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Figure 1: Qualitative comparisons between the proposed Pi-SAM with SAM and HQ-SAM. In these challenging samples of
high-resolution images, our Pi-SAM exhibits a remarkable capability to capture the extremely fine details and perceive the
complex topological structures, achieving high-precision segmentation results.

ABSTRACT
Although the Segment Anything Model (SAM) has achieved impres-
sive results in many segmentation tasks and benchmarks, its per-
formance noticeably deteriorates when applied to high-resolution
images for high-precision segmentation, limiting it’s usage in many
real-world applications. In this work, we explored transferring
SAM into the domain of high-resolution images and proposed Pi-
SAM. Compared to the original SAM and its variants, Pi-SAM
demonstrates the following superiorities: Firstly, Pi-SAM pos-
sesses a strong perception capability for the extremely fine details
in high-resolution images, enabling it to generate high-precision
segmentation masks. As a result,Pi-SAM significantly surpasses
previous methods in four high-resolution datasets. Secondly, Pi-
SAM supports more precise user interactions. In addition to the
native promptable ability of SAM, Pi-SAM allows users to inter-
actively refine the segmentation predictions simply by clicking.
While the original SAM fails to achieve this on high-resolution
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images. Thirdly, building upon SAM, Pi-SAM freezes all its orig-
inal parameters and introduces very few additional parameters
and computational costs to achieve the above performance. This
ensures highly efficient model fine-tuning while also retaining the
powerful semantic information contained in the original SAM.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.

KEYWORDS
Segment Anything, High-Resolution Segmentation, Dichotomous
Image Segmentation, Interactive Segmentation

1 INTRODUCTION
High-precision segmentation[13, 22, 29, 33] plays an important
role in many vision-centric multimedia systems, such as robotic
perception[10, 35], augmented reality [11],and image/video ma-
nipulation [7, 15], among others. Compared to the extensively re-
searched visual segmentation tasks such as semantic [19, 26, 30,
38, 41] and instance [1, 16, 18, 31] segmentation, these applica-
tions demand higher accuracy on the segmented object boundaries
and detailed structures (as shown in Fig. 1), posing greater chal-
lenges for the segmentation models. Furthermore, achieving high-
precision segmentation often requires making predictions at high
resolutions (2K or higher), while the cost of annotating this kind of
data is prohibitively expensive. Therefore, although several related
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Figure 2: When the model’s predictions are imperfect, users may want to guide the model to correct wrongly predicted areas
through clicks. Here, green points represent foreground clicks, while red points represent background clicks. It can be observed
that both SAM and HQ-SAM fail to correct prediction errors through clicks, whereas our Pi-SAM effectively achieves this.

datasets [17, 24, 34, 39] have been proposed in previous research,
their dataset scales are significantly smaller compared to those of
low-resolution segmentation data. This results in the methods tai-
lored for these datasets potentially overfitting to the biases of the
datasets, limiting their capabilities in real-world applications.

Recently, the Segment Anything Model (SAM) [14], which is
proposed as a foundational model for image segmentation, provides
a potential solution to this problem. Due to its extensive training
data (with billion-scale masks), SAM exhibits powerful zero-shot
capabilities across multiple benchmarks and in-the-wild images. It
is an intuitive idea to transfer such large-scale foundational model
to the domain of high-resolution images, in order to address the
aforementioned issue of insufficient data.

However, in our observation, SAM encounters the following
three problems when applied to high-resolution images. Firstly,
SAM struggles to segment challenging structures. SAM tends to
segment objects into large, contiguous regions. When the target
object exhibits more complex topological structures, SAM struggles
to differentiate between the target object and the background, espe-
cially in objects that contain thin structures. Secondly, SAM fails
to correct incorrect predictions in high-resolution images through
multiple interactions. The prompt-driven manner makes SAM al-
low users to correct the errors of the previous-round predictions by
adding new clicks, which has proven effective on low-resolution
images. However, on high-resolution images, more interactions
often do not improve the results. Instead, as shown in Fig. 2, they
lead to worse or even collapsed results. Thirdly, SAM’s predictions

exhibit noticeable jaggedness and offset along the boundaries on
high-resolution images.

We summarize the above problems into two main deficiencies
of SAM’s architecture: 1) Insufficient output resolution: The
original prediction size of SAM is only 256× 256, which is too small
for images with resolutions of 2K or higher, making it difficult to
predict thin structures and accurate boundaries. 2) Interaction on
too small size: In SAM, the information interaction between the
image and the prompts is achieved through cross-attention on a 64×
64-sized featuremap. On such a small-scale featuremap, the detailed
structures of the foreground and the surrounding background are
mixed together and represented by a single pixel. This results in the
model struggling to distinguish which part the user’s click refers to,
making it incapable to effectively correct the detailed predictions.

To address these two deficiencies, we propose Pi-SAM, which
effectively expands SAM’s ability to predict and interact at high
resolutions. An overview of Pi-SAM’s framework is illustrate in
Fig. 3 Building upon SAM, our Pi-SAM keeps all the modules of
SAM frozen to avoid knowledge forgetting and achieves efficient
fine-tuning, and proposes the following two additional modules:
1) A lightweight High-Resolution Mask Decoder: This mod-
ule can increase the sizes of the predictions from 256 × 256 to
1024 × 1024 with low computational cost. Based on the original
mask decoder,the HR Mask Decoder merges both the semantic
information of low-resolution predictions and the low-level infor-
mation of high-resolution images, which can effectively enhance
the model’s perception ability for fine details. 2) An optional Pre-
cise Interactor: For the model’s imperfect predictions, this module

2
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Figure 3: An overview of the proposed Pi-SAM. We freeze all
the original parameters of SAM and propose two additional
modules: a lightweight High-Resolution Mask Decoder and
an optional Precise Interactor. The former can effectively
increase the prediction resolution of SAM, while the latter
allows users to interactively indicate the prediction errors
and then correct them.

allows users to indicate wrongly-predicted areas simply by clicking
and then corrects the errors. Specifically, it encodes both the seman-
tic and positional information of the user-clicked points and uses
such information to update the image features to obtain corrected
predictions.

To evaluate the performance of the proposed Pi-SAM, we further
conduct both qualitative and quantitative comparisons between
Pi-SAM and previous methods, including SAM, SAM’s variant, and
the methods specifically tailored for high-resolution images, in
four high-resolution datasets. Experimental results demonstrate
the superiority of Pi-SAM in the following three main aspects:

Firstly, Pi-SAM possesses a strong perception capability for
the extremely fine details in high-resolution images, enabling it to
generate high-precision segmentation masks. As a result, Pi-SAM
significantly surpasses previous methods in the four datasets.

Secondly, Pi-SAM supports more precise user interactions. In
addition to the native promptable ability of SAM, Pi-SAM allows
users to interactively refine segmentation predictions through sim-
ply clicking. However, the original SAM fails to achieve this on
high-resolution images.

Thirdly, building upon SAM, Pi-SAM freezes all its original
parameters and introduces very few additional parameters and
computational costs to achieve the above two points. This ensures
highly efficient model transfer while also retaining the powerful
semantic information contained in the original SAM.

We believe the above results effectively demonstrate the pow-
erful capability of the proposed Pi-SAM in high-resolution image
segmentation, and hope that Pi-SAM can serve as a robust general
segmentation tool for high-resolution images and realize its value
across various downstream applications.

2 RELATEDWORK
2.1 Segment Anything Models
Segment Anything Model(SAM)[14], as a foundational visual model
aiming to perform general image segmentation, has demonstrated
remarkable capabilities across various segmentation tasks. Its pow-
erful performance also inspires a series of SAM-based works. Some

of these efforts are dedicated to applying SAM to other downstream
tasks, including image editing [9], low-level vision [20, 37], and
3D reconstruction and segmentation [2, 23]. Meanwhile, another
part aims to expand the performance of the original SAM, such as
transferring SAM to video segmentation and tracking [6, 36], speed-
ing up SAM’s inference speed [40, 42] and incorporating semantic
information into SAM’s category-agnostic manner [21].

Sharing the most similar motivation to ours, HQ-SAM [12] in-
troduces an additional output token and more feature fusion to en-
hance the segmentation precision of SAM. However, their method
still fails to address SAM’s deficiencies in interaction size and out-
put resolution,and is thus still unable to achieve satisfactory high-
resolution segmentation. Compared to previous works, our Pi-SAM
is the first one to focus on improving SAM’s output resolution
and achieving precise interaction, and achieves excellent results on
high-resolution images.

2.2 High-Resolution Segmentation
Compared to other segmentation tasks, high-resolution segmenta-
tion emphasizes more on the model’s ability to segment extremely
fine details in high-resolution images, such as mesh objects and thin
lines. Previous related methods can be mainly divided into two cate-
gories, where one focuses on post-processing existing segmentation
results to enhance their accuracy in fine details [4, 25, 29]. While
these methods effectively enhance the accuracy of existing segmen-
tation results, the post-processing approach significantly increases
computational complexity and inference time consumption. The
other type [17, 22, 24, 43] primarily focuses on designing methods
tailored for specific high-resolution datasets However, these meth-
ods are prone to overfitting the biases in specific datasets, making
generalization challenging. On the contrary, we opted to transfer
a foundational model to high-resolution images and fine-tune it
on multiple high-resolution segmentation datasets jointly. This ap-
proach allows for better generalization across different datasets and
in-the-wild images.

3 METHOD
We propose Pi-SAM, which effectively expands SAM’s ability to
predict and interact at high resolution. In order to avoid knowledge
forgetting and achieve efficient fine-tuning, our Pi-SAM keeps all
the modules of SAM frozen, and proposes only two additional mod-
ules: High-Resolution Mask Decoder and Precise Interactor.
Following this, we start with a brief review of SAM and its variant,
HQ-SAM, in Sec. 3.1. Then, in Sec. 3.2 and Sec. 3.3, we will give de-
tailed descriptions of the two newly proposed modules, respectively.
The overall framework of our Pi-SAM is illustrated in Fig. 4.

3.1 Preliminaries: SAM and HQ-SAM
The original architecture of SAM consists of a ViT-based [8] image
encoder, a prompt encoder and a mask decoder. The image encoder
transforms the input 1024 × 1024-sized image into a 16× downsam-
pled image embedding. The prompt encoder is employed to encode
the points, boxes or masks into prompt tokens. The mask decoder
employs several learnable embeddings, termed as output tokens, to
extract the object representation through a Transformer [28] block,
which updates both the output tokens and the image embedding.

3
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Figure 4: An overview of the proposed Pi-SAM. We propose two additional modules: a High-Resolution Mask Decoder and a
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SAM. The HR-Conv Head replaces the dot-product-based output layer of SAM to yield high-resolution predictions. The Precise
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The updated image embedding is then upsampled to 256 × 256 as
the mask feature and segmentation predictions are made through
dot-product between the mask feature and the output tokens.

HQ-SAM adds a new HQ-output token to the original output
tokens and incorporates additional low-level information, which
is obtained from the shallow feature of ViT, into the above mask
feature, thus enhancing the model’s perception of low-level fea-
tures. However, this approach fails to address the deficiencies of
the original SAM’s interaction size and output resolution being too
small; therefore, satisfactory high-resolution segmentation is still
not achievable.

3.2 High-Resolution Mask Decoder
Due to the inevitable occurrence of edge jagging and offsets when
resizing the low-resolution mask to the original image resolution,
making predictions at a larger resolution is necessary. As the most
intuitive idea, we can simply add more upsampling layers for the
mask feature to obtain a larger-size mask feature and then make
predictions at the new size. However, in our observation, such a
simple approach doesn’t lead to a significant improvement in accu-
racy. Instead, the output high-resolution mask and low-resolution
mask don’t differ much. Therefore, we propose the High-Resolution
Mask Decoder, which can not only improve the resolution of the
mask feature, but also effectively enhance the mask feature and
boost model’s perceptual capability for both high-level semantic
information and low-level detailed information.

Specifically, the High-Resolution Mask Decoder consists of two
main sub-modules: anObject Embedder and anHigh-Resolution
Convolutional Head. The Object Embedder is employed to en-
hance the mask feature output from the original mask decoder of
SAM. It takes the mask feature and the predicted low-resolution
mask as input, with sizes of 32 × 256 × 256 and 1 × 256 × 256, re-
spectively. These two parts are first concatenated along the channel
dimension. Subsequently, the Object Embedder employs several
convolutional layers (along with normalization and activation) to
embed the coarse semantic information in the low-resolution mask
into the mask feature, in order to enhance the mask feature’s per-
ception of the target objects.

To further correct the prediction errors in the low-resolution
mask, through observation, we found that the detailed structures
are often heavily repeated in different spatial locations (such as
the mesh-like structure shown in Fig. 4), indicating significant spa-
tial correlations. Therefore, designing a module to increase the
receptive field of the mask feature, in order to model the aforemen-
tioned spatial correlations between one pixel and its surrounding,
is crucial for modeling the detailed structures and correcting pre-
diction errors. To achieve this goal, the simplest approach is to use
a transformer-based architecture, which can encode spatial correla-
tions in mask features through self-attention. However, performing
self-attention in such a 256 × 256-size feature would result in an
unacceptable computational overhead. Since we aim for fewer ad-
ditional parameters and efficient fine-tuning, we have abandoned

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Segment Anything with Precise Interaction ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

the transformer-based approaches. Instead, we employ a module
similar to the ASPP (Atrous Spatial Pyramid Pooling) [3], which
consists of three parallel branches: a 3 × 3 Deformable Convolu-
tion, a 7 × 7 Deformable Convolution, and a skip connection. Such
multiple parallel branches can effectively model the correlations
between each pixel in the mask feature and its neighboring pixels
at different distances.

Following the feature enhancement of Object Embedder, we
propose a lightweight High-Resolution Convolutional Head to
make high-resolution prediction. It first employs several Trans-
posed Convolution layers to upsample the enhanced mask feature
from 256×256 to 1024×1024. To further boost the model’s ability to
capture fine details, we incorporate an additional RGB embedding
into this upsampled feature. It is obtained directly from the original
image through two convolutional layers, representing the low-level
information such as color and texture. Finally, we replace the dot-
product-based output layer of original SAMwith two convolutional
layers. This is because at high resolution, dot product outputs may
lead to some local discontinuities, while convolutional outputs can
better model the correlation between adjacent pixels.

3.3 Precise Interactor
SAM allows users to refine the previous predictions by incorpo-
rating additional clicks, which is achieved by using the mask from
the previous prediction along with new click points as the prompt
for the next round of prediction. However, this pipeline does not
work on high-resolution images, and usually leads to worse or even
collapsed results. To facilitate SAM with the capabilities of high-
precision interaction and detailed error correction, we propose an
optional Precise Interactor. It takes as input the mask feature en-
hanced by the Object Embedder, the output token of the original
mask decoder, and the points clicked by users. As the clicked points
may include two cases: incorrectly predicting background as fore-
ground and vice versa, this module also employs two learnable
embeddings to represent the properties of the input points (shown
as “Flag Embedding” in Fig. 4).

The Precise Interactor first samples the feature based on the
coordinates of each input point from the mask feature. Then, the
feature of each point, along with the corresponding flag embedding
and positional embedding, are concatenated along the channel di-
mension. Afterward, an MLP is employed to fuse the information
from each part, resulting in the final representation for each point,
termed as point token. In order to encode this information into the
mask feature to effectively correct the final prediction, we modi-
fied the bidirectional Transformer block in SAM to facilitate the
information propagation between the mask feature and the point
tokens. The point tokens are first concatenated with the output to-
ken along the length dimension, as the input tokens. Subsequently,
the bidirectional Transformer block performs both image-to-token
and token-to-image attention, to embed both the target object in-
formation in the output token and the user-clicking information in
the point tokens into the mask feature.

To obtain the input points during model training, we designed
a process that simulates user clicking. We first find the wrongly
predicted areas by comparing the difference between the current
prediction and the ground truth. Then we sample one point from

each connected component in the wrongly predicted areas. Detailed
pipeline can be found in the supplementary material.

4 EXPERIMENTS
In the following, we will first describe the implementation details in
Sec. 4.1. Then, we will dive into the quantitative results of different
segmentation tasks from Sec. 4.2 to Sec. 4.4. In Sec. 4.5, we will
conduct ablation studies to evaluate the model efficiency and the
effectiveness of the additional modules we proposed.

4.1 Implementation Details
4.1.1 Training Scheme. Due to the limited scale of high-resolution
segmentation datasets, we collected a combined high-resolution
dataset to train the proposed Pi-SAM. The combined dataset in-
cludes four commonly used datasets from three segmentation tasks:
DIS5K [24] from Dichotomous Image Segmentation, HRSOD [39]
and UHRSD [34] from Salient Object Detection, and the ThinOb-
ject5K [17] from Interactive Segmentation.

Based on the ViT-base, ViT-large, and ViT-huge versions of SAM,
we trained three versions of Pi-SAM. All three versions maintained
the same configurations and were trained for 100 epochs on the
combined dataset mentioned above, with a cosine-decay learning
rate schedule. Since we froze all the original parameters of SAM
and introduced additional lightweight modules, compared to SAM,
our Pi-SAM requires far fewer computational resources to com-
plete training. All experiments of Pi-SAM were conducted using 8
NVIDIA 4090 GPUs. And the global batch size was set to 32. For
more training details, please refer to our supplementary material.

Among the three types of prompts supported by SAM, including
points, boxes, and masks, a single point struggles to represent com-
plex objects in high-resolution images, while mask input requires
more manual effort from the user and is less practical. Therefore,
during the training process, we used the boxes as the input prompts
to train our Pi-SAM, which were derived from the ground truth
segmentation masks.

4.1.2 Evaluation Setup. We conduct experiments on multiple
high-resolution benchmarks to evaluate different aspects of Pi-
SAM’s performance. In order to evaluate Pi-SAM’s generalization
ability, experiments on different datasets are all based on the Pi-
SAM version trained on the merged dataset mentioned above, with-
out applying any additional training tailored to specific data.

In all experiments, we employ the bounding boxes produced by
the ground truth masks as the input prompts for SAM, HQ-SAM
and our Pi-SAM. In Sec. 4.2, we conduct experiments on the DIS
task to evaluate Pi-SAM’s performance on data with highly complex
topological structures. Section 4.3 presents experiments on the SOD
task to evaluate Pi-SAM’s performance on objects that are more
salient and have simpler topological structures. In Sec. 4.4, we apply
SAM, HQ-SAM, and our Pi-SAM to the BIG dataset [5] to assess the
zero-shot capability of the three models on high-resolution images.
In all experiments, consistent with SAM and HQ-SAM, we use the
ViT-huge version of Pi-SAM as the default model for comparison
with previous methods.

Further details about the dataset and experiments are provided
in the corresponding sections.
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Table 1: Results on DIS5K dataset. Among the three SAM-based methods, we have bolded the best results of each ViT version.
For the comparison of all methods, top 1, 2, and 3 results are highlighted in red , green , and blue , respectively.

Method Baseline ViT-b ViT-l ViT-h
Dataset Measure PGNet[33] IS-Net[24] FP-DIS[44] Birefnet[43] UDUN [22] SAM HQ-SAM Pi-SAM SAM HQ-SAM Pi-SAM SAM HQ-SAM Pi-SAM

DIS-TE1

𝐹𝑥
𝛽
↑ .754 .74 .784 .866 .784 .72 .864 .89 .783 .892 .917 .755 .895 .917

𝐹𝜔
𝛽

↑ .68 .662 .713 .829 .72 .681 .839 .869 .746 .875 .902 .721 .878 .903
M ↓ .067 .074 .06 .036 .059 .114 .034 .027 .09 .023 .02 .106 .025 .019
𝑆𝑚 ↑ .8 .787 .821 .889 .817 .737 .872 .894 .787 .897 .917 .766 .898 .92
𝐸𝑚
𝜙

↑ .848 .82 .86 .917 .864 .82 .933 .947 .852 .952 .96 .833 .951 .961
𝐻𝐶𝐸𝛾 ↓ 162 149 160 116 140 442 196 176 215 184 129 206 192 127

DIS-TE2

𝐹𝑥
𝛽
↑ .807 .799 .827 .906 .829 .674 .872 .903 .766 .892 .918 .708 .895 .924

𝐹𝜔
𝛽

↑ .743 .728 .767 .876 .768 .627 .848 .887 .717 .875 .904 .666 .877 .912
M ↓ .065 .07 .059 .031 .058 .149 .039 .027 .107 .032 .023 .141 .032 .021
𝑆𝑚 ↑ .833 .823 .845 .913 .843 .685 .875 .907 .756 .894 .918 .713 .895 .923
𝐸𝑚
𝜙

↑ .88 .858 .893 .943 .886 .785 .939 .953 .831 .948 .959 .791 .948 .963
𝐻𝐶𝐸𝛾 ↓ 375 340 373 283 325 809 457 383 465 438 316 460 449 316

DIS-TE3

𝐹𝑥
𝛽
↑ .843 .83 .868 .92 .865 .614 .862 .899 .687 .862 .912 .629 .87 .915

𝐹𝜔
𝛽

↑ .785 .758 .811 .888 .809 .564 .836 .882 .634 .84 .896 .583 .848 .901
M ↓ .056 .064 .049 .029 .05 .185 .044 .03 .143 .042 .027 .176 .041 .024
𝑆𝑚 ↑ .844 .836 .871 .918 .865 .634 .865 .901 .696 .87 .91 .654 .873 .915
𝐸𝑚
𝜙

↑ .911 .883 .922 .951 .917 .735 .932 .953 .778 .93 .955 .748 .933 .959
𝐻𝐶𝐸𝛾 ↓ 797 687 780 617 658 1355 907 779 900 882 689 893 894 674

DIS-TE4

𝐹𝑥
𝛽
↑ .831 .827 .846 .906 .846 .531 .809 .869 .613 .802 .89 .576 .819 .891

𝐹𝜔
𝛽

↑ .774 .753 .788 .866 .792 .497 .785 .855 .577 .785 .876 .545 .799 .879
M ↓ .065 .072 .061 .038 .059 .251 .072 .046 .191 .072 .038 .218 .066 .036
𝑆𝑚 ↑ .841 .83 .852 .902 .849 .563 .817 .871 .639 .819 .885 .611 .827 .889
𝐸𝑚
𝜙

↑ .899 .87 .906 .94 .901 .672 .899 .939 .734 .895 .949 .707 .905 .952
𝐻𝐶𝐸𝛾 ↓ 3361 2888 3347 2830 2785 4045 3638 3299 3482 3590 3159 3488 3617 3113

DIS-TE(1-4)

𝐹𝑥
𝛽
↑ .809 .799 .831 .897 .823 .635 .852 .89 .712 .862 .909 .667 .87 .912

𝐹𝜔
𝛽

↑ .746 .726 .77 .863 .763 .592 .827 .873 .668 .844 .894 .629 .85 .899
M ↓ .063 .07 .047 .036 .059 .175 .047 .033 .133 .042 .027 .16 .041 .025
𝑆𝑚 ↑ .83 .819 .847 .905 .838 .655 .857 .893 .72 .87 .907 .686 .873 .912
𝐸𝑚
𝜙

↑ .885 .858 .895 .937 .892 .753 .926 .948 .799 .931 .956 .77 .934 .959
𝐻𝐶𝐸𝛾 ↓ 1173 1016 1165 961 977 1663 1300 1191 1266 1274 1102 1262 1288 1057

DIS-VD

𝐹𝑥
𝛽
↑ .798 .791 .823 .9 .831 .654 .849 .883 .739 .858 .91 .687 .865 .91

𝐹𝜔
𝛽

↑ .733 .717 .763 .865 .772 .609 .825 .866 .698 .841 .897 .652 .847 .899
M ↓ .067 .074 .062 .034 .057 .167 .046 .035 .117 .042 .026 .151 .04 .026
𝑆𝑚 ↑ .824 .813 .843 .906 .844 .665 .856 .889 .738 .868 .909 .7 .871 .912
𝐸𝑚
𝜙

↑ .879 .856 .891 .938 .892 .761 .925 .945 .817 .929 .961 .783 .934 .959
𝐻𝐶𝐸𝛾 ↓ 1326 1116 1309 1039 1097 1802 1492 1322 1400 1412 1217 1414 1518 1057

4.2 Dichotomous Image Segmentation
Dichotomous Image Segmentation (DIS) was introduced by Qin et
al. [24], which specifically focuses on the segmentation of objects
with complex structures in high-resolution images, as shown in
Fig. 1. They also built the DIS5K dataset, annotated with extremely
fine details,a collection of 5,470 images with resolutions of 2K and
above.

Due to the abundance of fine-grained details in the DIS5k dataset,
it poses a significant challenge for models to perform high-precision
segmentation. Thus, it serves as a suitable benchmark to evaluate
the proposed Pi-SAM for segmentation precision. Furthermore, for
some highly challenging examples, their intricate structures are
often difficult to segment perfectly in one go. Therefore, we also
use this dataset to evaluate the ability of Pi-SAM to perform precise
interaction.

4.2.1 Precision Evaluation. In this section, we evaluate the seg-
mentation precision of the straightforward prediction (without pre-
cise interaction) of Pi-SAM. We conduct qualitative comparisons
between our Pi-SAM with SAM, HQ-SAM, as well as several previ-
ous methods tailored for the DIS5K dataset, including PGNet [33],

IS-Net [24], FP-DIS[44], UDUN[22] and BirefNet[43]. The employed
metrics consist of S-measure (𝑆𝑚), F-measure (𝐹𝑥

𝛽
, 𝐹𝜔

𝛽
), E-measure

(𝐸𝑚
𝜙
), Mean Absolute Error (M), and Relaxed HCE (𝐻𝐶𝐸𝛾 ), which

are kept consistent with the previous works.
Results presented in Tab. 1 demonstrate that, firstly, our Pi-SAM

significantly outperforms both SAM and HQ-SAM with a large
margin. This indicates the effectiveness of our proposed additional
modules and fine-tuning method. As a member of the SAM family,
our Pi-SAM demonstrates significant advantages when applied to
high-resolution images.

Secondly, when compared to the methods specifically designed
for the DIS5K dataset, our Pi-SAM also achieves state-of-the-art
performance on most metrics, with only the 𝐻𝐶𝐸𝛾 metric being
slightly lower than the previous methods. Considering that these
methods underwent extensive training on the DIS5K dataset, e.g.,
BiRefNet being trained for 580 epochs on DIS5K, they are more
likely to fit the inherent distribution bias of the dataset. Therefore,
the observed metric differences are acceptable.

4.2.2 Interaction Evaluation. We conducted this experiment to
evaluate the capability of Pi-SAM to perform precise interaction.
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As our objective is to evaluate the models’ ability to correct erro-
neous predictions through interactions, while in many samples, our
Pi-SAM achieves highly accurate predictions without additional
interactions, leaving little room for correcting errors. Therefore,
we selected a subset of the testing set of DIS5K for this experiment.
Specifically, we filter out images where SAM, HQ-SAM, and our
Pi-SAM have overlapping wrongly-predicted areas and then se-
lect 200 images with the poorest initial predictions as the testing
samples. To automatically simulate the user clicking, we sampled
points from the overlapping wrongly-predicted areas in the same
way as described in Sec. 3.3. For more details about the testing
images filtering and points sampling, please kindly refer to our
supplementary material.

For SAM and HQ-SAM, the interaction is achieved through using
the mask from the previous prediction along with new click points
as the prompt for the next round of prediction. For our Pi-SAM,
the interaction is achieved through the newly proposed Precise
Interactor. In Tab. 2, we provide qualitative comparisons between
the straightforward prediction and the prediction after interaction.
Results indicate that, only our Pi-SAM achieves effective improve-
ment in accuracy through interaction, while SAM and HQ-SAM
both exhibit significant decreases in accuracy. This clearly demon-
strates that our proposed Precise Interactor can effectively achieve
high-precision interaction on high-resolution images, whereas this
cannot be achieved through SAM’s original prompt-based mecha-
nism.

4.3 Salient Object Detection
In this section, we evaluate our Pi-SAM on the Salient Object Detec-
tion task, which aims to segment the most visually striking object
within a scene. The employed metrics are kept consistent with
Sec. 4.2.

In Tab. 3, we provide results on the two high-resolution SOD
datasets: HRSOD [39] and UHRSD [34]. The comparative methods
include SAM, HQ-SAM, and several baselines on these datasets,
such as BiRefNet [43], PGNet [33], DHQ [27], HRSOD [39], and
LDF [32]. The results demonstrate that our Pi-SAM surpasses all
comparative methods across all metrics, without exception. Com-
pared to DIS, the target objects in SOD tasks are more salient, with
simpler topological structures. The outstanding performance on
both DIS and SOD indicates that our Pi-SAM does not tend to show
bias towards fixed target distributions and biases. On the contrary,
it performs well on high-resolution images with different features.

4.4 Zero-Shot Evaluation
In this experiment, we report the results on the BIG dataset [5], a
semantic segmentation dataset annotated on images, with resolu-
tions ranging from 2048×1600 to 5000×3600. Since the BIG dataset
is unseen by SAM, HQ-SAM and our Pi-SAM, we conduct this ex-
periment to provide a quantitative comparison on their zero-shot
capabilities. The metrics we used are the standard segmentation
metric IoU and the boundary metric mBA (mean Boundary Accu-
racy), which are kept consistent with [5].

Results are shown in Sec. 4.4. For IoU, our Pi-SAM outperforms
SAM and HQ-SAM on the testing set but slightly underperforms on
the validation set. Since BIG is a semantic segmentation dataset, the

Table 2: Results of interactively correcting wrongly predicted
areas. The “Ori-x” refers to the straight-forward prediction
without further interactions. For the comparisons of each
pair of before and after interaction, we have bolded the im-
proved metrics.

Points Measure Ori-SAM SAM Ori-HQ HQ Ori-Pi Pi

1

𝐹𝑥
𝛽
↑ .556 .465 .655 .636 .753 .805

𝐹𝜔
𝛽

↑ .508 .423 .602 .591 .711 .773
M ↓ .246 .315 .156 .179 .106 .076
𝑆𝑚 ↑ .572 .493 .673 .66 .758 .813
𝐸𝑚
𝜙

↑ .659 .584 .734 .725 .832 .877

2

𝐹𝑥
𝛽
↑ .556 .413 .655 .621 .753 .809

𝐹𝜔
𝛽

↑ .508 .377 .602 .572 .711 .778
M ↓ .246 .341 .156 .186 .106 .075
𝑆𝑚 ↑ .572 .457 .673 .648 .758 .816
𝐸𝑚
𝜙

↑ .659 .558 .734 .721 .832 .882

5

𝐹𝑥
𝛽
↑ .556 .358 .655 .573 .753 .818

𝐹𝜔
𝛽

↑ .508 .324 .602 .52 .711 .792
M ↓ .246 .36 .156 .196 .106 .069
𝑆𝑚 ↑ .572 .42 .673 .614 .758 .828
𝐸𝑚
𝜙

↑ .659 .535 .734 .694 .832 .896

Table 3: High Resolution Salient Object Detection results on
HRSOD and UHRSD datasets. The best results among three
SAM-based methods is highlighted with bold. For the com-
parison of all methods, top 1, 2, and 3 results are highlighted
in red , green , and blue , respectively.

Methods HRSOD UHRSD
𝑆𝑚 ↑ 𝐹𝑥

𝛽
↑ 𝐸𝑚

𝜙
↑ M ↓ 𝑆𝑚 ↑ 𝐹𝑥

𝛽
↑ 𝐸𝑚

𝜙
↑ M ↓

LDF[32] .904 .904 .919 .032 .888 .913 .891 .047
HRSOD[39] .896 .905 .934 .03 - - - -
DHQ[27] .92 .922 .947 .022 .9 .911 .905 .039
PGNet[33] .938 .945 .946 .02 .935 .949 .916 .026
BiRefNet[43] .96 .962 .979 .011 .952 .96 .971 .016

SAM[14] .932 .955 .963 .022 .88 .913 .921 .054
HQ-SAM[12] .958 .973 .985 .012 .932 .956 .961 .026
Pi-SAM(Ours) .972 .974 .991 .006 .97 .977 .988 .007

Table 4: Zero-shot capability evaluation on the BIG Test and
Val Sets. The best results are highlighted with bold.

Model BIG Test (100) BIG Val (50)
IoU mBA IoU mBA

SAM 0.690 0.673 0.922 0.720
HQ-SAM 0.825 0.718 0.930 0.747
Pi-SAM 0.864 0.766 0.901 0.788

annotation logic leads to several segmentation masks containing
multiple discrete objects, especially in the validation set. However,
our Pi-SAM misjudges the target objects in parts of this kind of
data when dealing with input prompt bounding boxes, leading to
some failed examples. However, for mBA, our Pi-SAM significantly
surpasses the comparative methods on both sets. This result demon-
strates Pi-SAM’s powerful capability to predict precise boundaries
and capture details on high-resolution images.
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4.5 Ablation Study
Firstly, we conducted an experiment to evaluate the effectiveness
of the proposed additional modules within our Pi-SAM. Results are
shown in Tab. 5, in which the different items refer to:

(1) RGB-E: Whether the RGB embedding is incorporated into
the high-resolution mask feature.

(2) HR-Conv: Whether a convolution-based output layer is
employed to replace the dot-product-based output layer of
SAM.

(3) Object Embedder: Whether the Object Embedder is intro-
duced to enhance the low-resolution mask feature.

The results indicate that the introduction of each module can
effectively improve the segmentation precision of Pi-SAM. There-
fore, all the additional modules we proposed play crucial roles in
the overall effectiveness of the system.

Table 5: Ablation study on the incorporating of RGB Embed-
ding and the introduction of High-Resolution Convolutional
Head and Object Embedder. The best results are highlighted
with bold, and our default configuration is marked in gray .

RGB-E HR-Conv Object Embedder IoU(%)↑ Bnd IoU(%)↑
× × × 70.2 60.93
✓ × × 79.48 72.48
✓ ✓ × 80.93 74.1
✓ ✓ ✓ 82.52 76.14

In the second study, we evaluate the efficiency of Pi-SAM and
compare it with SAM and HQ-SAM. Results in Tab. 6 indicate that,
compared to SAM, our Pi-SAM introduces only a few trainable
parameters while maintaining 93% of the original inference speed.
Compared to HQ-SAM, our Pi-SAM introduces a similar order of
trainable parameters but achieves significant precision improve-
ments as shown in previous experiments. This effectively demon-
strates the efficiency of Pi-SAM in both inference and fine-tuning.

Table 6: Efficiency evaluation of the proposed Pi-SAM. All
the three methods are the ViT-huge version.

Model FPS FLOPs(T) Params(G) Learnable
SAM[14] 5 1.49 1.19 100%
HQ-SAM[12] 4.8 1.49 1.19 0.43%
Pi-SAM(Ours) 4.65 1.49 1.19 0.48%

5 CONCLUSION AND DISCUSSION
5.1 Conclusion
In this work, we explored transferring SAM into the domain of
high-resolution images and proposed Pi-SAM. Compared to the
original SAM and its variant, HQ-SAM, Pi-SAM demonstrates the
following superiorities:

Firstly, Pi-SAM possesses a strong perception capability for
the extremely fine details in high-resolution images, enabling it to
produce high-precision segmentation masks.

Table 7: An analysis of Pi-SAM’s preference for different
types of clicks during interactions. “Ori” refers to the straight-
forward prediction without further interactions, “FG” refers
to clicking foregroundpoints only, “BG” refers to background
only, and “ALL” refers to a combination of both.

Dataset Measure Ori All BG FG

DIS5K

𝐹𝑥
𝛽
↑ .753 .821 .852 .82

𝐹𝜔
𝛽
↑ .711 .8 .818 .797

M ↓ .106 .062 .058 .068
𝑆𝑚 ↑ .758 .835 .839 .83
𝐸𝑚
𝜙

↑ .832 .909 .919 .906

Secondly, Pi-SAM supports more precise user interactions. In
addition to the native promptable ability of SAM, Pi-SAM allows
users to interactively refine the segmentation predictions through
simply clicking. While the original SAM fails to achieve this on
high-resolution images.

Thirdly, Pi-SAM freezes all SAM’s original parameters and intro-
duces very few additional trainable parameters and computational
costs to achieve the above performance.As a result, Pi-SAM main-
tains 93% of the original inference speed of SAM. This demonstrates
the highly efficient fine-tuning and inference of Pi-SAM.

We believe all the experiments collectively demonstrate the pow-
erful capability of the proposed Pi-SAM in high-resolution images,
and hope that Pi-SAM can serve as a robust general segmentation
tool for high-resolution images and realize its value across various
downstream applications.

5.2 Limitation
Although the results shown in Tab. 2 demonstrate that Pi-SAM
can effectively perform precise interactions with users and correct
prediction errors, we found that Pi-SAM exhibits certain preferences
for different types of input clicks (foreground and background),
unable to equally correct foreground and background errors.

Specifically, we conduct an additional experiment to test the
interaction preference of Pi-SAM.We specify three different settings
where the type of clicks of each is limited to only foreground,
background, or a combination of both. Results shown in Tab. 7
indicate that, Pi-SAM exhibits a preference for background clicks
over foreground ones.

Upon inspection, we found that this is largely due to biases in
the dataset distribution. During training, the input points for inter-
action are simulated based on the difference between the model’s
straight-forward prediction and the ground truth. The presence
of numerous complex topological structures in the DIS5K dataset
leads to more background prediction errors in the straight-forward
prediction. Consequently, during training, the simulated interaction
clicks also have a higher proportion of background. As a result, the
model undergoes more training on background clicks, leading to
the aforementioned model preference.

In our future work, we will continue to address the issue of
imbalanced-distribution and provide users with a more interactive-
friendly and high-precision segment-anything tool.
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