimulus value (e.g., fX(S) == f1(S) and fY (S) == f2(S)) or minimally redundant if they
carried high specific information about different pairs of stimulus values (e.g., fX(S) == f2(S) and
fY (S) == f3(S)).

In our simulation, X and Y activity at different time points was described by the following set of
equations:
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Xpast = f1(S) + E1

Ypres = Xpast

Ypast = f2(S) + E2

Xpres = f3(S) + E3

(S41)

where E1, E2, and E3 are additive Gaussian noise with standard deviation equal to σ. Importantly,
real feature transfer only occurs in the X → Y direction, causing the past of the sender and the
present of the receiver to encode the feature with the same format. Since σ was equal for all noise
terms in eq. S41, both X and Y carried the same amount of stimulus-feature information in the past
and in the present, removing any contribution to FIT due to time-lagged information levels in the
sender and the receiver region. We measured FIT in the two directions (X → Y and Y → X) for
different levels of noise σ. By changing σ, we controlled the SNR = δ/σ in both past and present
activity of X and Y . We repeated the simulation 100 times for each SNR value ranging between
0.05 and 1 with a precision of 0.05. We measured the FIT significance in the two directions using the
permutation test described in section SM1.7.

We found that, because FIT could correctly detect that the format of information representation of S
in the present of Y was equal to that of the past of X but different to that of the past of Y (Fig.2D),
and that feature information flowed from X to Y (Fig.2E).

SM2.3 Simultaneous transfer of information about more than one feature

We performed a simulated study of how FIT performs when studying neural system that encode and
transmit more than one feature (Fig. S4).

We simulated two independent features (e.g. of a sensory stimulus) S1,S2 simultaneously encoded
in a brain region X and transmitted to a brain region Y . In the simulation, S1 is more strongly and
encoded and transmitted than S2. The equation for simulating the data are as follows:

X = S1 +DS2 + Ex (S42)

where S1, S2 are independent binary variables (values equal to ±1), Ex is Gaussian noise with
standard deviation equal to 1, and Y equals X with a time lag, plus independent Gaussian noise with
standard deviation equal to 1.

We simulated the system with different values of D (the strength of encoding and transmission of S2
relative to S1). We found (Fig. S4) that FIT identifies correctly that both features are transmitted, and
ranks correctly the features about which most information is transmitted. FIT also identified correctly
the limiting case (D = 1) in which both features are encoded and transmitted with equal strength.

0 0.2 0.4 0.6 0.8 1
D

0

0.5
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Simult. features transfer
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Figure S4: Simulation of a system that encodes independently two features S1 and S2 in the activity
of a brain region X and transmits them to another brain region Y . We compute FIT about each of the
two stimulus features S1, S2 or their combination S = (S1, S2) as a function of the parameter D
describing the strength of encoding and transmission of S2 with respect to S1. We plot mean ± SEM
over 50 simulations
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SM2.4 Simulations of bidirectional transmission between X and Y

Here we describe the simulations whose results are presented in Fig. S5.

To further investigate the ability of FIT to determine the direction of stimulus-feature information
flow, we simulated a scenario with bidirectional (back and forth) communication between X and Y
with stimulus-feature-related transfer from X and stimulus-feature-unrelated transfer from Y to X
(Fig. S5A).

In brief, both X and Y received information directly from a feature-information-sending region S.
The region X received stimulus information from S early on (between 50 and 90 ms) and Y received
stimulus information from S at a later time (between 110 and 150 ms). X sent its entire activity to Y
(therefore communicating its stimulus information when it became available). Y instead only sent to
Y a part of its activity that did not carry stimulus information. The details of how this was achieved
are reported below.

We simulated 180ms of activity of X and Y , in steps of 1ms. The stimulus feature S being encoded
and transmitted from a stimulus region S to X and Y was an integer (between 0 and 3) drawn
independently and uniformly in each trial. The activity of X was one-dimensional. The activity
of Y was two-dimensional. Both dimensions of Y (Y+ and Y−) were generated with a Poisson
process whose mean was modulated over time by a Gaussian bump (whose amplitude was equal to
the stimulus-feature value S) in the time window [110, 150]ms, plus an additive Gaussian noise and
time-lagged readout of X activity (with a X to Y transmission delay δxy = 10ms). Importantly, Y+

encoded the stimulus as a positive Gaussian bump and Y− encoded the stimulus as a negative Gaussian
bump. Therefore, the entire activity of Y , i.e. the sum of the two components, Ynoise = Y+ + Y−
carried no information about the stimulus, and the difference of the two components Ystim = Y+−Y−
carried all the stimulus information in Y . X was a Poisson process whose mean was positively
modulated over time by a Gaussian bump - whose amplitude was modulated by the stimulus - in
the time window [50, 90]ms, plus an additive Gaussian noise and time-lagged readout of the entire
activity of Y Ynoise (with a Y to X transmission delay δyx = 15ms).

We measured FIT at each time step of the simulation over a range of communication delays and
averaged the resulting information values over delays to obtain temporal profiles of information
transmission. We found that FIT correctly captured the flow of information about S between X
and Y that we put by design into these simulated data. FIT revealed that there was a significant
stimulus-feature-related information transmission from X to Y , that was temporally localized in
the actual “ground-truth” [60, 100]ms window in which Y received stimulus information, and no
significant stimulus-feature-information transmitted from Y to X (Fig. S5B).

We also used these simulations to test the performance of the Directed Feature Information, DFI [17],
using the same analysis pipeline described here for FIT. Results are discussed in Section SM4.2.

SM2.5 Limited-sampling bias of FIT and TE

Information-theoretic quantities are know to suffer from a systematic error (called limited sampling
bias) when the probabilities used to compute them are estimated from a limited number of experi-
mental trials [26]. While the limited bias of Shannon information quantities such as TE have been
studied well and has been shown to be inversely proportional to the number of available trials and
directly proportional to the number of bins used to discretize the data [? ], those of FIT remain to be
investigated.

Therefore here we simulated a simple scenario to study how FIT and TE scale with the number of
trials available in the dataset and the number of bins of the discretized activity. In these simulations
X encoded a binary feature S with additive Gaussian noise. Y was equal to X with a time lag of 1
plus independent Gaussian noise (standard deviation of noise = 0.5).

We found (Fig. S6) that FIT behaved much better than TE with the data size and number of bins.
The correct value of FIT, which can be estimated from large numbers of trials, was achieved already
with smaller number of trials than for TE. We found that accurate calculations of FIT are possible
with the number of trials available in empirical datasets (Fig. S6); for comparison FIT calculations
with real and simulated data in this paper were done with 2-4 discretization bins, see Table S1).
Our understanding is that the better scaling and sampling properties of FIT with respect to Shannon
Information quantities arise because FIT considers a PID part of the total information which has
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Figure S5: Simulations of performance of FIT and other measures in a case of transfer of stimulus-
feature-related and stimulus-unrelated information in different directions. (A) Schematic of the
simulation. A stimulus node S provides partly complementary information about a stimulus feature to
X (in the 50-90ms interval) and to Y (in the 110-150ms interval). X transmits stimulus information
to Y . Y instead has different components of activity and it projects to X only the component of its
activity that is stimulus-unrelated. In other words, we have stimulus-feature-information transfer
from X to Y and noise transfer from Y to X). (B) Results of the analyses of this simulated activity
using FIT (left panels) and DFI (right panels). Gray lines plot the value of these quantities Yellow
dots plot time points in which the measure was significantly different from null (permutation test of
Section SM1.7; p<0.01)

.

lesser bias compared to other parts of the total information. Given that the PID atoms of FIT do not
contain synergistic terms, this is in line with previous work [25] showing that synergistic components
of information have much larger limited sampling bias, and that information quantities that do not
include synergistic components have much better sampling properties than full multivariate Shannon
information quantities. Thus, FIT can be computed from the datasets in which Shannon information
measures typically applied to neural data. We applied a widely used bias correction technique, called
the Quadratic Extrapolation [37; 26]. This method is based on subtracting the bias estimated from
a second-order polynomial fitting of the dependence of the estimated quantity on sub-samples of
the available data. We found (Fig. S6) that this bias subtraction technique was helpful in further
improving the estimate of information (reducing the limited sampling bias) in cases of very low
numbers of trials available. This bias correction technique is made available in the software we
provide for both FIT and TE.

SM2.6 Simulation tests of the significance of FIT and cFIT

In this Section we describe the simulations and results presented in Fig. S7.

In this set of simulations, we first evaluated the effectiveness of the permutation-based non-parametric
tests for FIT in a difficult scenario in which X and Y independently encode stimulus-feature
information with a temporal lag, but no actual communication occurs between them. We then
evaluated the performance of cFIT in measuring the unique contribution of X in sending feature
information to Y in presence of an alternative information route through a third node Z sending
information to Y .

We addressed both questions using a the following simulation setup. We performed a simulation
in which two senders (X and Z) both transmitted stimulus-feature information to Y (Fig. S7B).
X encoded the stimulus-feature linearly and Z non-linearly so that they carried partially different
information about S. This is important because a good measure quantifying the unique contribution
of X (but not Z) in the transmission of information to Y should capture that, even if the total amount
of feature information transmitted from Z to Y is stronger than the one transmitted from X to
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Y , there can still be a different component of information that is uniquely transmitted by X and
not by Z. We simulated 500ms of activity, in time steps of 10ms. The encoded and transmitted
stimulus feature S was a stimulus-intensity integer value (0 to 3) drawn independently and uniformly
in each trial (500 trials per stimulus). The activity of X had a temporally-localized square bump
between 200 to 250ms whose amplitude depended linearly on S, with multiplicative Gaussian noise.
Activity of Z had a temporally-localized square bump (from 200 to 250ms) encoded with a different
format with respect to X , and multiplicative Gaussian noise. Specifically, X encoded the stimulus
feature S = (0, 1, 2, 3) with the encoding function while Z encoded S with the encoding function
S = (1, 0, 3, 2). In this way, X carries more specific information than Z (see eq S10) about S = 0, 3
and Z carries more specific information than X about S = 1, 2, therefore both X and Z carry some
unique information about S. Activity of Y was the weighted sum of X and Z with a temporal lag,
plus additive Gaussian noise: Y (t) = WxyX(t− δ) +WzyZ(t− δ) +N (0, σ). The delay δ in the
transmission of information from X to Y was chosen in each repetition of the simulation randomly
from a uniform distribution in the range between 40ms and 60ms . We computed FIT and cFIT at
the first time instant in which information in Y was received from X and Z (t = 200ms+ δ) using
to define past activity the ground-truth delay δ actually used in that simulation. We set a standard
deviation σ = 2 for the additive Gaussian noise in Y , and a standard deviation σstim = σ/5 = 0.4
for the multiplicative Gaussian noise in X and Z.

SM2.6.1 Tests of significance of FIT accounting for the possible existence of encoded feature
information in the absence of transfer of it across regions

We first addressed the first question, that is how to deal with confounding scenarios where X and Y
independently encode feature information with a temporal lag, but no actual communication occurs
between them.

We studied how the FIT from X to Y depended on the strength of feature-related transmission from
Z to Y Wzy when no stimulus-feature-information was transmitted from X to Y (Wxy = 0). We
found that FIT from X to Y increased with Wzy , since X and Y carried redundant information about
S with a temporal lag. However, FIT was always non-significant (Fig. S7C) using the permutation
test described in Section SM1.7, since there were no within-trial correlations between the encoding
of S in X and the time-lagged encoding of S in Y . This proves that, even if Z was not measured, the
permutation test we provided for FIT can correctly rule out confounding scenarios where X and Y
encode S with a temporal lag but with no actual communication occurring between X and Y (see
Section SM1.7 and SM2.6).
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SM2.6.2 Simulations testing cFIT in the presence of information transfer through an
alternative route involving a third region Z

We next addressed the second question, that is how to evaluate the unique contribution of X in
sending feature information to Y in presence of an alternative information route through a third node
Z sending information to Y . We studied how FIT from X to Y and cFIT from X to Y conditioned
on the feature information in Z depended on the simultaneous transmission of feature information
from X to Y and from Z to Y . To do this, we computed FIT and cFIT for all combinations of Wxy

and Wzy in the range between 0 and 1, in steps of 0.1. We found that FIT grew both as a function
of Wxy and of Wzy and was significant as soon as some information was transmitted from X to Y
(Wxy > 0; Fig. S7D, left). On the contrary, cFIT increased only as a function of Wxy and decreased
with Wzy, correctly removing from the FIT from X to Y the feature information that was routed to
Y through Z (Fig. S7D, right). Crucially, cFIT did not simply subtract from FIT through X the FIT
through Z, but it only removed the amount of feature information that was redundantly transmitted
by X and by Z to Y . Indeed, since X and Z transmitted partially different feature information to
Y , we have that cFIT was still significant for many combinations of parameters where Wzy > Wxy

(Fig. S7D, right) and, therefore, FIT through X was larger than FIT through Z (not shown).

SM2.7 Simulation studies of how FIT and TE are affected by the mixing of sources

In real electrophysiological recordings, it is possible that that separation and reconstruction of the
underlying neural sources is imperfect, due to issues such as for example field spread or common
referencing. As a result, electrophysiological recordings from different brain regions may contain,
with different weights, a mixture of sources. It has been proposed that such source mixing may affect
measures of communication between brain areas [1]. Here, we examine the effect of this source
mixing in FIT and TE measures.

We simulated source mixing in different proportions in the sender X and the receiver Y . In our
simulations we assumed that (as it is expected to be the case in real brain data) the mixing is
instantaneous (i.e. sources are mixed with zero lag) and with a proportion of source sharing in X ,Y
that is stable across time.

We first simulated a "null model" scenario in which a source Z (informative about a stimulus feature
S) is shared between X and Y with a different proportion A:

X = Z(s) + Ex

Y = AZ(s) + Ey
(S43)

with Ex, Ey being independent Gaussian noise. The stimulus feature S was a binary value extracted
independently in each trial. The source Z encoded the feature with additive Gaussian noise. The
amount of stimulus-feature information encoded in Z increased linearly over time. We controlled
the SNR of X and Y by changing A (which sets the relative level of stimulus-feature signal in X ,Y )
and fixing noise standard deviation to 1. On this model FIT and TE had spurious positive values
(Fig. S8B). We used the permutation test introduced in Section SM1.7, testing for spurious values
induced by X ,Y covariations due to feature-signal sharing. We found that this test correctly ruled
out as non-significant FIT and TE values generated only by source sharing with no real transmission
(Fig. S8B). Importantly, analysis of this model also showed that with instantaneous source mixing
(and notably under the assumption that recording noise is constant over the time of the trial) the ratio
between stimulus-feature info in X and Y is constant in time (Fig. S8A). This gives a useful heuristic:
while the finding that the feature information time courses of two individual regions that overlap in
time cannot be used to rule in or out communication of information about the feature between the
two areas (see SM2.2 and Fig 2D-E), different timecourses of stimulus-feature info in X vs Y cannot
be easily explained by instantaneous source mixing. We measured all real-data FIT in cases with a
delay in stimulus-feature info latencies between X and Y (X to Y info latencies: MEG: 17-35ms
between V1 and higher areas, Fig. S9B. EEG: 25ms across hemispheres (Fig 4B). Spike data: 20ms
from thalamus to cortex, Fig. S11). Overall, these findings speaks against dominant mixing of a
feature-informative source in our analyses.

Finally, we simulated the case with real FIT between two “pure” signals Z1 and Z2 that are unevenly
mixed in the measured X ,Y :
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Figure S7: Simulation tests of the significance of FIT and cFIT. (A) Schematic of the cFIT definition.
Left: intuitive definition with set-theoretic diagrams. Right: breakdown of FITX (in red) and FITZ

(in light blue) into finer information atoms considered in the definition of cFITX|Z (atom that can be
part of cFITX|Z are indicated in yellow). Only atoms of FITX , FITZ and cFITX|Z belonging to
the PID having S as target variable are shown. FITX is the feature information transmitted from X
to Y , FITZ is the one transmitted from Z to Y , cFITX|Z is the cFIT from X to Y conditioned on
the stimulus-feature information of Z. (B) Schematic of the scenario implemented in the simulations:
both X and Z transmit feature information to Y . (C) FIT dependence on the amount of stimulus-
feature information transmitted from Z to Y (WZY ) even when simulating a case (WXY = 0) in
which there was no within-trial transmission from X to Y . FIT grows with WZY , but its value
is always non significant using the permutation null hypothesis described in Section SM1.7. The
dashed green line shows the 99th percentile of the FIT null hypothesis distribution described in
Section SM1.7. For comparison, the dashed gray line shows the 99th percentile of the null-hypothesis
distribution that would have been obtained simply shuffling S across all trials. The fact that the
latter remains so low across all values of Wzy highlights the need of using a shuffling procedure
that preserves the stimulus-feature information in the individual nodes, as we did in this paper and
described in Section SM1.7 (D) FIT and cFIT as function of feature-related transmission from X to
Y (WXY ) and from Z to Y (WZY ). * indicate significant values (p < 0.01, permutation test) for the
considered parameter set. In Panels C,D, results plot mean across 50 simulations (2000 trials each).
(E) Example of shuffled distributions in a case in which there is not stimulus-feature information in
Y . While the null hypothesis values of permuting X at fixed S give much more conservative and
effective null hypothesis values when the analyzed network has stimulus-feature information across
the nodes (see panel C), in specific cases of no feature information in parts of the network it may be
safer to consider also the permutation of S across all trials, as this has more available independent
permutations form the data and thus gives wider distributions. The example is with the simulations
performed in Fig. 2A, for the set of parameters (Wstim = 0,Wnoise = 0.6).

X = Z1 +AZ2 + Ex

Y = Z2 +BZ1 + Ey
(S44)

Since adding a new feature-informative channel (Z1 to Y and Z2 to X) increases the stimulus-feature
information in X ,Y , we set the standard deviation of independent Gaussian noise Ex,Ey to equalize
SNR of X and Y across the simulated parameters space. We found (Fig. S8C) that mixing (A,B > 0)
reduced FIT and TE compared to the pure case (A = B = 0). However, the correct direction of
information transfer was always detected for all mixtures. Thus, FIT is reasonably conservative and
robust to this mixing.
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SM3 Details and further analyses of experimental data

SM3.1 MEG data

SM3.1.1 Behavioral task and MEG recordings

We analyzed a publicly available MEG dataset [39], with source-reconstructed data available at
[https://doi.org/ 10.6084/m9.figshare.12770366]. Full details (including details of approval from
responsible ethical review board) are reported in the original publication and are briefly summarized
here. The MEG data were recorded from 15 participants performing a visual contrast comparison
decision-making task. Each participant´ performed four experimental sessions with on average 429
trials per session. At the beginning of each trial, a reference stimulus was shown. The reference
stimulus was a circular, expanding or contracting (randomized across trials) grating with a fixed
contrast of 50% and a duration of 400 ms. The reference was followed by a test sequence made up of
ten sample gratings (100ms duration each). The contrast of each sample in the sequence was drawn
from a Gaussian distribution, the mean of which was either larger or smaller than 50% (randomly
selected per trial). At the end of each trial, participants reported whether the average contrast of the
sample gratings was higher or lower than the reference contrast. A staircase procedure was used
to adjust the mean of the Gaussian distribution setting the average contrast of the 10 samples in
each trial, by making decisions harder (mean of the Gaussian closer to 50%) or easier (mean of
the Gaussian further from 50%) depending on the behavioral performance of the participant until
that moment in the experimental session. The staircase was set to obtain a behavioral performance
of approximately 75% correct on each session. The Regions Of Interest (ROIs) in MEG source
space used to identify signal from the considered brain areas were defined based on the atlas from
Glasser and colleagues[13]. All ROIs were co-registered to individual structural Magnetic Resonance
Imaging (MRI) data. Source reconstruction was performed using linearly constrained minimum
variance (LCMV) beamforming, by combining leadfield matrices and data covariance matrices (CMs)
into a spatial filter for each source position (i.e., vertex) that was applied to the sensor-level data to
compute the source estimate. To this end, the leadfield matrices were computed from 3-layer boundary
element head-model (conductivity 0.3, 0.3, 0.006 S/m for scalp, brain, skull respectively) based
on the individual structural MRIs. CMs were computed for the interval 0s to 1.35s from stimulus
onset from the pre-processes and artifact-cleaned [39] broadband MEG data (275x275 sensors) with a
regularization of 5% of CM. The source space was constrained to the cortical sheet (4096 vertices per
hemisphere), and source orientations were chosen to maximize the power at each vertex. To illustrate
the spatial resolution of source reconstruction, in Fig. S9A we plotted the correlation between LCMV
spatial filters of neighboring sources vs their distance, finding a very small correlation (< 0.02) at
distances larger than 2.5cm (as expected from theoretical considerations [15]). To compute FIT and
TE, the time-frequency representation of sensor data was projected into source space and averaged
over vertices within the ROI (80,20,10 vertices for V1, V3A, LO3, respectively). All FIT analyses
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presented in this paper focused on three visual cortical ROIs that were all more than 2.8cm apart from
one another (i.e., minimizing spatial filter leakage) and encoded large stimulus information: primary
visual cortex (V1), area V3A (which carried maximal stimulus information in the “Dorsal Stream
Visual Cortex” group [13]) , and area LO3 (which carried high stimulus information in the “MT+ and
Neighboring Visual Areas” group [13]).

SM3.1.2 Parameters and details of the Information theoretic analyses

For the analysis of FIT and TE we used gamma-band instantaneous power obtained by computing the
time-frequency representations of single-trial data via the multi-taper method and then averaging the
obtained powers in the [40− 75] Hz band, exactly as described in the original publication [39]. To
estimate the joint probability distributions of the neural activity and the stimulus (or the choice) used
to compute the information theoretic quantities, we binned the MEG gamma power from each ROI
into 2 equally populated bins and then computed empirically the frequency of occurrence of each
response bin across all available trials. The stimulus features used for the information analyses was
the average contrast of the 10 samples presented on each trial, discretized into two values. (We coded
0 the average contrast if it was below the reference contrast and 1 the average contrast if it was above
the reference contrast). The choice feature used for the information analyses was the binary choice
reported by the participant in each trial, with the choice “average contrast stronger than reference”
coded as 1 and the choice “average contrast weaker than reference” coded as 0. We computed the
information quantities for both the feedforward and the feedback direction for the left and the right
hemisphere separately and then averaged the two.

Unless otherwise stated, we computed information quantities using all available trials (correct and
error trials). For the specific set of information analyses comparing correct and error trials (Fig.
3G,H), we randomly subsampled correct trials so that the number of correct and error trials used to
compute the information quantities was the same for each session. In this way, the information values
for correct and error trials can be compared fairly because their difference cannot reflect possible
differences in limited-sampling biases due to different data numerosity [26].

SM3.1.3 Statistical analyses

We established significance of the information measures in the time-delay space using a cluster-based
nonparametric statistical test described in Section SM1.7, see [24; 8].

To provide a quantification values of TE and FIT across participants, sessions and network links (Fig.
3D,F,H), we selected a rectangular region in the time-delay domain to select the TE and FIT values
for the across sessions statistics, centered around the FIT significant cluster (FIT-specific region). We
computed the average over delays and then picked the maximum over time within this region. This
gave us one single TE and one single FIT value for each hemisphere in each session. The comparisons
of values across participants, subjects and links was performed using two-tailed paired t-tests.

SM3.1.4 Additional results

Here we list the results of a number of additional analyses that could not be inserted in the main text
due to lack of space but that are helpful to better understand and support the conclusions presented in
the main text.

The first set of results regards the encoding of information in individual regions of the visual network,
rather than the transmission across regions of information about the stimulus. We reported temporal
profiles of stimulus information in the three selected ROIs in Fig. S9B. Instantaneous information
profiles showed a clear lag in the onset of stimulus information that could not be explained by
instantaneous source mixing (see Section SM2.7). The amount of mutual information about the
stimulus carried by the power of the gamma band in the visual cortical network is larger in the first
half of the presentation of the stimulus ([0-500]ms peri-stimulus, denoted as ’early’) than in second
half of the presentation of the stimulus ([500-1000]ms peri-stimulus, denoted as ’late’) within the
trial (Fig. S9C, left). This is why we concentrated the FIT analyses on the first part of the trial (the
early window). In the early part of the trial, the gamma band activity in the visual cortical network
carries more stimulus than choice information (Fig. S9C, middle) and this information is higher in
correct compared to error trials (Fig. S9C, right) . These results are useful to confirm that stimulus
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information coding is of more prominent importance in the visual network and that the presence of
this information is key to perform accurate perceptual discriminations.

The second set of results regards additional findings about the transmission across regions of in-
formation about the stimulus. We produced network representation showing the relative strength
of individual TE and stimulus FIT links contributing to the observed differences in directionality
(Fig. S9D, compare with Fig.3D) and feedforward behavioral relevance (Fig. S9E, compare with
Fig.3E) of information transmission. We found no difference of FIT stimulus nor TE in the feedback
direction between correct and error trials (Fig. S9F). For the example pair V1-V3A we identified a
significant cluster of stimulus FIT feedforward (V1 to V3A) but not feedback (V3A to V1) in the
time-delay domain (Fig. S9G; cluster statistics, p<0.01). These results suggest that feedforward
propagation of stimulus information, but not feedback propagation, is specifically key for correct
behavior.

In the main text we indicated that the time delay region in which FIT about the stimulus was significant
was in the interval 200 to 400ms after the stimulus onset, with an inter-area communication delay
between 65 and 250ms. This statement is supported by the plot in Fig. S9G of the time-delay map
points that are significant according to the cluster permutation test.

Finally, we performed a control analysis to quantify TE in a time-delay region around which TE
was maximal. This is of interest because in the main text analyses (Figure3E-H) we compared FIT
and TE using a time-delay region around the peak of FIT. The TE panel (Fig. S9H) shows that TE
peaks in a different time-delay region with respect to stimulus FIT (Fig. 3C). Taking a DI-specific
box centered around the TE peak in time-delay to select information values we could not assess the
direction nor the behavioral relevance of information transmission (Fig. S9I).

SM3.2 EEG data

SM3.2.1 Behavioral task and EEG recordings

We next analyzed a publicly available EEG dataset [31]. Data are available at
[https://datadryad.org/stash/dataset/doi:10.5061/dryad.8m2g3]. Full details (including details of
approvals from Ethical Committees) are reported in the original publication. Here we summarize
them briefly. The EEG data were recorded while participants (N=16) performed a face detection
task. Participants were presented with an image hidden behind a bubble mask that was randomly
generated in each trial. The presented image was a image of a face in half of the trials and a random
texture in the other half of the trials. Participants were instructed to report whether a face was present
or not. In our analyses, we only considered correct trials where the face was correctly detected
by the participants (approximately 1000 trials per subject). Following the recommendations of the
original publications analysing these data [31; 18], we excluded one participant from the analysis
due to a poor EEG signal that did not contain significant eye visibility information in any of the
electrodes. All analyses in our paper are based on the N=15 selected participants. EEGs were
recorded by fitting participants with a Biosemi head cap comprising 128 EEG electrodes. EEG data
were re-referenced offline to an average reference, band-pass filtered between 1 Hz and 30 Hz using a
fourth order Butterworth filter, down-sampled to 500 Hz sampling rate and baseline corrected using
the average activity between 300ms pre-stimulus and stimulus presentation. ICA was performed to
reduce blink and eye- movement artifacts, as implemented in the infomax algorithm from EEGLAB
[10]. Components representing blinks and eye movements were identified by visual inspection of
their topographies, time courses, and amplitude spectra.

SM3.2.2 Details of the information theoretic analyses and additional results

For the analyses of TE and FIT, we selected the EEG electrodes in the left and the right Occipito-
Temporal regions that had the highest mutual information about the visibility of the contra-lateral eye,
exactly as done in previous papers [18]. (Specifically, in Ref. [18], the authors used the following
criteria to select one electrode in LOT and one in ROT for each participant, see Fig. S13A. For LOT
they selected the electrode with maximum right eye MI from electrodes on the radial axes of P07, P7,
and TP7, excluding midline Oz and neighboring O1 radial axes. On the right hemisphere, for ROT
the author selected the EEG electrode with maximum left eye information from sensors on the radial
axes of PO8, P8, TP8, excluding midline Oz and neighboring O2 radial axes). We computed the first
derivatives of the EEG signal for both Occipito-Temporal sensors and used both its absolute values
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Figure S9: Additional analyses of the MEG dataset. (A) Correlation between LCMV spatial filters of
neighboring sources as a function of their distance. (B) Time course of stimulus information in each
ROI. (C) Properties of mutual information between stimulus and MEG activity. Left: Peak values of
stimulus information over time in the first (early time window, from 0 to 500ms post-stimulus onset)
and second half (late time window, 500 to 1000ms after stimulus onset) of the stimulus presentation
window. Middle: Peak of stimulus and choice information carried by MEG gamma activity in the
early window. Right: Peak of stimulus information values encoded by MEG gamma activity in the
early window in correct and incorrect trials, respectively. (D) Graphs representing the strength of
feedforward (yellow) and feedback (orange) information transmission in the network for TE (top) and
stimulus FIT (bottom). Links are weighted proportionally to the communication strength between
each pair. The arrows on the bottom points toward the dominant direction of overall transmission,
and are weighted proportionally to the difference between feedforward and feedback transmission.
(E) Same as D but for feedforward transmission in correct (green) vs error (gray) trials. (F) Values
of TE (left) and of FIT about the stimulus (right) computed in the feedback direction separately in
correct and in error trials. (G) Plot of the points with significant values of the stimulus FIT between
V1 and V3A (top) and V3A and V1 (bottom) according to a cluster permutation test. Only points
that are significant are colored. Color scale is the same as the Fig. 3C. (H) TE time-delay map in
the V1 to V3A direction. (I) Values of TE using a time-delay box centered around the TE peak in
the time-delay map. In all panels, lines and image plots show averages and errorbars SEM across
participants, experimental sessions and regions pairs (in case of FIT and TE) or regions (in case of
mutual information). *: p<0.05, **: p<0.01, ***: p<0.001. All information-theoretic quantities were
computed from power time courses of source-level MEG signals in the gamma-band ([40-75]Hz),
first computed separately for left and right hemisphere and then averaged.

and first derivatives to compute the information quantities, for consistency with the information-
encoding analyses performed in a previous study [18].As stimulus feature for the computation of
mutual information and FIT, we used the visibility of an eye (defined as the fraction of pixels within
the eye region that were not hidden by the bubble mask). This feature was discretized using 2
equipopulated bins. We computed the information quantities for all combinations of directionality of
flow across hemispheres (left to right, right to left) and eye identity (left or right eye). We computed
significance of FIT in the time-delay using the cluster-based permutation test described in Section
SM1.7. This analysis revealed a significant cluster of FIT about the left eye in the right-to-left
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direction (Fig. S10A) and a about the right eye in the left-to-right direction (Fig. S10B). To provide a
quantification values of TE and FIT across participants (Fig. 4D), we selected a rectangular region in
the time-delay domain to select the TE and FIT values for the across participants statistics, centered
around the contra-lateral FIT significant cluster (same for both eyes, as they were significant in very
similar time-delay regions). We computed the average over delays and then picked the maximum
over time within this region. This gave us one single TE and one single FIT value for each subject.
The comparisons of values across participants was performed using two-tailed paired t-tests.

SM3.3 Analysis of spiking activity in a thalamocortical network

SM3.3.1 Electrophsyiological experiments

We analysed previously published [5] recordings of multi-unit spiking activity simultaneously ob-
tained from electrodes placed in the primary visual cortex (V1), primary somatosensory cortex (S1),
first-order visual thalamus (the lateral geniculate nucleus, LGN), and the first-order somatosensory
thalamus (the ventral posteromedial nucleus, VPM) of anaesthetized rats (Fig. 3A). Data are made
available with this NeurIPS submission as Supplemental Material. Full details (including details of
approvals from Ethical Committees and Local Authorities) are reported in the original publication.
Here we summarize them briefly.

These data were recorded from N=6 rats (using one-shank Silicon Michigan probes, Neuronexus
Technologies; 100-µm intersite spacing) in three stimulation conditions: visual stimulation, whiskers
tactile stimulation and bimodal stimulation (simultaneous visual and tactile). All experiments were
conducted under urethane anesthesia. The visual stimuli consisted of a light flash (50-ms-long LED
light flashes at 300 lux). The unimodal somatosensory stimulus consisted of a whisker deflection. For
bimodal stimulation, whisker deflection and light flashes were applied in the same hemifield. Stimuli
were randomly presented across trials. In our analysis, we considered only stimulation contra-lateral
to the recorded brain areas. Each type of stimulus was presented 100 times. The non-stimulated
eye was covered with an aluminum foil patch. Neural activity was recorded at a sampling rate of
32 kHz, bandpass filtered (0.1 Hz and 5 kHz) then down-sampled to 8 kHz. In the current work, we
used the recordings from infragranular layers of S1 and V1 and from VPM and LGN. Multi-unit
spike times were first detected from the band-passed (400–3,000 Hz, fourth-order IIR Butterworth
Filter) extracellular potential in each electrode by threshold crossing (>3 SD). A spikes train was
obtained for all channels using a temporal binning of 0.125 ms (1/8kHz). For each brain region,
spiking activity was then pooled together using all recorded spikes form all electrodes related to that
region.

SM3.3.2 Parameters and details of the information analyses

To compute mutual information and FIT, we defined two different stimulus set of interest. To measure
information related to tactile discrimination, we used a “tactile-discriminative set” made of the
unimodal visual and the bimodal visual-tactile stimulus (the two stimuli in the set are discriminated
by the presence or absence of a tactile stimulus). Similarly, to measure information related to visual
discrimination, we used a “visual-discriminative set” made of unimodal tactile and the bimodal
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visual-tactile stimulus (the two stimuli in the set are discriminated by the presence or absence of a
visual stimulus).

As stimulus feature for the computation of mutual information and FIT for the tactile (visual)
discriminative set, we used a binary value indicating either the delivery of a visual (tactile) unimodal or
a bimodal stimulation. We computed the information quantities for all combinations of directionality
of flow across the visual (LGN to V1 and V1 to LGN) and somatosensory (VPM to S1 and S1 to
VPM) thalamo-cortical pathways and stimulus-discriminative sets (visual or tactile). To provide a
quantification values of TE and FIT across animals (Fig. S11E,F,H,I), we selected a rectangular region
in the time-delay domain to select the TE and FIT values for the across animals statistics, centered
around the FIT peaks about the tactile stimulus in the VPM to S1 direction (for the somatosensory
pathway) and about the visual stimulus in the LGN to V1 direction (for the visual pathway). We
computed the average over delays and then picked the maximum over time within this region. This
gave us one single TE and one single FIT value for each animal. The comparisons of values across
animals was performed using two-tailed paired t-tests.
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Figure S11: Sensory related info transfer carried by multi unit actity (MUA). (A) Schematic of the
experimental setup. MUA was recorded in rats from the Ventral Posteromedial nucleus (VPM) of the
thalamus, the Lateral Geniculate Nucleus (LGN) of the thalamus, the primary somatosensory (S1) and
visual (V1) cortex simultaneously. During the recording either a unimodal tactile, a unimodal visual,
or a bimodal (visual and tactile) stimulus was presented. (B) FIT values averaged across delays for
all combinations of transfer direction and stimulation type on the somatosensory pathway (VPM-S1).
(C) Same as B but for the visual pathway. (D) FIT from VPM to S1 (mean across subjects) for each
value of delay and post-stimulus time. Line plots above and below show Mutual Information (MI)
between the presented stimulus and the recorded MUA in the VPM and S1, respectively. Width
of shaded errorbars show the SEM of the measure across subjects. The left panel reports values
of information and FIT for the tactile-discriminative set, whereas the right panels report values of
information and FIT about the visual stimulus set. (E) Directional sensitivity for TE (left) and FIT
(right) between VPM and S1, for the Tactile stimulus-set. (F) Comparisons between tactile- and
visual-discriminative set, for the TE (left) and the FIT (right) from VPM to S1. (G) Same as panel D
but from LGN to V1. (H) Same as panel E but between LGN and V1, for the Visual stimulus-set. (I)
Same as panel F but for TE and FIT from LGN to V1.
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SM3.3.3 Further details about the information-theoretic results

We first focused on the somatosensory pathway (VPM and S1). We found that, on this pathway, the
tactile FIT in the VPM to S1 direction was visibly higher than the visual FIT in the same direction and
both tactile and visual FIT in the S1 to VPM direction (Fig. S11B) We found that the timing of tactile
FIT from VPM to S1 was consistent with the one of tactile information in neural activity, that was
present in the 5-30ms and 15-30ms post-stimulus intervals in VPM and S1, respectively (Fig. S11D
left, top and bottom lines). We found that FIT revealed the directionality of tactile information flow,
which was significantly larger in the feedforward (VPM to S1) compared to the feedback (S1 to VPM)
direction (Fig. S11E right, p = 0.0065). On the contrary, TE computed for the tactile set was not
significantly different in the two directions (Fig. S11E left, p = 0.13). FIT also revealed the content of
communication from VPM to S1, being significantly larger for the tactile set than for the visual set
(Fig. S11F, right; p = 0.0084), while TE from VPM to S1 was not significantly different in the two
directions (Fig. S11F, left; p = 0.12).

Complementary results were found in the visual pathway (LGN and V1). On this pathway, the visual
FIT in the LGN to V1 direction was visibly higher than the tactile FIT in the same direction and both
tactile and visual FIT in the V1 to LGN direction (Fig. S11C). FIT for the visual-discriminative set in
the LGN to V1 direction peaked in a time interval of approximately 45 to 65ms after stimulus-onset
and with a transfer delay of approximately 10-25ms Fig. S11G). The visual FIT values were larger
in the feedforward than in the feedback direction (Fig. S11H, right; p = 0.033), while TE was not
sensitive to the directionality of visual information (Fig. S11H, left; p = 0.15). Moreover, visual FIT
values were significantly larger than the tactile ones from LGN to V1 (Fig. S11I, right; p = 0.013),
while TE did not capture these sensory modality-specific differences (Fig. S11I, left; p = 0.4). Taken
together, these results highlight the power of the FIT in revealing feature- and direction- specific
transfers of information with high temporal precision, beyond what is achievable using methods that
measure the total propagation of neural activity such as TE.

SM3.4 Applications of cFIT to real neural data

We tested the effectiveness of the conditional FIT (cFIT) in the analysis of neurophysiological
data by applying it to perform further analyses on the EEG and the MUA datasets (Fig. S12). For
simplicity, when computing cFIT from X to Y conditioned on the stimulus information of Z, we
always considered the same communication delay (that is, the time difference between the present and
past activity used to compute the information theoretic measures) for the past activity of the sender
X and the past activity of the third region Z. However the definition of conditional FIT holds for
an arbitrary representation of Zpast, potentially including multiple time points or a communication
delay that is different from the one of Xpast.

We first applied cFIT to the EEG dataset. We investigated whether the contra-lateral Occipito-
Temporal electrodes used to compute TE and FIT in Figure 4 where the sole senders of eye-specific
information across hemispheres. We selected two different sets of putative alternative senders of
eye-specific information and used cFIT to remove the contribution of the putative alternative senders
from the contra-lateral FIT that we measured. Namely, we selected the third location to be conditioned
upon from either a set of weak or a set of strong alternative senders for both the left and for the right
eye (Fig. S13). For each participant, we defined the two weak alternative sender locations (one for the
left an one for the right eye) as those electrodes carrying the lowest amount of stimulus information
about the left or the right eye, respectively, in the frontal lobe of the brain. The expectation was that
removing the contribution of these electrodes using cFIT would not change appreciably the results
obtained with the contra-lateral unconditional FIT reported in Figure 4.

For each participant, we defined the strong alternative senders locations (one for the left an one for
the right eye) as those electrodes carrying the second-largest amount of information about the left
eye in ROT or about the right eye in LOT (ROT and LOT defined as in Ref [18]). We found that
FIT conditioned on the contra-lateral-eye information of one of the weak alternative senders (the
orange lines in Fig. S12A) did not reduce FIT, as the cFIT was virtually equal to the unconditional
FIT (the blue trends in Fig. S12A). However, FIT conditioned on the contra-lateral-eye information
of one of the strong alternative senders (the green trends in Fig. S12A) was lower than unconditional
FIT. However, both cFIT given the weak and the strong alternative senders were significant (cluster
statistics over time, p<0.01). The fact that cFIT was lower than FIT when conditioning on informative
electrodes but not when conditioning on weakly informative electrodes suggests that cFIT is effective
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at removing influences related to similar feature-specific (but not un-specific) information present
already in the past activity of other regions. The fact that the inter-hemisperic Occipito-Temporal
controlateral-eye-specific cFIT is still highly significant and is only marginally smaller than the
original unconditional FIT suggests that most eye-specific information flows across hemispheres
through the contra-lateral Occipito-Temporal electrodes selected in [18].

Next, we analyzed the spiking activity dataset. We examined tactile-discriminative information
flowing through the somatosensory pathway, and the visual-discriminative information flowing
though the visual pathway.

We first used cFIT to test whether the tactile-discriminative FIT from the somatosensory thalamus
VPM to the somatosensory cortex S1 could have actually been relayed through the visual thalamus
LGN. The neurophysiological expectation is that all tactile-discriminative information flows within the
somatosensory pathway, without contributions from visual stations. Consistent with this expectation,
we found that the tactile-discriminative cFIT from VPM to S1 conditioned on the visaul thalamus
LGN was equal to the unconditional tactile-discrminative FIT from VPM to S1.

We then used cFIT to test whether the visually-discriminative FIT from the visual thalamus LGN
to the visual cortex V1 could have actually been relayed through the somatosensory thalamus. The
neurophysiological expectation is that all visual-discriminative information flows within the visual
pathway, without contributions from somatosensory stations. Consistent with this expectation, we
found that the visually-discriminative cFIT from LGN to V1 conditioned on the somatosensory
thalamus VPM was equal to unconditional visually-discriminative FIT from LGN to V1.

Together, these results suggest that cFIT is useful to remove contributions from alternative pathways
specifically with regard to the transmission of feature-specific information.

SM4 Comparison with other possible or previously published measures

We examine how FIT differs with respect to other possible or previously published algorithms that
were designed to identify the information flow across regions about behavioral or stimulus features
of interest. We first consider two measures that implement the Wiener-Granger discounting of the
information present in the past activity of the sender. We then consider two other methods, that did
not implement this principle.

SM4.1 Comparison with variations in transfer entropy ∆TE

As mentioned in the main text, one simple-minded proxy for identifying feature-specific information
flow could be quantifying how the total amount of transmitted information (TE) is modulated by the
stimulus-feature [4]. For the case of two stimuli, this amounts to the difference of TE computed for
each stimulus-feature value.

We now show, using simulations, that this measure can fail in capturing feature-related information
flow. We performed simulations in a scenario having variable degrees of both feature-specific
and feature-unrelated information transfer. The encoded and transmitted stimulus feature S was
a stimulus-intensity integer value (1 or 2). The activity of the sender X was a two-dimensional
variable with one stimulus-feature-informative Xstim and one stimulus-uninformative component
Xnoise. The feature-informative dimension had a temporally-localized stimulus-dependent bump in
the activity (from 200 to 250ms) and additive Gaussian noise. The stimulus-unrelated component
was, at any time point, a zero-mean Gaussian noise. The activity of the receiver Y was the weighted
sum of Xstim and Xnoise with a delay δ, plus Gaussian noise. The delay δ was chosen randomly in
each simulation repetition (N=50) in the range 40-60ms. We tested whether ∆TE across simulation
repetitions was significantly different from zero using a two-tailed t-test.

As we did in Figs. 2 and S3 for FIT and TE, we studied the behavior of ∆TE as a function of
the simulation parameters Wstim (which increases the amount of information transferred about the
stimulus feature) and Wnoise (which increases the amount of feature-unspecific information that is
transferred from X to Y). We found (Fig. S14A) that ∆TE had almost no relationship with the values
of Wstim and Wnoise, unlike FIT which individuated stimulus-feature-specific transfer correctly
because it increased with Wstim but not with Wnoise (Fig. S3A).
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Figure S12: Application of cFIT to experimental data. (A) cFIT application to the EEG data.
We conditioned the contra-lateral FIT about the left and the right eye (see Fig. 4) to the activity
of two either weak or strong alternative eye-visibility information senders. Temporal profiles of
unconditional FIT (in blue) for about the left eye from ROT to LOT (left) and about the right eye
from LOT to ROT (right). cFIT temporal profiles when conditioning on weak alternative senders (in
orange) and on strong alternative senders (in green). The points where the measures were significant
are indicated with a circular marker (p<0.01, cluster statistics). (B) cFIT applied to MUA data. We
conditioned tactile- (visual-) discriminative FIT through the somatosensory (visual) pathway (first
row) to the activity of the visual (somatosensory) thalamus. The amount of unconditional FIT that
was shared with the FIT through the alternative sender (second row) was subtracted from the original
FIT to obtain cFIT (third row). The left column shows results for the tactile-discriminative set, the
right column for the visual-discriminative set.

Note that we performed also simulations (that were exactly like those of Fig. 2, except that we had
2 rather than 4 stimulus intensity values) in which the noise in X was multiplicative rather than
additive. In this case (results not shown) ∆TE increased with both Wstim and Wnoise. Thus, ∆TE
had limited capabilities of identifying some stimulus-feature-specific information transfer in some
specific case, but it dot reflect it in general.

The reason that ∆TE cannot capture feature-specific information flow is, in our view, that ∆TE is a
measure of variation of information strength across stimulus-feature conditions rather than a measure
of stimulus-feature-specific information transfer.
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Figure S13: Sets of electrodes used in the EEG data analysis. (A) Electrodes used to measure FIT
and TE and for all the analyses in Fig.4, same electrodes used in [18]. (B) Set of ‘strong alternative
senders’, selected as the electrodes carrying the second maximum amount of information about the
left eye in the ROT (left panel) and about the right eye in the LOT (right panel). (C) Sets of ’weak
alternative senders’, selected as the electrodes in the frontal lobe carrying the minimal amount of
information about the left eye (left panel) and about the right eye (right panel).

Additionally, we tested ∆TE on MEG data. We first binarized the stimulus feature into two classes
(average contrast either greater, S=1, or lower, S=0, than the reference contrast). We computed TE
for all pairs of visual regions in the visual cortical network separately in trials with the same value of
the binary stimulus we and computed the difference ∆TE between these values. Fig. S14B shows
that ∆TE in the visual cortical network had the same strength in the feedforward and feedback
direction, unlike FIT that showed a clear directionality of communication of stimulus information
(stronger in the feedforward than in the feedback direction). Finally, when computing TE on the
spiking activity data of the rat thalamocortical network, we found that TE from thalamus to cortex did
not vary between the tactile-discriminative and visually-discriminative stimuli set (see Fig. S11E-I).
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Figure S14: Performance of the Transfer Entropy Difference across stimuli (∆TE) on simulated
and real MEG data. (A) Simulated data. Values (mean across 50 simulations) of ∆TE from X to Y
computed on the same simulated data used in Fig. S3A as a function of the simulation parameters
Wstim (which increases the amount of information transferred about the stimulus feature) and Wnoise

(which increases the amount of feature-unspecific information that is transferred from X to Y ). We
found that ∆TE had almost no relationship with the values of Wstim and Wnoise, unlike FIT which
increases only with Wstim. All ∆TE values were not significantly different from zero (two sided
t-test across 50 simulations, significance threshold at p = 0.01). (B) Real MEG data. Average across
participants, sessions and pairs of regions of the values of ∆TE (reported values were obtained
taking the average over delays and then the maximum over time in the same time-delay region used
for the results in Fig. 3D,E,F).

In contrast, on the same data FIT could distinguish tactile-discriminative from visually-discriminative
information flow from thalamus to cortex (see Fig. S11E-I).

SM4.2 Comparisons with Directed Feature Information (DFI)

A previous study [17] defined a measure, Directed Feature Information (DFI), which computes
feature-specific information redundant between the present activity of the receiver and the past
activity of the sender, conditioned on the past activity of the receiver. However, DFI used a measure
of redundancy that actually conflated the effects of redundancy and synergy (see Section SM1.5
where we consider in detail its definition and its PID decomposition). Because of this, DFI can be
negative and thus not interpretable as measure of information flow. Moreover, because DFI discounts
only past activity of the sender rather than its feature-specific information, it is less precise and less
conservative in localizing direction and timing of feature-specific information flow.

The above properties are expected from theoretical considerations but were also demonstrated by
us in the following numerical simulations. We computed DFI in the two simulations described in
Section SM2.1 (Fig. S15). We found that, in general, DFI had a trend similar to FIT, increasing with
the amount of stimulus-feature-related transfer from X to Y (Wstim) and decreasing with the amount
of stimulus-unrelated transfer (Wnoise). However, DFI had several false positives (cases when there
was no transmission in the ground truth of the simulated data but it was detected as significant by
the algorithm) and also had several false negatives (cases when there was transmission in the ground
truth of the simulated data but it resulted as non significant by the algorithm). In comparison, FIT
under the same conditions and same simulations had none, see Fig. 2A). More importantly, as a
consequence of its inability to include only redundancy and discard synergy, DFI values were very
often negative, and could be negative over time both at baseline and during stimulus-feature-related
transmission (Fig. S15B).
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The limitations of DFI for individuating directed well time-resolved flow of information about specific
stimulus features were further tested with the bidirectional information transfer simulations described
in detail in Section SM2.4. We remind briefly that in these simulations we simulated a scenario with
bidirectional communication between X and Y with stimulus-feature-related transfer from X and
stimulus-unrelated transfer from Y to X (Fig. S5A). In brief, both X and Y received information
directly from a feature-information-sending node S. X received feature information from S early
on (between 50 and 90 ms) and Y received feature information from S at a later time (between
110 and 150 ms). X sent its entire activity to Y (therefore communicating its feature information
when it became available). Y instead only sent to Y a part of its activity that did not carry feature
information. We found that while DFI had a significant positive bump from X to Y in the [60, 100]ms
time window, it also had a significant negative bump from Y to X in the time window in which X
encoded the feature [50, 90]ms. Crucially, the presence of significant DFI from Y to X preceding in
time the DFI from X to Y would be interpreted that there is a bidirectional flow of stimulus-feature
information, occurring first from Y to X and then from X to Y . Therefore, DFI could not capture
correctly neither the directionality nor the timing of the stimulus-feature information flow that we put
in the simulations.

For FIT, which is a non-negative measure, we always used one-tailed tests to determine whether the
measured values were significantly larger than the 99th percentile of the null hypothesis distribution
obtained as described in Section SM1.7.

For DFI, which is an unsigned measure, we implemented a two-tailed test. Analogous to our method
for FIT, we computed two null hypothesis distributions: one by shuffling S across all trials, and one by
shuffling X for fixed values of S. We then tested whether DFI was either above the 99.5th percentile
of the element-wise maximum or below the 0.5th percentile of the element-wise minimum of these
two null hypothesis distributions. If one of these conditions was met, we assigned significance to
DFI.

Lastly, we computed DFI on the three real datasets (MEG, EEG and spiking activity) presented in the
main text. We found (Fig. S5C-E) that the problems with DFI predicted by mathematics (see Section
SM1.5) and encountered simulations are also found in the neural datasets. On real data, DFI was very
often negative and it did not detect directionality or feature specificity in cases in which we would
expect from previous literature that specificity or directionality should exist.

In the MEG dataset (Fig. S5D), DFI had negative values and thus not interpretable as measure of
information transfer. Unlike FIT, DFI could not detect that (as predicted by previous studies) stimulus
information is stronger in the feedforward than in the feedback direction, and DFI could not detect
that feedforward stimulus information is stronger in correct than error trials (an important result
found by FIT).

In the EEG dataset (Fig. S5C), DFI was negative and thus not interpretable as measure of information
transfer. The comparison of the DFI results between eye visibility features and directionally of cross-
hemispheric transfer could not support the conclusion (predicted by findings in previous literature
and confirmed by the FIT analysis) that across-hemisphere information transfer is directional from
contra- to ipsi-lateral (DFI does not detected a leading direction of RE information transfer) and is
feature specific (DFI does not detected a difference between LE and RE information in the R to L
hemisphere communication).

In the thalamocortical spikes data (Fig. S5E), DFI has mostly positive values which are thus inter-
pretable in terms of information transmitted. DFI confirms (though with lower statistical power) the
FIT results than in both the somatosensory and visual corticothalamic pathway more information is
transmitted feedforward about the corresponding sensory modality (more visual than somatosensory
information transmitted from visual thalamus to visual cortex, and more somatosensory than visual
information transmitted from somatosensory thalamus to somatosensory cortex). However, DFI
failed to demonstrate that, as expected from well-established neurophysiological findings, more
information about such simple stimulus features is transmitted from thalamus to cortex than from
cortex to thalamus.

In sum, our results lead us to conclude that the definition of redundancy used in DFI that, unlike
the more refined one arising from PID, conflates synergistic and redundant effects, leads to major
problems predicted by theory and confirmed by simulation and in real data. Our results suggest that
DFI is not robust or refined enough to be applied generally and systematically to brain data, and that
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the advances provided by FIT with respect to DFI are important not only conceptually but also for
the analysis of empirical datasets.
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Figure S15: DFI tested on simulated and real brain data. In Panels A,B DFI is tested on the same
simulations used for Fig 2A-B. Panel C-E report DFI results on real brain data. (A) DFI as function of
stimulus-feature-related (Wstim) and -unrelated (wnoise) transmission strength. * indicate significant
values (p < 0.01, permutation test) for the considered parameter set. (B) Dynamics of DFI in a
simulation with time-localized feature-information transmission. Red area shows the window of
feature-related information transfer. Yellow dots show time points with significant information (p
< 0.01, permutation test). Results plot mean (lines) and SEM (shaded area) across 50 simulations
(2000 trials each). (C) EEG DFI between L, R hemisphere about L and R eye visibility (cf with FIT
in Fig4D of main paper). (D) MEG DFI about stimulus or choice feedback or feedforward and in
correct vs error trials (cf with FIT in Fig. 3D-F). (E) Spikes DFI for the thalamocortical pathway and
tactile- or visual-discriminative stimulus set (cf with FIT in FigS8E-I). P-values: 2-tailed paired t-test.
*: p<0.05, **: p<0.01.

SM4.3 Comparison with measures not discounting past information in the receiver as in the
Wiener-Granger Causality principle

We finally consider the suitability for identifying flow of information about specific features of
possible alternative measures that, although have relevance to feature information coding across areas,
do not implement the Wiener-Granger discounting of the information present in the past activity of
the sender. In brief, methods that do not implement this (and thus just correlate past information
of the sender with present information of the receiver), erroneously identify information already
encoded in the past activity of the receiver as information transmitted from a sender. This concern
would apply in general to all measures that compute time-lagged cross-correlations of activity across
areas [14]. In the following, we consider briefly some possible methods that have been used to infer
feature-specific information transfer but that do not consider the Wiener-Granger Causality principle.

One possibility would be to measure the presence and timing of feature information (using mutual
information between the feature and the activity of the individual area at each instant of time, as
in Eq. S1) and then inferring transfer of feature information from X to Y if information about S
arises first in X and Y . Inferring processing hierarchies on the basis of response selectivity latencies
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is a long-established practice in neuroscience [32; 36; 39]. However, the presence of time-lagged
information in two areas does not mean that the information in the second area comes from the first
area. Indeed, in the simulations to test FIT we created several such simulated scenarios of information
present in each area with a different timing but without actual communication between the areas
(Fig. S7C, Section SM2.6), and we created non-parametric tests to rule out this possibility based on
FIT measures (Section SM1.7). Thus, differential response latencies can be used to hypothesize the
presence of processing hierarchies but not to prove transfer of information between specific nodes of
the putative information processing network.

Another possibility would be to use PID to measure the presence of shared (or redundant) feature
information encoded in both X and Y at different temporal lags. PID can specifically isolate only the
information about a feature that is the same, e.g., redundantly encoded, in X and Y . Thus, measuring
time-lagged shared information goes beyond computing a simple time-lagged correlation between the
amount of reach-to-grasp information in X and Y , which would not consider whether the time-lagged
information content is the same. However, this measure would not discount the presence of the same
information in the past activity of Y , and it would thus be prone to detecting false communications
in case the information was already present in the past of Y and thus could not have come from X .
(In other words, it would erroneously identify information already encoded in the past activity of
the receiver as information transmitted from a sender.) These types of problems of not discounting
the past have been illustrated and discussed extensively in the Granger-Causality literature. These
considerations apply to a previous study [29] which used PID to attempt to define feature-specific
information transmission using the so-called Intersection Information [28], computing information
shared between the past activity of the sender and present activity of the receiver (not considering the
information already present in the past activity of the receiver).

SM5 Computational resources

Each of the simulations in Figures 2, S3, S4, S6, S7, S8, S14, and S15 ran in approximately 30
minutes on a personal computer equipped with an Intel i7-10510U processor (4x 1.80GHz CPUs)
and 16Gb of RAM, running Windows 10, using MATLAB R2021a. Simulations in Fig. S5 took
approximately 3 hours on the same machine.

Real neural dataset analyses ran on a server with an AMD Ryzen Threadripper 3970X processor (32x
3.7GHz CPUs) and 256Gb of RAM, running Ubuntu 18.04, using MATLAB R2019b. The EEG and
MEG analyses ran in parallel (using the Parallel Computing Toolbox) over participants or links in the
visual cortical network, respectively. Each analysis of the full real datasets (across all participants
and experimental sessions) took 12-28 hours depending on the usage of the server.

Our MATLAB codes to compute Feature-specific Information Transfer are provided with this
submission and are released under the MIT license. The routines to compute FIT, TE and cFIT are
also available at [https://github.com/mcelotto/Feature_Info_Transfer].
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