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Abstract
Multi-task learning (MTL) enhances efficiency001
by sharing representations across tasks, but002
task dissimilarities often cause partial learning,003
where some tasks dominate while others are004
neglected. Existing methods mainly focus on005
balancing loss or gradients but fail to fundamen-006
tally address this issue. In this paper, we pro-007
pose variance-invariant probabilistic decoding008
for multi-task learning (VIP-MTL), a frame-009
work that ensures impartial learning by har-010
monizing task-specific representation spaces.011
VIP-MTL decodes task-agnostic shared repre-012
sentations into task-specific probabilistic distri-013
butions and applies variance normalization to014
constrain them to a consistent scale, balancing015
task influence during training. Experiments on016
two language benchmarks show that VIP-MTL017
outperforms 12 comparative methods under the018
same multi-task settings, especially in hetero-019
geneous and data-constrained scenarios. Fur-020
ther analysis shows that VIP-MTL is robust to021
sampling distributions, efficient on optimiza-022
tion process, and scale-invariant to task losses.023
Additionally, the learned task-specific represen-024
tations are more informative, enhancing the lan-025
guage understanding abilities of pre-trained lan-026
guage models under the multi-task paradigm.027

1 Introduction028

Multi-task learning (MTL) has emerged as a pow-029

erful paradigm in machine learning, enabling mod-030

els to jointly learn multiple tasks together from031

the shared representations (Caruana, 1997; Kendall032

et al., 2018). Unlike single-task learning, MTL033

paradigm not only allows the learned representa-034

tions to simultaneously make predictions for sev-035

eral tasks, but also reduces computation costs and036

improves efficiency (Royer et al., 2023).037

However, a persistent challenge in MTL stems038

from the inherent task dissimilarity, which often039

leads to the partial learning problem (Liu et al.,040

2021b). This occurs when the model dispropor-041

tionately prioritizes certain tasks while neglecting042

others, resulting in suboptimal overall performance. 043

In multi-task learning, the latent variable distribu- 044

tions of different tasks are often inconsistent. For 045

example, the latent variable distribution of Task A 046

may have a larger variance, while the latent variable 047

distribution of Task B may have a smaller variance. 048

This discrepancy can cause the representations of 049

Task A to dominate the optimization process, while 050

the representations of Task B is neglected. 051

Existing methods (Kendall et al., 2018; Chennu- 052

pati et al., 2019; Liu et al., 2019a; Yu et al., 2020; 053

Liu et al., 2021b; Lin et al., 2022) primarily fo- 054

cus on balancing task losses or gradients but fail 055

to address the fundamental misalignment in repre- 056

sentations. Balancing losses adjusts task weights 057

heuristically, yet it cannot resolve scale dispari- 058

ties in latent spaces. Similarly, gradient balancing 059

harmonizes parameter updates during backpropaga- 060

tion. However, gradients are inherently influenced 061

by the statistical properties of representations (e.g., 062

magnitude, variance). If representations are im- 063

balanced, gradients will inevitably reflect this bias. 064

Specifically, high-variance tasks generate larger 065

gradients, perpetuating their dominance despite 066

gradient normalization efforts. These limitations 067

are particularly pronounced in scenarios involving 068

heterogeneous tasks or limited data, where the dis- 069

parities in task complexity and data availability 070

exacerbate the imbalance. Therefore, balancing 071

representations offers a more principled and effec- 072

tive solution to the partiality problem in MTL. 073

In this paper, we introduce a novel framework, 074

variance-invariant probabilistic decoding for multi- 075

task learning (VIP-MTL), which tackles the partial 076

learning problem by harmonizing the representa- 077

tion spaces across tasks. Specifically, our frame- 078

work decodes task-agnostic shared representations 079

into task-specific probabilistic distributions, where 080

each point in the distribution corresponds to a po- 081

tential task-specific representation. Unlike prior 082

methods that focus on loss or gradient balancing, 083
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VIP-MTL operates at the level of representation084

balancing, ensuring impartial learning on represen-085

tation spaces for all tasks. To address the issue086

of scale variance across tasks, we apply a variance087

normalization to these distributions, adaptively con-088

straining them to a consistent scale. By aligning089

the representation distributions, VIP-MTL prevents090

any single task from dominating the shared repre-091

sentation space and ensures that the influence of092

each task remains balanced during training.093

We conduct experiments on two multi-task094

benchmarks, TweetEval and AffectEval for lan-095

guage understanding. The former includes 6 clas-096

sification tasks, while the latter involves 2 classi-097

fication tasks and 2 regression tasks in a hetero-098

geneous multi-task setting. The results show that099

our VIP-MTL consistently surpasses 12 represen-100

tative multi-task methods across different PLMs101

under the same multi-task settings. For example,102

with the RoBERTa backbone, VIP-MTL improves103

the average relative improvement (∆p) by +5.06%104

on TweetEval and +7.66% on AffectEval, com-105

pared to the EW baseline. Compared to single106

task learning baselines, VIP-MTL also achieves107

better results on most tasks with the same scale of108

model parameters. Further analysis shows that our109

method is robust to sampling distributions, efficient110

on optimization process, and scale-invariant to task111

losses. Extensive experiments demonstrate that112

VIP-MTL offers significant advantages in hetero-113

geneous task combinations and data-constrained114

scenarios. Additionally, the learned task-specific115

representations are more informative, enhancing116

the language understanding abilities of pre-trained117

language models under the multi-task paradigm.118

The contributions are as follows: 1) We ana-119

lyze the limitations of existing methods that bal-120

ance losses or gradients in addressing the partial121

learning problem in MTL from the perspective of122

representation distributions, and introduces a new123

idea of balancing the representation spaces across124

tasks to promote impartial learning. 2) We design125

a probabilistic representation learning framework126

VIP-MTL to tackle the partial learning problem by127

harmonizing the representation spaces across tasks.128

It decodes shared representations into task-specific129

probabilistic distributions and applies variance nor-130

malization to constrain them. 3) Experiments on131

two language understanding benchmarks show that132

our method outperforms 12 comparative methods133

under the same multi-task settings, especially in134

heterogeneous and data-constrained scenarios. Fur-135

(a) Vanilla MTL paradigm

(b) VIP-MTL (ours)

Figure 1: Comparison of vanilla MTL paradigm and the
proposed VIP-MTL. The deterministic decoder maps
each vector point to a fixed vector, while the probabilis-
tic decoder that maps each vector point to a probability
distribution.

ther analysis shows that VIP-MTL is distribution- 136

robust, efficient, scale-invariant, and the learned 137

task-specific representations are more informative 138

for all tasks.1 139

2 Preliminary 140

Scope of the Study. The goal of this paper is to 141

study multi-task optimization that typically utilizes 142

a hard parameter-sharing setting (Caruana, 1993), 143

where several lightweight task-specific heads are 144

attached to a heavyweight task-agnostic backbone 145

model. Another orthogonal line of research on 146

multi-task learning mainly emphasizes designing 147

of network architectures that typically use a soft 148

parameter-sharing strategy. Details of the above 149

related studies are listed in Appendix A. 150

Notations. Define T tasks and the corresponding 151

dataset of task t as Dt. An MTL model typically 152

comprises task-sharing encoder with parameters θ 153

and task-specific decoder with parameters {ϕt}|T |
t=1, 154

where θ represents parameters in a feature extractor 155

shared by all tasks, and ϕt represents parameters in 156

the task-specific output module for task t. Define 157

ℓt(Dt; θ, ϕt) as the average loss on the dataset Dt 158

for task t. {λt}|T |
t=1 is the set of task-specific loss 159

weights with a constraint, where λt ≥ 0. 160

MTL Baseline. The total MTL objective is com- 161

puted by aggregating multiple objective losses 162

with different weights, i.e., L(θ, {ϕt}|T |
t=1) = 163∑|T |

t=1 λ
l
tℓt(Dt; θ, ϕt). A straightforward method 164

1The source code will be available in the future.
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involves assigning equal weights to all tasks dur-165

ing training, i.e., λt = 1
|T | for all tasks in every166

iteration, i.e., a common MTL baseline EW.167

3 Methodology168

We propose variance-invariant probabilistic decod-169

ing for multi-task learning (VIP-MTL), a proba-170

bilistic framework that ensures impartial learning.171

As shown in Figure 1b, the encoder learns task-172

agnostic shared representations across all tasks.173

Based on shared representations, VIP-MTL de-174

codes shared representations into task-specific175

probabilistic distributions and applies variance nor-176

malization to constrain them to a consistent scale,177

balancing task influence during training. Different178

from the vanilla MTL paradigm (Figure 1a) that179

jointly learn multiple tasks by balance losses or gra-180

dients, VIP-MTL balances representation spaces181

across tasks to promote impartial learning.182

3.1 Probabilistic Decoding for MTL183

To decode task-agnostic point-wise shared repre-184

sentations into task-specific probabilistic distribu-185

tions, we perform probabilistic embedding (Vilnis186

and McCallum, 2015; Hu et al., 2024a) and task187

prediction in the multi-task decoding process.188

We extend the probabilistic coding technique189

(Hu et al., 2024a) in single-task learning to the190

multi-task setting. Specifically, we use variational191

inference (Hoffman et al., 2013) to map the shared192

representations z to a set of different distributions193

in the output space, i.e., R|Yt|. Given the input x,194

the task-agnostic shared representation z shared by195

all tasks is a function of x by a mapping pθ(z|x).196

For task t, the output representations zt in the197

output space can be obtained by a task-specific198

head qϕt(zt|z), and the corresponding prediction199

value ŷt is non-parametric mapping of zt. The true200

posterior p(zt|x) can be approximated as p(zt|z)201

where z ∼ p(z|x). Let the prior estimate r(zt) for202

task t be the isotropic Gaussian distribution, i.e.,203

r(zt) ∼ N (zt;0, I). Let qϕt(zt|z) be a variational204

estimate of the intractable true posterior p(zt|z) of205

zt given z, and learned by the t-th stochastic head206

parametrized by ϕt. And the objective of proba-207

bilistic decoding for MTL can be:208

L(θ, {ϕt}Tt=1) = Et∼T,z∼pθ(z|x){Ezt∼qϕt (zt|z)[− log s(yt|zt)]

+βKL(qϕt(zt|z); r(zt))},
(1)209

where zt is randomly sampled from pϕt(zt|z).210

s(yt|zt) is a non-parametric operation on zt that211

adapts the output distribution for task prediction 212

(e.g., the Softmax operation for classification). 213

KL(·) denotes the KL-divergence term, which 214

serves as a regularization that forces the variational 215

posterior qϕt(zt|z) to approximately converge to 216

the prior r(zt). β > 0 controls the closeness be- 217

tween the learnable variational posterior qϕt(zt|z) 218

and the predefined prior r(zt). The different values 219

of β means the posterior distribution with different 220

parametric forms. 221

For task t, we assume the variational posterior 222

qϕt(zt|z) be a multivariate Gaussian with a diago- 223

nal covariance structure, i.e., 224

qϕt(z
i
t|zi) = N (zit;µt(z

i),Σt(z
i)), (2) 225

where µt(z
i) and Σt(z

i) denote the mean and di- 226

agonal covariance of sample zi for task t. Follow- 227

ing Hu et al. (2024a), both of their parameters are 228

input-dependent and can be learned by an MLP (a 229

fully-connected neural network with a single hid- 230

den layer) for each task, respectively. Next, we sam- 231

ple zit from the approximate posterior qϕt(z
i
t|zi), 232

and obtain the prediction value by s(yit|zit). Since 233

the sampling process of zit is stochastic, we use 234

the re-parameterization trick (Kingma and Welling, 235

2014) to ensure it trainable, i.e., zit = µt(z
i) + 236

(Σt(z
i))

1/2 ⊙ ϵ, ϵ ∼ N (0, I), where ⊙ refers 237

to an element-wise product. Then, the KL term 238

can be calculated by: KL(qϕt(z
i
t|zi); r(zit)) = 239

−1
2

(
1 + logΣt(z

i)− (µt(z
i))2 −Σt(z

i)
)
. 240

3.2 Variance Normalization on Probabilistic 241

Distributions 242

By aligning the representation distributions, VIP- 243

MTL prevents any single task from dominating 244

the shared representation space and ensures that 245

the influence of each task remains balanced during 246

training. The technique adjusts the variance of 247

population distribution of each task to a notionally 248

common scale. It can keep the population variance 249

constant between different tasks, and balance the 250

learning processes for different tasks. 251

For task t, each sample zit follows a multivariate 252

Gaussian as shown in Eq.(2). Then all data points 253

in the output space can be viewed as generated by 254

a mixture of Gaussian distributions, i.e., 255

q′ϕt
(zt|z) =

|Dt|∑
i=1

εiq
i
ϕt
(zit|zi), (3) 256

where ε1 + · · · + ε|Dt| = 1, εi ≥ 0. |Dt| is 257

the dataset size of task t. qiϕt
is independent 258
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of each other. zt follows a mixture normal dis-259

tribution consisting of |Dt| normally distributed260

components. Besides, let all samples be equally261

weighted, i.e., ε = 1
|Dt| . Define a sufficiently large262

number ξ. When |Dt| > ξ, the covariance of263

this mixture distribution can be approximated as:264

Σ′
t ≈ 1

|Dt|

(
Σ1
t +Σ2

t + · · ·+Σ
|Dt|
t

)
≤ max

i
{Σi

t}.265

Then we use Σ′
t to normalize the diagonal covari-266

ance in Eq.(2), i.e.,267

q′ϕ∗
t
(zit|zi) = N

(
zit;

µt(z
i)

(Σ′
t)
1/2

,
Σt(z

i)

Σ′
t

)
, where ||Σ′

t|| ≤ δ, (4)268

where Σ′
t is learned by a linear mapping of task269

t with parameters τt. ϕ∗
t = {ϕt, τt}. δ is a certain270

radius for Σ′
t due to the maximum value, max

i
{Σi

t},271

being constrained by the KL-divergence term in272

Eq.(1). And the diagonal covariance of q′ϕt
can be:273

Σ′
t,norm ≈ 1

|Dt|

(
Σ1
t

Σ′
t

+
Σ2
t

Σ′
t

+ · · ·+ Σ
|Dt|
t

Σ′
t

)
≈ I. (5)274

For all jointly trained tasks, after variance normal-275

ization, they will consistently follow a mix of Gaus-276

sian distributions with approximately unit covari-277

ance in the output space. This means that the mixed278

distributions for all tasks have the property of ap-279

proximate variance invariance: all mixed distribu-280

tions in the target space have a globally consistent281

shape and level of dispersion. Additionally, the282

expectations under different tasks are scaled to sim-283

ilar magnitudes. While methods UW and IMTL-L284

also impose constraints on the expectations of dif-285

ferent tasks, they do not constrain the variance of286

the distributions as our method does.287

In implementations, we apply a normalization288

constraint to its stochastic sampled values, i.e.,289

(zit)
′ = µt(z

i)/(Σ′
t)
1/2 + (Σt(z

i
t)/Σ

′
t)
1/2 ⊙ ϵ. To290

simplify the computation of Σ′
t, we assume the291

normalization constraint imposed on all dimension292

of the diagonal covariance have the same scale293

for task t. We take cross-entropy (CE) and mean294

squared error (MSE) for classification and regres-295

sion tasks, respectively, i.e., − log Softmax(z′t, yt)296

and ||z′t−yt||2. As a result, the scale of the normal-297

ization constraint approximates (Σ′
t)
1/2 and Σ′

t in298

loss terms.299

3.3 VIP-MTL300

Under MTL paradigm, we incorporate the vari-301

ance normalization on the probabilistic decoding302

framework, named variance-invariant probabilistic303

representation (VIP-MTL). The total objective of 304

VIP-MTL can be: 305

Ltotal(θ, {ϕt}Tt=1) = Et∼T,z∼pθ(z|x){Ezt∼qϕ∗t
(zt|z)[− log s(yt|zt)]

+βKL(qϕ∗
t
(zt|z); r(zt)) + γ log τt},

(6) 306

where z = pθ(x), learned by the shared encoder θ. 307

q′ϕ∗
t
(zt|z) is a variational estimate of the posterior 308

probability of t and is learned by the t-th stochastic 309

decoder ϕ∗
t with variance-invariant normalization. 310

ϕ∗
t = {ϕt, τt}. τt is a linear mapping of task t, 311

which represents the approximated variance of a 312

mixture distribution for task t. β > 0 controls the 313

closeness between the learnable variational Gaus- 314

sian posterior qϕt(zt|z) and the standard Gaussian 315

prior r(zt). γ > 0 is another Lagrange term that 316

constrains the variance τt of a mixture distribution 317

for task t. Totally, VIP-MTL can ensure impartial 318

learning by harmonizing task-specific representa- 319

tion spaces. 320

4 Experiments 321

4.1 Experimental Setups 322

Datasets and Tasks We conduct experiments on 323

two multi-task benchmarks, i.e., TweetEval and Af- 324

fectEval. TweetEval (Barbieri et al., 2020) consists 325

of 6 text classification tasks about tweet analysis 326

on social media, EmotionEval (Mohammad et al., 327

2018) for social emotion detection, HatEval (Basile 328

et al., 2019) for hate speech detection, IronyEval 329

(Hee et al., 2018) for irony detection, OffensEval 330

(Zampieri et al., 2019) for offensive language de- 331

tection, SentiEval (Rosenthal et al., 2017) for senti- 332

ment analysis, and StanceEval (Mohammad et al., 333

2016) for stance detection. AffectEval involves 334

2 classification tasks and 2 regression tasks in a 335

heterogeneous multi-task setting, i.e., GoEmotions 336

(Demszky et al., 2020) for fine-grained emotion 337

detection, EmotionEval (Mohammad et al., 2018), 338

Emobank (Buechel and Hahn, 2017) for emotion 339

regression, and EI-Reg (Mohammad et al., 2018) 340

for emotion intensity regression. See Appendix B.1 341

for more detailed descriptions. 342

Comparison Methods We compare with the fol- 343

lowing 12 representative methods including Equal 344

Weighting (EW), Scale-invariant Loss (SI), Task 345

Weighting (TW), Uncertainty Weighting (UW) 346

(Kendall et al., 2018), Geometric Loss Strategy 347

(GLS) (Chennupati et al., 2019), Dynamic Weight 348

Average (DWA) (Liu et al., 2019a), Projecting Con- 349

flicting Gradient (PCGrad) (Yu et al., 2020), IMTL- 350

L (Liu et al., 2021b), Random Loss Weighting 351
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Methods
TweetEval AffectEval

BERT backbone RoBERTa backbone BERT backbone RoBERTa backbone
Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑

EW (baseline) 65.62±0.57 0.00 66.17±0.43 0.00 52.93±2.02 0.00 57.64±2.12 0.00
SI 65.67±0.66 +0.06 67.16±1.08 +1.75 53.49±1.89 +1.80 57.94±2.02 +0.61
TW 65.68±0.54 +0.11 67.08±1.17 +1.55 53.27±2.12 +0.82 57.70±1.63 +0.09
UW 66.97±0.51 +2.22 67.11±3.47 +1.92 53.79±1.85 +1.81 59.69±1.10 +4.05
GLS 66.05±1.49 +0.60 67.32±0.38 +1.67 54.56±0.36 +9.82 57.66±1.65 -0.23
DWA 65.56±0.57 -0.09 66.94±1.13 +1.35 52.88±1.88 -0.25 57.36±2.53 -0.51
PCGrad 65.45±0.33 -0.50 67.42±0.30 +1.96 51.62±0.51 -3.09 56.27±2.16 -2.73
IMTL-L 66.18±1.45 +0.86 66.54±1.50 +0.67 53.89±0.42 +3.41 57.73±1.20 +0.05
RLW 66.76±1.42 +1.86 67.07±0.73 +1.63 51.38±1.42 -3.03 55.61±2.32 -4.26
MT-VIB 65.80±0.23 +0.66 67.14±0.87 +2.00 50.13±0.71 -5.09 57.68±1.56 +0.36
VMTL 65.80±1.59 +0.65 67.05±1.06 +1.81 50.02±0.76 -5.01 57.52±0.48 +0.20
Hierarchical MTL 66.42±0.10 +1.76 66.84±1.68 +1.60 50.55±0.65 -4.19 55.18±0.58 -4.74
VIP-MTL (ours) 67.42∗±1.06 +3.11 69.09∗±0.09 +5.06 58.16∗±0.45 +17.80 61.40∗±0.58 +7.66

Table 1: Multi-task performance (%) on TweetEval and AffectEval. For all methods with BERT/RoBERTa backbone,
we run three random seeds and report the average result on test sets. Best results are highlighted in bold. ∗ represents
statistical significance over scores of the baseline under the t-test (p < 0.05).

Methods EmotionEval HatEval IronyEval OffensEval SentiEval StanceEval Avg. ∆p ↑M-F1 M-F1 F1(i.) M-F1 M-Recall M-F1 (a. & f.)
EW (baseline) 74.37±0.56 44.08±5.26 65.32±1.84 79.04±1.43 70.64±1.71 63.59±2.43 66.17±0.43 0.00
SI 75.81±1.05 46.19±6.01 66.17±5.81 78.58±2.00 71.00±1.80 65.24±2.31 67.16±1.08 +1.75
UW 74.76±3.08 48.49±3.21 65.41±7.01 79.49±1.48 71.56±0.74 62.96±6.84 67.11±3.47 +1.92
GLS 75.47±1.15 43.97±1.13 69.18±2.62 79.46±0.84 71.84±0.38 64.01±0.71 67.32±0.38 +1.67
IMTL-L 75.25±1.26 45.61±3.84 65.94±0.74 79.59±1.28 71.19±0.60 61.65±5.41 66.54±1.50 +0.67
MT-VIB 74.74±0.38 48.06±4.79 66.09±3.38 78.17±1.39 70.95±0.99 64.83±1.56 67.14±0.87 +2.00
VMTL 74.07±0.72 47.44±3.42 68.55±2.80 77.95±0.22 70.52±1.04 63.76±2.86 67.05±1.06 +1.81
VIP-MTL (ours) 77.36∗±0.53 49.79∗±1.37 68.65∗±1.74 79.60∗±0.89 71.32∗±0.49 67.80∗±0.33 69.09∗±0.09 +5.06

(a) Fine-grained results on TweetEval

Methods GoEmotions EmotionEval Emobank EI-Reg Avg. ∆p ↑M-F1 M-F1 V A D Pear Spear
EW (baseline) 47.13±0.33 77.97±0.63 75.62±0.79 49.44±4.70 36.47±4.02 51.01±4.62 52.23±4.68 57.64±2.12 0.00
SI 47.08±0.72 78.22±0.49 75.61±1.39 50.35±5.02 37.26±4.78 51.55±3.99 52.60±3.82 57.94±2.02 +0.61
UW 48.54±0.55 78.55±1.14 76.81±0.28 53.26±0.44 38.60±3.32 54.94±3.14 55.93±3.00 59.69±1.10 +4.05
GLS 37.15±0.43 79.43±1.34 80.18±1.47 55.07±1.07 45.73±0.61 53.15±6.16 54.31±5.96 57.66±1.65 -0.23
IMTL-L 46.71±0.38 79.08±1.02 75.18±1.03 50.99±2.68 37.05±2.13 50.34±2.94 51.12±2.78 57.73±1.20 +0.05
MT-VIB 46.92±0.29 76.66±2.31 75.61±1.96 51.60±1.01 37.50±5.59 51.80±1.39 52.64±2.19 57.68±1.56 +0.36
VMTL 46.83±0.23 75.25±1.70 77.38±0.44 51.02±1.52 37.77±8.17 51.35±2.81 53.83±2.05 57.52±0.48 +0.20
VIP-MTL (ours) 49.38∗±1.37 79.47∗±0.45 78.55∗±1.01 55.51∗±0.48 45.73∗±1.28 56.46∗±1.17 57.19∗±1.10 61.40∗±0.58 +7.66

(b) Fine-grained results on AffectEval

Table 2: Fine-grained results of representative comparison methods and our VIP-MTL. We experiment with the
RoBERTa backbone. ∗ represents statistical significance over scores of the baseline under the t-test (p < 0.05).

(RLW) (Lin et al., 2022), MT-VIB (Qian et al.,352

2020), VMTL (Shen et al., 2021), and Hierarchi-353

cal MTL (de Freitas et al., 2022). Among them,354

MT-VIB, VMTL, and Hierarchical MTL are prob-355

abilistic MTL series. For fair comparison, we356

reproduce each method under the same experi-357

mental setups (e.g., the network backbone). We358

use a pre-trained language model BERT (Devlin359

et al., 2019)/RoBERTa (Liu et al., 2019c) as the360

backbone model. Specifically, we use bert-base-361

uncased2 and roberta-base2 to initialize BERT and362

RoBERTa for fine-tuning. We also compare with363

large language model (LLM) GPT-3.53 and sin-364

gle task learning (STL) baseline. Please see Ap-365

2https://huggingface.co/
3https://chat.openai.com

pendix B.2 for details of comparison methods. 366

Evaluation Metrics We utilize the same evalua- 367

tion metrics as those used in the original tasks. For 368

classification tasks, the macro-averaged F1 over all 369

classes is employed with three exceptions: stance 370

(macro-averaged of F1 of favor and against classes), 371

irony (F1 of ironic class), and sentiment analysis 372

(macro-averaged recall). For regression tasks, we 373

compute Pearson correlation for each VAD dimen- 374

sion on EmoBank, and use both Pearson and Spear- 375

man correlation coefficients on EI-Reg. Following 376

Barbieri et al. (2020), we report a global metric 377

(Avg.) based on the average of all task-specific 378

metrics. Following Maninis et al. (2019); Liu et al. 379

(2021a), we also report the average relative im- 380

provement over EW baseline on each metric of 381
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Methods # Param EmotionEval HatEval IronyEval OffensEval SentiEval StanceEval Avg.M-F1 M-F1 F1(i.) M-F1 M-Recall M-F1 (a. & f.)
GPT-3.5 (LLMs) 73.23 48.30 66.81 63.71 40.40 39.45 55.32
STL 6×110M 74.49 45.26 53.27 79.20 72.43 66.70 65.23
STL with CNN 110M+6×2M 59.11 47.61 52.10 77.80 70.85 57.58 60.84
VIP-MTL 110M 77.29 49.73 67.88 80.02 71.15 67.28 68.89

Table 3: Comparison results with different learning paradigms on TweetEval. We experiment with RoBERTa
backbone for all methods except for GPT-3.5. STL stands for single-task learning with a cross-entropy loss. STL
with CNN indicates fine-tuning task-specific CNN classifiers with a frozen RoBERTa backbone. # Param refers to
the number of parameters of the model for all tasks excluding the task-specific linear head.

Methods
TweetEval AffectEval

BERT backbone RoBERTa backbone BERT backbone RoBERTa backbone
Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑

VIP-MTL 67.42±1.06 +3.11 69.09±0.09 +5.06 58.16±0.45 +17.80 61.40±0.58 +7.66
w/o VI 65.36±1.14 -0.58 67.59±1.06 +2.72 53.08±1.89 +5.17 58.21±1.96 +1.46
w/o VIP 65.62±0.57 0.00 66.17±0.43 0.00 52.93±2.02 0.00 57.64±2.12 0.00

Table 4: Ablation study results of our VIP-MTL.

Methods TweetEval AffectEval
Avg. ∆p ↑ Avg. ∆p ↑

EW 66.56 0.00 59.47 0.00
VIP-MTL (β=0.001) 68.75 +4.42 61.40 +7.66

w/o VI 67.79 +3.26 58.21 +1.46
VIP-MTL (β=0.01) 69.09 +5.06 60.52 +6.09

w/o VI 67.59 +2.72 57.45 -0.09
VIP-MTL (β=0.1) 68.27 +3.98 60.69 +6.42

w/o VI 67.81 +2.75 56.28 -2.17

Table 5: Results with different sampling distributions.

each task as the performance measure, denoted382

as ∆p. See Appendix B.3 for details of metrics.383

Additionally, we use t-test (Kim, 2015) to verify384

the statistical significance of differences between385

results of VIP-MTL and the baseline on the task.386

Implementation Details All experiments are387

conducted on a single NVIDIA Tesla A100 80GB388

card. The validation sets are used to tune hyperpa-389

rameters and choose the optimal model. For each390

method, we run three random seeds and report the391

average result of the test sets. The network param-392

eters are optimized by using Adamax optimizer393

(Kingma and Ba, 2015) with the learning rate of394

5e−5. The dropout rate is set to 0.2 for Tweet-395

Eval and 0 for AffectEval. β is searched from396

{0.001, 0.01, 0.1}. γ is searched from {1, 10} and397

{0.1, 1} for classification and regression. More398

details are listed in Appendix B.4.399

4.2 Main Results400

Overall Results for MTL The overall results on401

both benchmarks are reported in Table 1, where402

the homogeneous TweetEval contains six differ-403

ent classification tasks, and heterogeneous AffectE-404

val includes two classification and two regression405

tasks. VIP-MTL consistently obtains the best av- 406

erage performance over comparison methods on 407

both benchmarks with different backbone mod- 408

els. Specifically, compared to EW baseline, VIP- 409

MTL with BERT/RoBERTa backbone improves 410

Avg. by +1.80%/+2.92% and increases ∆p by 411

+3.11%/+5.06% on TweetEval. VIP-MTL with 412

BERT/RoBERTa backbone gains improvements in 413

Avg. by +5.23%/+3.76% and an increase in ∆p 414

by +17.80%/+7.66% on AffectEval. 415

Fine-grained Results Table 2 summarizes fine- 416

grained results of VIP-MTL, the EW baseline, and 417

6 representative comparison MTL methods (includ- 418

ing 4 task-balanced and 2 probabilistic methods). 419

Our VIP-MTL consistently outperforms the EW 420

baseline on all tasks of both benchmarks, achieving 421

the best fine-grained results on most tasks. This 422

indicates the effectiveness of VIP-MTL. 423

Comparison with STL and LLM We compare 424

our VIP-MTL with the single-task learning (STL) 425

baseline and the large language model (LLM) GPT- 426

3.5. For STL, each task is trained with a sepa- 427

rate model. For GPT-3.5, predictions are made 428

under the zero-shot setting using task descriptions 429

and instructions. As shown in Table 3, our VIP- 430

MTL outperforms GPT-3.5 on all tasks signifi- 431

cantly. Compared to the STL baselines, our method 432

also achieves superior results on most tasks with 433

the same scale of model parameters. 434

4.3 Ablation Study 435

We conduct ablation studies by removing the vari- 436

ance normalization (w/o VI) and further removing 437

probabilistic representation (w/o VIP). As shown 438

6



Figure 2: Loss analysis during training on TweetEval.

in Table 4, compared with two ablation models,439

the full VIP-MTL consistently obtains the best per-440

formance in terms of Avg. and ∆p on TweetEval441

and AffectEval. The results reveal the effective-442

ness of both components for MTL. Additionally,443

VIP-MTL applies variance normalization to con-444

strain task-specific probabilistic distribution to a445

consistent scale, showing a smaller variance than446

the ablation w/o VI on all benchmarks.447

4.4 Robustness Evaluation on Sampling448

Distribution449

We evaluate the robustness on different sampling450

distributions. β controls the closeness between the451

learnable variational Gaussian posterior distribu-452

tion and predefined standard Gaussian prior. We453

adjust values of β to obtain sampling distributions454

with different Gaussian forms. As shown in Ta-455

ble 5, VIP-MTL outperforms EW baseline across456

different posterior distributions, which shows the457

robustness of VIP-MTL on sampling distribution.458

Additionally, compared with w/o VI, VIP-MTL459

consistently achieves superior performance across460

different values of β. It indicates that variance nor-461

malization exhibits promising performance under462

different probabilistic distributions.463

4.5 Optimization Efficiency Evaluation464

We further evaluate optimization efficiency on the465

MTL paradigm. Figure 2 shows loss curves for466

each task on TweetEval. VIP-MTL performs bet-467

ter on both the training and validation sets and468

converges faster, indicating that the optimization469

process is more efficient. From results, we have:470

1) VIP-MTL exhibits a steeper slope in the train- 471

ing loss for each task, particularly during the early 472

stages of training. This indicates that the method is 473

capable of reducing the training error for multiple 474

tasks more rapidly during the training process. 2) 475

During the training process, the validation loss of 476

VIP-MTL is lower than that of other methods in 477

most cases (except during the early stages of train- 478

ing for IronyEval4), demonstrating that our VIP- 479

MTL performs better on unseen data and possesses 480

stronger multi-task generalization capabilities. 481

4.6 Evaluation of Scale-invariance Property 482

To analyze the impartial ability, we evaluate the 483

scale-invariance property of pairwise task combina- 484

tions within AffectEval. The scale invariance of a 485

method generally refers to the invariance to individ- 486

ual loss scales. We experiment involving two het- 487

erogeneous and two homogeneous pair-wise MTL 488

settings (More experimental details and results can 489

be found in Appendix C.2). The results show that 490

VIP-MTL achieves the best performance in terms 491

of Avg. and ∆p on all scenarios. Then, we show 492

loss curves on pairwise task combinations in Fig- 493

ure 3 (loss curve results on other two task combina- 494

tions are listed in Appendix C.4). The task losses 495

obtained by VIP-MTL are closer to each other on 496

both heterogeneous and homogeneous combina- 497

tions, showing that our method is scale-invariant to 498

task losses. 499

4.7 Evaluation under Data-constrained 500

Conditions 501

We evaluate VIP-MTL and 7 representative com- 502

parison methods when training with limited data 503

by adjusting different ratios of the training set. Fol- 504

lowing Hu et al. (2024a), all methods are trained on 505

randomly sampled subsets from the original train- 506

ing set, and we report the average results on the 507

test set. Table 6 shows overall results against dif- 508

ferent sizes of training set where RoBERTa is the 509

default backbone model. VIP-MTL achieves su- 510

perior average performance against different ratios 511

of the training set. This suggests that VIP-MTL is 512

capable of learning sufficient representations, im- 513

proving the efficiency of utilizing limited data. 514

4In the early stage, VIP-MTL mainly focuses on balancing
overall tasks rather than individual tasks, leading to IronyE-
val—requiring complex semantic understanding—receiving
more attention only in the later stage of training.
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Figure 3: Loss analysis during training phase on pair-wise tasks on AffectEval. RoBERTa is the default backbone
model. Results on other pair-wise task combinations are listed in Appendix C.4.

Methods Data per TweetEval AffectEval
Avg. ∆p ↑ Avg. ∆p ↑

EW 20% 62.43 0.00 43.99 0.00
SI 20% 62.23 -0.34 43.08 -1.86
UW 20% 61.78 -1.59 48.93 +.17
GLS 20% 61.33 -2.32 49.32 +29.91
IMTL-L 20% 60.66 -3.38 48.94 +20.88
MT-VIB 20% 60.00 -4.18 44.35 +4.30
VMTL 20% 58.34 -7.30 42.82 -0.40
VIP-MTL 20% 64.41 +3.20 50.51 +33.80
EW 40% 66.01 0.00 51.03 0.00
SI 40% 65.95 -0.11 51.60 +0.68
UW 40% 64.35 -2.82 52.91 +5.60
GLS 40% 63.63 -4.13 54.07 +8.19
IMTL-L 40% 64.16 -3.22 51.00 +0.92
MT-VIB 40% 63.58 -3.90 49.42 -1.84
VMTL 40% 63.36 -4.33 49.37 -2.47
VIP-MTL 40% 66.29 +0.73 56.74 +15.51
EW 60% 66.38 0.00 55.03 0.00
SI 60% 66.31 -0.24 54.13 -1.71
UW 60% 66.17 -0.45 55.27 +1.00
GLS 60% 66.33 -0.04 56.10 +2.26
IMTL-L 60% 66.96 +1.02 54.99 +0.27
MT-VIB 60% 66.31 +0.04 52.85 -3.94
VMTL 60% 65.00 -1.95 53.47 -2.27
VIP-MTL 60% 67.12 +1.35 58.79 +8.57
EW 80% 66.34 0.00 56.75 0.00
SI 80% 67.33 +1.98 56.17 -1.13
UW 80% 66.93 +1.30 58.71 +4.49
GLS 80% 66.43 +0.23 57.05 +0.86
IMTL-L 80% 66.59 +0.84 56.31 -0.65
MT-VIB 80% 65.34 -1.57 54.80 -3.39
VMTL 80% 65.07 -2.33 55.72 -0.94
VIP-MTL 80% 67.97 +2.73 60.54 +8.19

Table 6: Results against different training data size.

4.8 Representation Quality Evaluation515

To analyze the quality of the learned representa-516

tions, we evaluate the clustering performance of517

output representations obtained by different objec-518

tives. Following Hu et al. (2024a), we apply silhou-519

ette coefficient (SC) and adjusted rand index (ARI)520

to measure the clustering ability relevant to input521

data and target tasks, respectively. Figure 4 shows522

SC and ARI values of representations. learned by523

5 representative comparison objectives, VIP-MTL524

and its ablation w/o VI on TweetEval. Both VIP-525

MTL and its ablation w/o VI achieve higher ARI526

Figure 4: Quality analysis of the learned task-specific
representations by different objectives. The X-axis and
Y-axis refer to silhouette coefficient (SC) and adjusted
rand index (ARI) of task-specific representations.

and SC values on six tasks. This reveals that our 527

method can learn compact and informative output 528

representations for all tasks. 529

5 Conclusion 530

This paper proposes a novel VIP-MTL to har- 531

monize task-specific representation spaces to en- 532

sure impartial learning. VIP-MTL decodes task- 533

agnostic shared representations into task-specific 534

probabilistic distributions and applies variance nor- 535

malization to constrain them to a consistent scale, 536

balancing task influence during training. Experi- 537

ments on two language benchmarks demonstrate 538

that VIP-MTL achieves superior performance in 539

heterogeneous and data-constrained MTL scenar- 540

ios. Further analysis shows that VIP-MTL is robust 541

to sampling distributions, efficient on optimization 542

process, scale-invariant to task losses, and learns 543

more informative task-specific representations. 544
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Limitations545

This paper conducts experiments on the task of nat-546

ural language understanding such as classification547

and regression tasks. The performance on genera-548

tion tasks is still unexplored, which will be left for549

the future work.550
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Appendix Overview779

In this appendix, we provide: (i) the related work,780

(ii) detailed experimental setups, and (iii) supple-781

mentary results.782

A Related Work783

Existing works on multi-task learning (MTL) can784

be categorized into two groups: multi-task opti-785

mization and network architecture design.786

A.1 Multi-task Optimization787

The optimization of MTL aims to improve the MTL788

training process by balancing the training dynam-789

ics of different tasks. This line of studies typically790

employs a hard parameter-sharing pattern (Caru-791

ana, 1993), where several light-weight task-specific792

heads are attached upon the heavy-weight task-793

agnostic backbone. Recent works on multi-task794

optimization are roughly divided into two parts:795

task-balanced and probabilistic methods.796

Task-balanced methods aims to balance the797

learning process across multiple tasks via loss-798

based and gradient-based methods. Loss-based799

methods focus on aligning the task losses magni-800

tudes by rescaling loss scales (Kendall et al., 2018;801

Chennupati et al., 2019; Liu et al., 2019a, 2021b;802

Lin et al., 2022). These works can prevent MTL803

from being biased in favor of tasks with large loss804

scales, but cannot ensure the impartial learning805

of the shared parameters. Gradient-based meth-806

ods (Sener and Koltun, 2018; Chen et al., 2018;807

Yu et al., 2020) aims to find an aggregated gra-808

dient to balance different tasks. Moreover, Liu809

et al. (2021b) and Lin et al. (2022) also provide810

the gradient-based version, and the overall effects811

are comparable to their loss-based version. While812

gradient balance can evenly learn task-shared pa-813

rameters, they also incur a higher compute and814

memory training cost. Unlike existing optimiza-815

tion methods via balancing loss and gradients, this816

paper focus on directly constrain the representa-817

tion space to address the task interference issue by818

probabilistic embedding.819

Probabilistic methods aims to explore shared820

priors for all tasks (Yousefi et al., 2019; Kim et al.,821

2022; Qian et al., 2020; Shen et al., 2021; de Fre-822

itas et al., 2022). To explore task relatedness, some823

works study design priors over model parameters824

under the Bayesian framework (Yu et al., 2005;825

Titsias and Lázaro-Gredilla, 2011; Archambeau826

et al., 2011; Bakker and Heskes, 2003), or share827

the covariance structure of parameters (III, 2009). 828

Additionally, some works (Vera et al., 2017; Qian 829

et al., 2020; de Freitas et al., 2022) introduce the 830

information bottleneck (IB) principle (Tishby et al., 831

1999; Tishby and Zaslavsky, 2015) into the infor- 832

mation encoding process of MTL. They typically 833

enhance the adaptability to noisy data by compress- 834

ing task-irrelevant redundant information and learn- 835

ing compact intermediate representations. For ex- 836

ample, Qian et al. (2020) use variational inference 837

to learn probabilistic representations for multiple 838

tasks based on the information bottleneck. de Fre- 839

itas et al. (2022) propose a hierarchical variational 840

MTL method that restricts information individual 841

tasks can access from a task-agnostic latent repre- 842

sentation. 843

A.2 Architectures for MTL 844

Orthogonal to our work, another line of studies em- 845

phasizes on designing neural network architectures 846

by optimizing the allocation of shared versus task- 847

specific parameters (Misra et al., 2016; Hashimoto 848

et al., 2017; Ruder et al., 2019; Liu et al., 2019a,b). 849

Some of these methods utilize soft parameter shar- 850

ing, allowing for parameter sharing among tasks to 851

a large extent. However, they often result in higher 852

inference cost. The scope of our study is comple- 853

mentary to this line of work, since we focus on how 854

to balancing multiple tasks that is agnostic to the 855

architecture employed. 856

B Experimental Setups 857

B.1 Details of Datasets and Downstream 858

Tasks 859

We conduct experiments on TweetEval and Af- 860

fectEval benchmarks. The statistics are summa- 861

rized in Table 7. 862

TweetEval benchmark contains 6 classification 863

tasks. EmotionEval (Mohammad et al., 2018) in- 864

volves detecting the emotion evoked by a tweet and 865

is based on the Affects in Tweets conducted during 866

SemEval-2018. Following Barbieri et al. (2020), 867

the most common four emotions (i.e., anger, joy, 868

sadness, and optimism) are selected as the label 869

sets. HatEval (Basile et al., 2019) stems from 870

SemEval-2019 Hateval challenge and is used to 871

predict whether a tweet is hateful towards immi- 872

grants or women. IronyEval (Hee et al., 2018) is 873

from SemEval-2018 Irony Detection and consists 874

of identifying whether a tweet includes ironic in- 875

tents or not. OffensEval (Zampieri et al., 2019) is 876
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Dataset Task Task Type # Label # Train # Val # Test # Total
Homogeneous benchmark: TweetEval
EmotionEval Social emotion detection Classification 4 3,257 374 1,421 5,502
HatEval Hate speech detection Classification 2 9,000 1,000 2,970 12,970
IronyEval Irony detection Classification 2 2,862 955 784 4,601
OffensEval Offensive language detection Classification 2 11,916 1,324 860 14,100
SentiEval Sentiment analysis Classification 3 45,389 2,000 11,906 59,295
StanceEval Stance detection Classification 3 2,620 294 1,249 4,163
Heterogeneous benchmark: AffectEval
GoEmotions Fine-grained emotion detection Classification 28 36,308 4,548 4,591 45,447
EmotionEval Social emotion detection Classification 4 3,257 374 1,421 5,502
EmoBank Emotion regression Regression - 8,062 1,000 1,000 10,062
EI-Reg Emotion intensity regression Regression - 7,102 1,464 4,068 12,634

Table 7: Dataset statistics on TweetEval and AffectEval. The homogeneous TweetEval contains six different
classification tasks, and heterogeneous AffectEval includes two classification and two regression tasks.

Hyperparameter TweetEval AffectEval

B
E

R
T

Trade-off weight β 0.001 0.1
Trade-off weight γ 10 for Cls. and 0.1 for Reg.
Number of epochs 20 20
Patience 3 3
Max length 256 256
Batch size 128 128
Dropout 0.2 0
Learning rate 5e−5 5e−5

R
oB

E
R

Ta

Trade-off weight β 0.01 0.001
Trade-off weight γ 10 for Cls. and 0.1 for Reg.
Number of epochs 20 20
Patience 3 3
Max length 256 256
Batch size 128 128
Dropout 0.2 0
Learning rate 5e−5 5e−5

Table 8: Hyperparameters of VIP-MTL on TweetEval
and AffectEval.

from SemEval-2019 OffensEval and involves pre-877

dicting if a tweet contains any form of offensive878

language. SentiEval (Rosenthal et al., 2017) comes879

from SemEval 2017 and includes data from previ-880

ous runs (2013, 2014, 2015, and 2016) of the same881

task. The goal is to determine if a tweet is positive,882

negative, or neutral. StanceEval (Mohammad et al.,883

2016) involves determining if the author of a piece884

of text has a favorable, neutral, or negative position885

towards a proposition or target.886

AffectEval includes 2 classification and 2 regres-887

sion tasks. GoEmotions (Demszky et al., 2020) is888

a corpus of comments from Reddit, with human889

annotations to 27 emotion categories or neutral. It890

is used fine-grained emotion prediction. Follow-891

ing Hu et al. (2024b), nearly 16% of multi-label892

data was removed from the source corpus to better893

evaluate the performance of multi-class classifica-894

tion. EmotionEval (Mohammad et al., 2018) in-895

volves detecting the emotion evoked by a tweet and 896

is based on the Affects in Tweets conducted dur- 897

ing SemEval-2018. Emobank (Buechel and Hahn, 898

2017) is a large-scale text corpus across 6 domains 899

and 2 perspectives and manually annotated with 900

continuous VAD scores. Each sentence has three 901

scores representing VAD in the range of 1 to 5. Fol- 902

lowing Buechel and Hahn (2017), we use the av- 903

erage of VAD scores as the overall metric. EI-Reg 904

(Mohammad et al., 2018) is an emotion intensity 905

regression task and is from SemEval-2018 Task 906

1: Affect in Tweets. The goal is to determine the 907

intensity of the emotion E that best represents the 908

mental state of the twitter. The intensity is a real- 909

valued score between 0 (least E) and 1 (most E). In 910

this task, we did not use additional emotion labels 911

in the dataset to better evaluate this regression task. 912

B.2 Description of Comparison Methods 913

Equal Weighting (EW) is a typical baseline that 914

applies equal weights for each task. Task Weight- 915

ing (TW) utilizes loss weights to each task based on 916

the ratio of task examples. Uncertainty weighting 917

(UW) (Kendall et al., 2018) uses the homoscedastic 918

uncertainty quantification to adjust task weights. 919

Geometric Loss Strategy (GLS) (Chennupati 920

et al., 2019) uses the geometric mean of task losses 921

to the weighted average of task losses. Dynamic 922

Weight Average (DWA) (Liu et al., 2019a) sets the 923

loss weight of each task to be the ratio of two adja- 924

cent losses. PCGrad (Yu et al., 2020) removes con- 925

flicting components of each gradient w.r.t the other 926

gradients. IMTL-L (Liu et al., 2021b) dynami- 927

cally reweighs the losses such that they all have 928

the same magnitude. Random Loss Weighting 929

(RLW) (Lin et al., 2022) with normal distribution, 930

scales the losses according to randomly sampled 931

task weights. MT-VIB (Qian et al., 2020) is a 932
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Methods EmotionEval HatEval IronyEval OffensEval SentiEval StanceEval Avg. ∆p ↑M-F1 M-F1 F1(i.) M-F1 M-Recall M-F1 (a. & f.)
VIP-MTL 77.36±0.53 49.79±1.37 68.65±1.74 79.60±0.89 71.32±0.49 67.80±0.33 69.09±0.09 +5.06
w/o VI 76.02±1.10 49.30±3.75 64.63±3.14 79.44±1.93 71.67±1.25 64.47±1.65 67.59±1.06 +2.72
w/o VI & Pro. 74.37±0.56 44.08±5.26 65.32±1.84 79.04±1.43 70.64±1.71 63.59±2.43 66.17±0.43 0.00

(a) Ablation results on TweetEval

Methods GoEmotions EmotionEval Emobank EI-Reg Avg. ∆p ↑M-F1 M-F1 V A D Pear Spear
VIP-MTL 49.38±1.37 79.47±0.45 78.55±1.01 55.51±0.48 45.73±1.28 56.46±1.17 57.19±1.10 61.40±0.58 +7.66
w/o VI 48.87±0.79 78.15±0.57 74.23±4.01 51.02±3.15 39.62±3.19 50.62±3.79 51.16±4.20 58.21±1.96 +1.46
w/o VI & Pro. 47.13±0.33 77.97±0.63 75.62±0.79 49.44±4.70 36.47±4.02 51.01±4.62 52.23±4.68 57.64±2.12 0.00

(b) Ablation results on AffectEval

Table 9: Fine-grained ablation study of VIP-MTL. We experiment with the RoBERTa backbone.

Methods
GoEmotions Emobank Avg. ∆p ↑

M-F1 V A D
EW (baseline) 46.69 73.10 48.17 33.09 49.07 0.00
SI 46.59 73.10 49.04 34.59 49.42 +0.95
UW 48.91 77.70 53.97 44.87 53.88 +11.36
GLS 46.23 79.24 51.73 44.27 52.32 +7.77
IMTL-L 48.37 76.18 51.82 38.48 51.93 +6.47
MT-VIB 46.28 74.65 48.84 30.83 48.86 -1.00
VMTL 46.32 75.61 51.30 41.06 51.16 +5.27
VIP-MTL 50.67 78.86 55.84 45.81 55.42 +14.63

(a)

Methods
EmotionEval EI-Reg Avg. ∆p ↑

M-F1 Pear Spear
EW (baseline) 76.96 55.94 56.38 66.56 0.00
SI 78.07 55.44 56.36 66.99 +0.49
UW 78.83 59.26 59.95 69.22 +4.28
GLS 77.48 59.49 60.19 68.66 +3.62
IMTL-L 78.83 59.62 60.30 69.40 +4.60
MT-VIB 76.53 58.74 59.11 67.72 +2.18
VMTL 75.14 58.93 59.39 67.15 +1.48
VIP-MTL 79.30 60.20 59.85 69.66 +4.96

(b)

Table 10: Results on heterogeneous multi-task scenarios.
We experiment with the RoBERTa backbone.

variational MTL method based on information bot-933

tleneck. VMTL (Shen et al., 2021) is a variational934

MTL framework that uses Gumbel-Softmax priors935

for both representations and weights. Hierarchical936

MTL (de Freitas et al., 2022) is a hierarchical vari-937

ational MTL method with compressed task-specific938

representations based on information bottleneck.939

For LLM, we compare with GPT-3.5, an en-940

hanced generative pre-trained transformer model941

based on text-davinci-0035, optimized for chatting.942

B.3 Evaluation Metrics943

The average performance Avg. is computed as,

Avg. =
1

T

T∑
t=1

1

Nt

Nt∑
n−1

Mt,n,

5We present the results of the snapshot from June 13th
2023 based on specific inputs, including task descriptions,
task instructions, and evaluation texts.

Methods
Emobank EI-Reg Avg. ∆p ↑

A V D Pear Spear
EW (baseline) 79.40 55.52 46.71 57.96 58.83 59.47 0.00
SI 80.50 56.35 49.38 59.82 60.50 61.12 +2.94
UW 81.40 51.34 44.99 61.48 62.19 60.54 +1.50
GLS 80.11 56.23 48.13 60.05 60.90 60.98 +2.65
IMTL-L 81.32 50.79 44.58 61.93 62.48 60.55 +1.48
MT-VIB 79.92 54.83 47.39 60.09 60.74 60.57 +1.88
VMTL 79.70 54.87 46.94 59.75 60.49 60.31 +1.43
VIP-MTL 81.21 56.61 50.94 60.79 61.40 62.01 +4.53

(a)

Methods
GoEmotions EmotionEval Avg. ∆p ↑

M-F1 M-F1
EW (baseline) 46.69 77.05 61.87 0.00
SI 47.13 77.09 62.11 +0.50
UW 48.01 77.23 62.62 +1.53
GLS 42.41 79.02 60.72 -3.31
IMTL-L 47.62 76.94 62.28 +0.93
MT-VIB 46.19 77.99 62.09 +0.08
VMTL 46.05 77.20 61.63 -0.59
VIP-MTL 50.17 78.07 64.12 +4.39

(b)

Table 11: Results on homogeneous multi-task scenarios.
We experiment with the RoBERTa backbone.

where Mt,n denotes the performance of a task bal- 944

ancing method for the n-th metric in task t. Nt 945

denotes the number of metrics in task t. T refers 946

to the number of tasks. 947

∆p measures the average of the relative im-
provement over the baseline EW on each metric of
each task, i.e.,

∆p =
1

T

T∑
t=1

1

Nt

Nt∑
n−1

(−1)pt,n(Mt,n −MEW
t,n )

MEW
t,n

,

where MEW
t,n is the n-th metric score for EW on 948

task t. pt,n = 0 if a higher value is better for the 949

n-th metric in task t and 1 otherwise (Maninis et al., 950

2019; Liu et al., 2021a). 951

B.4 Implementation Details 952

We conduct experiments using an epoch number 953

of 20, a total batch size of 128, and a maximum 954
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Methods
TweetEval AffectEval

BERT backbone RoBERTa backbone BERT backbone RoBERTa backbone
Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑

EW 49.07 0.00 66.56 0.00 61.87 0.00 59.47 0.00
VIP-MTL (β =0.001) 67.42 +3.11 68.75 +4.42 56.73 +13.95 61.40 +7.66

w/o VI 65.36 -0.58 67.79 +3.26 52.90 +2.63 58.21 +1.46
VIP-MTL (β =0.01) 66.75 +1.96 69.09 +5.06 56.43 +11.59 60.52 +6.09

w/o VI 65.16 -0.84 67.59 +2.72 53.21 +3.72 57.45 -0.09
VIP-MTL (β =0.1) 67.18 +2.62 68.27 +3.98 58.16 +17.80 60.69 +6.42

w/o VI 65.40 -0.42 67.81 +2.75 53.08 +5.17 56.28 -2.17

Table 12: Results with different sampling distributions

Figure 5: Loss analysis during training phase on pair-wise tasks on AffectEval. RoBERTa is the default backbone
model.

token length of 256. The maximum patience for955

early stopping is set to 3 epochs. Following Liu956

et al. (2019b), we clip the gradient norm within957

1 for all methods to avoid the exploding gradient958

problem. We report the detailed hyperparameter959

settings of VIP-MTL with RoBERTa and BERT960

backbone models on two benchmarks in Table 8.961

For each comparison method, we fine-tune the962

key parameters following the original paper for fair963

comparison and to obtain corresponding optimal964

performance.965

C Supplementary Results966

C.1 Fine-grained Results of Ablation Study967

Table 9 shows fine-grained ablation results of each968

task on TweetEval and AffectEval.969

C.2 Fine-grained Results across Different970

Pair-wise Task Combinations971

For multi-task evaluations on pairs of tasks, we972

consider two distinct combinations of tasks: ho-973

mogeneous scenarios (i.e., EmotionEval & GoE-974

motions, and Emobank & EI-Reg), and heteroge-975

neous scenarios (i.e., EmotionEval & EI-Reg, and976

GoEmotions & Emobank). Table 10 and Table 11977

shows fine-grained results across pair-wise hetero-978

geneous and homogeneous MTL scenarios. VIP- 979

MTL achieves the best performance in terms of 980

Avg. and ∆p on all scenarios. This emphasizes the 981

effectiveness of VIP-MTL in both heterogeneous 982

and homogeneous MTL settings. 983

C.3 Supplementary Results of Sampling 984

Distribution 985

Table 12 shows results against different sampling 986

distributions. 987

C.4 Supplementary Results of 988

Scale-invariance Property Evaluation 989

Figure 5 shows loss curves on two pairwise task 990

combinations with AffectEval. 991
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