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ABSTRACT

We develop a general layer-wise and adaptive compression framework with applica-
tions to solving variational inequality problems (VI) in a large-scale and distributed
setting where multiple nodes have access to local stochastic dual vectors. This
framework encompasses a broad range of applications, spanning from distributed
optimization to games. We establish tight error bounds and code-length bounds for
adaptive layer-wise quantization that generalize previous bounds for global quanti-
zation. We also propose Quantized and Generalized Optimistic Dual Averaging
(QODA) with adaptive learning rates, which achieves optimal rate of convergence
for distributed monotone VIs. We empirically show that the adaptive layer-wise
compression achieves up to a 150% speedup in end-to-end training time for training
Wasserstein GAN on 12+ GPUs.

1 INTRODUCTION

Under classical learning theory setting, if we have sufficient training samples, computational resources,
along with a powerful first-order method to optimize an empirical risk properly, then the output
of the first-order method is expected to achieve a small test error. For high-dimensional and non-
convex settings with deep neural networks (DNNs), minimizing the empirical risk is a challenging
optimization task due to non-convexity and lack of guarantees in terms of global optimality. Beyond
empirical risk minimization, formulating the problems of training generative adversarial networks
(GANSs) (Goodfellow et al., |2020) and equilibrium in more general and possibly non-zero-sum
game-theoretic settings require more complicated mathematical frameworks. Variational inequality
(VD) is a mathematical framework for modeling equilibrium problems (Facchinei & Pang, 2003}
Bauschke & Combettes, |201°7; |Antonakopoulos et al., 2021)), e.g., in applications such as robust
adversarial reinforcement learning (Pinto et al.l 2017), auction theory (Syrgkanis et al.| [2015)), and
adversarially robust learning (Schmidt et al.,2018). For an operator A : R — R9, a VI finds some
x* € R? such that

(A(x*),x — x*) >0 forall x € R (VD
In terms of implementation in a synchronous system with K nodes, first-order solvers for empirical
risk minimization and [VI}solvers are scaled by distributing computation among nodes, e.g., b
partitioning the entire dataset in a cloud data center, followed by aggregation of local computations
Nodes can be, e.g., hospitals and cellphones that train a global model or personalized models
collaboratively in a federated learning setting.

In large-scale settings, communication costs for broadcasting huge stochastic gradients and dual
vectors is the main performance bottleneck (Strom, 2015} |Alistarh et al., 2017; |Kairouz et al., 2021}
Ramezani-Kebrya et al., 2023). Several methods have been proposed to accelerate large-scale
training such as quantization, sparsification, and reducing the frequency of communication through
local updates (Kairouz et al.l 2021). In particular, unbiased quantization is unique due to both
enjoying strong theoretical guarantees along with providing communication efficiency on the fly,
i.e., it converges under the same hyperparameters tuned for uncompressed variants while providing
substantial savings in communication costs (Alistarh et al., 2017; Ramezani-Kebrya et al., 2023)).

Popular DNNs including convolutional architectures, transformers, and vision transformers have
various types of layers such as feed-forward, residual, multi-head attention including self-attention

"For simplicity, in the following, we use the term node to refer to client, FPGA, APU, CPU, GPU, worker.
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and cross-attention, bias, and normalization layers (He et al., [2016} [Vaswani et al.,[2017; [Dosovitskiy
et al., 2021)). Different types of layers learn different types of features. They are also diverse in
terms of number of parameters and their impact on the final accuracy (Dutta et al., [2020; Xin et al.|
2023; L1 et al., [2024). Similar heterogeneity has been observed for attention layers in large-scale
transformers (Markov et al.|[2022). The current communication-efficient literature does not rigorously
take into account heterogeneity in terms of representation power, impact on the final learning outcome,
and statistical heterogeneity across various layers of neural networks and across training for each
layer. Recently, layer-wise and adaptive compression schemes have shown tremendous empirical
success in accelerating training deep neural networks and transformers in large-scale settings (Markov
et al.| [2022; 2024)), but they yet to have theoretical guarantees and to handle statistical heterogeneity
over the course of training. Hence, these layer-wise compression schemes suffer from a dearth of
generalization and statistically rigorous argument to optimize the sequence of quantization and the
number of sparsification levels for each layer.

1.1 SUMMARY OF CONTRIBUTIONS

* We propose a theoretical framework for layer-wise and adaptive unbiased quantization schemes
with novel fine-grained coding protocol analysis. We also establish tight variance and code-length
bounds, which encompass the empirical layer-wise quantization methods in the literature (Markov
et al.,[2022;2024) and generalize those bounds of global quantization frameworks (Alistarh et al.}
2017; |Faghri et al.| [2020; |Ramezani-Kebrya et al., [2021]).

* To the best of our knowledge, this work is the first to incorporate optimism in solving distributed
with adaptive learning rates and layer-wise quantization. In particular, we propose Quantized
Optimistic Dual Averaging (QODA) and establish joint convergence and communication guarantees
for QODA with the competitive rates O(1/+/T) and O(1/T) under absolute and relative noise
models, respectively. Importantly, we obtain these bounds without the restrictive almost sure
boundedness assumption of stochastic dual vectors that is essential related [VI| works (Bach &
Levyl 2019; Hsieh et al.,|2021; |Antonakopoulos et al., [2021) including the global quantization
distributed solver Q-GenX (Ramezani-Kebrya et al.,[2023).

* Empirically, we show that QODA with layer-wise compression significantly improves the conver-
gence and training time compared to both the global quantization baseline Q-GenX (Ramezani
Kebrya et al.,[2023) and the (uncompressed) full precision baseline. Indeed, QODA achieves up to
a 150% speedup in terms of end-to-end training time in an application of training Wasserstein
Generative Adversarial Network (WGAN) (Arjovsky et al.| 2017)) on 124+ GPUS.

1.2 RELATED WORKS

For empirical risk minimization, adaptive quantization, has been proposed to adapt quantization
levels (Faghri et al., [2020; [Wang et al., |2018; [Makarenko et al.| [2022) and the number of quanti-
zation levels (Guo et al.,|2020; |/Agarwal et al., 2021)) over the trajectory of optimization. All these
quantization schemes are global w.r.t. layers and do not take into account heterogeneities in terms
of representation power and impact on the final learning outcome across various layers of neural
networks and across training for each layer. Markov et al.| (2022;|2024) have proposed unbiased and
layer-wise quantization where quantization parameters are updated across layers in a heuristic manner
and have shown tremendous empirical success in training popular DNNs in large-scale settings.
However, these current layer-wise schemes do not have strong theoretical guarantees and do not
handle statistical heterogeneity over the course of training.

The layer-wise structure of DNNs have been leveraged in the development of different compression
ideas with sketches or bandwidth awareness (Li et al., 2024} Xin et al.| [2023). Moreover, several
works (Mishchenko et al.l [2024; [Horvath et al., 2023} |Wang et al.| 2022)) study block quantization
that divides the operator/vector into different blocks before quantization. In Appendix we will
show our layer-wise quantization is fundamentally different from block quantization.

There is a line of research that focuses on designing distributed methods for |Vl and saddle points
problems. [Kovalev et al.| (2022) consider strongly monotone @; Beznosikov et al.|(2023b)) concern
with [VI] problems under co-coercivity assumptions. Assumptions such as strong monotonicity and
co-coercivity are quite restrictive in ML applications. |Beznosikov et al.| (2022} 2023a)) consider
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[VI] problems with finite sum structure with an extra J-similarity assumption in (Beznosikov et al.,
20234) . Several works (Duchi et al.| [2011}|Yuan et al., [2012} Tsianos & Rabbat, 2012) explore dual
averaging for distributed finite-sum minimization in networks. We include further related works
on unbiased quantization and optimistic gradients in Appendix[A.T] While the settings might vary,
our work is the first that 1) introduces optimism in distributed [VI| with adaptive learning rates; 2)
develops layer-wise quantization with joint convergence and communication guarantees; 3) shows
improvements in end-to-end training time in multi-node setting with efficient implementation. A
detailed comparison with the related methods is in Appendix [A.2]

2 PRELIMINARIES

A summary of commonly used notations in this paper is provided in Appendix[A.3] Given an operator
A :R? — RY, we consider these standard assumptions:

Assumption 2.1 (Monotonicity). We have that for all z, & € RY, (A(x) — A(2),z — &) > 0.
Assumption 2.2 (Solution Existence). The solution set X* := {z* € RY : z*solves (VI)} # 0.
Assumption 2.3 (L-Lipschitz). Let L € R*. Then an operator A is L-Lipschitz if

|A(z) — A(@')|. < L)z — 2’| Ve ' R

In this work, we consider methods that rely on a so-called stochastic first-order oracle (Nesterov,
2004). This oracle, when called at @, draws an i.i.d. sample w from a complete probability space
(Q, F,P) and returns a stochastic dual vector g(x;w) given by:

g(@;w) = Az) + U(z;0), M

where U (x; w) denotes the (possibly random) error in the measurement or noise. Next, we consider
two important noise profiles: absolute noise and relative noise, formally defined as:

Assumption 2.4 (Absolute Noise). Let x € R% and w ~ P. The oracle g(x; w) satisfies unbiasedness
Elg(;w)] = A(x) and bounded absolute variance E [[|U (z,w)||?] < o2

As the noise variance is independent of the value of the operator at the queried point, this type of
randomness is absolute. This noise profile is common in the (distributed) [VI|literature (Woodworth
et al.| [2021; [Ene & Le Nguyen, |2022; Tupitsa et al.,[2024). It is also known as the bounded variance
assumption in stochastic optimization literature (Nemirovski et al., [2009; Juditsky et al., |2011)).
Alternatively, a more favorable noise profile is observed when the stochastic error vanishes as we
approach a solution of [VI} This is formally captured by the notion of relative noise (Polyak, [1987):

Assumption 2.5 (Relative Noise). Let z € R? and w ~ P. The oracle g(x;w) satisfies: unbiasedness
Elg(x;w)] = A(x) and bounded relative variance E [||U (z, w)||?] < og|A(z)|?.

This relative noise model has been studied in several ML problems such as over-parameterization
(Oymak & Soltanolkotabil 2020), representation learning (Zhang et al., |2021), and multi-agent
learning (Lin et al., 2020). In Appendix [B.3] we provide more specific relative noise examples. This
model may result in obtaining the well-known order-optimal rate of O(1/7') in deterministic settings.

Let X C R denote a non-empty and compact test domain. The main measure to evaluate the quality
of a candidate solution is the restricted gap function (Nesterov} |2009; |Antonakopoulos et al., 2019)

(more properties in Appendix [B.1):

GAPx(2) = sup(A(z), & — x). (GAP)
xeX

Remark 2.6. The majority of adaptive methods forliterature (Bach & Levy, |[2019; Hsieh et al.,
2021; |Antonakopoulos et al.|[2021)) including the baseline Q-GenX (Ramezani-Kebrya et al., 2023))
assume almost sure boundedness of stochastic dual vectors under both absolute and relative noise
profiles. In addition, previous theoretical results on global quantization are established under a
similar assumption with bounded second moments of stochastic gradients (Alistarh et al., 2017;
Ramezani-Kebrya et al., 2021} [Faghri et al.,[2020). In Section[d] we establish the joint convergence
and communication guarantees of our[VI}solver with layer-wise quantization without this assumption.
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3 QUANTIZED OPTIMISTIC DUAL AVERAGING

Consider a distributed and synchronous setting with K nodes, along the lines of the standard setting
for data-parallel SGD (Dean et al., 2012; |Alistarh et al., | 2017). Here, the nodes partition the entire
dataset among themselves such that each node retains only a local copy of the current parameter
vector while having access to independent private stochastic dual vectors. In each iteration, each
node receives stochastic dual vectors, aggregates them, computes an update, and broadcasts the
compressed update to accelerate training. These compressed updates are decompressed before the
next aggregation step at each node.

3.1 ADAPTIVE LAYER-WISE QUANTIZATION

Adaptive layer-wise quantization has only been studied empirically in (Markov et al., [2022} 2024)
with promising results in applications such as Transformer-XL on WikiText-103 and ResNet50 on
CIFAR-100 training. Our goal is to provide a novel general formulation considering statistical
heterogeneity across layers and establish theoretical guarantees for adaptive layer-wise quantization
with tailored coding schemes.

We first outline the general formulation for layer-wise and unbiased quantization. We study unbiased
compression, where, in expectation, the output of the decompression of a compressed vector is equal
to the original uncompressed vector. Let V}, ; and Vk,t denote the uncompressed and compressed
stochastic dual vector in node & at time ¢, respectively. Let v € R? be a vector to be quantized. For
i=1,...,d, letu; = |v;|/||v||, be the normalized coordinate. At each time ¢, instead of a global
sequence of quantization levels for all coordinates (Alistarh et al., 2017; [Ramezani-Kebrya et al.|
2023), we consider a set L®M of M types of sequences {£€%1, ..., €44} to be optimized with flexible
and adjustable numbers of levels «, .. ., oy, respectively. We denote £4™ € L5M the sequence
of type m at time ¢, given by [(o, (7™, ... (5™ Lo, 1], where 0 = £y < (4™ < -+ < L5 <
o, +1 = 1. Let S®™ be the set of all normalized coordinates that use type m sequence £-™ at time t.
Let 75" (u) denote the index of a level with respect to u € [0, 1] such that £, = < u < £,

Tt.nL(u) = Tt””(’u,)+1'

Let &0 (u) = (u — 09, )/ (£ — (5™ ) be the relative distance of u to the level

Tt () Ttm (u)41 Ttm (y)

78™ () + 1. Define the following random variable

ftT’:Tlm(u) with probability 1 — gtnn(u);
oo () = { e Vit probability 1= ¢
)+1 with probability £ (u).

TH™m (u

We then define the random quantization of vector v as Qv (v) = [Qpe.n (v1), ..., Qe (vg)] T
where form =1,2,..., M, and any u; € S*™, we have Q:.n (v;) = ||v||4-sign(v;) - ger.m (u;). Let
qr:.m ~ Pg represent d variables {qg:.m (u;)};c[q) sampled independently for random quantization.
As this scheme is unbiased, we can measure the quantization error by measuring the variance

Eq,, a [[|Quene (v) — vl[3] given by

M
2 2
lol2 > D od(ui; £4m), (Var)
m=1u;eStm
t, t, . .

where o) (ui; €0™) = E[(qerm (ui) — u)?] = (ETZ?%m(ul)H — i) (u; — ETml(ui)) is the variance
of quantization of a single coordinate u; € S with type m sequence £-™. We can optimize M
quantization sequences by minimizing the overall quantization variance

min B Eq, , [[|Qui(g(zew)) — Al@o)]3]

Lt-M et M

where £8M = {{et1, .. £"M} 2 Vm € [M], Vj € [aum], €™ < 657 by = 0,4q,,41 = 1},
denoting the collection of all feasible sets of type m levels. Since random quantization and random
samples are statistically independent, the above minimization is equivalent to

Lomin, BBg oy [1Ques (9@ w) — glasw)a] - (MQV)
Remark 3.1. We now elaborate on how layer-wise quantization is always better than global quanti-
zation such as (Alistarh et al.,[2017; [Faghr et al.,|2020; |Ramezani-Kebrya et al.| [2021;2023). We
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optimize M quantization sequences by minimizing quantization variance (MQV)). Global quanti-
zation models will find an overall optimum sequence ¢%. for all the M types. Hence, the collection
of M sequences in this global case is simply Lf;l]z\;/[ = {0, .. 0L}, where ¢! repeats M times. By
the minimality of (MQV)), we obtain the quantization variance for layer-wise quantization is always

upper bounded by that of global quantization:
min B [[|Que.ss (9(2iw)) — gl@eiw)[3] < E [[Que s (9(2iiw)) — glaeiw)3]

3.2 ENCODING

Coding schemes are applied on top of our layer-wise quantization to further reduce communication
costs. We now introduce two practical coding protocols for layer-wise quantization that require a
fine-grained analysis different from those for global quantization (Alistarh et al.,[2017; |Faghri et al.|
2020; Ramezani-Kebrya et al.,[2021;[2023). For some ¢ € Z , any vector v € R? can be uniquely
represented by a tuple (||v]|,, s, u) where |[v]|, is the L? norm of v, s := [sign(v1), .. .,sign(va)] "
comprises of signs of each coordinate v;, and w := [u1,...,uq] ", where u; = |v;|/||v]|,, are the
normalized coordinates. Note that 0 < u; < 1forall ¢ € [d].

3.2.1 CoODING ProTOCOL 1

Let AV™ = {£t LB k™ 8™ Y be the collection of all the levels of the sequence £5™. Let

Y Y Y, +1
QM = Um LA™ be the collection of all the levels of M sequences at time ¢. The overall encoding,

i.e., composition of coding and quantization, ENC(||v||y, 8, qrear) : Ry x {£1} x (Q6M)d —
{0,1}* uses a standard floating point encoding with C,, bits to represent the non-negative scalar
lv||4, encodes the sign of each coordinate with one bit, and then utilizes an integer encoding scheme
U (M) — {0,1}* to efficiently encode every quantized coordinate with the minimum expected
code-length. To solve (MQV), we sample Z stochastic dual vectors {g(x¢;w1), ..., g(@;wz)}.
Let F, denote the marginal cumulative distribution function (CDF) of normalized coordinates
conditioned on observing ||g(z;;w.)||,- By law of total expectation, for L& € £6M can
be approximated by:
M oam bm M am bm

. i+1 m 7+1 m
H{?%}Z”g xs;w.)| ZZ/ u; £°™) dF, (u) or mm Z /1_; u; £°™) dF (u), (2)

m=1 i=0 mle

where F'(u) = 22:1 . F.(u) is the weighted sum of the conditional CDFs with

Z
A = g w2 gt w2 &)
z=1

3.2.2 CODING PrOTOCOL 2

With M types of sequences, we call a coordinate of type m at time ¢ if it is quantized with type m
sequence £ . Protocol 2 processes the coordinates of M types in parallel. Each type has its own
code-book where different types may share code-words to minimize the code-length, but the receiver
knows the type of any code when decoding. The overall composition of coding and quantization,
ENC(||vllq, S, gLt.ar) consists of M parallel encoding maps ENC(||v||4, S, get.m ) uses a standard
floating point encoding with C|, bits to represent the positive scalar ||v||,, encodes the sign of each
type m coordinate with one bit, and then utilizes correspondingly type m integer encoding scheme
pm Ab™ 5 L0, 1} to efficiently encode every type m quantized coordinate with the minimum
expected code-length. To solve for Protocol 2, we first sample Z stochastic dual vectors
{9(xs;w1),...,9(xs;wz)}. Let FI* denote the marginal CDF of normalized coordinates of type m
conditioned on observing ||g(x;;w,)||,- Note that, in this Protocol 2, we have M marginal CDFs
corresponding to m types instead of only one marginal CDF in Protocol 1. By the law of total
expectation, can be approximated by solving M problems in parallel for each £5™:

1,;,7n

am tm, am
i+1 ,m m . K ,m ram
mmZHg 20521 2/ Blust ™) AP ) or iy [ oh(u M) A (w), &)

t,m
=0 " %4

where F™(u) = Y27, X\, F7"(u) is the weighted sum of the conditional CDFs of normalized
coordinates of type m with weights \. similar to (3). In our implementation (details in Section[6), we
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utilize L-GreCo (Markov et al.| 2024) which executes a dynamic programming algorithm optimizing
the total compression ratio while minimizing compression error (MQV) from (2) or ().

The decoding DEC : {0, 1}* — R first reads C, bits to reconstruct ||v||,, then applies decoding
schemes (U™)~! : {0,1}* — A®™ to obtain normalized type m coordinates without confusion
since the number of coordinates \St’m|, their order, and the corresponding code-book are known at
the decoder. The discussion for the choice of a specific lossless prefix code and more details on
coding schemes are included in Appendix [D.1]

Remark 3.2. We note that Protocol 2 offers higher compression ratios through code-word sharing
across different types. The improved compression ratio comes at the expense of increased encoding
and decoding complexity along with possibility of increased re-transmission overhead in case of
unstable networking environment. When the end-to-end delay for message passing in the underlying
network is highly random such as jitters (Verma et al., [1991)), Protocol 1 will be optimal since
every quantization level for every type has a unique code-word. However, Protocol 2 will possibly
require several transmissions in case of unstable networks. When the network is stable and delays are
deterministic, we propose to adopt Protocol 2. Our coding alternatives provide a trade-off between
compression ratio, re-transmission probability, and encoding/decoding complexity.

3.3 OPTIMISTIC DUAL AVERAGING

Our described layer-wise quantization and  Ajgorithm 1: Quantized Optimistic Dual Averaging
coding protocols are general with applica-

tions such as empirical risk minimization by ~Require: Local training data; local copies of Xy, Y4;
training transformers (Markov et al., 2022} update steps set U; learning rates {:}, {n:}
2024). In this section, we will show one I’ fort =1to T do

such application with our novel Quantized % it €U then
Optimistic Dual Averaging (QODA), Algo- 3 fori =1to K do o
rithm [T} to efficiently solve distributed 4 Efﬁf:lently estimate distributions o{ ﬁor_
Importantly, this optimistic approach re- malized dual vectors and update L."
duces one “extra” gradient step that ex- 5 Update M sequences of levels in parallel
tra gradient methods and variants such as Q-  ©: end for
GenX (Ramezani-Kebrya et al., [2023)) take 7 endif
(by storing the gradient from the previous it- 8:  fori=1to K do .
eration, refer to line 9 and 16). Therefore, 9: Retrieve previously stored Vi ;1,2
QODA reduces the communicatiqn burden 10: X1t /2 Xt — 7 25:1 Vk,t—1/2/ K
by ha}f d;coupled from acceleration due to 7. Vitr1/2 & Ai(Xit1/2) + Ui Xig1)2)
quantization compared to Q-GenX. At cer- . d; , « ENCODE (Q]Lt,M (Vits1/2); LtM )
tain steps, every node calculates the sufficient 13: Broadcast d. ’
statistics of a parametric distribution to esti- 1 4: Receive d. lftrom cach node i
c e . . . : it
mate distribution of dual vectors in lines 3 A ’ Y
to 5. Let Viy = Q(Viy) = Q(Ax(X,) + 13 Vi,t+1/g < DECODE(d,; ;; L")
Ui (X)) denote the unbiased and quantized 16: Store Vi, 411/2
.stoch.astlc dual vectors fo? n.()dg ke [K]and 7. Vi <Y, — 2521 Virr1/2/ K
iteration ¢ € [T']. The optimistic dual averag- qg. Xpp1 < i1 Yos1 + X1

ing updates in (3) appear in lines 10, 17 and  19.  end for
18. Our layer-wise quantization with Qrt.v  50. end for
and coding protocols are applied in lines 12

and 15. The loops are executed in parallel “Additional details are provided in Remark 3.3]
on the nodes.

K K
Xit1p=Xe —m Z Vit—1/2/K; Vg1 =Y, — Z Viwr12/K; Xep1 = X1+ mei1Yagr. (5)
k=1 k=1

In general, learning rates ~; and 7; can be chosen such that they are non-increasing and v; > n; > 0.
We propose the following adaptive learning rate schedules for updates (5)) and in Algorithm [I]

-1 K ) ) 1
=" = (1+ZZHV1<:,5+1/2 _Vk,sfl/2H*/K2) . (6)
s=1k=1

The two learning rates here are equal, but they can be different in an alternative setting in Section 3]
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Remark 3.3. One possible solution of efficiently estimating the distributions of dual vectors (line 4
in Algorithm[T)) is to use a parametric model of density estimation such as modelling via truncated
normal with efficiently computing sufficient statistics (Faghri et al.| [2020). The set of update steps set
U in Algorithm I)is determined by the dynamics of distribution of of normalized dual vectors over
the course of training. In Section@ we use L-GreCo (Markov et al., [2024)) to update the levels.

4 THEORETICAL GUARANTEES

4.1 COMPRESSION BOUNDS

We first establish a variance bound for a general layer-wise and unbiased quantization scheme.
We drop time index ¢ for notation simplicity. Let ¢ € Z. Let o = MaXo<j<an er /e, and
™M = max| <m<M /M. Denote the largest level 1 across M types /) = Max| <m< M M. Let
dyp, = (2/€M)™in{2:4} We now present the variance bounds for our layer-wise quantization schemes:

Theorem 4.1 (Quantization Variance Bound). Let v € R? be a vector to be quantized with L9
normalization. With unbiased quantization of v, i.e., Eq_,, [Qpm (v)] = v, we have that

Eq,u [|Quit (v) = vli3] < eqllvl3, @)

M FM\2 ;2/ min{q,2} _ . .
where eQ = (ZJZZMUQ 4 (£17)%d 4q 1{d<d¢n} + (e{\{d2/ min{q,2} 1)d2/ m1n{q,2}l{d Z dth}-

The proof is provided in Appendix [C]

Remark 4.2. For the special case of M = 1, our bound recovers (Ramezani-Kebrya et al.} 2023}
Theorem 1), matching the lower bound 2(d) in the regime of large d and L* normalization. Moreover,
under M = 1, this bound holds for general L¢ normalization and arbitrary sequence of quantization
levels as opposed to (Alistarh et al., 2017, Theorem 3.2) and (Ramezani-Kebrya et al., 2021, Theorem
4), which only hold for L* normalization with uniform and exponentially spaced levels, respectively.

We now establish code-length bounds for both protocols, with proofs in Appendix [D.2]and [D.3}

Theorem 4.3 (Code-length Bound for Protocol 1). Let pJ* denote the probability of occurrence
of £" for m € [M] and j € [ay,]. Under the setting specified in Theorem the expectation
EywEq, [ENC (Qpa (g(2;w)); LM)] of the number of bits under Protocol 1 is bounded by

EwEq, v [ENC (Q]LM (g(w;w));LMﬂ =0 (( - i Py — i %p}" logp}")d>- ®)
m=1

m=1j=1

Theorem 4.4 (Code-length Bound for Protocol 2). Let pJ* denote the probability of occurrence
of {7 for m € [M] and j € [ay,]. Under the setting specified in Theorem the expectation
EyEq [ENC (Q]LM (9(z;w)); ]LM)] of the number of bits under Protocol 2 is bounded by

EuEq,y [ENC (Quu(g(@iw))iLM )] = 0 (( S-S logﬁ;-")qmd>, ©

m—1 m=1j=1

where q.,, is the proportion of type m coordinates across all coordinates.

Remark 4.5. For the special case of M = 1, our bound for Protocol 1 in Theorem recovers
(Ramezani-Kebrya et al., [2023] Theorem 2). Moreover, under M = 1, L? normalization and s = Vd
as in (Alistarh et al.l 2017, Theorem 3.4), our bound (@) for Protocol 1 can be arbitrarily smaller
than (Alistarh et al.,|2017, Theorem 3.4) and (Ramezani-Kebrya et al.| 2021, Theorem 5) depending
on the probabilities {po, . . ., Ps+1}-

4.2 ALGORITHM COMPLEXITY

Now, we will outline the guarantees for Algorithm[I] Here, Algorithm[I]is executed for 7" iterations
on K nodes with learning rates in @ Quantization sequence £™ is updated J™ times where (7" is

m

used for T, ; iterations where Z%Zl > j—1 Tm,j = T. In particular, £]" has variance bound ¢ .
and code-length bounds Ng . ; in (8) and (9) under Protocol 1 and 2, respectively. Denote

the average variance upper bound £ = Zﬁf:l Z‘j]:l T i€0,m,;/T and the average expected
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code-length bound Ngy = SN Zj:l Tm,jNQ,m,;/T. Denote the average square root variance
o~ M J’VYL T —
bound £q =31 > 5y T, j/EQm.j/T- Denote 3y Xyp1/2/T = Xip/2.

Algorithm requires each node to send in expectation at most N communication bits per iteration.
Under the absolute noise model, we can bound [GAP|of Algorithm [T]with the proof in Appendix [E.2}
Theorem 4.6 (Algorithm [T|under Absolute Noise). Suppose the iterates X, of Algorithm[l| are
updated with learning rate schedule given in (@for allt =1/2,1,...,T. Let X C R be a compact
neighborhood of a solution and D? := sup,c v || X1 — p||3. Under Assumptions and
we have

E [Gapy (Xit1/2)] = O (((LD +JAXY)||2 + 0)55 + o) D?L?/\/TTK) .

Now only for the relative noise profile, we introduce a mild regularity condition of co-coercivity,
similar to QGen-X (Ramezani-Kebrya et al.,[2023) to obtain the fast rate O(1/T')

Assumption 4.7 (Co-coercivity). For 8 > 0, we say operator A is 3-cocoercive when
(A(@) - Aly),z —y) > Bl Az) - A(y)[? Vea,yecR™

Further details about this assumption is in Appendix With this assumption, we obtain the
following faster convergence guarantee for Algorithm [TJunder relative noise:

Theorem 4.8 (Algorithm [T under Relative Noise). Suppose the iterates X, of Algorithm [I| are
updated with learning rate schedule in @for allt = 1/2,1,...,T. Let X C R% be a compact
.2.3

neighborhood ofasolution. Let D? := sup,e x | X1 — p||3. Under Assumptions 2.3
and we have

E [Gapy (Xit1/2)] = O ((0rEQ +8q + 0r)D*/(TK)) .

The proof details are included in Appendix

Remark 4.9. Both theorems show that increasing the number of processors K lead to faster conver-
gence for monotone [VIs, matching the asymptotic rates for 7" and K in (Ramezani-Kebrya et al,
2023) which requires an extra almost sure boundedness assumption. Under the absolute noise model
and by setting the number of gradients per round to one, our results match the known lower bound
for convex and smooth optimization £2(1/vTK) (Woodworth et al., 2021, Theorem 1) Previously,
(Ramezani-Kebrya et al., 2023, Theorem 3) matches this lower bound but with an extra assumption
that the operator is almost sure bounded.

5 ALMOST SURE BOUNDEDNESS MODEL

We proposed Algorithm[T]and proved its guarantees for the general class of monotone L-Lipschitz
@. However, in practice, relevantworks (Bach & Levy}|2019; Hsieh et al.,[2021}; |/Antonakopoulos
et al.,|2021) including the baseline Q-GenX (Ramezani-Kebrya et al.l |2023)) have an extra assumption
of (almost sure) boundedness of the stochastic dual vector and previous global quantization works
Alistarh et al.|(2017); Ramezani-Kebrya et al.[(2021)); Faghri et al.|(2020) has a similar assumption of
a second-moment upper bound of the stochastic gradient (stochastic dual vector in our setting).

Assumption 5.1 (Almost Sure Boundedness). There exists J > 0 s.t. ||g(x; w)||. < J almost surely.
Under this setting, the proposed learning rate (6) and its theoretical guarantees in Section 4.2 certainly

still hold. We can obtain the similar rate O(1/T") to Theorem for the relative noise case without
the co-coercivity Assumption with alternative adaptive learning rates and § € (0,1/4]:

t—2 K o -2 K i
N 2 d— 5 N 2 — =
Y= (1 + E E HVk,s+1/2 /Kz) e = (1 + E E HVk,s+1/2H JK? + |1 Xs - Xs+1|\§) Z(AlY)
s=1 k=1 s=1k=1

The details for this alternative (Alf) learning rates is included in Appendix [F.2] Two learning rates
allow a larger extrapolation step in the first line of (5), so the noise is an order of magnitude smaller
than the expected variation of utilities (Hsieh et al.| 2022). We now provide the convergence of
Algorithm [T under relative noise with learning rates [Alt|and without the co-coercivity assumption.

2Qur guarantees for quantization, coding procedures and converegence under absolute noise do not require
co-coercivity. This assumption is only needed to establish the fast rate O(1/7") under relative noise.

3In (Woodworth et al.,[2021) their function F is L-smooth implies that the V I, or the operator in our case,
is L-Lipschitz.
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Theorem 5.2 (Algorithm [Ijunder Relative Noise without Co-coercivity Assumption). Suppose the
iterates X; of Algorithm|l|are updated with learning rate schedule in @for alt=1/2,1,...,T.
Let X C R be a compact neighborhood of a solution for , £q as in Section and D? =

supye v [| X1 — pll3. Under Assumptions and Sor Algorithm|I|with learning

rates ([All), we have

E [Gapy (Xi4+1/2)] = O ((0rEQ +8g + 0r)D*/T) .

The proof is in Appendix Here, under the same assumptions as the baseline Ramezani-Kebrya
et al.| (2023), we can obtain the similar rate O(1/7") under relative noise without the co-coercivity
assumption. To underscore the significance of eliminating the co-coercivity assumption, we note
that the important class of bilinear games, for instance, are not co-coercive. Furthermore, we also
include the guarantees for absolute noise for this model in Appendix [F.I5] where we also obtain the

rate O(1/+/T) as Theorem 4.6

6 NUMERICAL EXPERIMENTS

To further validate our theoretical findings, we have implemented QODA in Algorithm [I] based
on the codebase of (Gidel et al.,[2018) and train WGAN (Arjovsky et al.,[2017) on CIFAR10 and
CIFAR100 (Krizhevsky, [2009). To support efficient compression, we use the torch_cgx Pytorch
extension (Markov et al.| [2022). Moreover, we adapt compression choices layer-wise, following
the L-GreCo (Markov et al.,[2024) algorithm. Specifically, L-GreCo periodically collects gradients
statistics, then executes a dynamic programming algorithm optimizing the total compression ratio
while minimizing compression error.

In our experiments, we use 4 to 16 nodes, each with a single NVIDIA RTX 3090 GPU, in a multi-node
Genesis Cloud environment with 5 Gbps inter-node bandwidth. For the communication backend,
we pick the best option for quantized and full-precision regimes: OpenMPI (opel |2023)) and NCCL
(nccl [2023)), respectively. The maximum bandwidth between nodes is estimated to be around 5
Gbit/second.

We follow the training recipe of Q-GenX (Ramezani-Kebrya et al.,2023), where authors set large
batch size (1024) and keep all other hyperparameters as in the original codebase of (Gidel et al.,
2018). For global and layer-wise compression, we use 5 bits (with bucket size 128), and run the
L-GreCo adaptive compression algorithm every 10K optimization steps for both the generator and
discriminator modelﬂ The convergence results over three random seeds are presented in Figure
The figure demonstrates that the adaptive QODA approach not only recovers the baseline accuracy
but also improves convergence relative to Q-GenX.

In order to illustrate the impact of QODA on the wall-clock training time, we have benchmarked the
training in three different communication setups. The first is the original 5 Gbps bandwidth, whereas
the second and the third reduce this to half and 1/5 of this maximum bandwidth. We measured the
time per training step for uncompressed and QODA 5-bit training. Note that time per step is similar
for for both data sets. Table [T]shows that layer-wise quantization achieves up to a 47% improvement
in terms of end-to-end training time.

Mode 1 Gbps | 2.5 Gbps | 5 Gbps
Baseline 291 265 251
QODAS 197 195 195
Speedup | 1.47x 1.36x 1.28x

Table 1: Time per optimization steﬂin ms) for baseline and QODAS with different inter-node bandwidths.

“For the sake of a fair comparison to QGen-X, we did not include any additional encoding on top of
quantization just as QGen-X did not.

5The optimization step includes forward and backward times. More precisely, the backward step consists of
backpropagation, compression, communication and de-compression.
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Figure 1: FID evolution during training. We compare basic Adam optimization against QODA-based extension
of Adam with global (Q-GenX (Ramezani-Kebrya et al.,2023)) and layer-wise (L-GreCo) quantizations.

Mode | 4GPUs | 8 GPUs | 12 GPUs | 16 GPUs
baseline 251 303 318 285
QODA5S 195 165 127 115
Speedup | 1.28x 1.83 % 2.50% 2.47x

Table 2: Time per optimization step (in ms) for baseline and QODAS with different node counts.

Table[2] demonstrates the scalability of QODA up to 16 GPUs under weak scaling, i.e. with a constant
global batch size. We observe a significant up to a 150% speedup in comparison to the uncompressed
baseline. Moreover, baseline step time degradation makes the scaling useless, whereas QODA allows
to avoid such degradation.

7 LIMITATIONS AND FUTURE DIRECTIONS

While monotone VIs can cover a wide range of ML applications as stated in our introduction,
there are situations that general non-monotone or (weak) minty VIs are required (lusem et al.,
2017; Kannan & Shanbhag|, [2019; Beznosikov et al.,[2022)). Hence, for future directions, one may
look into communication-efficient schemes to solve non-monotone VIs with an adaptive layer-wise
compression. Furthermore, since our work is already lengthy and proposes theoretical novelties, it
limits our ability to include many numerical applications without making the paper overly convoluted.
Several applications of layer-wise quantization, such as training large-scale transformers, have been
explored in|Markov et al.| (2022;2024). Given our established theoretical results for communication-
efficient QODA, in the future, it is therefore interesting to consider applications beyond GANs such
as accelerating adversarial training in multi-GPU settings.

8 CONCLUSION

In brief, we introduce optimism in distributed [VI| with adaptive learning rates, develop layer-wise
quantization with joint convergence and communication guarantees, and show improvements in
end-to-end training time in a practical multi-node WGAN setting. We establish tight variance
and code-length bounds for a general layer-wise and adaptive family of compression schemes that
generalize previous bounds for global quantization. Furthermore, we provide convergence guarantees
for QODA and achieve the fast rates O(1/+/T) and O(1/T) without the restrictive almost sure
boundedness assumption on the operator under absolute and relative noise, respectively.

10
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9 ETHICAL STATEMENT

Our main contributions are mainly theoretical in nature while we do offer the first truly multi-GPU
communication-efficient setup for GAN training with VI solvers in Section[6] Hence, we believe this
work do not pose any direct ethical concerns.

10 REPRODUCIBILITY STATEMENT

We discuss the details of our experiments in Section[f] and we also include all the code implementation
in the supplementary material. We will release the code publicly along with the camera-ready version.
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A ADDITION INFORMATION

A.1 FURTHER LITERATURE REVIEW

Unbiased quantization provides communication efficiency on the fly for empirical risk minimization,
i.e., quantized variants of SGD converge under the same hyperparameters tuned for uncompressed
variants while providing substantial savings in terms of communication costs (Alistarh et al.l 2017}
Wen et al., 2017} Zhang et al., 2017} [Faghri et al.| [2020; |Ramezani-Kebrya et al., [2021; [Markov
et al., [2024;[2022)). (Davies et al.,[2021)) has proposed lattice-based quantization for distributed mean
estimation problem.

Beyond distributed settings, the Extra-gradient and their optimistic variants have a long his-
tory in the field of optimization. The Extra-gradient, first introduced by (Korpelevich, [1976), is
known to achieve an optimal rate of order O(1/7") in monotone[VIk. This method has been further
extended in Nemirovski (2004); Nesterov| (2007)) by introducing Mirror-prox and its primal-dual
counterpart Dual-extrapolation. However, all these methods require two oracle calls per iteration
(one for the extrapolation and one for the update step) which makes them more expensive than the
standard Forward/Backward methods. The first issue to address this issue was Popov’s modified
Arrow—Hurwicz algorithm [Popov]|(1980). To that end, several extensions have been proposed such as
Past Extra-gradient (PEG) of (Chiang et al.,|2012;|Gidel et al., 2019)), Reflected Gradient (RG) of
(Chambolle & Pockl 201 1; Malitsky}, |2015; |Cui & Shanbhag|, |2016)), Optimistic Gradient (OG) of
(Daskalakis et al., 2018} Mokhtari et al.,|2019bja; Peng et al.,[2019) and Golden Ratio method of
(Malitsky, [2019)).

A.2 COMPARISONS TO RELATED METHODS

Improvement over Q-GenX |Ramezani-Kebrya et al.|(2023) (Optimism, Relaxed Assumptions,
and Layer-wise Compression): Our proposed algorithm QODA (Algorithm|T) essentially consists
of a distributed [VI] solver - Optimistic Dual Averaging (Section [3.3) - and a layer-wise compression
general framework (Section [3.1)). Firstly, our optimistic dual averaging distributed update step [3]
reduces one extra gradient step compared to the extra-gradient approach of Q-GenX, hence reducing
the communication burden by half. In addition, our algorithm QODA also requires fewer assumptions
than Q-GenX Remark [2.6] We also improve the convergence relative to Q-GenX in training WGAN

(Figure[T).

Furthermore, our layer-wise compression framework is much more general and is always better than
the global compression framework in Q-GenX (Remark [3.2). Under the special case of M = 1 with
only one type of layer, we recover the Q-GenX global compression. The compression framework
also comes with two fine-grained coding protocols, among which our Protocol 1 is a generalization
of Q-GenX coding protocol while our coding Protocol 2 is novel.

Rigours Formulations and Tight Guarantees for Layer-wise Compression such as L-Greco
Markov et al.| (2024): We provide a novel and general theoretical formulation and establish guarantees
for adaptive layer-wise quantization with tailored coding schemes, which is not studied in L-Greco.
Layer-wise quantization schemes such as L-Greco have only been studied empirically without strong
theoretical guarantees to handle the statistical heterogeneity across layers and over the course of
training. Our tight variance and code-length bounds actually hold for any general layer-wise and
unbiased quantization scheme. That is, we believe our framework is general enough to cover other
layer-wise compression methods other than L-Greco such as Cgx (Markov et al., 2022).

All in all, a combination of S0TAs QGen-X + L-Greco does not represent our novel and general
layer-wise framework with the corresponding theoretical guarantees and an associated fine-grained
coding analysis while performing twice the number of gradient computations as we do.

Comparison to Block Quantization: Several works (Mishchenko et al.,|2024; [Horvath et al., 2023}
Wang et al.| [2022)) study block quantization. We want to highlight that block (p-)quantization is
Sfundamentally different from layer-wise quantization in our paper. As (Mishchenko et al., [2024]
Definition B.1) suggests, the various blocks here follow the same scheme that is p-quantization
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(Quant,,) which is explained in (Mishchenko et al., 2024, Definition 3.2). There are two fundamental
differences compared to our layer-wise quantization:

* Each of our layer or block in this context has different adaptive sequences of levels (Section [3.1)).
This is why our method is named “layer-wise.” [Mishchenko et al.|(2024)on the other hand applies
the same p-quantization scheme Quant,, to blocks with different sizes, implying that the nature and
analysis of two methods are very different. Hence block quantization is not “layer-wise,” and its
analysis does not apply to the convergence of our methods.

» The way the quantization is calculated for each block or layer are different. [Mishchenko et al.
(2024) study and provide guarantees for the following type of p-quantization (for all blocks):
A = ||A]|psign(A) o &, where the & are stacks of random Bernoulli variables. In our work, the
sequence of levels for each layer is adaptively chosen according to the statistical heterogeneity over

the course of training (refer to equation MQV).

Furthermore, the guarantee in (Mishchenko et al., 2024, Theorem 3.3) only cover p-quantization
rather block p-quantization. In our Theorem 4.1, we provide the quantization variance bound for any
arbitrary sequence of levels for each layer in contrast with only levels only based on p-quantization.

In brief, the block quantization is similar to bucketing in unbiased global quantizaiton (QSGD
(Alistarh et al., 2017), NUQSGD (Ramezani-Kebrya et al.,[2021)), which takes into account only
the size of different blocks (sub-vectors), while for layer-wise quantization we take into account the
statistical heterogeneity and impact of different layers on the final accuracy. Due to fundamental
differences, our variance and code-length bounds require substantially more involved and different
analyses that are not possible by simple extensions of block quantization in those works.

A.3 NOTATIONS

We use lower-case bold letters to denote vectors. E[-] denotes the expectation operator. || - ||o and
|| - ||« are number of nonzero elements of a vector and dual norm, respectively. | - | denotes the length
of a binary string, the length of a vector, and cardinality of a set. Sets are typeset in a calligraphic
font. The base-2 logarithm is denoted by log, and the set of binary strings is denoted by {0, 1}*. For
any integer n, we use [n] to denote the set {1,...,n}. 1 denotes the indicator function.

B VARIATIONAL INEQUALITY BACKGROUND

B.1 GAP

Several properties of (GAP) have been explored in the literature (Nesterov, [2009; |Antonakopoulos
et al., 2019). In particular, the following classical result characterizes the solutions of via zeros

of (GAP).

Proposition B.1. (Nesterov| 2009) Let X C R? be a non-empty and convex set. Then, we have
* GAPx (&) > Oforall & € X;

* IfGAPx (&) = 0 and X contains a neighbourhood of &, then & is a solution of .

B.2 CO-COERCIVITY ASSUMPTION

We recall the co-coercivity assumption is as follows

Assumption B.2 (Co-coercivity (Bauschke & Combettes,[2017)). For S > 0, we say operator A is
[B-cocoercive when

(A(x) — Aly), = —y) > Bl A(x) - A@W)|? Va,yeR?
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Note that by Cauchy-Schwarz, we further deduce for a co-coercive operator
[A(x) — A@)l2llz — yll2 > BllAlz) — Ay)|3,
implying
lz —yli3 > 52 Alx) — Aly)|l3.

We refer the readers to (Bauschke & Combettes| 2017} Section 4.2) for further properties of co-
coercive operators.

B.3 RELATIVE NOISE EXAMPLES

Here we provide two examples in practice where the noise profile can be characterized as relative
noise:

» Random coordinate descent (RCD): At iteration ¢, the RCD algorithm for a smooth convex function
f over R? draws one coordinate i; € [d] uniformly random and computes the partial derivative
v; = Of /0z;,. The i-th derivative is updated as X; ;11 = X;; — d - a - v; ; for step-size a > 0.
This update rule can also be written as x+ = x — ag(x; ) where g;(x; 1) =d - 0f/Ox; - pand p
is drawn uniformly at random from the set of R? basis vectors {e, ..., eq}. Since df/0z; = 0
at the minima of f, we also have g (x*; ) = 0 if x* is a minimizer of f, i.e., the variance of the
random vector g(x; x) vanishes at the minima of f.

» Random player updating: Given an N-player convex game with loss functions f;, i € [IN]. Suppose,
at each stage, player ¢ is selected with probability p; to play an action following its individual
gradient descent rule X ;11 = X;; + v /p;Viy where V;, = V,f; (X,) denotes player i ’s
individual gradient at the state X; = (X1, ..., Xn ) and p; is included for scaling reasons. One
can show that all individual components of A vanish at the game’s Nash equilibria.

C PROOF OF QUANTIZATION VARIANCE BOUND

Theorem 4.1 (Quantization Variance Bound). Let v € R be a vector to be quantized with L1
normalization. With unbiased quantization of v, i.e., By ,, [Quv (v)] = v, we have that

Eq]LM [HQ]LM(U) - ’UH%] < gQHUH%v @)

5 FM1\2 2/ min{q,2} _ . .
where eQ = (ZJZZTV}P + (¢17)%d 4q 1{d<dyp} + (4{\/1d2/ min{q,2} _ 1)d2/ mm{q,2}l{d > dth}-

Proof. First let us remind ourselves of the notations in the main paper. Fix a time ¢. Let the
normalized coordinates be w. Let £ = maxo<;<a,, {71 /€)', and £ = max; <pm<ar £, Denote

the largest level 1 among the M sequences /3 = max; <, <as £ Also let dyy, = (2/£)7)min{2.a},

Let BT = [(", 07" ] form € [M], j € [am].

Now, we can rewrite the equation (Var)) for a fixed time ¢ as follows

M
Egy [|1Qui(v) —oll3] = 0I5 D > od(uie™)

m=1u; ES™
M
=023 3 (1 — )i~ )
m=1u;eS™
M Qam
=Y DD @ =i+ > > (0 — wi)(us — £)
m=1 \u; BT j=1u;€B7
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We now find the minimum k7", satisfying (€7, — u;)(u; — £5) < kj*u? for u; € By form e [M],
J € o). Letu; = 70 for 1 <6 < E;’fH/Em Then, we have

kit = ma (071 — ug)(w — £7")
: 1<o<er, Jer (Z’."@)Q
= (7, /0 —0)(0 — 1)
=  max
LSOO, /07 02
_ G/ -1?
Ay, o)

where the last equality follows from a simple differentiation with respect to 6. Since the function
(x — 1)?/(4x) is monotonically increasing function for x > 1, we obtain

(Era /0y — 12 _ (M 12
Ao, en S A

which leads to

D ICIERITENIED o DT

7j=1 uiEB;” j=1wu; EB"‘

_ 7+1/€m ) 2
ZZ @G
< (M -1,

(M —1) >
= mr 2 un

yielding

M am, M

2 m 2 (ZM_l)Q 2
Il 307 > (G —wdwi =) < ollg Y- mr e Y.

m=1j=1u; B} m=1 u; €S™ /B
- M
_ ||v”2(€M — 1) SOy &
e M ‘
m i
|| ||2 (EMj 1)2 ||’U||%
40 o2

- 4(7 :

Next, we attempt to bound Z%:l Doue By (07" — w;)u; with these two known lemmas

Lemma C.1. Let v € R Then, for all 0 < p < q, we have ||v||, < ||v||, < d*/P~V/4||v||,. This
holds even when q < 1 and || - || is merely a seminorm.

Lemma C.2. (Ramezani-Kebrya et al.| 2021, Lemma 15) Let p € (0,1) and u € By. Then we have
u(ly —u) < K07 PuP, where

=g (2)

22



Under review as a conference paper at ICLR 2025

Now, from these two lemma, for any 0 < p < 1 and ¢ < 2, we obtain that

M M
123" 3 @ —uus < ol2 S0 Y K6 rul

m=1u; By m=1u; B

M
<l K@)y > Wl

m=1u; By
2 FMN\2—p - |v;|P
= ||,U||qKP(€1 ) Z Z ||,U||p
m=1wu; BT 4
< K (1) P |lolblloll; 77
< Kp(B)* P |lol5d! P2 |lo577

= K, (1) Pd PP 3,

where the penultimate inequality holds due to the first given lemma and ||v]|, < ||v||2 for ¢ > 2.
Now combining the bounds, we obtain

2 (ZJM — 1)2 gMN\2—p j1—p/2 2
Eoa 1Quat (v) = wll3] < { 77— + Kp(67)"d o2
Moreover, if ¢ > 1, note that [[v]|27? < Hng_pdm‘iaq} _%Tp, yielding

(@~ 1y
40M
Now we can minimize € with finding the optimal p* by minimizing
1/p (1/p—1\"7 ,_ 1 (1-p\'"" ,_ L .

() = p__ - (£ P — (2 — p\P2(1 — p)l-Pyl-P

0= (FE21) g (5] e
where v = (M d=w(Za7 . This is equivalent to minimizing the log

log A(p) = (p — 2)log(2 — p) + (1 — p)log(1 — p) + (1 — p) log(v)

Setting the derivative of log A(p) to zero, we have

—1+1log(2 —p") +1—log(l —p") + log(v) =0,

_ 2-p
MWW%MWﬂ§S< +&M%2wmmw)w@

yielding the optimal p* to be
-2
L) =2 or d>dy,
pr=gv—1
0, v<2 or d<d.

In brief, we have

. (EM_I)Q
@7 Ty

_ 1 -
+ (M gmwteny — 1)dmwtazr 1{d > dy,} + Z(@{”)?dmin?m 1{d < du}.

D CoDING FRAMEWORK

D.1 FURTHER DETAILS ON CODING FRAMEWORK

The choice of a specific lossless prefix code for encoding gy ¢, relies on the extent to which the
distribution of the discrete alphabet of levels is known. If we can estimate or know the distribution
of the frequency of the discrete alphabet 2 | we can apply the classical Huffman coding with an
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efficient encoding/decoding scheme and achieve the minimum expected code-length among methods
encoding symbols separately (Cover & Thomas| 2006} |[Huffman| [1952). On the other hand, if we
only know smaller values are more frequent than larger values without knowing the distribution of
the discrete alphabet, we can consider Elias recursive coding (ERC) (Elias} |1975)).

The decoding DEC : {0,1}* — R first reads C,, bits to reconstruct ||v||,, then applies decoding
scheme U~ : {0,1}* — (Q2%M)4 to obtain normalized coordinates.

Given quantization levels £5™ and the marginal PDF of normalized coordinates, K nodes can
construct the Huffman tree in parallel. A Huffman tree of a source with s + 2 symbols can be
constructed in time O(s) through sorting the symbols by the associated probabilities. It is well-known
that Huffman codes minimize the expected code-length:

Theorem D.1. (Cover & Thomas| 2006\ Theorems 5.4.1 and 5.8.1) Let Z denote a random source
with a discrete alphabet Z. The expected code-length of an optimal prefix code to compress Z is
bounded by H(Z) < E[L] < H(Z) 4+ 1 where H(Z) < logs(|Z|) is the entropy of Z in bits.

D.2 PROOF OF CODE LENGTH BOUND FOR PROTOCOL 1

Theorem 4.3 (Code-length Bound for Protocol 1). Let pJ* denote the probability of occurrence
of £ for m € [M] and j € [ay,]. Under the setting specified in Theorem the expectation
E. E [ENC (QW( (x;w)); ]LM)] of the number of bits under Protocol 1 is bounded by

EuEq, [ENC (Quu(9(@sw)LY )] = (( Zpo Y log p}") ) ®)

m=1j=1

Proof. Following the Protocol 1, we first use a constant C, bits to represent the positive scalar ||v||,
with a standard 32-bit floating point encoding. Then we use 1 bit to encode the sign of each nonzero
entry of u. Next, the probabilities associated with the symbols to be encoded, i.e., the levels in oM,
can be computed using the weighted sum of the conditional CDFs of normalized coordinates as
follows.

Proposition D.2. Let j € [a,,], we have the probability Py of occurrence of U]" is

Gy — . gy 0y —u
p;' = Pr({}") = /e S dF(u) + /e = dF(u),

m __ pm m m
i1 éj Zj—l ' €J+1 EJ

where F (u) is the weighted sum of the conditional CDFs as defined in . Consequently we deduce

o

m m A - V- -

Dy :P"(go):/ ﬁi_émdF(U):/ 1€m dF(u),
¢ 1 0 1

m
0

O Ty . Loy —m
Mo =P, = [ e k) = [ e dF )
S A e::]m gaww,“!‘l Eanz eZ’ 1 - ganz

Then, we can get the expected number of non-zeros after quantization.

Lemma D.3. For arbitrary v € RY, the expected number of non-zeros in QM (v) is

E Q1 (v) (12170)

m=1

The optimal expected code-length for transmitting one random symbol is within one bit of the entropy
of the source (Cover & Thomas),[2006). Hence, we can transmit entries of normalized u in at most

(ZM_ H(em) + 1) d, where H(£™) = — Z] 1 P log(p}) is the entropy in bits.

m=1
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In brief, we obtain

EwEq, . [ENC (Quu (g(a;w));LM)] = Cy + (1 -y pS"’) d+ (Z H(e™) + 1) d.

D.3 PROOF OF CODE LENGTH BOUND FOR PROTOCOL 2

Theorem 4.4 (Code-length Bound for Protocol 2). Let p7* denote the probability of occurrence
of {7 for m € [M] and j € [a,,]. Under the setting specified in Theorem the expectation
EyEq, [ENC (Qpu (g(m;w)); LM)] of the number of bits under Protocol 2 is bounded by

E.Eq,y [ENC (Quu(g(@iw))iLM )] = 0 (( B 155 > logﬁ;”)qmd>, ©

where q,, is the proportion of type m coordinates across all coordinates.

Proof. Following the Protocol 2, we first use a constant C, bits to represent the positive scalar
lv||4 with a standard 32-bit floating point encoding. We now carry out the encoding and decoding
procedure in parallel for each of the M types of coordinates. We use 1 bit to encode the sign of
each nonzero type-m entry. Next, the probabilities associated with the symbols to be encoded, i.e.,
the type-m levels, can be computed using the weighted sum of the conditional CDFs of normalized
type-m coordinates as follows.

Proposition D.4. Let j € [ovy,], we have the probability p* of occurrence of U is

o — e _ Gor 0 —u
j mijmil dF™ () + / I % AF™(u),
G =44 g Gt

o =prie) = |

m
o

where l*:’m(u) is the weighted sum of the type-m conditional CDFs in (@) Hence we get

. Oy - Qo
/S| 0 0 1

~m m ZL7H+1 U_EZL [m ! U_KZL m
Do 11 = Pr(éam_H) = / T dF™(u) = / 1_7071’” dF™(u).

o am+1 Qam o Qo

Then, we can get the expected number of non-zeros after quantization.

Lemma D.5. For arbitrary v € RY, the expected number of non-zeros in Q]ﬂ/f (v) is

M
E QL (0)llo] = p_ (1= 55") gmd.

m=1

The optimal expected code-length for transmitting one random symbol is within one bit of the entropy

of the source (Cover & Thomas),[2006). Hence, we can transmit entries of normalized u in at most
an\le (H(€™) + 1) g,nd, where g, is the proportion of type-m coordinates w.r.t all coordinates

and H(£™) = — Z?;”l P log(p}") is the entropy in bits.
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In brief, we obtain
EuEq ,, [ENC (Quu (g(z;w)); LM)]

M M Qm
=0+ > (=) amd + > [ = (7 10g(37) +1 | qmd
m=1 m=1 Jj=1
M M am
=0 =200 =D > prlogp | gmd |,
m=1 m=1 j=1
as desired. |

D.4 UNBIASED COMPRESSION UNDER BOTH NOISES PROFILES

The following two lemmas show how additional noise due to compression affects the upper bounds
under absolute noise Assumption 2.4]and relative noise models Assumption 2.3} respectively. Let’s
keep in mind that g » ~ IPg represent d variables sampled independently for random quantization,
and gy~ is independent of random sample w ~ P.

Lemma D.6 (Unbiased Compression under Absolute Noise). Let x € X and w ~ P. Suppose the

oracle g(x;w) satisfies Assumption Suppose Qum satisfies TheOremand Theorem then
the compressed Qp v (g(x; w)) satisfies Assumption|2.4|with

E [[|Quu (g(z;w)) — A(@)|3] < eq(2L°D* + 2| A(Xy) |3 + o) + 02,

Proof. The unbiasedness property immediately follows from the construction of the unbiased quanti-
zation Qp . Next, we note that that the maximum norm increase when compressing Qr v (g(x; w))

occurs when each normalized coordinate of g(a;w), {u;};c[q). is mapped to the upper level £77, (ui)41

for some m € [M]. We can show bounded absolute variance as follows
EuEq,y [1Quu (9(z;w)) — A@)l3] = EuEq,,, [|Qur (9(as5w)) — g(m;w)

+g(z;w) — A(2)|3]
=EuEq ,, [[|Quy(9(z;w)) — g(z;w)|3]
+Ey [||IU(2;w)]3]
< eQEu [lg(z;w)|3] + o
= 2QEu [|A(@) + U(z;w)|[3] + 0
= el A@)|3 + eQBw [|U (a5 w)[13] + 0
< eqllA(@) |3 +eqo® + o?,

where the second equality occurs due to unbiasedness of gy ar, the third steps follos from Theorem .1}
and the last inequality holds according to Assumption for g(x;w).

Now we note that in Theorem D? := supgcy | X1 — |3, where X C R? is a compact
neighborhood of a[Vsolution. Since A is L-Lipschitz (Assumption [2.3)), we note that

|A(X,) — A(z)|]3 < L?|| X1 —=||3 < L?D? VxcAX.

Since X is our initialization, A(X1) has a finite value, so A(x) is bounded for all x € X'. Hence for
the quantization in Algorithm [T} we can obtain

[A@)]3 < 2] A(X1) — A(@)|I3 + 2] A(X1)3 < 2L2D? + 2| A(X1) |3,
which implies the desired conclusion. [ ]

Lemma D.7 (Unbiased Compression under Relative Noise). Let x € X and w ~ P. Suppose the
oracle g(x;w) satisfies Assumption@ Suppose Q. satisfies Theoremand Theorem then
the compressed Qu v (g(x; w)) satisfies Assumption|2.5|with

E [[lQuy (9(z;w)) — A(x)[3] < (eqor +eq + or)llA)]3. (10)
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Proof. The unbiasedness assumption holds similar to[D.6] We can show bounded absolute variance
as follows

EywEq,y [[Quu (9(z5w)) — A(@)[|3] = EuBq,,, [[Quu (9(2;w)) — g(a;w)

+g(m;w) — A(2)|3]

=EuEq , [[Quv(9(m;w)) — g2 w)|3]

+E, [|U(z;w)|3]

< eqBu [lg(z;w)[5] + orlA()|3

= eqEy [[[A(z) + U(z;w) 3] + orlA(z)|3
eqllA@)|I5 + eQEw [IU(®;w) (3] + orllA(®)ll5
< (eQor +eq +or)|A(@)]f3,

where the second equality occurs due to the unbiasedness of gy i, the fifth equality holds because of
the unbiasedness of the noise model and the last inequality holds according to Assumption [2.3]for
g(w;w).

E ANALYSIS IN THE GENERAL SETTING

E.1 TEMPLATE INEQUALITY

Proposition E.1 (Template Inequality). Suppose the iterates X, of (E[) are updated with non-

increasing step-size schedule ~y, and n, as in (@for allt = 1/2,1,.... Then for any X € R,
we have

/1 &
Z<KZ k,t+1/27Xt+1/2—X>

T K T 9
| X2 ul H ~ ~ 2 1 Xt — Xiq12ll2
< > RIY Vit H SN e
= e + 2 SK? 2 k,t+1/2 kt=1/2|| 2 2,

Proof. First, decompose the LHS individual term — <Z el Vk d1/2, Xip1/2 — > into two terms
as follows

=

1 .

where

=

1 .
K <Z t+1/2) Xig1/2 — Xt+1> , B=—

k=1

=
T
]

Vo412 Xep1 — X> .
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From the update rule of [5|(with 7;), note that

B= (Y — Y41, Xp1 — X)

=(Y - %ift-&-l’Xﬂ-l X> + <n:7+1Yt+1 - Y1, Xep X>
¢ ¢

1 1 1

= — MY — N1 Yegr, Xew1 — X) + ( - ) (=me+1Yer1, X1 — X)
Nt Ne+1 M
1 1 1

= —(Xy — Xpy1, Xe1 — X) + — — | (X1 = Xpy1, Xoy1 — X)
77t N+1 M

= o (HXt XN = 11Xt = Xeqa |2 = 1 X1 — XI2)

+ (5 )wm X|2 = 14 = X2 = [ Xy = XI2)

77t+1

1

S5 HXt X2~ *||Xt Xera|?

- orlX m%—i;fi|w x|
2,’7 t+1 — * 277 1= %9

. . .. 1 1 9.
the last inequality holds as the non-positive term — | X1 — Xi¢41||2 is dropped. We
M1 2y

can rearrange the above inequality as

——fX X|I?
31Xt = X2

IN

1 1
— X = X[ - —||X: — X X|?-B
X = XU = 51X = el + (o - 5 ) IXE

>Mi
t

21
A K
+ 2 <kz_:1 Vii+1/2: Xeg1/2 — Xt+1> <kz_: keyt+1/20 Xe41/2 — X> :

*)

1
277t

1
1, = XI2 = 51X, = Xeoall + (5

Next, also by the update rule (with +;), we have for any X € R?

K K
% <Z Viet—1/2, X412 — X> < % <Z Viet—1/2, X412 — X>

k=1 k=1
= (X; — Xiy1/2, Xeq1/2 — X)

1 1 1
= §||Xt - X2 - §||Xt = Xes1p0l2 - §\|Xt+1/2 - X|2.

Substituting X = X, and dividing both sides of the inequality by 7;, we have

K

1 N

Ve <Z Viei—1/2, Xiq1/2 — Xt+1>
k=

1 1 1
T"Xt Xl - Tm”Xt — Xpp1p2ll - TmHXtH/z - Xpal2- (%)
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Combining (*) with (**) and after some rearrangements, we obtain
1 /& 1 1
Ve <Z Viet+1/2, Xig1/2 — X> < Tm”Xt - X|? - mHXt—H - X|I?

k=1
1 1
i ( ) 1, — X2
2Nt 41 277

1 N .
+ K <; Vk7t+1/2 - Vk7t—1/2»Xt+1/2 - Xt+1>

1 1
- Tm”Xt — X202 - %HXtJrl/Z - X2

Then, by summing the above expression over ¢t = 1,2, ..., T and with some telescoping terms, we

obtain

T 1 K 1 1
> (D X —X )< —|IX; - X|2 - —— || X1 — X2
2K < kot+1/25 X172 > < o [ X1 — XI5 i [ X741 — XI5

1 1
n ( ) 1, — X2
2n741 C 2

T K
Z <Z (Vk,t+1/2 - Vk,t—1/2) s Xip12 — Xt+1>

t=1 k=1
T T

1
ZTHXt Xiy1p2l? - Z o [ Xe41/2 — Xega |12

t=1

Next we consider the substitution X; = 0 which is just for notation simplicity and can be relaxed
at the expense of obtaining a slightly more complicated expression. We can further drop the term

X X2 to obtai
g Xt = X2 0 obuain

T
1
Z Zth+1/2,Xt+1/27X < ||XHE
t=1 \k=1 20141
d ~ A
? Z <Z (Vk,t+1/2 - Vk,t71/2> 7Xt+1/2 — Xt+1>
T

k=1

1
Z o, 1 Xt — X122 — Z *||Xt+1/2 - X2,
M

Note that by Cauchy-Schwarz and triangle inequalities, we have

K
% <Z (Vk,t+1/2 - Vk,t,l/g) s Xiy1/2 — Xt+1>

k=1

K
1 N N
= Z <Vk,t+1/2 = Vit—172, Xeq1/2 — Xt+1>

K
k=1
e S Xt+1/2 - Xit1
< Z Vk,t+1/2 - Vk,tfl/QH* N
k=1 *

Combining with the AM-GM inequality of the form

Ui 2 K2
.’IIy_ 2K2x +?]ty )
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we deduce from (f) further that

K
K Z <Z (Vk t+1/2 — Vi b 1/2) s Xit1/2 — Xt+1>
=1 \k

==

)ﬂn—
—

e
2K?

R SR |
Vk,tfl/QH* +Z2T7t||Xt+1/2 — Xl (M
=1

t=1

Plugging (77) into (}), we obtain

Y12 T K
KZ<ZV“+1/27XH1/2X> s +Zzznlé? HV’““fl/rv’” WH

~ 204 t=1 k=1

2

1
—§ — X - X 2
2 2m” t t+1/2||*,

as desired. [ ]

E.2 GAP ANALYSIS UNDER ABSOLUTE NOISE

We first introduce following two useful lemmas that will help to bound the (GAP):

Lemma E.2. (Levy et al.||2018; McMahan & Streeter, 2010) For all non-negative numbers o, . . . , oy,
it holds that

Lemma E.3. (Bach & Levy| 2019) Let C € R? be a convex set and h : C — R be a I-strongly
convex w.r.t. anorm || - ||. Assume that h(x) — mingec h(x) < D?/2 for all x € C. Then, for any

martingale difference (z;)1_, € R% and any = € C, we have

(11)

Now we state and prove the complexity of Algorithm [TJunder absolute noise and fixed compression
scheme.

Theorem 4.6 (Algorithm [T] under Absolute Noise). Suppose the iterates X, of Algortthm [1] are
updated with learning rate schedule given in ([61) forallt =1 / 2,1,...,T. Let X C R? be a compact
neighborhood of a 901utlon and D? := sup, v | X1 — pl[3. Under Assumptzons. . H 2.3) and

2.4 we have

E [Gapy (Xit1/2)] = O (((LD +JAXY)||2 + 0)E5 + o) D?LQ/\/W) .

Proof. Suppose first that no compression is applied, i.e., g = 0. Using the result of the template
inequality Proposition we can drop the negative term to obtain

IR N IXI2 eS¢ .
X > (D Veusry2 Xeprp — X ) < YD 552 IVit+1/2 — Vieo1y2%-
t=1 k=1

Mra S
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Next we can expand the LHS with the absolute noise model Assumption [2.4]as follows

T K T K
1 1
LHS = ? Z <Z Ak(Xt+1/2)7Xt+1/2 - X> + E Z <Z Uk(Xt+1/2),Xt+1/2 — X>
t=1 \k=1 t=1 \k=1
1 K 1 X K
K > <ZAk(X)7Xt+1/2 - X> e > <Z Ur(Xi41/2), Xeg1/2 — X>
t=1 \k=1 t=1 \k=1
1 K T T 1 T K
= ? <2Ak(X);ZXt+1/2 - ZX> + = Z <Z Uk Xt+1/2) Xt+1/2 X>
k=1 t=1 = t=1 k=1
7K T K
:? <Ak(X) XT+1/2_X>+Z<ZUk Xt+1/2 Xt+1/2_ >
k=1 t=1 \k=1

where the second inequality follows from the monotonicity of A and X7, J2 = Zle Xitp1/2/T.
Plugging this back to the result from template inequality with some rearrangement, we obtain

ii M) Krens - X) < 1 IXIE 5o~ el
I k(X T+1/2 M ! o2 Wkit+1/2 k,t—1/21%
Z<Z Ur(Xi41/2), X — Xt+1/2>> :
= k=1

By taking the supremum over X, then dividing by T and then taking expectation on both sides, we get

K
1 - 1
E [SngZ<Ak(X)7XT+1/2—X> < T(51+S2+S3)’

k=1
where

.

e 2
L 20741
rT K

Se =FE Z 2K2Hth+1/2—th 172115 ]
Lt=1 k=1
r A

Sy = SUp 2 ; <; Up(Xtt1/2), X — Xt+1/2>] :

Here we make an important observation that

K R R 2 K
E Z Hvlc,t+1/2 - Vk,t—l/zH*] <2E Z | Ak(Xig1/2) — Ak(Xt—1/2)||i‘|
k=1

+2E

Z HUk(XtH/z) = Up(Xi-1/2) ||i1
k=1

< QZL E [HXtJrl/Q = Xy, } +4Ko*
< 2KL2D2 + 4K o2, (12)

where the second inequality comes from L-Lipschitzness the operator for the first summand and the
absolute noise assumption for the second summand. Now we proceed to bound these terms one by
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one. For Sp, from the choice of learning rates 7; < 1, with Equation @])we obtain

T K

1 . " 2

S, =DE | |1+ E e g HVk,t+1/2 - Vk,t71/2H*
=1 k=1

T K
1 . N
< D? 1+ZE EZHVI@,HA/Q _Vk,tfl/ZH*
t=1 k=1

2T (L2D? + 20?)
< DQ\/l .
< + e

[ V)
| S|

Next, we proceed to bound S

T K
’r] A~ A,
=E Zz2fé—2||vk,t+l/2_vk,t1/2||i‘|

t=1 k=1

K
"t M+1Y\ 1) 2
> (555 — 95 ) Whasrje - vk,t_l/zu,%]

[
&=

[M]=

t=1 k=1
T K "
VE | S T 1jo - v,c,u/gnz]
t=1 k=1
S
<]E ( t N t+1) 2KL2D2 4K 2
= ; k2 o) ¢ +4Ko)
r K [/ Y, 2 /772
1 v — Viewo1 22K
+5E D [Vit1/2 = Vir—1/2112/ (from Equation (I2)

N A 2
t=1 k=1 \/1 + Zi:l Zle Vis41/2 — Vk,571/2H JK?

[

(from Lemma[E.2)

T K
1 N .
< 2L2D? 4 40% + §E 1 + —5 Z Z HVk,t+1/2 = Vit—1/2
1 k=1

2T(L2D? + 20?)
= .

1
<2I2D? +40% + 2\/14-

Lastly, let’s consider S5

T | K
1
S3=E lSl)l(pK E <§ Uk(Xt+1/2)’X>
t=1

k=1

N\H

Z<§: (Xt41/2) Xt+1/2>]

t=1

We can bound the first term with Lemmal[EJ3] as follows

1 /& L& D%*0\T
E S;DK;<;UJC(XH1/2)’X>] S oK [ZZHUMH/QP] < Wi

t=1 k=1

For the second term, we use law of total expectation

T K
E lz <Z Uk(Xt+1/2)aXt+1/2>] =E

k=1

T K
Z ZE [<Uk(Xt+1/2),Xt+1/2> |Xt+1/2}‘| =0,
t=1 k=1

implying

2
SggDo\/T.
WK
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Combining the bounds of Sy, S2 and S3, we finally obtain the complexity without compression as

E [Gapx (Xt+1/2)]
1 VTD?L? D22
STO< Vi )zo(\/ﬁ()'

Now, we consider applying layer-wise compression to this bound. Firstly, recall that the average
square root expected code-length bound is denoted as
Mo

K
1 _
—E sup 7= ; (Ap(X), Xpi1/2 — X)

m=1 j=1

Finally, by applying compression bound Lemma [D.7) along the ideas of (Faghri et al., 2020, Theorem
4) and (Ramezani-Kebrya et al.| 2023 Theorem 3), we get the desired result

E [Gapy (Xig1/2)] = O (((LD + A(X1)1|/2TLKU)5’5 +o) D2L2>

E.3 GAP ANALYSIS UNDER RELATIVE NOISE

Theorem 4.8 (Algorithm [T under Relative Noise). Suppose the iterates X, of Algorithm [I| are
updated with learning rate schedule in @for allt = 1/2,1,...,T. Let X C R% be a compact
|

neighborhood ofasolution. Let D? := suppe x | X1 — p||3. Under Assumptions
and we have

E [Gapy (X¢11/2)] = O ((0rEq + 8¢ + or)D?/(TK)) .

Proof. Plugging X* into part of the LHS of template inequality Proposition and then taking
expectation, we obtain

K K
1 N 1 N
E l<K ; Vk,t+1/2aXt+1/2 - X*> =K ? ;;E [<Vk,t+1/2>Xt+1/2 - X*>Xt+1/2}‘|
1 K
=E X kz:l<Ak(Xt+1/2), Xit1/2 — X*%

= E [(A(Xi11/2) Xey1/2 — X7)]
> E [(A(Xpq1/2) — AX*), Xpy10 — X))

> BE [|A(Xis1/2)112]

| K
Ve Z ||A(Xt+1/2)||i‘|
=1

1 X
e 3 Wil
k=1
where the fifth step occurs due to the 3-co-coercivity assumption and the last step follows from this

inequality resulted from Assumption

Vi s1/20% = Vi ar1y2+ Unerajalls < 20Viasayoll? 420Uk 1/2l2 < (24 208) Vi erajallz.
Plugging this back into the template inequality, we deduce

= BE

>7ﬂ E
T 20p+2

5 T s
B SR | LS Wl
20R+2 ; K};H k,t+1/2||*
T K T 9
| X1 Ul ~ S 2 [ Xt — X2l
<E + Vitr12 = Vi QH - —— >
e I N e I TR
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implying
el i el cg I 5
e aLIT Sl [ [ e RO OF D) L INRL W |
(Ing1)
On the other hand, we consider
M

ZﬂHA Xev12) I3+ Z |

>E lz BIA(Xy12)II7 + Z %HA(XO - A(Xt+1/2)||z]
t=1 t=1

. 52\ —
2> min {57 2770 ZE [”A(Xtﬂ/z)”z + ||A(Xt) - A(Xt+1/2)||z]
t=1
1 32 &
—min< 3, — E [||A(X,)|?
min 8. 5o} STE AR
1 . 62} ) 1SN o
> min < B, — E|—= Vit lls
> o™ ) 2 [ 2 I

where the second step comes from the consequence of the co-coerceivity assumption. Plugging this
back to template inequality, we obtain

1 32 &
i L E
A+ dog mm{ﬁ’ znO}Z;

X 12

v

1 K
Ve > Vill?
k=1

<E

2nr41

K
+;2K2;va+l/gvm WM (Ing2)

Now summing the two above inequalties and[Ing2] we have
1 B\ w
i — E E E Vietll?
4+4og mm{ﬂ, 2770} IViell

X 2
<E[| I +Z ZHth+l/2_th 1/2”1
k=1

z [ an asal? ]

NT+1 =1

Next, from the bounding of S5 from Theorem [4.6] we have

=Yy

t=1 k=1

1
_]E{ }7
NTr+1

“ 2
Vk,t—1/2H
.

yielding

1 B2 &
. P E 2
4+4op mln{ﬁ, 2770}2 lKZ”VHH

t=1

* (|2

x [IIX ||*+1} .
Nr+1

T 1 K )
Il LWL
=1

k=1
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On the other hand, we can consider the lower bound for the LHS of this inequality

1 52 T 1 K 3 T 1 K
T mingBig e ) Bl d IVieli| + E|—=>" | 2
{3 2%}; 7 o al?| + 5,5 S | 3 el

B2 4 1 & T 1 E
> ———min< B, — E|= Viell2l + Y E | = v, 2
> o b (322 e ] 4 o 3 Wi
K /82 [ 7 K 1 . A ,
=9t 20, {67 2770} ;; K2 V172 = Vil
K 32 [T K 1. o K L ) .
> mi 2 g _ _ L —v
= 4+40‘R mln{ﬂ7 2770} -t:ZI — K2||Vk,t+1/2 Vk,t”* +I;2 K2 HVk,t Vk,t 1/2”*
K 62 [T K 1 . A ,
2 5o ming S o B — Vi Voo
_2+2m;mn{@2%} _g;g;KQHhHuz et—1/2]1%
9 -
1
> min{@B}E 5
2+20R Mo _nT+1

Hence we have

K 2 * |2
min{ s} (B 7]) <[5
2+ 20R 2no 711 NT+1

= (IX*)1Z + DE

2
T+1

1
< (X2 + 1) E[ i }
741

where the last inequality follows from Jensen’s inequality. Therefore, we obtain

1 2+20’R { 1 2770}
E < maxs —, —5 ¢ - 13
|:77T+1:| - K B’ B2 (13

Similar to the proof of Theorem4.6] for the absolute noise case, we consider

K
1 = 1
]E [SupK E <Ak(X),XT+1/2—X> S T(Sl +SQ+83),

X k=1
where

2

s-2[,2 ]
| 21741
rr K 0

Sy =E Z QIéQVk’t+1/2_Vk’t_1/2||i]
Li=1 k=1
r 1 X K

S3=E sgl(pE; <kz_:1 Uk(Xit1/2), X —Xt+1/2>] :

Similar to the proof of Theorem 4.6 we have

52g2L2D2+402+1E{ ]
Nr+1

Again, we decompose S3 similarly to the proof of Theorem f.6]

T | K K
1 1
S3=E lS;P e E < E Uk(Xt+1/2),X> —-E lS;P Ve E < Uk(Xt+1/2)aXt+1/2>‘| .
=1 \k=1 k=1

t=1
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For the first term of the above expression, we note that

1 /e 1
SE{P}; <Z Uk(Xt+1/2)vX>] =%E

k=1

E

()

2

D2 T K
=574 |E ’ZZUk,t+l/2

t=1 k=1

IN

D2 [T 2
T E ZUR||A(Xt+1/2)||*]

Lt=1

IN

D? X*||2}
= E | N«
i\’ {

For the second term of S5, we use law of total expectation

T K
E [Z <Z Uk(Xt+1/2),Xt+1/2>] =

k=1

29711

Z E Uk Xt+1/2) Xt+1/2> |Xt+1/2}‘| = 0.
t=1 k=1

Therefore, from the bounds for S7, S5, S5, we have the complexity for no compression is

K
_ _ D?
E |G X = ), X — <O
[ apy ( t+1/2)} SUP kz T+1/2 >] ( T )
Now, we consider layer-wise compression. Firstly, recall that the average variance upper bound is

M JT’VL
Z Z m,ﬁQ Mg
m=1 j=1

Now with the bound from Lemma|D.7] we can follow along the line of (Faghri et al.|[2020, Theorem
4) and (Ramezani-Kebrya et al.,[2023| Theorem 4) to obtain the final computation complexity with
layer-wise compression

— == 2
B [GapX (Xt+1/2)] 0 <(UR€Q +Ej¢3 +or)D ) .

F ANALYSIS IN ALMOST SURE BOUNDEDNESS MODEL

F.1 USEFUL LEMMAS

For the sake of convenience, we introduce the following new notations: E]

K 2

Z k,s+1/2

t
s Mt = Z ||XS - Xs+1||2a

HM‘*

yielding
1 1
R VS e eV v
We now establish some basic lemmas that will be reused through out this theoretical analysis.

Lemma F.1. Let Assumption[2.4 holds. Then for T € N, we have
A < 2T(J? 4 o?).

6Forifg(),)\,g =t =0.
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Proof. Using Assumption[2.4] we note that

2 2

K

1

T Z (Viets1/2 + Uge11/2)
k=1

2

K
Z k12

| XK
K & 2 EzUk,tJrl/Q

K
Z||th+1/2| + = Z||Ukt+1/2H

=1

202
implying Ay < 2TJ2 + 2T02. [

N\w

IN
H
_|_

Lemma E.2. (Hsieh et al.||2022| Lemma 14), a generalization of (Auer et al., |2002, Lemma 3.5) Let
T €N,e >0, and q € [0,1). For any sequence of non-negative real numbers a1, . .., ar, we have

T a 1 X o
t

DB (z) |
=1 é—:JrZS:las

Combining the above two lemmas, we deduce the following useful bound

Lemma F.3. Suppose that Assumptionholds, let s € N, andr € [0,1), then for T € N, we
obtain

l Zk 1th+1/2/KH2 )\%fr 2 2

< 2s(J .

Z A < T a4 o)
Proof. Note that

1 1
< .
T4+2)" — (T4 M—s)™

. 2
Combining the above inequality with bound of H Zle Vietr1/2/ K H in Lemma we deduce

ZVk t+1/2/ K

((1+)1\ts) (1+)\t ) = ((Him)r “a +1At)r> 2(J% + o).

Combining this inequality with Lemma@ we derive

i IS Vi1 o/ K12
(T4 Ms)T

vy (! zi‘_lm,tﬂ/z/mm( ! ! )
(1+ A" (T+X_s)”  (1+A)"

IS Vi1 2/ K? ( 1 ) 9, 2
< + 2(J° +
—; 1+ )" ; 1+)\t 5y ) )
. 0
- A N 2(J% + 0?)
1-7‘ fe1os (1+At)’r
Al_T
=L +2S(J2+U)
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We also establish the following lemma to bound the inverse of 7,
Lemma F.4. (Hsieh et al.|2022| Lemma 17) For T € N, and a,b € Ry, it occurs that

T

a 1 X — Xy qa]? a?
O pS T AT T A+
NT+1 ; M Y

Proof. Note that

a

=ay/1+Ar_1 + pr—
nNr+1

<av1+Ar—1+a/pur—1.

And we also have

T T
X — X 2
bz || t t+1|| Z bz HXt _ Xt+l||2

t=1 N t=1
> bur—1.
Define function h : R — R, h(x) = ax — bx?. We notice a\/pir—1 — bpur—1 < maxger f(z) =
a/4b?. This concludes the proof. ]

F.2 IMPORTANT INEQUALITIES

We start with constructing an energy inequality for (5) (without quantization).

Proposition F.5. [Energy Inequality] Let (X;)ien and (Xy41/2)ten be generated by (5) with non-
increasing learning rates. For any p € X andt > 2, it holds

Xip1 —pl)? X —pl? X — X 1 1
” t+1 p” _ ” t pH _ H t t+1|| + ( _ ) (HXl _p||2 _ ”Xl _Xt+1H2)

Mt+1 Nt Nt Nt+1 e
9 K %y K K
_ E <kz Vk,t+1/2aXt+1/2 —P> - Ki;f <; k1t+1/2,;vk7t1/2>

=1
5 | K
+ Ve <; Vitr1/2, Xt — Xt+1> .

Proof. Using the fact that Zszl Vk’tﬂ/g/K = (Xt — X1)/n — (Xt41 — X1)/Me41, we have

P
Vit+1/2 <Xt -X1 X1 —-X >
———  Xty1-p) = - ; Xt41—p

<k_ 41 o o~ 41

1
= —(X; — Xiy1, Xe41 — D)
Tt
1 1
+ —— ) (X1 — Xiq1, Xop1 — p)
Mt+1 m
1
= T(HXt —pl? = | X1 — plI> = | Xe — Xea|?)
Tt
n ( Lo 1) (11 = pl? — [ X — ol — 1K1 — Xeaa ).
277t+1 277t

Multiplying both sides by 2 and rearranging, we obtain
X, 1—pP 2 X; — P 2 X — X 1 2 1 1
” t+ H _ ” t H _ H t t+ ” + = (HXl _p||2 _ ||X1 _ Xt+1H2)

Mt+1 Mt "t Ne+1 e
5 | K
e <Z Vie,t41/2, Xe41 —P> :
k=1
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Lastly, note that

K K K
<Z Viet41/2, Xeq1 —p> = (D Viasry2 Xep12—p ) + <Z Viet41/2, Xe — Xt+1/2>
k=1 k=1

k=1

yielding the desired expression. [ ]

Corollary F.6 (Energy inequality). Let (X;)ien and (Xi41/2)ten be generated by (5] (l) with non-
increasing learning rates. For any p € X andt € N, it holds that

Xepr —pl> _ |1X: —pl? 11 2 [
[ Xev1 —pll < [ X¢ — pll + < — ) |X1 —p||2 — <Z Vitt1/2: Xeg1/2 =P
Ug Up 1

Mt41 Mt+1
27 K ?
f<zvk M/z,zvm 1/2> S Vo
k=1
K T - X
+ min Z ket 412 —ti”l,o

27715

Proof. By Young’s inequality,

9 K
Ve <Z Vi, Xe — Xt+1>

k=1

K 2 2 K 2
< min n—z ]; tr1/2|| + 1 = Xen |7 _n)t(tH” ) % ; Vigryo|| + 1Xe = X _Q;ftﬂ
. |Xt K] X = X |
; t+1/2 m +m Z Vit1/2 277t
Using this inequality and dropping the non-positive term — ( LI 1> | X1 — X;41]|? from the
result of Proposition[F.5] we can obtain the required inequalit;? e [ ]

Next, we can evaluate the noise and further expand the energy inequality (Corollary [F.6) in the
following lemma

Lemma F.7. Fort > 2, it holds that

2% <Z Vitt1/2, ka t— 1/2>

2

TR

K K 2
> Vit — > Vii-1y2
k=1 k=1

+L(V + (v + 77t)2)||Ut71/2||2] .

39



Under review as a conference paper at ICLR 2025

Proof. We use Vj, ; as a shorthand for Ay (X;) and Vk,t = Vit + U+, where Uy, ¢ is the zero mean

noise. By the law of total expectation

2% <Z Vitt1/2, ka t— 1/2>

=E

27 K K
: < zvk,tﬂ/z] ,zvk,tmﬂ
k= k=1

LS K

- t

02 < Vi,t41/2 E Vk,t—1/2>
k=1 k=1

9y K K
+ Kzt <Z Vk,t+1/27ZUk,t1/2>] .
k=1 k=1

First, note that

implying

o &L K
l - <Z Vk,t+1/27ZVk,tl/2>
k=1 =1

9y, | & K
—2, _
702 <; Vk,t+1/27;Vk,t—l/2> =%z

el

K 2 K 2
D Vi) D Vi
k=1 k=1

K 2
> Vi-1y2
k=1

9

2

K
> Vi-1y2
k=1

2

K
=Y Vii1p
k=1

2,}/ K K
: <z Verrsyo S Ure. />] |
k=1 k=1

(€3]
From the update rules of @), we have
5 K e t—1 K
" .
Xiy1e = Xi — ?;Vk,tq/z,Xt ?g; kys+1/2-
Combining these two equations, we get
t—1 K K
X1y =X1 — - Z S Vit — 2 Z Viet—1/2
s=1k=1
t—2 K v+
—X1—* ZVkerl/? ! tZth 1/2
s=1k=1
t—2 K

=X — % Z Ak,s+1/2 -

K

+

%Knt Z (Viest—1/2 + Usp—1/2) -
k=1

Now, let Z,Ile Uit/ K = Uy as the sum of all the noises from K nodes at time t. It is clear that U,
also has zero mean. Let X; /2 = Xyy1/2 + (9t + 7:)U;_1/2 to be a surrogate for X,/ when
removing the noise of time ¢ — 1. We then obtain

t—2 K

K

Mt . Y + M

Xiyijo = X1 — Ef Vk,s+l/2 - 7*1( t E Vit—1/2-
s=1 ke k=1
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Applying the notations U;_; /o = Zszl Up,t—1/2/K and Ap(Xy11/2) = Vi 44172 into (), we have

K 2 K 2
-2
[ i <2th+1/z7zvm 1/2> = —% D Vir1ye fg > V-1
k=1 k=1
2
K K
+ﬁ ;Vk,tJrl/Z_;Vk,tfl/Q

K
2
*% <Z Ap(Xit1/2), Ut—1/2>] :

k=1

We now bound the last term of the RHS of the above expression. First, notice that

<Z Ak(Xt+1/2)aUt1/2>] = <Z Ak(Xt+1/2);E[Ut1/2]> =0

k=1 k=1

With that and the L-Lipschitz of Ay, we deduce

K
<Z Ak(Xm/z),Ut_l/zﬂ

k=1

—-E

k=1

K
ZAk (Xi41/2), U 1/2>]

K
<Z Ap(Xi1/2) — Ap(Xig1/2), Ut—1/2>]

K
> Ap(Xis1y2) — Ap(Xig1s2), Ut—1/2>]

k=1

<E[KLIZia12 — X ol Ui el

X — X, U,_ 2
E[K (H t+1/2 t+1/2H +’Yt|| t21/2|| )1
U 2 U,_ 2
E[KL( Ye + M) || t—1/2l +%H t21/2|| )],
yielding
_27 K
= E <2Ak<Xt+1/z>»Ut-1/2> <E[L((n+m)?[ Ui ol + 421 Ui-12l?)]
k=1

In brief, we get

2

2 —
% <Zth+1/2aZth 1/2> < + o5

K K 2

1D Veerrz = D Vii-1y2
k=1 k=1
+L(7; + (v +7]t)2)||Ut—1/2||2] ;
as desired. ]

Now we can establish the quasi-descent inequality for (3)) as follows
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Theorem F.8 (Quasi-descent Inequality). Fort > 2, it holds that

X _ 2
E[' 41 p||}

Ne+1

K
|X: —pl? ( 1 1 ) 2 2
<E + -— X1 =pl" =+ Vi , X -P
M N+l Nt 1% = pl K ; kot41/2) At+1/2
~ K 2 K 2 o K K 2
_ Kit? Z Viet+1/2 Z Vii—1/2|| + Fz Z Viet1/2 — Z Viet—1/2
k=1 k=1 k=1 k=1
2n; ’
% 2
Nt o
+ 25 | X Verrge| + L (G +m)? +97) U ol
k=1
Proof. This result immediately follows from plugging Lemma[F.7)into Corollary [F.6] [ |

With this quasi-descent inequality, we pick the learning rates as follows

=2 K |y 2\ 173 =2 K |y 2 ~3
kys+1/2 Vi, +1/2
Ve = 1+ZZ ST e = 1+ZZ : + X — Xl
s=1k=1 s=1k=1

Similar to AdaGrad (Duchi et al.,[2011), we include the the sum of the squared norm of the feedback
in the denominators, helping to control the various positive terms appearing in the quasi-descent

i 2
"~ Vk,tH/QH and L ((v¢ +m¢)? +77) [[Us—1/2/|>. Nonetheless, this sum
is not taken to the same exponent in the definition of the two learning rates. This scale separa-

inequality, like %

2
K . . .
} > ket Vk,tH/QH remains negative, which

tion ensures that the contribution of the term —7—2

is crucial for deriving constant regret under multiplicative noise. As a technical detail, the term
Zgj | X, — Xy11]|” is included in the definition of 7, for controlling the difference

K K 2
> Vieriz— Y Vieo2| —
k=1 k=1

Some technical insight is that v; and 7; should at least be in the order of €2 (1/5_‘3) and ) (1/t%).

X — Xia?
2ny

We can restructure the quasi-descent inequality Theorem [F.8]as follows.

Lemma F.9 (Al Template Inequality). Let (X;)ien and (X 1/2)ten be generated by (5) with
non-increasing learning rates 1, and ~; from the[Alf| schedule, such that n, < , for all t € N. For
anyp € X andT €N, it holds

L& 1%l & 2
-
E[Z<K2Vk,t+l/27xt+l/2_p> <E e ZQKQ Zth+1/2
= k=1
2
3L2 T K
WY Vito12
=2 |lk=1
302 & 5L &
t 'YtHXt_Xt—1||2+72’7t2”Ut71/2||2 :
t=2 t=2
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Proof. From Theorem [F8] by dropping non-positive terms and using the fact that

2
X:— X 2
min Z k,t+1/2 ”t277t+1|70 <0,
¢
we obtain
Xip1 —pl)? X; —pl? 1 1
E|:|| t+1 p” :| SIE|:|| t p“ +( _) |‘X1_p||2
Ne+1 Mt N+1 M
5 | K - K K 2
t
K <Z Viet+1/2, Xeg1/2 — P> T Z Vit+1/2 — Z Vit—1/2
k=1 k=1 k=1
2
K2 Z Vijis1/2]| +1L ((% + )% + ’Yt) U 1/2||
k=1

Rearranging the terms, and multiplying both sides by 1/2, we obtain

K
1
E l<K 1; Vk,t+1/2a Xt+1/2 - p>]

K 2
[ Xe —pl* [ Xes —pl? ( 1 1) 2, ;
<E — + — - + Vi
2ny 2041 2041 | ol 2K? kZ:l Rt+l/2) ()
K K 2 )
L (v +m)* + 7
QéQ ka,t+1/2 - ZVk,t—l/Q + ( 9 ‘) U127
k=1 k=1 .
Note that this inequality holds for ¢ > 2 as suggested by Theorem [F.8] If ¢ = 1, then we know
2 us ’
212 3 ¥
1 — plf? = |11 — p|® — 22 <Z Vi X1 = > 22D Ve
k=1 =1
Setting X3/9 = X1 = 0 and 71 = 72, we can obtain
K SE W ?
I ¢y X1 —pl® X2 —p)* | T [2ek=1 k3/2H
E — \% X, — =F _
<K ; %,3/2> X1 p>] 0 o + 552 (%)

Now, we sum the inequality (%) over ¢ from 2 to 7" and then add (xx), yielding

T 1K
Z <K Z Vk,t+1/27 Xt+1/2 - p>]

E

t=1 k=1

1 =P | & RN K ’
<E Vi _

< Y z_: SK2 z; kyt+1/2 +;2K2 a kE::le,t 1/2

T

L((y4m)*+7

w3 LD g,

t=2

2

< 277T+1 2 K2 2 kyt+1/2 =2 kt—1/2

T
5L~?
"‘Z 2t||Ut—1/2||21 ;

t=2

(€39)
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where the last step follows 7, < 7,. We also can bound the difference term as follows

K 2 K K 2 K K
> Viio1/2 > Visrz = Y Vis > Vi =D Ve
=1 k=1 k=1 k=1 k=1
K K 2
BIY Vi1 =D Vieo1y2
k=1 k=1

Note that by the L-Lipschitz continuity and the update rule of (3], we have

2

<3 +3

2

K K K
3 Z Vit+1/2 — Z Vil =3 Z(Ak(Xt+1/2) — Ap(Xt))
k=1 k=1 k=1
X 2
<3| > LlXesrys — Xil
k=1

= 3K L2 X y1/0 — Xol?

K 2
D Vi1

k=1

=3L%;

After bounding the second and third terms in a similar manner, we obtain

K 2
> Vie-1y2
k=1

2

K K 2
<BL7 1D Vieoaye|| + 3K Xy = Xyl 430971 |D Vie—sye (D.1.1)
k=1 k=1
Using the initialization that Vk,1 /2 =0V Ek € [K], we have
T - K 2
t
e > Vi
t=2 k=1
d ’ 312
+ Z TXy — Xoq || (D.1.2)
t=2 = t=2
Combining this with the inequality (1), we finally obtain
T K [ T 2
1 | X1 — P”2 Ug
- lz_: <K ; Veasijm Koy = p> =F 20741 " 2:: 2K7 || &=
X 2
3L2 T K
Z kt—1/2
=2 k=
302 &
55 Dl Xe = X + 22 Z% 101l ]
t=2
|

F.3 BOUND ON SUM OF SQUARED NORMS

We start to bound the sum of squared norms by first revamping the quasi-descent inequality Theo-
rem|F.8|in a different way.
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Lemma F.10. Let (X;):en and (Xy41/2)ten be generated by (5) with non- lncreasmg learning rates

ne and Y from@schedule such that ny < 'yt forallt € N. ForT € Nand x* € X*, we have
2 2

T
Tt Yt

> E 2 Z Vier12| + 32 Z Viet-1/2

t=2 k=1 k=1

T K T K K 2

)(1 — * 2 6L2’Y3 R '7 R R

< | P TIE 5 05 | DI 1P S

NT+1 t=2 k=1 t=1 - k=1

2 T
+ 5LZ%2||U7§71/2||2 )

K A
Z Vit+1/2

X — Xt+1\| = 2,
Z Zf

k=1 =2
Proof. 1tis straightforwards that
2 X 2
X — Xep1|)? - X — Xei1|)?
. ka o] I Kl ST LR
Next, similar to m, we have
K K 2
> Viriz — Z Vit—1/2
k=1 k=1
2 x x 2 X 2
<3L%y; Zth 12| +3 ZV Z i-1|| +3L%7 ka,t—?,/Z
k=1 k=1 k=1

And since 1y < 7y, note that
L((ve+m)* +7) 1Ui1yal? < 5L Uy o
With these inequalities, we can rewrite quasi-descent inequality Theorem [F.8]as

B {|Xt+1 - 33*||2}
Tt+1

||}<t —1'*”2 1 1 %112 Yt
77t || ! * H K2

2

K 2 K
> Vit > Vi-1y2
k=1 k=1

e Mt+1

K 2 K K 2

3L ’y 3L2 ’yt’y . N

— Z A I Z k,t—3/2 ZVk,t—Zth—1
k=1 k=1 k=1
L I
2 X — X
= ka vrpp| = T 4 5L U ol

2n

Summlng from t = 2to T of the above, we obtain the following after some rearrangements

T K 2 K 2
Z]E ka,t-irl/? ka,t—l/Q
t=2 k=1 k=1

Xy — 2*||? 1 1
SE[” 2 | +< —) X1 — 2|2
2 nr+1 712

Z 6L2’Yt

Yt
i

K 2
~ | X — Xeqa|?
> Vew-y| - Z e

t—2 k=1
T . K K 2 7 oy K 2 T
D5z [ 22 Ve = D Veuaa | + D55 (1D Viarayz| +5LD af Ui el
t—2 k=1 k=1 t—2 k=1 t—2

D.2.1)
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in which we use the fact that Vk,l /2 =0V k € [K] and get the bound similar to 1) Next, note
that

T 3y K K T 3y K K
D w2 Ve =D Vewr | =3 S D0 Vi = D Ve
t=2 k=1 k=1 t=1 k=1 k=1
3 K K 2
<D Vi =D Vea|| (D.2.2)
t=1 k=1 k=1
where the last step stems from v; > 4. If t = 1, then we know
M | & ’
1 X2 — o) = 1% — *||2—I’?<ka73/2,xl—x*>+
K_ 2
<X =22+ 22 | Vi
k=1
This implies
* (|2 i 2 2
12 72
i K
X1 — %[> | 2n0 . X1 — X,
<E|—— + — 1% S (D.2.3)
72 K2 ; ’ 2m
Now pluggin .2.2) into (D.2.1)), and addin , we eventually obtain
plugging g y
T % o K 2
ZE L Zth+1/2 FZ > V-1
t=2 k=1
X x*llz 6L2’v & Pl 3y || = i
1— t ~ ~
T K 2
Xt — Xt 1 2,
z” ol D] S LY Ul
t—2 k=1 t=2
|

Next, we establish the following lemma to control the sum of some differences

Lemma F.11. Let (X¢)ien and (Xy41)2)ten be generated by (5) with non-increasing learning rates
ny and v, from [Al] schedule, such that n, < -y, for allt € N. For all T € N, with almost sure
boundedness assumptions from either Assumption[2.4)or[2.3]it holds that

T K K 2
E E Vit — E Vit+1]| —
k=1 k=1

t=1

w
)

t
2

T
X, — X
Z X = Xen|I” < 432L% + 242,
=1 4ny

=

Proof. Define t := max {s €{0,...,T}:ns > } So as to ensure # is always well-defined,

= 1212
By definition of y; and 1z, we can deduce that u;_, < 114L%. Now since

we can set 79 > 207
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v¢ < 1, we have

T 3/7 K K
’ . .
S S
t=1 k=1 k=1
g || X K 2
<D0 |2 Vee = 2 Ve
t=1 k=1 k=1
3 || & K 2 3 || X K 2
< el Z k,t*Z k1] T Z - ZVk,t*Z kyt+1
te[T)/{t—1,t} k=1 k=1 te{t—1,t} k=1 k=1
3 (K 2 6 K 2 K 2
S S TR ) K oI 1 o B s
te[T]/{i—1,7} k=1 te{i—1,7} k=1 k=1
< Y BPX - XenllP+ )] 1207
te[T)/{t—1,t} te{t—1,t}
<Y BLPX — Xy |P 4247
te[T)/{t—1,t}
-2 T
= BLX — Xea P+ D BL7|IXy — Xy ||* + 247
t=1 t=t+1
T
=3l o+ Y 3L Xy — Xop|® + 24
t=t+1
T
<4320 + Y BL2(|X, — Xopa|? + 24072
t=t+1
Asn < L for t >t + 1, note that
M=o =T
T T T
1 Xe — X |? 1Xe — X |? 2 2
12 = Aenll” IAe = Aell” L2|X, - X
Fligets £ el s £ o s
— —it1 t=f+1
yielding
T K K T
3 ~ ~ X — X 2
> 2 Ve =Y Ve | <4320+ Mit“” + 242,
t=1 k=1 k=1 t=1 Nt

A simple rearrangment of the term ZtT:1 1 X — X¢41]1%/(4n,) will give the desired expression. B

Finally, we can establish the bound on sum of squared norms.

Lemma F.12 (Bound on Sum of Square Norms). Let (X;)ien and (Xyy1/2)ten be generated by
[B) with non-increasing learning rates n; and ~y; from[Al schedule, such that n; < ~; for all t € N.
Denote D* = sup,,c y | X1 — pl|>. Forall T € N, we have

T K
E Ejﬁzg:wwﬂp
=1

t=1
where a and b are constants with the following values

a=12L% +10L + 4 + D?;
b= (12L% + 10L + 8)(J? + 0?) + 432L* + 24J* + D* + 2D*.

2
T
X — X 2
e Xl g [ 4.

-1 814
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Proof From Lemmam and Lemmam we have

Zth+1/2 +Z Zth 1/2

T
[ X — Xepa]?
: Z S

t= 2
2
6L2 K T K R K R T X —X 2
<E S| EE?ZWPZWm-iﬂifﬂL
t=2 k=1 t=1 k=1 k=1 = t
x-S X X\\ r :
11— t— A4l 77
2 w 5L MW 2

2
_ ax||2
g |1X - sz%

+432L% + 2472
Nr+1

K
Zth 1/2

t=2

| X — Xt+1|| 2n
Z: Zb(

2 T

+ 5LZ%2HUt—1/2H2

t=2

Z k,t+1/2

(D.4.1)

. 2
Now, since y; < 1, ||Ut_1/2||2 < szKzl V,C)t_l/QH JK? andv?_ | <1/y/1+ A\iy1, we have

T 6123 K 2
S haLa ) ST

T
+ 5LZ%2||UH/2||2

t=2 k=1 t=2
[T K 2 K 2
6 5L
<E Z Z k,t—1/2 % Z ket—1/2
=2 k=1 k=
2
(L. 612 2 5L7t , o I -
<E|> (o > (6L +5L) 7 | Viers1/2/K
=2 = k=1

Vi t+1/2/KH

< (6L% +5L)E Z HZ'“ A < (6L% + 5L) (21@ {\/E} F2(J2 ¢ 02)) .

In a similar manner, we can bound

7o &
Zﬁ > Vit

t=2 k=1

2

< 4E [\/E} +8(J2 4 o2).

With these two inequality, we can rewrite (D.4.1)) as

Yt
+
Z ZV“ 1/2 JFZ va 1/2

t=2

< (612 +5L)(2E [y/Ar 1| +2(J% + 0—2)) + 43204 + 247 + 4R [\/AT,J +8(J% + 0?)

X —X
+Znt Gl

AR [ [ — 2|2 ZHXt Xia|?
NT41 P 81

= (12L* + 10L + 4)E [\//\T_l] + (12L% + 10L + 8)(J? + 0?) + 432L* 4 24.J2

X = 2 o= 1Xe = Xewa|)?]
! P 81

+E
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Note that by the initialization X3, = X7 and v2 = 71, we can further simplify the LHS of the above
inequality as follows.

2

Loy ||& Do | & e 1 X: = Xeqa)?
E Zﬁ ZVk,t+1/2 +Zﬁ Vit—1/2 +27877t
=2 k=1 =2 k=1 =1
T K 2 9
¥ Xt — Xiqa
I S S
t=1 K k=1 t=1 87

Now, we just have to deal with the last term of the sum. With Lemma[F.4] we have

e Dl Xt“”ﬂ <E [ - a4 A + 2%, — 2]
Nr+1 — 81y
= D’E[\/T+ Ar | +2D*
< D°E [\/E} + D% 4 2D",
yielding the desired result. [ ]

2
We now establish an useful bound for 23;1 E U)Zszl Vk7t+1/2/KH ] .

Lemma F.13. With the[Alllearning rate updating schedule and for T € N, we have

T 2

Y E

t=1

=0T 9).

K
> Vis12/K
k=1

Proof. Fort € [T, note that

1 1 1

- < _ < -
14+ X—2)/270 = (14 2max{0,t — 2}(J2 + 02))V/2-0 = (1 4 2T(J? + 02))1/2-4

Yt =
(
where the second steps follows from Lemma[F.I} Now plugging this bound to Lemma[F.12} we obtain

2
Y E [HZkK_1 Vk,t+1/2/KH ]
(142T(J% 4 02))t/2-4

<aE [\/E} +b,

where a and b are constants defined similarly to Lemma By using Lemmaagain to get v/ Ar
is of order O(+/T)), we obtain

2

T K
SUE || Virro/ K| | < (B [V +0) (1427(2 +0%) /2
t=1 k=1
=0 (VT) (1+21(J% + 0%))/271,
which equates to O (Tl"j) as desired. |

F.4 GAP ANALYSIS UNDER ABSOLUTE NOISE

Lemma F.14 (General Bound for|[GAP). Let X C R? denote a compact neighborhood of a solution
for . Let D* := sup,cy || X1 — pl|*>. Suppose that the oracle and the problem satisfy
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Assumpttons. nand 3| Let (Xt)ten and (X1 /2)ten be generated by (5) with non-increasing
learning rates n; and v from Mschedule such that ny <y for allt € N. It holds

E [sup <A(p),Xt+1/2 — p>} §—]E {(6L2 + 5L+ ) Ar_1 +
peX T 2

D i1
+$ + (6L% + 5L)(J? + o?)

D? 3L% =
+7+2(J2+U )+7ZHXH-1 X% -

Proof. First note that

T K r.OK
1
sup E — Vi, , X —p =supE | — Vi , X, —
aup 2<Kz S |3 kmz o
ok
> E|— X —
> sup Kz< z o >]
K
=supE | — Ar(p), X -
peg _Kkzz:l< k(p) t+1/2 p>]

=TE {SUP (A(p), X1 41/2 p>} .
peX

where the second inequality stems from the monotonicity of operators Ay, for k € [K]. From the

template inequality (Lemma and the two facts that v, < 1 and Zle kat_l /2 /K >U,;_4 /25
we deduce

K
1 _
EEEE K ; <Vk,t+1/27 Xt+1/2 - p>
T K 2 T
| X1 —pH2 3L? 3 ¥ 3L? 2
< | P s S V| + 2253 X - X
2 t t—1/2 (2|P2 Y t
20741 K* = k=1 2 =
K 2 s I K 2
- 2
Z 2K2 ;Vk,tJrl/Z Yo tz:;% kZ: ~1/2

K

Z ket+1/2

k=

D2\/1+ Ap_ _
<E \/ + T1+NT1 6L +5 Z
2

t=1
2

9 T—1 T .
2 t
— Z ||Xt+1 - Xt” + Z K2
t=1 t=1
Now we can analyze three terms of this sum in the following three inequalities.
DQ\/I + Ar_1 4+ pr—1 < D*(1 + /Ar—1 + JiT-1)
2 - 2 ’
From Lemmaand the fact that 77, ; < 1/4/1 + Ai—1, we next have
2
2 K ¥
6L2 + 5L 3L2 4 5L 2 k=1 Vitt1/2 H
Z %+1 Z Vitt1/2|| < oK?
t=1 VIt A
K- 2
6L2 + 5L z_: PRy Vk,t+1/2/KH
t=1 V1t A
< (6L% 4+ 5L) (\//\T_l + J% + 02) .

M2
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where the last step stems from Lemma |[F.3|with s = 1,7 = 1/2. With a similar observation that
e < 1/4/1 + A¢—2, we can similarly apply Lemma and obtain

2 Z sz 1Vk t+1/2H
2K2 N
K - 2
HZk:1Vk,t+1/2/KH

- t; 2 /1 + Ms

< VAr+ 2(J2 + (72).
Combining the above three inequalities, we obtain

K

Z k,t+1/2

k=1

IN

sup E

K

1 _

— Vi , X —p
s K k§:1< k4172, Xt+1/2 >

2

D? D
<E KmLZ +6L% +5L + 2) Ar_1+ VAr + -

D2 Jir—1
+(6L% 4+ 5L)(J* 4+ 0%) + % +2(J* +0?) + 12L% |,

implying

E [Elelg (A(p), Xip1/2 — p>}

D2 D? ~
EK6L2+5L+2> M1+ ;T :

2 2 2 D2 2 2 3L2T . 2
+(6L* +5L)(J* +0%) + —- +2(J* + o )+TZHXt+1—Xt|| .
t=1

We will now show the convergence of Algorithm|[T] with[Alf]learning rates under absolute noise

Theorem F.15 (Convergence under Absolute Noise with - learning rates). Let X C R denote
a compact neighborhood of a solution for (VI). Let D? := SUDpex | X1 — pl|% Let the average
square root expected code-length bound €5 = S M_ 57 1T jN/EQ,m,;/T. Suppose that the

m=1
oracle and the problem (.) satisfy Assumptlonsn . i 3| and|2.4) Let (Xt)ien and (X411 /2)ten
be generated by (B)) with non-increasing learning rates 1, and ~y; from[Alf] schedule, such that n; <

forallt € N. It holds that

B [Gapy (¥rs12)] = (

(LD + [[A(X)l2 + 0)éq + 0) D4)
e :

Proof. First we consider no compression, i.e. z—:Q = 0. Note that from Lemma we have A7 and
Ar—1 are O(T), so v/ Ar and w/)\T—1 are O(v/T). Next by note that
1

D? UTl D? 3L2 —
e anm X< (5 + )Z|Xt+1—xt||2

Hﬁ»
_._.

( 3L2> [ X1 — X2
877t

~+

=1
(D 3L2

T+ ) (w[vam] )
=o(r" )
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where the second last step holds due to Lemma with the constants a and b defined in the same
above lemma, and the last step holds from Lemma@ Combining these bounds with Lemma@],
we obtain

sup E
peEX

K
%Z <Vk,t+1/27Xt+1/2 - P> =0 (D4ﬁ) -

k=1

Then, without compression, we have

K K
1 > 1 1
E [K Z sup <Ak(p)aXt+1/2 - P>] < T sup E lz <K Z Vi t+1/2, Xt41/2 —p>]

k=1PE€X

Now, we consider applying layer-wise compression to this bound. Firstly, recall that the average
square root expected code-length bound is denoted as

MoJm
— Tom,j\/EQm.j

=y Y T

m=1 j=1

With Lemma [D.6] we can follow the ideas established by (Faghri et al.| 2020, Theorem 4) and

(Ramezani-Kebrya et al., 2023, Theorem 3) and obtain the final computation complexity with
layer-wise compression

(LD + [|A(X3)l2 + o) + 0))D4> .

E [Gapx (Xt+1/2)] =0 ( JT

F.5 GAP ANALYSIS UNDER RELATIVE NOISE

Next for the relative noise case, we first consider this known general bounds for any N non-negative
real-valued random variables.

Lemma F.16. (Hsieh et al| |2022| Lemma 21) Let p,r,s € Ry such that p > r,s € Ry, and
(at,...,a"N) be a collection of any N non-negative real-valued random variables. If, we have

S Bll@)] < s Y By,

then we obtain

N
S El(a)r) < Nsir, Y El(a)] < Nsvr.

i=1

To obtain a better complexity, we now provide a set of improved bounds for the key quantities in the
analysis.

Lemma F.17. Assume that the assumption Assumption[2.3\is satisfied, and|Alf|learning rate update
schedule is used. Then, for any T € N, we obtain

E [(1 + AT)l/“ﬂ <((1L+or)(a+b)+1) "
E [M} <((1+or)(a+0b)+1)2

E [ur] < 8a((1+ og)(a +b) +1)2 + 8b,
where a, b are defined constants in Lemma
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Proof. To begin with, we have from Assumption [2.3]that

1
Bl

K 2 [ L IE
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2

+or|[A(X 10|

2 K

1
7 2 A(Xes1/2)

k=1

+OoRr

2

b

where the last few steps utilize the fact that A; = A; = A for all 4, j € [K]. Since the learning rates
¢ are non-increasing, we can write

2

2

T " K 1 T | y K
t t
ZE ﬁ ka,t+1/2 Z 1+O'R ZE ﬁ ka,t+1/2
t=1 k=1 t=1 | k=1
1 T - K 2
> e S
- 2 ) +1/2
1+o0gr et I K —
2
T K
1 Zt:l HZk:1 Vk,t+1/2H /K2
l+or (1+ Ap)l/2-d
_ 1 [ A 4+1-1
T l+4or (14 Ap)/20
1 r 5 1 1
— El1a 1/2+q} _ E i
I Trons [T a7
1 [ X 1
> El(1+ )\ 1/2+q} _
“1+4or (1+A7) 1+or
implying
T y K 2
E[(1+20)2] < (1+0R) Y E | 25 |3 Vigraa|| | +1.
t=1 k=1

By Lemma|[F.12] we deduce

E [(1 + /\T)1/2+é} <a(l+0og)E [\/E} +b(1+0g)+1

< ((1+ o) (a+b) + )E [T+ ]
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where a, b are constants defined in Lemma E 12| Now we utilize Lemma forN=1,p=1/24+4,
r=1/2,s=(1+o0gr)(a+b)+1anda' =1+ Ap. This implies

E [(1 n AT)I/H} < ((1+or)(a+b)+1)*

E [\/1 Jr/\T} < ((1+0g)(a+b)+1)%.

Now combining the second inequality above and Lemma[F12] we finally get

d X~ X |)? .
Elur] =) [1Xe— Xewa|* <) T < 8a((1+og)(a +b) +1)27 +8b,
t=1 =1 t

where a, b are defined constants in Lemma[F.12] [ |

Theorem 5.2 (Algorithm [[junder Relative Noise without Co-coercivity Assumption). Suppose the
iterates X; of Algorithm|l|are updated with learning rate schedule in @)for alt=1/2,1,...,T.
Let X C R? be a compact neighborhood of a solution for , £q as in Section and D? =

suppe v [| X1 — pll3. Under Assumptions and for Algorithm|I|\with learning

rates (Alf), we have

E [GapX (Yt+1/2)] =0 ((O’R@—‘r@—f— O'R)D4/T) .

Proof. By plugging Lemma[FI7)into Lemma[F.14] we have the complexity with no compression is
O (D4 / T) . With the bound from Lemmal]ﬁ we can follow the ideas established by (Faghri et al.}
2020, Theorem 4) and (Ramezani-Kebrya et al.|,[2023|, Theorem 4) and obtain the final computation
complexity with layer-wise compression

_ o 4+ 5 D4
E [Gapx (Xt+1/2)] =0 ((UReQ * Ej? *or) > )
where £ is the average variance upper bound as

Mogm™

7@ _ Z Z Tm,j;Q,m,j )

m=1 j=1

54



	Introduction
	Summary of Contributions
	Related Works

	Preliminaries
	Quantized Optimistic Dual Averaging
	Adaptive Layer-wise Quantization
	Encoding
	Coding Protocol 1
	Coding Protocol 2

	Optimistic Dual Averaging

	Theoretical Guarantees
	Compression Bounds
	Algorithm Complexity

	Almost Sure Boundedness Model
	Numerical Experiments
	Limitations and Future Directions
	Conclusion
	Ethical Statement
	Reproducibility Statement
	Addition Information
	Further Literature Review
	Comparisons to Related Methods
	Notations

	Variational Inequality Background
	GAP
	Co-coercivity Assumption
	Relative Noise Examples

	Proof of Quantization Variance Bound
	Coding Framework
	Further Details on Coding Framework
	Proof of Code Length Bound for Protocol 1
	Proof of Code Length Bound for Protocol 2
	Unbiased Compression under Both Noises Profiles

	Analysis in the General Setting
	Template Inequality
	GAP Analysis under Absolute Noise
	GAP Analysis under Relative Noise

	Analysis in Almost Sure Boundedness Model
	Useful Lemmas
	Important Inequalities
	Bound on Sum of Squared Norms
	GAP Analysis under Absolute Noise
	GAP Analysis under Relative Noise


