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ABSTRACT

Demonstration-guided reinforcement learning (RL) is a promising approach for
learning complex behaviors by leveraging both reward feedback and a set of target
task demonstrations. Prior approaches for demonstration-guided RL treat every
new task as an independent learning problem and attempt to follow the provided
demonstrations step-by-step, akin to a human trying to imitate a completely unseen
behavior by following the demonstrator’s exact muscle movements. Naturally, such
learning will be slow, but often new behaviors are not completely unseen: they
share subtasks with behaviors we have previously learned. In this work, we aim to
exploit this shared subtask structure to increase the efficiency of demonstration-
guided RL. We first learn a set of reusable skills from large offline datasets of
prior experience collected across many tasks. We then propose an algorithm for
demonstration-guided RL that efficiently leverages the provided demonstrations
by following the demonstrated skills instead of the primitive actions, resulting
in substantial performance improvements over prior demonstration-guided RL
approaches. We validate the effectiveness of our approach on long-horizon maze
navigation and complex robot manipulation tasks.

1 INTRODUCTION

Policy Environment

Demonstration-Guided RL

Task-Specific

Demonstrations

Task-Agnostic Offline Data

Figure 1: Conventional demonstration-guided re-
inforcement learning approaches aim to accelerate
RL with a small set of task-specific demonstra-
tions by simply imitating the state-action mapping
in the demonstrations, which limits their applica-
tion to relatively short and simple tasks. For effi-
cient learning, we propose to leverage large, task-
agnostic datasets collected across many different
tasks by (1) acquiring a rich motor skill repertoire
from such offline data and (2) understanding and
imitating the demonstrations based on the skill
repertoire.

Humans are remarkably efficient at acquiring
new skills from demonstrations: often a sin-
gle demonstration of the desired behavior and
a few trials of the task are sufficient to master
it (Bekkering et al., 2000; Al-Abood et al., 2001;
Hodges et al., 2007). To allow for such efficient
learning, we can leverage a large number of
previously learned behaviors (Al-Abood et al.,
2001; Hodges et al., 2007). Instead of imitat-
ing precisely each of the demonstrated muscle
movements, humans can extract the performed
skills and leverage the rich repertoire of already
acquired skills to efficiently reproduce the de-
sired behavior.

Demonstrations are also commonly used in re-
inforcement learning (RL) to guide exploration
and improve sample efficiency (Vecerik et al.,
2017; Hester et al., 2018; Rajeswaran et al.,
2018; Nair et al., 2018; Zhu et al., 2018). How-
ever, such demonstration-guided RL approaches
attempt to learn tasks from scratch: analogous to
a human trying to imitate a completely unseen
behavior by following every demonstrated mus-
cle movement, they try to imitate the primitive
actions performed in the provided demonstra-
tions. As with humans, policies learned with such step-by-step imitation are brittle (Ross et al., 2011),
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and thus these approaches require a large number of demonstrations and environment interactions to
learn a new task.

We propose to improve the efficiency of demonstration-guided RL by leveraging prior experience
in the form of an offline “task-agnostic“ experience dataset, collected not on one but across many
tasks (see Figure 1). Given such a dataset, our approach extracts reusable skills: robust short-horizon
behaviors that can be recombined to learn new tasks. Like a human imitating complex behaviors
through the chaining of known skills, we can leverage this rich repertoire of skills for efficient
demonstration-guided RL on a new task by guiding policy learning using the demonstrated skills
instead of the primitive actions.

Concretely, we propose a demonstration-guided RL algorithm that builds on recent works in skill-
based RL (Pertsch et al., 2020a; Ajay et al., 2020) in order to learn low-dimensional representations
of short-horizon skills from offline datasets, and then learns new tasks efficiently by leveraging
these skills to follow a given set of demonstrations. Across challenging navigation and robotic
manipulation tasks we find that our approach significantly improves the learning efficiency over prior
demonstration-guided RL approaches.

In summary, the contributions of our work are threefold: (1) we introduce the problem of leveraging
task-agnostic offline datasets for accelerating demonstration-guided RL on unseen tasks, (2) we pro-
pose a skill-based algorithm for efficient demonstration-guided RL and (3) we show the effectiveness
of our approach on a maze navigation and two complex robotic manipulation tasks.

2 RELATED WORK

Imitation learning. Learning from Demonstration, also known as imitation learning (Argall et al.,
2009), is a common approach for learning complex behaviors by leveraging a set of demonstrations.
Most prior approaches for imitation learning are either based on behavioral cloning (BC, Pomerleau
(1989)), which uses supervised learning to mimic the demonstrated actions, or inverse reinforcement
learning (IRL, Abbeel & Ng (2004); Ho & Ermon (2016)), which infers a reward from the demonstra-
tions and then trains a policy to optimize it. However, BC commonly suffers from distribution shift
and struggles to learn robust policies (Ross et al., 2011), while IRL’s joint optimization of reward and
policy can result in unstable training. More generally, the performance of most imitation learning
methods is upper bounded by the performance of the demonstrator.

Demonstration-guided RL. A number of prior works aim to mitigate these problems by combining
reinforcement learning with imitation learning. This allows the agent to leverage demonstrations for
overcoming exploration challenges in RL while using RL to increase robustness and performance of
the imitation learning policies. Prior work on demonstration-guided RL can be categorized into three
groups: (1) approaches that use BC to initialize and regularize policies during RL training (Rajeswaran
et al., 2018; Nair et al., 2018), (2) approaches that place the demonstrations in the replay buffer of an
off-policy RL algorithm (Vecerik et al., 2017; Hester et al., 2018), and (3) approaches that augment
the environment rewards with rewards extracted from the demonstrations (Zhu et al., 2018; Peng
et al., 2018; Merel et al., 2017). While these approaches can leverage demonstrations to improve
the efficiency of RL, they all treat each new task as an independent learning problem, i.e., attempt
to learn policies from scratch without taking any prior experience into account. As a result, they
require many demonstrations to learn effectively, which is especially expensive since a new set of
task-specific demonstrations needs to be collected for every new task.

Online RL with offline datasets. As an alternative to expensive task-specific demonstrations,
multiple recent works have proposed to accelerate reinforcement learning by leveraging task-agnostic
experience in the form of large datasets collected across many tasks (Pertsch et al., 2020a; Siegel et al.,
2020; Nair et al., 2020; Ajay et al., 2020; Singh et al., 2021; 2020). In contrast to demonstrations,
such task-agnostic datasets can be collected cheaply from a variety of sources, e.g., using previously
trained agents across a diverse set of tasks (Fu et al., 2020; Gulcehre et al., 2020), through agents
autonomously exploring their environment (Hausman et al., 2018; Sharma et al., 2020) or via human
teleoperation (Schaal et al., 2005; Gupta et al., 2019; Mandlekar et al., 2018; Lynch et al., 2020).
Once collected, the dataset can be reused for learning many downstream tasks. Though being cheaper
to collect, the task-agnostic data will usually not contain demonstrations for the downstream task,
making learning less efficient than demonstration-guided approaches.

2



Published in the SSL-RL workshop at ICLR 2021

s0 s1 s2 s3 s4 s5

a0 a1 a2 a4a3

qω(z |s, a)

πϕ(at |st, z)

st

πθ(z |st)

πϕ(at |st, z)

Environment

z
at

Pre-Trained

qζ(z |s0)

qω(z |s, a)
Regularization

Skill Extraction1 Posterior Training2 Downstream RL3

s2s0 s1 s3 s4 s5 sd0:T

Figure 2: Our approach combines task-agnostic experience and task-specific demonstrations to
efficiently learn target tasks in three steps: (1) extract skills from task-agnostic offline data, (2) learn
a task-specific skill posterior from demonstrations, and (3) learn a high-level skill policy for the target
task using prior knowledge from both task-agnostic offline data and task-specific demonstrations.
Left: Skill embedding model with skill extractor (yellow) and low-level skill policy (blue). Middle:
Training of skill posterior (purple) from demonstrations. Right: Training of high-level skill policy
(red) on a downstream task using the pre-trained skill representation and regularization via the skill
posterior (skill prior regularization omitted for clarity).

Skill-based RL. One class of approaches for leveraging such offline datasets that is particularly
suited for learning long-horizon behaviors is skill-based RL (Hausman et al., 2018; Merel et al., 2019;
Kipf et al., 2019; Merel et al., 2020; Shankar et al., 2019; Whitney et al., 2020; Gupta et al., 2019;
Lee et al., 2020; Lynch et al., 2020; Pertsch et al., 2020b;a). These methods extract a set of reusable
skills from task-agnostic datasets and learn new tasks by recombining them. Yet, such approaches
perform reinforcement learning over the set of extracted skills to learn the downstream task. Although
being more efficient than RL over primitive actions, they still require a large number of environment
interactions to learn long-horizon tasks. In our work we combine the best of both worlds: by using
large, task-agnostic datasets and a small number of task-specific demonstrations, we accelerate the
learning of long-horizon tasks while reducing the number of required demonstrations.

3 APPROACH

Our goal is to use skills extracted from task-agnostic prior experience data to improve the efficiency
of demonstration-guided RL on a new task. We aim to leverage a set of provided demonstrations
by following the performed skills as opposed to the primitive actions. Therefore, we need a model
that can (1) leverage prior data to learn a rich set of skills and (2) identify the skills performed in the
demonstrations in order to follow them. In the following, we will formally define our problem setting,
briefly summarize relevant prior work on RL with learned skills and then describe our approach for
demonstration-guided RL.

3.1 PRELIMINARIES

Problem Formulation We assume access to two types of datasets: a large task-agnostic offline
dataset and a small task-specific demonstration dataset. The task-agnostic dataset D = {st, at, ...}
consists of trajectories of meaningful agent behaviors, but includes no demonstrations of the target
task. We only assume that its trajectories contain short-horizon behaviors that can be reused to solve
the target task. Such data can be collected without a particular task in mind using a mix of sources,
e.g., via human teleoperation, autonomous exploration, or through policies trained for other tasks.
Since it can be used to accelerate many downstream task that utilize similar short-term behaviors
we call it task-agnostic. In contrast, the task-specific data is a much smaller set of demonstration
trajectories Ddemo = {sdt , adt , ...} that are specific to a single target task.

The downstream learning problem is formulated as a Markov decision process (MDP) defined by a
tuple (S,A, T , R, ρ, γ) of states, actions, transition probabilities, rewards, initial state distribution,
and discount factor. Our goal is to learn a policy πθ(a|s) with parameters θ that maximizes the
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discounted sum of rewards J(θ) = Eπ
[∑T−1

t=0 Jt
]

= Eπ
[∑T−1

t=0 γtrt
]
, where T is the episode

horizon.

Skill Prior RL Our goal is to extract skills from task-agnostic experience data and reuse them for
demonstration-guided RL. Prior work has investigated the reuse of learned skills for accelerating
RL (Pertsch et al., 2020a). In this section, we will briefly summarize their proposed approach Skill
Prior RL (SPiRL) and then describe how our approach improves upon it in the demonstration-guided
RL setting.

SPiRL defines a skill as a sequence of H consecutive actions a = {at, . . . , at+H−1}, where the skill
horizon H is a hyperparameter. SPiRL uses the task-agnostic data to jointly learn (1) a generative
model of skills p(a|z), that decodes latent skill embeddings z into executable action sequences, and
(2) a state-conditioned prior distribution p(z|s) over skill embeddings. For learning a new downstream
task, SPiRL trains a high-level skill policy π(z|s) whose outputs get decoded into executable actions
using the pre-trained skill decoder. Crucially, the learned skill prior is used to guide the policy during
downstream RL by maximizing the following divergence-regularized RL objective:

J(θ) = Eπθ
[ T−1∑
t=0

r(st, zt)− αDKL
(
πθ(zt|st), pa(zt|st)

)]
. (1)

Here, the KL-divergence term ensures that the policy remains close to the learned skill prior, guiding
exploration during RL. By combining this guided exploration with temporal abstraction via the
learned skills, SPiRL substantially improves the efficiency of RL on long-horizon tasks.

3.2 SKILL REPRESENTATION LEARNING

To effectively reuse skills extracted from task-agnostic data for demonstration-guided RL, we need
an expressive skill representation. The open-loop skill decoder used in SPiRL (see Section 3.1) is not
conditioned on states and therefore limits the expressiveness of the learned skills. Instead, we follow
prior work on skill-based RL (Lynch et al., 2020; Ajay et al., 2020) and extend SPiRL’s low-level
decoder to a full closed-loop skill policy π(a|s, z) that is conditioned on the current environment
state. In our experiments we found this closed-loop decoder to improve performance (see Section C
for an empirical comparison).

Figure 2 (left) summarizes our skill learning model. It consists of two parts: the skill inference
network qω(z|s0:H−1, a0:H−2) and the closed-loop skill policy πφ(at|st, z). Note that in contrast to
SPiRL the skill inference network is state conditioned to account for the state-conditioned low-level
policy. During training we randomly sample an H-step state-action trajectory from the task-agnostic
dataset. We then pass it to the skill inference network, which predicts the low-dimensional skill
embedding z, that encodes the subtask information. This skill embedding is then input into the
low-level policy πφ(at|st, zt) for every input state. The policy is trained to imitate the given action
sequence, thereby learning to reproduce the behaviors encoded by the skill embedding z.

We optimize the latent skill representation using variational inference, which leads to our full skill
learning objective:

max
φ,ω

Eq
[H−2∏
t=0

log πφ(at|st, z)︸ ︷︷ ︸
behavioral cloning

−β
(

log qω(z|s0:H−1, a0:H−2)− log p(z)︸ ︷︷ ︸
embedding regularization

)]
.

We use a unit Gaussian prior p(z) and weight the embedding regularization term with a factor
β (Higgins et al., 2017).

3.3 DEMONSTRATION-GUIDED RL WITH LEARNED SKILLS

To leverage the learned skills for accelerating demonstration-guided RL on a new task, we propose to
use a hierarchical policy learning scheme (see Figure 2, right): we learn a high-level policy πθ(z|s)
which outputs latent skill embeddings z and transfer the pre-trained low-level policy.
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Figure 3: We leverage prior experi-
ence data D and demonstration data
Ddemo. Our approach is guided by
the task-specific skill posterior qζ(z|s)
within the support of the demonstrations
(green) and by the task-agnostic skill
prior pa(z|s) otherwise (red). The agent
also receives a reward bonus for reaching
states within the support of the demon-
strations.

Our goal is to leverage the task-specific demonstrations
to guide learning of the high-level policy on the new task.
In Section 3.1, we showed how SPiRL (Pertsch et al.,
2020a) leverages a learned skill prior pa(z|s) to guide
exploration. However, this prior is task-agnostic, i.e., it
encourages exploration of all skills that are meaningful
to be explored, independent of which task the agent is
trying to solve. Even though SPiRL’s objective makes
learning with a large number of skills more efficient, it
still encourages the policy to explore many skills that are
not relevant to the downstream task.

In this work, we instead propose to leverage target task
demonstrations to learn a task-specific skill distribution,
which we call skill posterior qζ(z|s) (in contrast to the
skill prior it is conditioned on the target task, hence “poste-
rior”). We train this skill posterior by using the pre-trained
skill inference model qω(z|s0:H−1, a0:H−2) to extract the
embeddings for the skills performed in the demonstration
sequences (see Figure 2, middle):
min
ζ

E(s,a)∼DdemoDKL
(
qω(z|s0:H−1, a0:H−2), qζ(z|s0)

)
,

(2)
where DKL denotes the Kullback-Leibler divergence.

A naive approach for leveraging the skill posterior is to simply use it to replace the skill prior in
Equation 1, i.e., to regularize the policy to stay close to the skill posterior in every state. However,
the trained skill posterior is only accurate within the support of the demonstration dataset bDdemoc.
Since |Ddemo| � |D|, this support will necessarily only be a small subset of all states (see Figure 3)
and thus the skill posterior will often provide incorrect guidance in states outside the demonstrations’
support.

Instead, we propose to use a three-part objective to guide the policy during downstream learning.
Our goal in formulating this objective is to (1) follow the skill posterior within the support of the
demonstrations, (2) follow the skill prior outside the demonstration support, and (3) encourage
the policy to reach states within the demonstration support. Crucial for all three components is to
determine whether a given state is within the support of the demonstration data. We propose to
use a learned discriminator D(s) to answer this question. It is trained to distinguish demonstration
and non-demonstration states using samples from the demonstration and task-agnostic datasets,
respectively. Once trained, we use its output to weight terms in our objective that regularize the policy
towards the skill prior or posterior. Additionally, we provide a reward bonus for reaching states which
the discriminator classifies as being within the demonstration support. This results in the following
Jt for our full RL objective:
Jt = r̃(st, zt)− αqDKL(πθ(zt|st), qζ(zt|st)) ·D(st)︸ ︷︷ ︸

posterior regularization

−αDKL(πθ(zt|st), pa(zt|st)) · (1−D(st))︸ ︷︷ ︸
prior regularization

,

with r̃(st, zt) = (1− κ) · r(st, zt) + κ ·
[

logD(st)− log
(
1−D(st)

)]︸ ︷︷ ︸
discriminator reward

.

The weighting factor κ is a hyperparameter; α and αq are either constant or tuned automatically via
dual gradient descent (Haarnoja et al., 2018b). For policy optimization, we use a modified version
of the SPiRL algorithm (Pertsch et al., 2020a), which itself is based on Soft Actor-Critic (Haarnoja
et al., 2018a) (for the full algorithm see appendix, Section A).

The discriminator reward follows common reward formulations used in adversarial imitation learn-
ing (Finn et al., 2016; Fu et al., 2018; Zhu et al., 2018; Kostrikov et al., 2019).1 More generally, our
formulation combines IRL-like and BC-like objectives: it uses learned rewards and it directly trains
the policy to match the demonstration’s skill distribution.

1We found that using the pre-trained discriminator weights led to stable training, but one could perform
full adversarial training by finetuning D(s) with rollouts from the downstream task training. We leave this
investigation for future work.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND COMPARISONS

Ours SPiRL BC+RL GAIL+RL SACReplay

1
2

3

4

1

2

3

Figure 4: Left: Test environments, top
to bottom: 2D maze navigation, robotic
kitchen manipulation and robotic office
cleaning. Right: Target task perfor-
mance vs environment steps. By us-
ing task-agnostic experience, our ap-
proach can more efficiently leverage
the provided demonstrations than prior
demonstration-guided RL approaches
across all tasks. The comparison to
SPiRL shows that demonstrations can
improve the learning efficiency even if
the agent has access to large amounts of
prior experience.

To evaluate whether our method can efficiently use the
task-agnostic data, we compare it to prior demonstration-
guided RL approaches on three complex, long-horizon
tasks: a 2D maze navigation task, a robotic kitchen manip-
ulation task and a robotic office cleaning task (see Figure 4,
left).

Maze Navigation. For this task we adapt the maze navi-
gation task from Pertsch et al. (2020a): we further increase
task complexity by adding randomness to the agent’s initial
position. To solve the task, the agent needs to navigate a
maze from the randomized start position to a fixed goal po-
sition using planar velocity commands. It only receives a
binary reward upon reaching the goal. This environment is
challenging for prior demonstration-guided RL approaches
since demonstrations of the task span hundreds of time
steps, making step-by-step imitation of primitive actions
inefficient. We collect a task-agnostic offline experience
dataset with 3000 sequences by using a motion planner
to find paths between randomly sampled start-goal pairs.
For the target task we sample an unseen start-goal pair
and then use the same motion planner to collect a much
smaller set of 2 demonstrations for reaching the fixed goal
position. Although the task-agnostic dataset does not pro-
vide demonstrations for reaching the target task goal, it
can still be used to extract relevant short-horizon skills
like navigating hallways or passing through narrow doors.

Robot Kitchen Environment. We use the environment
of Gupta et al. (2019) in which a 7DOF robot agent needs
to perform a sequence of four subtasks, such as opening
the microwave or switching on the light, in the correct
order. It receives a binary reward upon completion of each
consecutive subtask. In addition to the long task horizon, this environment requires precise control of
a high-DOF manipulator, testing the scalability of demonstration-guided RL approaches. We use 603
teleoperated sequences performing various subtask combinations (from Gupta et al. (2019)) as our
task-agnostic experience datasetD and separate a set of 20 demonstrations for one particular sequence
of subtasks, which we define as our target task (see Figure 4, middle). We further mitigate biases in
the task-agnostic dataset by resampling trajectories to balance the subtask occurrence probabilities
(see Section 4.4 for a detailed discussion of biases in the offline dataset).

Robot Office Environment. In this task, a 5 DOF robot agent needs to clean an office environment
by performing subtasks like picking and placing objects or opening and closing a drawer. It receives
binary rewards for the completion of each subtask in the correct order. In addition to the challenges
of the kitchen environment, this task tests an algorithm’s ability to learn long-horizon behaviors
with freely manipulatable objects. It also requires the algorithm to handle a greater diversity in the
task-agnostic data: we collect 5300 training trajectories by placing the objects at random positions in
the environment and performing random subtasks using scripted policies. We also collect a set of 50
demonstrations for the unseen target task with new object locations and an unseen subtask sequence
using the same scripted policies.

We compare our approach to multiple prior demonstration-guided RL approaches that represent the
different classes of existing algorithms introduced in Section 2. In contrast to our method, these
approaches are not able to leverage task-agnostic prior experience:

6
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• BC + RL: initializes a policy with behavioral cloning of the demonstrations, then continues
to apply BC loss while finetuning the policy with Soft Actor-Critic (SAC, Haarnoja et al.
(2018a)), representative of Rajeswaran et al. (2018); Nair et al. (2018).

• GAIL + RL (Zhu et al., 2018): combines rewards from the environment and adversarial
imitation learning (GAIL, Ho & Ermon (2016)), optimizes the policy using PPO (Schulman
et al., 2017).

• Demo Replay: initializes the replay buffer of an SAC agent with the demonstration data
and applies prioritized replay of the demonstration transitions during updates, representative
of Vecerik et al. (2017).

We further compare our approach to RL-only methods to show the benefit of using demonstration
data:

• SAC (Haarnoja et al., 2018a): is the state-of-the-art model-free RL algorithm, it neither uses
offline experience nor demonstrations.

• SPiRL (Pertsch et al., 2020a): extracts skills from task-agnostic experience and performs
prior-guided RL on the target task (see Section 3.1). We substitute the open-loop skill
representation in Pertsch et al. (2020a) with our closed-loop representation (see Section 3.2),
since this allows for fairer comparison and we found the performance to be generally superior
(for an empirical comparison, see Section C).

For further details on the environments, data collection, and implementation details, see appendix
Section B.

4.2 DEMONSTRATION-GUIDED RL WITH LEARNED SKILLS

Figure 5: Visualization of our approach on the
maze navigation task (with |Ddemo| = 5, visualiza-
tion states collected by rolling out the skill prior).
Top left: the given demonstration trajectories; top
right: output of the demonstration discriminator
D(s) (the more green, the higher the predicted
probability of a state to be within demonstration
support). Bottom left: policy divergences to the
skill posterior and Bottom right: divergence to
the skill prior (blue indicates small and red high
divergence). The discriminator accurately infers
the demonstration support, the policy successfully
follows the skill posterior only within the demon-
stration support and the skill prior otherwise.

Maze Navigation. We compare the down-
stream task performance of the tested methods
on the maze navigation task in Figure 4 (right).
Prior approaches for demonstration-guided RL
struggle to learn the task since task-rewards are
sparse and only two demonstrations are pro-
vided. With such small coverage, behavioral
cloning of the demonstrations’ primitive actions
leads to brittle policies which are hard to fine-
tune (for an analysis of the influence of the num-
ber of demonstrations, see Section 4.3). The Re-
play agent improves over SAC without demon-
strations and partly succeeds at the task, but
learning is slow. The IRL-based approach is able
to follow part of the demonstrated behavior, but
fails to reach the final goal and as a result does
not receive the sparse environment reward (see
Figure 8 for qualitative results). SPiRL, in con-
trast, is able to leverage offline, task-agnostic ex-
perience to learn to solve the task, but requires a
substantial amount of environment interactions:
the task-agnostic skill prior encourages the pol-
icy to try many skills before converging to the
ones that solve the downstream task. In contrast,
our approach leverages the task-specific skill
posterior to quickly explore the relevant skills,
leading to significant efficiency gains.

We further analyze our approach in Figure 5: we
visualize the output of the learned discriminator
D(s), as well as divergences between the policy
and skill prior and posterior. The discriminator
accurately estimates the demonstration support,
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providing a good weighting for prior and posterior regularization, as well as a dense reward bonus. The
policy successfully minimizes divergence to the task-specific skill posterior within the demonstration
support and follows the skill prior otherwise.

Robotic Manipulation. We show the performance comparison on the robotic manipulation tasks
in Figure 4 (right)2. Both tasks are more challenging since they require precise control of a high-DOF
manipulator. We find that approaches for demonstration-guided RL that do not leverage task-agnostic
experience struggle to learn either of the tasks since following the demonstrations step-by-step is
inefficient and prone to accumulating errors. SPiRL, in contrast, is able to learn meaningful skills
from the offline datasets, but struggles to explore the task-relevant skills and therefore learns slowly.
Our approach uses the demonstrations to learn to chain the extracted skills and solve the tasks.

4.3 ABLATION STUDIES

Figure 6: Ablation studies. Performance of our
approach for different sizes of the demonstration
dataset |Ddemo| on the maze navigation task (left)
and ablation of different components of our objec-
tive on the kitchen manipulation task (right).

Number of Demonstrations. In Figure 6
(left) we investigate the robustness of
demonstration-guided RL approaches to a
variety of demonstration set sizes on the maze
navigation task. We compare our approach
to BC+RL, since we found it to achieve the
most consistent results across different numbers
of demonstrations. While both approaches
benefit from larger demonstration sets, we can
observe that the advantage from leveraging prior
experience is particularly large in cases with
few provided demonstrations. These results
are intuitive, since BC+RL needs to use the
demonstrations as guidance for learning each low-level action while our approach merely needs to
learn to recombine skills it has already mastered using the offline data. Thus, it requires less dense
supervision and can cope with fewer demonstrations. Our approach’s ability to use task-agnostic data
to reduce the number of required demonstrations and environment interactions improves two of the
most costly aspects of learning tasks in the real world. Thus, the ability to leverage task-agnostic data
is an important step for scaling demonstration-guided RL to diverse real-world tasks.

Objective Ablations. We ablate different parts of our downstream RL objective on the kitchen
task in Figure 6 (right). We find that removing the discriminator reward bonus ("no-GAIL") leads
to slower convergence since the agent lacks a dense reward signal. Naively replacing the skill
prior in Equation 1 with the learned skill posterior ("post-only") fails to learn the task. Without
the support-based weighting the policy is constrained to follow the skill posterior in parts of the
state space which the posterior was not trained on. Finally, removing the learned skill posterior and
optimizing a discriminator bonus augmented reward using SPiRL ("no-post") fails to learn the task.

We also ablate the influence of environment rewards to test the efficacy of skill-based learning in the
pure imitation setting in appendix, Section E.

4.4 DATA ALIGNMENT ANALYSIS

We have shown that our approach is able to combine task-agnostic prior experience and task-specific
demonstrations to accelerate RL. Since the task-agnostic data can be reused to learn many tasks,
the marginal cost of learning a new task is dominated by the cost of collecting the task-specific
demonstrations. A key question is therefore: in what scenarios does the combination of task-agnostic
experience and demonstrations improve efficiency and when can we save costs and solely rely on the
task-agnostic dataset?

We hypothesize that the distribution of observed behaviors in the task-agnostic dataset is key to
answering this question: if it is not well aligned with the target behaviors, learning is inefficient.
Thus, this alignment determines the efficiency gain our method can achieve through the addition

2For robot manipulation videos, see https://sites.google.com/view/skill-demo-rl.
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of demonstrations. In our previous robotic kitchen experiments we balanced the distribution of
behaviors in the task-agnostic dataset to mitigate such biases in the selection of the downstream task.
To empirically analyze the effects of good and bad data-task alignment, we now conduct additional
experiments with the original, biased data distribution of Gupta et al. (2019). For a detailed analysis
of the data biases and the chosen downstream tasks, see Section F. We compare the performance of
our method to SPiRL, which solely relies on task-agnostic data.

Ours
SPiRL

Ours
SPiRL

Figure 7: Analysis of offline data-task alignment.
The benefit of using demonstrations in addition
to prior experience diminishes if the prior expe-
rience is closely aligned to the target task (left).
Efficiency gains are high when the learned prior is
mis-aligned with the target task, leading to ineffi-
cient exploration (right).

In the well-aligned case (Figure 7, left), we find
that both SPiRL and our approach are able to
learn the task efficiently. Since the skill prior
encourages effective exploration on the down-
stream task, the benefit of the additional demon-
strations leveraged in our method is marginal.

In contrast, if task-agnostic data and down-
stream task are mis-aligned (Figure 7, right), we
find that SPiRL struggles to learn the task due
to a conflict between the two objectives in Equa-
tion 1: maximizing task reward and minimizing
divergence from the skill prior. Our approach is
able to learn the task more reliably, since it en-
courages the policy to reach demonstration-like
states and then follow the skill posterior, which
by design is well-aligned with the downstream
task.

In summary, our analysis finds that approaches which leverage both task-agnostic data and demon-
strations, improve over methods that use either of the data sources alone across all tested tasks. We
find that combining the data sources is particularly beneficial in two cases:

• Diverse Task-Agnostic Data. Demonstrations can focus exploration on the task-relevant
skills if the task-agnostic skill prior encourages exploration of a large, potentially irrelevant
set of skills (see Section 4.2).

• Mis-Aligned Task-Agnostic Data. Demonstrations can compensate mis-alignment be-
tween task-agnostic data and target task by guiding exploration with the skill posterior
instead of the mis-aligned prior.

Both scenarios are important since it is challenging to control the quality of the prior experience
dataset, particularly if collected at scale from multiple sources. Our experiments show that the
combination of prior experience and demonstrations can make the learner more robust to fluctuations
in the characteristics of the prior experience dataset.

5 CONCLUSION

We have proposed a novel approach for demonstration-guided RL that is able to leverage task-agnostic
experience datasets for accelerated learning of unseen tasks. Our agent extracts a set of reusable
skills from the task-agnostic dataset. It then identifies the skills performed in the task-specific
demonstrations and uses them to guide downstream RL. In three challenging environments we find
that our approach learns unseen tasks more efficiently than both, prior demonstration-guided RL
approaches that are not able to leverage task-agnostic experience, as well as skill-based RL methods
that cannot effectively incorporate demonstrations.
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Algorithm 1 Demonstration-Guided RL with Learned Skills
1: Inputs: H-step reward function r̃(st, zt), reward weight γ, discount η, target divergences δ, δq,

learning rates λπ, λQ, λα, target update rate τ .
2: Initialize replay bufferD, high-level policy πθ(zt|st), criticQφ(st, zt), target networkQφ̄(st, zt)
3: for each iteration do
4: for every H environment steps do
5: zt ∼ π(zt|st) . sample skill from policy
6: st′ ∼ p(st+H |st, zt) . execute skill in environment
7: D ← D ∪ {st, zt, r̃(st, zt), st′} . store transition in replay buffer
8: for each gradient step do
9: rΣ = (1− γ) · r̃(st, zt) + γ ·

[
logD(st)− log

(
1−D(st)

)]
. compute combined reward

10: Q̄ = rΣ + η
[
Qφ̄(st′ , πθ(zt′ |st′))−

[
αqDKL

(
πθ(zt′ |st′), qζ(zt′ |st′)

)
·D(st′)

11: + αDKL
(
πθ(zt′ |st′), pa(zt′ |st′)

)
·
(
1−D(st′)

)]
.

compute Q-target
12: θ ← θ − λπ∇θ

[
Qφ(st, πθ(zt|st))−

[
αqDKL

(
πθ(zt|st), qζ(zt|st)

)
·D(st)

13: + αDKL
(
πθ(zt|st), pa(zt|st)

)
·
(
1−D(st)

)]
. update

policy weights
14: φ← φ− λQ∇φ

[
1
2

(
Qφ(st, zt)− Q̄

)2]
. update critic weights

15: α← α− λα∇α
[
α · (DKL(πθ(zt|st), pa(zt|st))− δ)

]
. update alpha

16: αq ← αq − λα∇αq
[
αq · (DKL(πθ(zt|st), qζ(zt|st))− δq)

]
. update alpha-q

17: φ̄← τφ+ (1− τ)φ̄ . update target network weights
18: return trained policy πθ(zt|st)

A FULL ALGORITHM

We detail our full algorithm for demonstration-guided RL with learned skills in Algorithm 1. It is
based on the SPiRL algorithm for RL with learned skills Pertsch et al. (2020a) which in turn builds on
Soft-Actor Critic Haarnoja et al. (2018a), an off-policy model-free RL algorithm. We mark changes
of our algorithm with respect to SPiRL and SAC in red in Algorithm 1.

The hyperparameters α and αq can either be constant, or they can be automatically tuned using dual
gradient descent Haarnoja et al. (2018b); Pertsch et al. (2020a). In the latter case, we need to define
a set of target divergences δ, δq. The parameters α and αq are then optimized to ensure that the
expected divergence between policy and skill prior and posterior distributions is equal to the chosen
target divergence (see Algorithm 1).

B IMPLEMENTATION AND EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS: PRE-TRAINING

We introduce our objective for learning the skill inference network qω(z|s, a) and low-level skill
policy πφ(at|st, z) in Section 3.2. In practice, we instantiate all model components with deep neural
networks Qω,Πφ respectively, and optimize the full model using back-propagation. We also jointly
train our skill prior network Pa. We follow the common assumption of Gaussian, unit-variance output
distributions for low-level policy actions, leading to the following network loss:

L =

H−2∏
t=0

∥∥at −Πφ(st, sg)
∥∥2

+ βDKL
(
Qω(s0:H−1, a0:H−2) || N (0, I)

)
+DKL

(
bQω(s0:H−1, a0:H−2)c || Pa(s0)

)
.

Here b·c indicates that we stop gradient flow from the prior training objective into the skill inference
network for improved training stability. After training the skill inference network with above objective,
we train the skill posterior network Qζ by minimizing KL divergence to the skill inference network’s
output on trajectories sampled from the demonstration data. We minimize the following objective:

Lpost = DKL
(
bQω(s0:H−1, a0:H−2)c || Qζ(s0)

)
13
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We use a 1-layer LSTM with 128 hidden units for the inference network and 3-layer MLPs with 128
hidden units in each layer for the low-level policy. We encode skills of horizon 10 into 10-dimensional
skill representations z. Skill prior and posterior networks are implemented as 5-layer MLPs with
128 hidden units per layer. They both parametrize mean and standard deviation of Gaussian output
distributions. All networks use batch normalization after every layer and leaky ReLU activation
functions. We tune the regularization weight β to be 1e−2 for the maze and 5e−4 for kitchen and
office environment.

For the demonstration discriminator D(s) we use a 3-layer MLP with only 32 hidden units per layer
to avoid overfitting. It uses a sigmoid activation function on the final layer and leaky ReLU activations
otherwise. We train the discriminator with binary cross-entropy loss on samples from task-agnostic
and demonstration datasets:

LD = − 1

N
·
[N/2∑
i=1

logD(sdi )︸ ︷︷ ︸
demonstrations

+

N/2∑
j=1

log
(
1−D(sj)

)
︸ ︷︷ ︸

task-agnostic data

]

We optimize all networks using the RAdam optimizer Liu et al. (2020) with parameters β1 = 0.9 and
β2 = 0.999, batch size 128 and learning rate 1e−3. On a single NVIDIA Titan X GPU we can train
the skill representation and skill prior in approximately 5 hours, the skill posterior in approximately 3
hours and the discriminator in approximately 3 hours.

B.2 IMPLEMENTATION DETAILS: DOWNSTREAM RL

The architecture of the policy mirrors the one of the skill prior and posterior networks. The critic is a
simple 2-layer MLP with 256 hidden units per layer. The policy outputs the parameters of a Gaussian
action distribution while the critic outputs a single Q-value estimate. We initialize the policy with the
weights of the skill posterior network.

We use the hyperparameters of the standard SAC implementation Haarnoja et al. (2018a) with batch
size 256, replay buffer capacity of 1e6 and discount factor γ = 0.99. We collect 5000 warmup rollout
steps to initialize the replay buffer before training. We use the Adam optimizer Kingma & Ba (2015)
with β1 = 0.9, β2 = 0.999 and learning rate 3e−4 for updating policy, critic and temperatures α
and αq. Analogous to SAC, we train two separate critic networks and compute the Q-value as the
minimum over both estimates to stabilize training. The corresponding target networks get updated
at a rate of τ = 5e−3. The policy’s actions are limited in the range [−2, 2] by a tanh "squashing
function" (see Haarnoja et al. (2018a), appendix C).

We use automatic tuning of α and αq in the maze and the office environment and set both target
divergences to 1 and 7 respectively. In the kitchen environment we obtained best results by using
constant values of α = αq = 5e−2. In all experiments we set κ = 0.9.

For all RL results we average the results of three independently seeded runs and display mean and
standard deviation across seeds.

B.3 IMPLEMENTATION DETAILS: COMPARISONS

BC+RL. This comparison is representative of demonstration-guided RL approaches that use BC
objectives to initialize and regularize the policy during RL Rajeswaran et al. (2018); Nair et al. (2018).
We pre-train a BC policy on the demonstration dataset and use it to initialize the RL policy. We use
SAC to train the policy on the target task. Similar to Nair et al. (2018) we augment the policy update
with a regularization term that minimizes the L2 loss between the predicted mean of the policy’s
output distribution and the output of the BC pre-trained policy3.

3We also tried sampling action targets directly from the demonstration replay buffer, but found using a BC
policy as target more effective on the tested tasks.
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Figure 8: Qualitative results for GAIL+RL on the
2D maze navigation task. The approach is able
to leverage the demonstrations to make progress
towards the goal (red), but since it fails to reach
the goal it never obtains the sparse environment
reward feedback and as a result fails to solve the
full target task.

Demo Replay. This comparison is represen-
tative of approaches that initialize the replay
buffer of an off-policy RL agent with demon-
stration transitions Vecerik et al. (2017); Hester
et al. (2018). In practice we use SAC and ini-
tialize a second replay buffer with the demon-
stration transitions. Since the demonstrations
do not come with reward, we heuristically set
the reward of each demonstration trajectory to
be a high value (100 for the maze, 4 for the
robotic environments) on the final transition and
zero everywhere else. During each SAC update,
we sample half of the training mini-batch from
the normal SAC replay buffer and half from the
demonstration replay buffer. All other aspects
of SAC remain unchanged.

B.4 ENVIRONMENT DETAILS

Maze Navigation. We adapt the maze naviga-
tion task from Pertsch et al. (2020a) which ex-
tends the maze navigation tasks from the D4RL
benchmark Fu et al. (2020). The starting posi-
tion is sampled uniformly from a start region
and the agent receives a one-time sparse reward
of 100 when reaching the fixed goal position,
which also ends the episode. The 4D observa-
tion space contains 2D position and velocity of the agent. The agent is controlled via 2D velocity
commands.

4
1

2
3

a b c

Figure 9: Office cleanup task. The robot agent
needs to place a subset of three randomly sampled
objects (1-4) inside randomly sampled containers
(a-c). During task-agnostic data collection we ran-
domly sample the object’s initial positions in the
shaded areas.

Robot Kitchen Environment. We use the
kitchen environment from Gupta et al. (2019).
For solving the target task, the agent needs to
execute a fixed sequence of four subtasks by con-
trolling an Emika Franka Panda 7-DOF robot via
joint velocity and continuous gripper actuation
commands. The 30-dimensional state space con-
tains the robot’s joint angles as well as object-
specific features that characterize the position of
each of the manipulatable objects. We mitigate
biases in the distribution over subtasks transi-
tions by re-sampling sequences of the provided
dataset (see Section F for details). Further, we
collect a version of the demonstration dataset
with increased support by initializing the envi-
ronment state to states randomly sampled from
the demonstrations and rolling out a random pol-
icy for 10 steps. We use this data augmentation
technique for increasing the support while pre-
training the demonstration discriminator D(s)4.

Robot Office Environment. We create a
novel office cleanup task in which a 5-DOF Wid-
owX robot needs to place a number of objects
into designated containers, requiring the execu-
tion of a sequence of pick, place and drawer open and close subtasks (see Figure 9). The agent

4We also tried training the GAIL and GAIL+RL baselines with the augmented demonstrations but did not
observe any benefit, we report the best results for the baseline in both cases.
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controls position and orientation of the end-effector and a continuous gripper actuation, resulting
in a 7-dimensional action space. For simulating the environment we build on the Roboverse frame-
work Singh et al. (2020). During collection of the task-agnostic data we randomly sample a subset
of three of the four objects as well as a random order of target containers and use scripted policies
to execute the task (see Figure 14). We only save successful executions. For the target task we
fix object positions and require the agent to place three objects in fixed target containers. The 76-
dimensional state space contains the agent’s end-effector position and orientation as well as position
and orientation of all objects and containers.

C SKILL REPRESENTATION COMPARISON

OursPertsch et al., 2020

Figure 10: Comparison of our closed-loop skill
representation with the trajectory-based represen-
tation of Pertsch et al. (2020a). Top: Skill prior
rollouts for 100 k steps in the maze environment.
Both skill representations explore the maze widely.
Bottom: Subtask success rates for prior rollouts
in the kitchen environment. Only the closed-loop
skill representation is able to solve multiple sub-
tasks per episode.

In Section 3.2 we described our skill represen-
tation based on a closed-loop low-level policy
as a more powerful alternative to the action
trajectory-based representation of Pertsch et al.
(2020a). To compare the performance of the
two representations we perform rollouts with
the learned skill prior: we sample a skill from
the prior and rollout the low-level policy for H
steps. We repeat this until the episode terminates
and visualize the results for multiple episodes in
maze and kitchen environment in Figure 10.

In Figure 10 (top) we see that both representa-
tions lead to effective exploration in the maze
environment. Since the 2D maze navigation task
does not require control in high-dimensional
action spaces, both skill representations are suf-
ficient to accurately reproduce behaviors ob-
served in the task-agnostic training data.

In contrast, the results on the kitchen environ-
ment (Figure 10, bottom) show that the closed-
loop skill representation is able to more accu-
rately control the high-DOF robotic manipulator
and reliably solve multiple subtasks per rollout
episode.5 We hypothesize that the closed-loop
skill policy is able to learn more robust skills
from the task-agnostic training data, particularly
in high-dimensional control problems.

D DEMONSTRATION-GUIDED
RL COMPARISONS WITH
TASK-AGNOSTIC EXPERIENCE

In Section 4.2 we compared our approach to prior demonstration-guided RL approaches which are
not designed to leverage task-agnostic datasets. We applied these prior works in the setting they
were designed for: using only task-specific demonstrations of the target task. Here, we conduct
experiments in which we run these prior works using the combined task-agnostic and task-specific
datasets to give them access to the same data that our approach used.

From the results in Figure 11 we can see that none of the prior works is able to effectively leverage
the additional task-agnostic data. In many cases the performance of the approaches is worse than
when only using task-specific data (see Figure 4). Since prior approaches are not designed to
leverage task-agnostic data, applying them in the combined-data setting can hurt learning on the

5See https://sites.google.com/view/skill-demo-rl for skill prior rollout videos with both
skill representations in the kitchen environment.
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target task. In contrast, our approach can effectively leverage the task-agnostic data for accelerating
demonstration-guided RL.

E SKILL-BASED IMITATION LEARNING

Figure 11: Downstream task performance for prior
demonstration-guided RL approaches with com-
bined task-agnostic and task-specific data. All
prior approaches are unable to leverage the task-
agnostic data, showing a performance decrease
when attempting to use it.

We ablate the influence of the environment re-
ward feedback on the performance of our ap-
proach by setting the reward weight γ = 1.0,
thus relying solely on the learned discriminator
reward. Our goal is to test whether our approach
is able to leverage task-agnostic experience to
improve the performance of pure imitation learn-
ing, i.e., learning to follow demonstrations with-
out environment reward feedback.

We compare our method to common approaches
for imitation learning: behavioral cloning (BC,
Pomerleau (1989)) and generative adversarial
imitation learning (GAIL, Ho & Ermon (2016)).
We also experiment with a version of our skill-
based imitation learning approach that performs
online finetuning of the pre-trained discrimina-
tor D(s) using data collected during training of
the imitation policy.

We summarize the results of the imitation learn-
ing experiments in Figure 12. Learning purely
by imitating the demonstrations, without addi-
tional reward feedback, is generally slower than demonstration-guided RL. Yet, we find that our
approach is able to leverage task-agnostic data to effectively imitate complex, long-horizon behav-
iors while prior imitation learning approaches struggle. Further, online finetuning of the learned
discriminator slightly improves imitation learning performance.

F KITCHEN DATA ANALYSIS

Ours (Demo-RL)
Ours (Imitation) w/ D-finetuning BC GAIL

Ours (Imitation)

Figure 12: Imitation learning performance on maze
navigation and kitchen tasks. Compared to prior
imitation learning methods, our approach can lever-
age prior experience to enable the imitation of
complex, long-horizon behaviors. Finetuning the
pre-trained discriminator D(s) further improves
performance.

For the kitchen manipulation experiments we
use the dataset provided by Gupta et al. (2019)
as task-agnostic pre-training data. It consists
of 603 teleoperated sequences, each of which
shows the completion of four consecutive sub-
tasks. In total there are seven possible subtasks:
opening the microwave, moving the kettle, turn-
ing on top and bottom burner, flipping the light
switch and opening a slide and a hinge cabinet.

In Figure 13 we analyze the transition proba-
bilities between subtasks in the task-agnostic
dataset. We can see that these transition proba-
bilities are not uniformly distributed, but instead
certain transitions are more likely than others,
e.g., it is much more likely to sample a training
trajectory in which the agent first opens the mi-
crowave than one in which it starts by turning
on the bottom burner.

In Section 4.4 we test the effect this bias in transition probabilities has on the learning of target tasks.
Concretely, we investigate two cases: good alignment between task-agnostic data and target task and
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Figure 13: Subtask transition probabilities in the kitchen environment’s task-agnostic training dataset
from Gupta et al. (2019). Each dataset trajectory consists of four consecutive subtasks, of which we
display three (yellow: first, green: second, grey: third subtask). The transition probability to the
fourth subtask is always near 100 %. In Section 4.4 we test our approach on a target task with good
alignment to the task-agnostic data (Microwave - Kettle - Light Switch - Hinge Cabinet) and a target
task which is mis-aligned to the data (Microwave - Light Switch - Slide Cabinet - Hinge Cabinet).

Task-Agnostic Data

Demonstration Data

Figure 14: Office cleanup task data collection. The top two sequences show subsampled trajectories
from the task-agnostic dataset, the bottom sequence is a demonstration of the target task.

mis-alignment between the two. In the former case we choose the target task Microwave - Kettle -
Light Switch - Hinge Cabinet, since the required subtask transitions are likely under the training data
distribution. For the mis-aligned case we choose Microwave - Light Switch - Slide Cabinet - Hinge
Cabinet as target task, since particularly the transition from opening the microwave to flipping the
light switch is very unlikely to be observed in the training data.

In our experiments in Section 4.2 we minimize bias introduced through the target task choice
by balancing the subtask transition probabilities in the task-agnostic dataset. We achieve this by
resampling training trajectories such that it is equally likely to sample any of the first two subtask
transitions, i.e., after resampling it is equally likely to sample a training trajectory that starts with
Bottom Burner - Top Burner as it is to sample a trajectory starting with Microwave - Kettle. As a
result, the task-agnostic data has equal alignment to a large set of possible downstream tasks.
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