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Abstract

Multi-task learning (MTL) enhances efficiency
by sharing representations across tasks, but
task dissimilarities often cause partial learning,
where some tasks dominate while others are
neglected. Existing methods mainly focus on
balancing loss or gradients but fail to fundamen-
tally address this issue. In this paper, we pro-
pose variance-invariant probabilistic decoding
for multi-task learning (VIP-MTL), a frame-
work that ensures impartial learning by har-
monizing task-specific representation spaces.
VIP-MTL decodes task-agnostic shared repre-
sentations into task-specific probabilistic distri-
butions and applies variance normalization to
constrain them to a consistent scale, balancing
task influence during training. Experiments on
two language benchmarks show that VIP-MTL
outperforms 12 comparative methods under the
same multi-task settings, especially in hetero-
geneous and data-constrained scenarios. Fur-
ther analysis shows that VIP-MTL is robust to
sampling distributions, efficient on optimiza-
tion process, and scale-invariant to task losses.
Additionally, the learned task-specific represen-
tations are more informative, enhancing the lan-
guage understanding abilities of pre-trained lan-
guage models under the multi-task paradigm.

1 Introduction

Multi-task learning (MTL) has emerged as a pow-
erful paradigm in machine learning, enabling mod-
els to jointly learn multiple tasks together from
the shared representations (Caruana, 1997; Kendall
et al., 2018). Unlike single-task learning, MTL
paradigm not only allows the learned representa-
tions to simultaneously make predictions for sev-
eral tasks, but also reduces computation costs and
improves efficiency (Royer et al., 2023).
However, a persistent challenge in MTL stems
from the inherent task dissimilarity, which often
leads to the partial learning problem (Liu et al.,
2021b). This occurs when the model dispropor-
tionately prioritizes certain tasks while neglecting

others, resulting in suboptimal overall performance.
In multi-task learning, the latent variable distribu-
tions of different tasks are often inconsistent. For
example, the latent variable distribution of Task A
may have a larger variance, while the latent variable
distribution of Task B may have a smaller variance.
This discrepancy can cause the representations of
Task A to dominate the optimization process, while
the representations of Task B is neglected.

Existing methods (Kendall et al., 2018; Chennu-
pati et al., 2019; Liu et al., 2019a; Yu et al., 2020;
Liu et al., 2021b; Lin et al., 2022) primarily fo-
cus on balancing task losses or gradients but fail
to address the fundamental misalignment in repre-
sentations. Balancing losses adjusts task weights
heuristically, yet it cannot resolve scale dispari-
ties in latent spaces. Similarly, gradient balancing
harmonizes parameter updates during backpropaga-
tion. However, gradients are inherently influenced
by the statistical properties of representations (e.g.,
magnitude, variance). If representations are im-
balanced, gradients will inevitably reflect this bias.
Specifically, high-variance tasks generate larger
gradients, perpetuating their dominance despite
gradient normalization efforts. These limitations
are particularly pronounced in scenarios involving
heterogeneous tasks or limited data, where the dis-
parities in task complexity and data availability
exacerbate the imbalance. Therefore, balancing
representations offers a more principled and effec-
tive solution to the partiality problem in MTL.

In this paper, we introduce a novel framework,
variance-invariant probabilistic decoding for multi-
task learning (VIP-MTL), which tackles the partial
learning problem by harmonizing the representa-
tion spaces across tasks. Specifically, our frame-
work decodes task-agnostic shared representations
into task-specific probabilistic distributions, where
each point in the distribution corresponds to a po-
tential task-specific representation. Unlike prior
methods that focus on loss or gradient balancing,



VIP-MTL operates at the level of representation
balancing, ensuring impartial learning on represen-
tation spaces for all tasks. To address the issue
of scale variance across tasks, we apply a variance
normalization to these distributions, adaptively con-
straining them to a consistent scale. By aligning
the representation distributions, VIP-MTL prevents
any single task from dominating the shared repre-
sentation space and ensures that the influence of
each task remains balanced during training.

We conduct experiments on two multi-task
benchmarks, TweetEval and AffectEval for lan-
guage understanding. The former includes 6 clas-
sification tasks, while the latter involves 2 classi-
fication tasks and 2 regression tasks in a hetero-
geneous multi-task setting. The results show that
our VIP-MTL consistently surpasses 12 represen-
tative multi-task methods across different PLMs
under the same multi-task settings. For example,
with the RoBERTa backbone, VIP-MTL improves
the average relative improvement (Ap) by +5.06 %
on TweetEval and +7.66% on AffectEval, com-
pared to the EW baseline. Compared to single
task learning baselines, VIP-MTL also achieves
better results on most tasks with the same scale of
model parameters. Further analysis shows that our
method is robust to sampling distributions, efficient
on optimization process, and scale-invariant to task
losses. Extensive experiments demonstrate that
VIP-MTL offers significant advantages in hetero-
geneous task combinations and data-constrained
scenarios. Additionally, the learned task-specific
representations are more informative, enhancing
the language understanding abilities of pre-trained
language models under the multi-task paradigm.

The contributions are as follows: 1) We ana-
lyze the limitations of existing methods that bal-
ance losses or gradients in addressing the partial
learning problem in MTL from the perspective of
representation distributions, and introduces a new
idea of balancing the representation spaces across
tasks to promote impartial learning. 2) We design
a probabilistic representation learning framework
VIP-MTL to tackle the partial learning problem by
harmonizing the representation spaces across tasks.
It decodes shared representations into task-specific
probabilistic distributions and applies variance nor-
malization to constrain them. 3) Experiments on
two language understanding benchmarks show that
our method outperforms 12 comparative methods
under the same multi-task settings, especially in
heterogeneous and data-constrained scenarios. Fur-

Deterministic o

Decoder ¢, J ZgYa
X—>Encoder 8}+Z : :
Deterministic =~

Decoder ¢, Zy-*Yp

(a) Vanilla MTL paradigm

Variance Normalization
Probabilistic o
- A= Aa
. ! .
Probabilistic
Decoder ¢,

(b) VIP-MTL (ours)

T

Figure 1: Comparison of vanilla MTL paradigm and the
proposed VIP-MTL. The deterministic decoder maps
each vector point to a fixed vector, while the probabilis-
tic decoder that maps each vector point to a probability
distribution.

ther analysis shows that VIP-MTL is distribution-
robust, efficient, scale-invariant, and the learned
task-specific representations are more informative
for all tasks.'

2 Preliminary

Scope of the Study. The goal of this paper is to
study multi-task optimization that typically utilizes
a hard parameter-sharing setting (Caruana, 1993),
where several lightweight task-specific heads are
attached to a heavyweight task-agnostic backbone
model. Another orthogonal line of research on
multi-task learning mainly emphasizes designing
of network architectures that typically use a soft
parameter-sharing strategy. Details of the above
related studies are listed in Appendix A.

Notations. Define 7 tasks and the corresponding
dataset of task ¢ as D;. An MTL model typically
comprises task-sharing encoder with parameters
and task-specific decoder with parameters {¢; El,
where 6 represents parameters in a feature extractor
shared by all tasks, and ¢, represents parameters in
the task-specific output module for task . Define

0(Dy; 0, @) as the average loss on the dataset D;

for task ¢. {)\t},@l is the set of task-specific loss
weights with a constraint, where A; > 0.

MTL Baseline. The total MTL objective is com-
puted by aggregating multiple objective losses
with different weights, i.e., £(60,{¢: 2@1) =

‘Ql Aly(Dy; 0, ¢¢). A straightforward method

IThe source code will be available in the future.



involves assigning equal weights to all tasks dur-
ing training, i.e., A\ = ITl“I for all tasks in every
iteration, i.e., a common MTL baseline EW.

3 Methodology

We propose variance-invariant probabilistic decod-
ing for multi-task learning (VIP-MTL), a proba-
bilistic framework that ensures impartial learning.
As shown in Figure 1b, the encoder learns task-
agnostic shared representations across all tasks.
Based on shared representations, VIP-MTL de-
codes shared representations into task-specific
probabilistic distributions and applies variance nor-
malization to constrain them to a consistent scale,
balancing task influence during training. Different
from the vanilla MTL paradigm (Figure 1a) that
jointly learn multiple tasks by balance losses or gra-
dients, VIP-MTL balances representation spaces
across tasks to promote impartial learning.

3.1 Probabilistic Decoding for MTL

To decode task-agnostic point-wise shared repre-
sentations into task-specific probabilistic distribu-
tions, we perform probabilistic embedding (Vilnis
and McCallum, 2015; Hu et al., 2024a) and task
prediction in the multi-task decoding process.

We extend the probabilistic coding technique
(Hu et al., 2024a) in single-task learning to the
multi-task setting. Specifically, we use variational
inference (Hoffman et al., 2013) to map the shared
representations z to a set of different distributions
in the output space, i.e., RMl. Given the input z,
the task-agnostic shared representation z shared by
all tasks is a function of x by a mapping py(z|x).
For task ¢, the output representations z; in the
output space can be obtained by a task-specific
head gy, (2¢|2), and the corresponding prediction
value g; is non-parametric mapping of z;. The true
posterior p(z|z) can be approximated as p(z:|z)
where z ~ p(z|z). Let the prior estimate r(z;) for
task ¢ be the isotropic Gaussian distribution, i.e.,
r(zt) ~ N (zt;0,1). Let g, (2¢|2) be a variational
estimate of the intractable true posterior p(z;|z) of
z; given z, and learned by the ¢-th stochastic head
parametrized by ¢;. And the objective of proba-
bilistic decoding for MTL can be:

E(ev {ét}?:l) = EtNT,ZN[)g(Z‘.T){IEZthc:‘)t(Zi‘Z> [7 logs(yt\zt)}
+BK L(qy, (2]2);7(21))},

(D

where z; is randomly sampled from pg,(z|2).
s(yt|z¢) is a non-parametric operation on z; that

adapts the output distribution for task prediction
(e.g., the Softmax operation for classification).
K L(-) denotes the KL-divergence term, which
serves as a regularization that forces the variational
posterior g, (2¢|2) to approximately converge to
the prior 7(2;). 8 > 0 controls the closeness be-
tween the learnable variational posterior g4, (2¢|2)
and the predefined prior 7(z;). The different values
of 5 means the posterior distribution with different
parametric forms.

For task ¢, we assume the variational posterior
¢4, (2t|2) be a multivariate Gaussian with a diago-
nal covariance structure, i.e.,

= N (2 ("), Ze(2), @)

where y1;(2%) and ¥;(z%) denote the mean and di-
agonal covariance of sample ¢ for task ¢. Follow-
ing Hu et al. (2024a), both of their parameters are
input-dependent and can be learned by an MLP (a
fully-connected neural network with a single hid-
den layer) for each task, respectively. Next, we sam-
ple z; from the approximate posterior q¢t(zt|z N,

and obtain the prediction value by s(y!|z}). Since
the sampling process of 2! is stochastic, we use
the re-parameterization trick (Kingma and Welling,
2014) to ensure it trainable, i.e., zi = p,(z%) +
(Et(zi))l/2 ® e,e ~ N(0,I), where ® refers
to an element-wise product. Then, the KL. term
can be calculated by: KL(qd,t(zt]z Nir(2))) =

—5 (L log Zu(=) — (p(2) — Zu(=).

3.2 Variance Normalization on Probabilistic
Distributions

A, (Zﬂzz)

By aligning the representation distributions, VIP-
MTL prevents any single task from dominating
the shared representation space and ensures that
the influence of each task remains balanced during
training. The technique adjusts the variance of
population distribution of each task to a notionally
common scale. It can keep the population variance
constant between different tasks, and balance the
learning processes for different tasks.

For task ¢, each sample z} follows a multivariate
Gaussian as shown in Eq.(2). Then all data points
in the output space can be viewed as generated by
a mixture of Gaussian distributions, i.e.,

2

as, (2]2) = Zezq@ 2|2, 3)

1, i > 0. |Dy is
qy, 1s independent

where €1 + -+ + €ip,| =
the dataset size of task t.



of each other. z; follows a mixture normal dis-
tribution consisting of |D;| normally distributed
components. Besides, let all samples be equally
weighted, i.e., e = Iﬁltl' Define a sufficiently large
number £. When |Dy| > &, the covariance of
this mixture distribution can be approximated as:

D .
T~ gy (B4 32+ + 3P < max{zi).
Then we use ¥} to normalize the diagonal covari-
ance in Eq.(2), i.e.,

il i (2) Ty

syl = (4 2 B e <6 )

where Y} is learned by a linear mapping of task

t with parameters 7. ¢; = {¢¢, 7¢}. d is a certain

radius for 2} due to the maximum value, max{3¢},
(2

being constrained by the KL-divergence term in
Eq.(1). And the diagonal covariance of q;ﬁt can be:

1 (st 52 et
Z;,normlz<t—~_t—’_“'_'_ < ~L (5)

Do \ 2 % %

For all jointly trained tasks, after variance normal-
ization, they will consistently follow a mix of Gaus-
sian distributions with approximately unit covari-
ance in the output space. This means that the mixed
distributions for all tasks have the property of ap-
proximate variance invariance: all mixed distribu-
tions in the target space have a globally consistent
shape and level of dispersion. Additionally, the
expectations under different tasks are scaled to sim-
ilar magnitudes. While methods UW and IMTL-L
also impose constraints on the expectations of dif-
ferent tasks, they do not constrain the variance of
the distributions as our method does.

In implementations, we apply a normalization
constraint to its stochastic sampled values, i.e.,
() = my()/(E)'? + (Su(z))/20)'* 0 c. To
simplify the computation of X}, we assume the
normalization constraint imposed on all dimension
of the diagonal covariance have the same scale
for task ¢. We take cross-entropy (CE) and mean
squared error (MSE) for classification and regres-
sion tasks, respectively, i.e., — log Softmax (2}, y;)
and ||z, — y||%. As aresult, the scale of the normal-
ization constraint approximates (X})'/? and X/ in
loss terms.

3.3 VIP-MTL

Under MTL paradigm, we incorporate the vari-
ance normalization on the probabilistic decoding
framework, named variance-invariant probabilistic

representation (VIP-MTL). The total objective of
VIP-MTL can be:
Liotat (0, {1 }=1) = EtNT,zwpg(z\z){EztwqoZ (21)2) [~ 10g 8(ye|21)]
+BK L(qg; (21]2);7(21)) + v1log 7},
(6)
where z = py(x), learned by the shared encoder 6.
qé); (z¢|2) is a variational estimate of the posterior
probability of ¢ and is learned by the ¢-th stochastic
decoder ¢} with variance-invariant normalization.
&f = {¢¢, 7}. 7 is a linear mapping of task ¢,
which represents the approximated variance of a
mixture distribution for task ¢. 5 > 0 controls the
closeness between the learnable variational Gaus-
sian posterior g4, (2¢|2) and the standard Gaussian
prior 7(z;). v > 0 is another Lagrange term that
constrains the variance 7; of a mixture distribution
for task ¢. Totally, VIP-MTL can ensure impartial
learning by harmonizing task-specific representa-
tion spaces.

4 Experiments

4.1 Experimental Setups

Datasets and Tasks We conduct experiments on
two multi-task benchmarks, i.e., TweetEval and Af-
fectEval. TweetEval (Barbieri et al., 2020) consists
of 6 text classification tasks about tweet analysis
on social media, EmotionEval (Mohammad et al.,
2018) for social emotion detection, HatEval (Basile
et al., 2019) for hate speech detection, IronyEval
(Hee et al., 2018) for irony detection, OffensEval
(Zampieri et al., 2019) for offensive language de-
tection, SentiEval (Rosenthal et al., 2017) for senti-
ment analysis, and StanceEval (Mohammad et al.,
2016) for stance detection. AffectEval involves
2 classification tasks and 2 regression tasks in a
heterogeneous multi-task setting, i.e., GoEmotions
(Demszky et al., 2020) for fine-grained emotion
detection, EmotionEval (Mohammad et al., 2018),
Emobank (Buechel and Hahn, 2017) for emotion
regression, and EI-Reg (Mohammad et al., 2018)
for emotion intensity regression. See Appendix B.1
for more detailed descriptions.

Comparison Methods We compare with the fol-
lowing 12 representative methods including Equal
Weighting (EW), Scale-invariant Loss (SI), Task
Weighting (TW), Uncertainty Weighting (UW)
(Kendall et al., 2018), Geometric Loss Strategy
(GLS) (Chennupati et al., 2019), Dynamic Weight
Average (DWA) (Liu et al., 2019a), Projecting Con-
flicting Gradient (PCGrad) (Yu et al., 2020), IMTL-
L (Liu et al., 2021b), Random Loss Weighting



TweetEval AffectEval

Methods BERT backbone RoBERTa backbone BERT backbone RoBERTa backbone
Avg. Ap T Avg. Ap T Avg. Ap T Avg. Ap T

EW (baseline) 65.62+0.57 0.00 66.17+0.43 0.00 52.93+2.02 0.00 57.64+2.12 0.00

S S 65.67+066 +0.06  67.16+1.08 +1.75 | 53.49+189  +1.80  57.94+202  +0.61

™ 65.6840.54 +0.11 67.08+1.17 +1.55 53.2742.12 +0.82 57.70+1.63 +0.09
uw 66.9740.51 +2.22 67.114+3.47 +1.92 53.79+1.85 +1.81 59.69+1.10 +4.05
GLS 66.05+1.49 +0.60 67.3240.38 +1.67 54.5640.36 +9.82 57.66+1.65 -0.23
DWA 65.564-0.57 -0.09 66.9441.13 +1.35 52.8841.88 -0.25 57.3642.53 -0.51
PCGrad 65.4540.33 -0.50 67.424030 +1.96 | 51.62+0.51 -3.09 56.27+2.16 -2.73
IMTL-L 66.18+1.45 +0.86 66.5441.50 +0.67 53.8940.42 +3.41 57.734+1.20 +0.05
RLW 66.76+1.42 +1.86 67.07+0.73 +1.63 51.38+1.42 -3.03 55.61+2.32 -4.26
MT-VIB 65.8040.23 +0.66 67.1440.87 +2.00 50.1340.71 -5.09 57.68+1.56 +0.36
VMTL 65.80+159  +0.65  67.05+106 +1.81 50.0240.76 -5.01 57.52+048  +0.20
Hierarchical MTL | 66.4240.10 +1.76 66.8441.68 +1.60 50.554-0.65 -4.19 55.1840.58 -4.74
VIP-MTL (ours) | 67.42"+1.06 +3.11 69.09"+0.09 +5.06 | 58.16"+045 +17.80 61.40"+0.58 +7.66

Table 1: Multi-task performance (%) on TweetEval and AffectEval. For all methods with BERT/RoBERTa backbone,
we run three random seeds and report the average result on test sets. Best results are highlighted in bold. * represents
statistical significance over scores of the baseline under the ¢-test (p < 0.05).

Methods EmotionEval HatEval IronyEval OffensEval SentiEval StanceEval Avg Ap 1
M-F1 M-F1 F13.) M-F1 M-Recall M-F1 (a. & f.) :

EW (baseline) 74.3740.56 44.0845.26 65.32+1.84 79.04+1.43 70.64+1.71 63.59+2.43 66.17+0.43 0.00
) G 7581105~ 46.194601  66.17+581  78.58+200  71.00£180  6524+231 | 67.16+108  +1.75
Uuw 74.7643.08 48.49+3.21 65.41+7.01 79.4941.48 71.5640.74 62.9646.84 67.114+3.47 +1.92
GLS 75.47+1.15 43.97+1.13 69.18+2.62 79.4640.84 71.84+0.38 64.0140.71 67.324038  +1.67
IMTL-L 75.254+1.26 45.61+3.84 65.9440.74 79.59+1.28 71.1940.60 61.65+5.41 66.5441.50 +0.67
MT-VIB 74.7440.38 48.06+4.79 66.09+3.38 78.17+1.39 70.9540.99 64.83+1.56 67.14+0.87 +2.00
VMTL 74.07+0.72 47.44+3.42 68.5542.80 77.95+0.22 70.52+1.04 63.7642.86 67.0541.06 +1.81
VIP-MTL (ours) | 77.36*+053  49.79*+137 68.65*+1.74 79.60*+0.89 71.32*+0.49 67.80" +0.33 69.09%+0.09 +5.06
(a) Fine-grained results on TweetEval

GoEmotions  EmotionEval Emobank EI-Re;

Methods M-FI M-FI \4 A D Pear ¢ Spear Ave. Apt
EW (baseline) 47.1340.33 77.974+0.63 75.6240.79 49.44+4.70 36.47+4.02 51.01+4.62 52.234+4.68 57.64+2.12 0.00
s 47.08+072 ~  7822+049  75.61+139 50354502 3726+478 51554399  52.60+382 | 57.94+202  +0.61
uw 48.54+0.55 78.55+1.14 76.8140.28 53.2640.44 38.60+3.32 54.9443.14 55.9343.00 59.69+1.10 +4.05
GLS 37.154043 79.43+1.34 80.18+1.47 55.07+1.07 45.73+0.61 53.15+6.16 54.31+5.96 57.66+1.65 -0.23
IMTL-L 46.7140.38 79.08+1.02 75.184+1.03 50.9942.68 37.05+2.13 50.3442.94 51.1242.78 57.734+1.20 +0.05
MT-VIB 46.92+0.29 76.66+2.31 75.61+1.96 51.60+1.01 37.5045.59 51.8041.39 52.64+2.19 57.68+1.56 +0.36
VMTL 46.83+0.23 75.25+1.70 77.38+0.44 51.02+1.52 37.7748.17 51.354+2.81 53.8342.05 57.52+0.48 +0.20
VIP-MTL (ours) | 49.38%+137  79.47"+045 78.55"+101 55.51"+048 45.73*+£128 56.46"+1.17 57.19"+1.10 | 61.40"+058 +7.66

(b) Fine-grained results on AffectEval

Table 2: Fine-grained results of representative comparison methods and our VIP-MTL. We experiment with the
RoBERTa backbone. * represents statistical significance over scores of the baseline under the ¢-test (p < 0.05).

(RLW) (Lin et al., 2022), MT-VIB (Qian et al.,
2020), VMTL (Shen et al., 2021), and Hierarchi-
cal MTL (de Freitas et al., 2022). Among them,
MT-VIB, VMTL, and Hierarchical MTL are prob-
abilistic MTL series. For fair comparison, we
reproduce each method under the same experi-
mental setups (e.g., the network backbone). We
use a pre-trained language model BERT (Devlin
et al., 2019)/RoBERTa (Liu et al., 2019c¢) as the
backbone model. Specifically, we use bert-base-
uncased* and roberta-base? to initialize BERT and
RoBERTz for fine-tuning. We also compare with
large language model (LLM) GPT-3.5% and sin-
gle task learning (STL) baseline. Please see Ap-

2https ://huggingface.co/
3https ://chat.openai.com

pendix B.2 for details of comparison methods.

Evaluation Metrics We utilize the same evalua-
tion metrics as those used in the original tasks. For
classification tasks, the macro-averaged F1 over all
classes is employed with three exceptions: stance
(macro-averaged of F1 of favor and against classes),
irony (F1 of ironic class), and sentiment analysis
(macro-averaged recall). For regression tasks, we
compute Pearson correlation for each VAD dimen-
sion on EmoBank, and use both Pearson and Spear-
man correlation coefficients on EI-Reg. Following
Barbieri et al. (2020), we report a global metric
(Avg.) based on the average of all task-specific
metrics. Following Maninis et al. (2019); Liu et al.
(2021a), we also report the average relative im-
provement over EW baseline on each metric of
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EmotionEval HatEval

IronyEval

OffensEval

SentiEval

StanceEval

Methods # Param M-Fl1 M-F1 FI(.) M-Fl1 M-Recall M-FI (a. &) | AY®
GPT-3.5 (LLMs) 7323 4830 66.81 6371 40.40 39.45 5532
CSTL | 6x110M |~ 7449 ~ ~ T 4526 ~ 5327 7920 7243 6670 | 6523
STL with CNN | 110M+6x2M 59.11 47.61 52.10 77.80 70.85 57.58 60.84
VIP-MTL 110M 77.29 49.73 67.88 80.02 71.15 67.28 68.89

Table 3: Comparison results with different learning paradigms on TweetEval. We experiment with ROBERTa
backbone for all methods except for GPT-3.5. STL stands for single-task learning with a cross-entropy loss. STL
with CNN indicates fine-tuning task-specific CNN classifiers with a frozen RoOBERTa backbone. # Param refers to
the number of parameters of the model for all tasks excluding the task-specific linear head.

TweetEval AffectEval

Methods BERT backbone RoBERTua backbone BERT backbone RoBERTa backbone

Avg. Ap T Avg. Ap T Avg. Ap 1 Avg. Ap T

VIP-MTL | 67.42+1.06 +3.11 69.09+009 +5.06 | 58.16+0.45 +17.80 61.40+058 +7.66

w/o VI 65.36+1.14  -0.58  67.59+106 +2.72 | 53.084+1.89 +5.17 58214196 +1.46

w/o VIP 65.62+0.57 0.00 66.1740.43 0.00 52.9342.02 0.00 57.64+2.12 0.00

Table 4: Ablation study results of our VIP-MTL.

Methods AngtNeEtEXE N AVAgffe“EAV"E N tasks. VIP-MTL consistently obtains the best av-
EW 6656 0.00 | 5947 0.00 erage performance over comparison methods on
VI?'I‘\/EITL (5=0.001) 257‘-,7/3 +‘3‘-‘2‘é 2213"2“1) ?22 both benchmarks with different backbone mod-

w/0 . +3. . +1. . .
VIP-MTL (3=0.01) 69.09 +5.06 | 60.52 +6.09 els. Spemﬁcally, Compared to EW basehne, VIP-
w/o VI 2;-;9 +§-;§ zz-g -%(‘)‘92 MTL with BERT/RoBERTa backbone improves

IP-MTL (5=0.1 27 . . . .

Vw/o ! oD 6781 4275 | 5628 217 Avg. by +1.80%/+2.92% and increases Ap by

Table 5: Results with different sampling distributions.

each task as the performance measure, denoted
as Ap. See Appendix B.3 for details of metrics.
Additionally, we use t-test (Kim, 2015) to verify
the statistical significance of differences between
results of VIP-MTL and the baseline on the task.

Implementation Details All experiments are
conducted on a single NVIDIA Tesla A100 80GB
card. The validation sets are used to tune hyperpa-
rameters and choose the optimal model. For each
method, we run three random seeds and report the
average result of the test sets. The network param-
eters are optimized by using Adamax optimizer
(Kingma and Ba, 2015) with the learning rate of
5¢75. The dropout rate is set to 0.2 for Tweet-
Eval and 0 for AffectEval. [ is searched from
{0.001,0.01,0.1}. ~y is searched from {1, 10} and
{0.1,1} for classification and regression. More
details are listed in Appendix B.4.

4.2 Main Results

Overall Results for MTL  The overall results on
both benchmarks are reported in Table 1, where
the homogeneous TweetEval contains six differ-
ent classification tasks, and heterogeneous AffectE-
val includes two classification and two regression

+3.11%/4+5.06% on TweetEval. VIP-MTL with
BERT/RoBERTa backbone gains improvements in
Avg. by +5.23%/+3.76 % and an increase in Ap
by +17.80%/+7.66 % on AffectEval.

Fine-grained Results Table 2 summarizes fine-
grained results of VIP-MTL, the EW baseline, and
6 representative comparison MTL methods (includ-
ing 4 task-balanced and 2 probabilistic methods).
Our VIP-MTL consistently outperforms the EW
baseline on all tasks of both benchmarks, achieving
the best fine-grained results on most tasks. This
indicates the effectiveness of VIP-MTL.

Comparison with STL and LLM We compare
our VIP-MTL with the single-task learning (STL)
baseline and the large language model (LLM) GPT-
3.5. For STL, each task is trained with a sepa-
rate model. For GPT-3.5, predictions are made
under the zero-shot setting using task descriptions
and instructions. As shown in Table 3, our VIP-
MTL outperforms GPT-3.5 on all tasks signifi-
cantly. Compared to the STL baselines, our method
also achieves superior results on most tasks with
the same scale of model parameters.

4.3 Ablation Study

We conduct ablation studies by removing the vari-
ance normalization (w/o VI) and further removing
probabilistic representation (w/o VIP). As shown
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Figure 2: Loss analysis during training on TweetEval.

in Table 4, compared with two ablation models,
the full VIP-MTL consistently obtains the best per-
formance in terms of Avg. and Ap on TweetEval
and AffectEval. The results reveal the effective-
ness of both components for MTL. Additionally,
VIP-MTL applies variance normalization to con-
strain task-specific probabilistic distribution to a
consistent scale, showing a smaller variance than
the ablation w/o VI on all benchmarks.

4.4 Robustness Evaluation on Sampling
Distribution

We evaluate the robustness on different sampling
distributions. 3 controls the closeness between the
learnable variational Gaussian posterior distribu-
tion and predefined standard Gaussian prior. We
adjust values of 3 to obtain sampling distributions
with different Gaussian forms. As shown in Ta-
ble 5, VIP-MTL outperforms EW baseline across
different posterior distributions, which shows the
robustness of VIP-MTL on sampling distribution.
Additionally, compared with w/o VI, VIP-MTL
consistently achieves superior performance across
different values of (3. It indicates that variance nor-
malization exhibits promising performance under
different probabilistic distributions.

4.5 Optimization Efficiency Evaluation

We further evaluate optimization efficiency on the
MTL paradigm. Figure 2 shows loss curves for
each task on TweetEval. VIP-MTL performs bet-
ter on both the training and validation sets and
converges faster, indicating that the optimization
process is more efficient. From results, we have:

1) VIP-MTL exhibits a steeper slope in the train-
ing loss for each task, particularly during the early
stages of training. This indicates that the method is
capable of reducing the training error for multiple
tasks more rapidly during the training process. 2)
During the training process, the validation loss of
VIP-MTL is lower than that of other methods in
most cases (except during the early stages of train-
ing for IronyEval*), demonstrating that our VIP-
MTL performs better on unseen data and possesses
stronger multi-task generalization capabilities.

4.6 Evaluation of Scale-invariance Property

To analyze the impartial ability, we evaluate the
scale-invariance property of pairwise task combina-
tions within AffectEval. The scale invariance of a
method generally refers to the invariance to individ-
ual loss scales. We experiment involving two het-
erogeneous and two homogeneous pair-wise MTL
settings (More experimental details and results can
be found in Appendix C.2). The results show that
VIP-MTL achieves the best performance in terms
of Avg. and Ap on all scenarios. Then, we show
loss curves on pairwise task combinations in Fig-
ure 3 (loss curve results on other two task combina-
tions are listed in Appendix C.4). The task losses
obtained by VIP-MTL are closer to each other on
both heterogeneous and homogeneous combina-
tions, showing that our method is scale-invariant to
task losses.

4.7 Evaluation under Data-constrained
Conditions

We evaluate VIP-MTL and 7 representative com-
parison methods when training with limited data
by adjusting different ratios of the training set. Fol-
lowing Hu et al. (2024a), all methods are trained on
randomly sampled subsets from the original train-
ing set, and we report the average results on the
test set. Table 6 shows overall results against dif-
ferent sizes of training set where ROBERTa is the
default backbone model. VIP-MTL achieves su-
perior average performance against different ratios
of the training set. This suggests that VIP-MTL is
capable of learning sufficient representations, im-
proving the efficiency of utilizing limited data.

*In the early stage, VIP-MTL mainly focuses on balancing
overall tasks rather than individual tasks, leading to IronyE-
val—requiring complex semantic understanding—receiving
more attention only in the later stage of training.
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Figure 3: Loss analysis during training phase on pair-wise tasks on AffectEval. RoOBERTa is the default backbone
model. Results on other pair-wise task combinations are listed in Appendix C.4.

Methods Data per A;F;eetEAve;i 4 A‘gffectEAwﬁ 4
EW 20% 62.43  0.00 | 43.99 0.00
ST 20% 62.23 -034 | 43.08 -1.86
uw 20% 61.78 -1.59 | 48.93 +.17
GLS 20% 61.33 -2.32 | 49.32 +29.91
IMTL-L 20% 60.66 -3.38 | 48.94 +20.88
MT-VIB 20% 60.00 -4.18 | 4435 +4.30
VMTL 20% 58.34 -7.30 | 42.82  -0.40
VIP-MTL 20% 64.41 +3.20 | 50.51 +33.80
EW 40% 66.01 0.00 | 51.03 0.00
ST 40% 6595 -0.11 | 51.60 +0.68
Uw 40% 6435 -2.82 | 5291  +5.60
GLS 40% 63.63 -4.13 | 5407 +8.19
IMTL-L 40% 64.16 -322 | 51.00 +0.92
MT-VIB 40% 63.58 -390 | 4942 -1.84
VMTL 40% 6336  -433 | 4937 247
VIP-MTL 40% 66.29 +0.73 | 56.74 +15.51
EwW 60% 66.38  0.00 | 55.03 0.00
ST 60% 66.31 -024 | 54.13 -1.71
uw 60% 66.17 -045 | 5527 +1.00
GLS 60% 66.33  -0.04 | 56.10 +2.26
IMTL-L 60% 6696 +1.02 | 5499 +0.27
MT-VIB 60% 66.31  +0.04 | 52.85 -3.94
VMTL 60% 65.00 -1.95 | 5347 -2.27
VIP-MTL 60% 67.12 +1.35 | 58.79  +8.57
EW 80% 66.34  0.00 | 56.75 0.00
ST 80% 67.33  +1.98 | 56.17 -1.13
uw 80% 66.93 +1.30 | 58.71  +4.49
GLS 80% 66.43 +0.23 | 57.05 +0.86
IMTL-L 80% 66.59 +0.84 | 56.31 -0.65
MT-VIB 80% 6534 -1.57 | 5480 -3.39
VMTL 80% 65.07 -2.33 | 5572 -0.94
VIP-MTL 80% 67.97 +2.73 | 60.54 +8.19

Table 6: Results against different training data size.

4.8 Representation Quality Evaluation

To analyze the quality of the learned representa-
tions, we evaluate the clustering performance of
output representations obtained by different objec-
tives. Following Hu et al. (2024a), we apply silhou-
ette coefficient (SC) and adjusted rand index (ARI)
to measure the clustering ability relevant to input
data and target tasks, respectively. Figure 4 shows
SC and ARI values of representations. learned by
5 representative comparison objectives, VIP-MTL
and its ablation w/o VI on TweetEval. Both VIP-
MTL and its ablation w/o VI achieve higher ARI
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Figure 4: Quality analysis of the learned task-specific
representations by different objectives. The X-axis and
Y-axis refer to silhouette coefficient (SC) and adjusted
rand index (ARI) of task-specific representations.

and SC values on six tasks. This reveals that our
method can learn compact and informative output
representations for all tasks.

5 Conclusion

This paper proposes a novel VIP-MTL to har-
monize task-specific representation spaces to en-
sure impartial learning. VIP-MTL decodes task-
agnostic shared representations into task-specific
probabilistic distributions and applies variance nor-
malization to constrain them to a consistent scale,
balancing task influence during training. Experi-
ments on two language benchmarks demonstrate
that VIP-MTL achieves superior performance in
heterogeneous and data-constrained MTL scenar-
ios. Further analysis shows that VIP-MTL is robust
to sampling distributions, efficient on optimization
process, scale-invariant to task losses, and learns
more informative task-specific representations.



Limitations

This paper conducts experiments on the task of nat-
ural language understanding such as classification
and regression tasks. The performance on genera-
tion tasks is still unexplored, which will be left for
the future work.
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Appendix Overview

In this appendix, we provide: (i) the related work,
(ii) detailed experimental setups, and (iii) supple-
mentary results.

A Related Work

Existing works on multi-task learning (MTL) can
be categorized into two groups: multi-task opti-
mization and network architecture design.

A.1 Multi-task Optimization

The optimization of MTL aims to improve the MTL
training process by balancing the training dynam-
ics of different tasks. This line of studies typically
employs a hard parameter-sharing pattern (Caru-
ana, 1993), where several light-weight task-specific
heads are attached upon the heavy-weight task-
agnostic backbone. Recent works on multi-task
optimization are roughly divided into two parts:
task-balanced and probabilistic methods.

Task-balanced methods aims to balance the
learning process across multiple tasks via loss-
based and gradient-based methods. Loss-based
methods focus on aligning the task losses magni-
tudes by rescaling loss scales (Kendall et al., 2018;
Chennupati et al., 2019; Liu et al., 2019a, 2021b;
Lin et al., 2022). These works can prevent MTL
from being biased in favor of tasks with large loss
scales, but cannot ensure the impartial learning
of the shared parameters. Gradient-based meth-
ods (Sener and Koltun, 2018; Chen et al., 2018;
Yu et al., 2020) aims to find an aggregated gra-
dient to balance different tasks. Moreover, Liu
et al. (2021b) and Lin et al. (2022) also provide
the gradient-based version, and the overall effects
are comparable to their loss-based version. While
gradient balance can evenly learn task-shared pa-
rameters, they also incur a higher compute and
memory training cost. Unlike existing optimiza-
tion methods via balancing loss and gradients, this
paper focus on directly constrain the representa-
tion space to address the task interference issue by
probabilistic embedding.

Probabilistic methods aims to explore shared
priors for all tasks (Yousefi et al., 2019; Kim et al.,
2022; Qian et al., 2020; Shen et al., 2021; de Fre-
itas et al., 2022). To explore task relatedness, some
works study design priors over model parameters
under the Bayesian framework (Yu et al., 2005;
Titsias and Lazaro-Gredilla, 2011; Archambeau
et al., 2011; Bakker and Heskes, 2003), or share
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the covariance structure of parameters (I11, 2009).
Additionally, some works (Vera et al., 2017; Qian
et al., 2020; de Freitas et al., 2022) introduce the
information bottleneck (IB) principle (Tishby et al.,
1999; Tishby and Zaslavsky, 2015) into the infor-
mation encoding process of MTL. They typically
enhance the adaptability to noisy data by compress-
ing task-irrelevant redundant information and learn-
ing compact intermediate representations. For ex-
ample, Qian et al. (2020) use variational inference
to learn probabilistic representations for multiple
tasks based on the information bottleneck. de Fre-
itas et al. (2022) propose a hierarchical variational
MTL method that restricts information individual
tasks can access from a task-agnostic latent repre-
sentation.

A.2 Architectures for MTL

Orthogonal to our work, another line of studies em-
phasizes on designing neural network architectures
by optimizing the allocation of shared versus task-
specific parameters (Misra et al., 2016; Hashimoto
et al., 2017; Ruder et al., 2019; Liu et al., 2019a,b).
Some of these methods utilize soft parameter shar-
ing, allowing for parameter sharing among tasks to
a large extent. However, they often result in higher
inference cost. The scope of our study is comple-
mentary to this line of work, since we focus on how
to balancing multiple tasks that is agnostic to the
architecture employed.

B Experimental Setups

B.1 Details of Datasets and Downstream
Tasks

We conduct experiments on TweetEval and Af-
fectEval benchmarks. The statistics are summa-
rized in Table 7.

TweetEval benchmark contains 6 classification
tasks. EmotionEval (Mohammad et al., 2018) in-
volves detecting the emotion evoked by a tweet and
is based on the Affects in Tweets conducted during
SemEval-2018. Following Barbieri et al. (2020),
the most common four emotions (i.e., anger, joy,
sadness, and optimism) are selected as the label
sets. HatEval (Basile et al., 2019) stems from
SemEval-2019 Hateval challenge and is used to
predict whether a tweet is hateful towards immi-
grants or women. [ronyEval (Hee et al., 2018) is
from SemEval-2018 Irony Detection and consists
of identifying whether a tweet includes ironic in-
tents or not. OffensEval (Zampieri et al., 2019) is



Dataset | Task | Task Type | #Label [ #Train #Val #Test | # Total
Homogeneous benchmark: TweetEval
EmotionEval | Social emotion detection Classification 4 3,257 374 1,421 5,502
HatEval Hate speech detection Classification 2 9,000 1,000 2,970 | 12,970
IronyEval Irony detection Classification 2 2,862 955 784 4,601
OffensEval Oftensive language detection Classification 2 11,916 1,324 860 | 14,100
SentiEval Sentiment analysis Classification 3 45,389 2,000 11,906 | 59,295
StanceEval Stance detection Classification 3 2,620 294 1,249 4,163
Heterogeneous benchmark: AffectEval
GoEmotions | Fine-grained emotion detection | Classification 28 36,308 4,548 4,591 | 45,447
EmotionEval | Social emotion detection Classification 4 3,257 374 1,421 5,502
EmoBank Emotion regression Regression - 8,062 1,000 1,000 | 10,062
EI-Reg Emotion intensity regression Regression - 7,102 1,464 4,068 | 12,634

Table 7: Dataset statistics on TweetEval and AffectEval. The homogeneous TweetEval contains six different
classification tasks, and heterogeneous AffectEval includes two classification and two regression tasks.

Hyperparameter TweetEval AffectEval
Trade-off weight 3 0.001 0.1
Trade-off weight v | 10 for Cls. and 0.1 for Reg.

| Number of epochs 20 20
% Patience 3 3
| Max length 256 256
Batch size 128 128
Dropout 0.2 0
Learning rate 57 5e°
Trade-off weight 3 0.01 0.001
« | Trade-off weight v | 10 for Cls. and 0.1 for Reg.
£ | Number of epochs 20 20
& | Patience 3 3
& | Max length 256 256
Batch size 128 128
Dropout 0.2 0
Learning rate 5e~d 5~

Table 8: Hyperparameters of VIP-MTL on TweetEval
and AffectEval.

from SemEval-2019 OffensEval and involves pre-
dicting if a tweet contains any form of offensive
language. SentiEval (Rosenthal et al., 2017) comes
from SemEval 2017 and includes data from previ-
ous runs (2013, 2014, 2015, and 2016) of the same
task. The goal is to determine if a tweet is positive,
negative, or neutral. StanceEval (Mohammad et al.,
2016) involves determining if the author of a piece
of text has a favorable, neutral, or negative position
towards a proposition or target.

AffectEval includes 2 classification and 2 regres-
sion tasks. GoEmotions (Demszky et al., 2020) is
a corpus of comments from Reddit, with human
annotations to 27 emotion categories or neutral. It
is used fine-grained emotion prediction. Follow-
ing Hu et al. (2024b), nearly 16% of multi-label
data was removed from the source corpus to better
evaluate the performance of multi-class classifica-
tion. EmotionEval (Mohammad et al., 2018) in-
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volves detecting the emotion evoked by a tweet and
is based on the Affects in Tweets conducted dur-
ing SemEval-2018. Emobank (Buechel and Hahn,
2017) is a large-scale text corpus across 6 domains
and 2 perspectives and manually annotated with
continuous VAD scores. Each sentence has three
scores representing VAD in the range of 1 to 5. Fol-
lowing Buechel and Hahn (2017), we use the av-
erage of VAD scores as the overall metric. EI-Reg
(Mohammad et al., 2018) is an emotion intensity
regression task and is from SemEval-2018 Task
1: Affect in Tweets. The goal is to determine the
intensity of the emotion E that best represents the
mental state of the twitter. The intensity is a real-
valued score between O (least E) and 1 (most E). In
this task, we did not use additional emotion labels
in the dataset to better evaluate this regression task.

B.2 Description of Comparison Methods

Equal Weighting (EW) is a typical baseline that
applies equal weights for each task. Task Weight-
ing (TW) utilizes loss weights to each task based on
the ratio of task examples. Uncertainty weighting
(UW) (Kendall et al., 2018) uses the homoscedastic
uncertainty quantification to adjust task weights.
Geometric Loss Strategy (GLS) (Chennupati
et al., 2019) uses the geometric mean of task losses
to the weighted average of task losses. Dynamic
Weight Average (DWA) (Liu et al., 2019a) sets the
loss weight of each task to be the ratio of two adja-
cent losses. PCGrad (Yu et al., 2020) removes con-
flicting components of each gradient w.r.t the other
gradients. IMTL-L (Liu et al., 2021b) dynami-
cally reweighs the losses such that they all have
the same magnitude. Random Loss Weighting
(RLW) (Lin et al., 2022) with normal distribution,
scales the losses according to randomly sampled
task weights. MT-VIB (Qian et al., 2020) is a



Methods EmotionEval HatEval IronyEval  OffensEval  SentiEval StanceEval Av Ap 1
M-F1 M-F1 F1(.) M-F1 M-Recall M-Fl (a. &f.) & p
VIP-MTL 77.36+0.53 49.79+137  68.65+1.74  79.60+0.89  71.32+0.49 67.80+0.33 69.09+0.09  +5.06
w/o VI 76.02+1.10 49.30+£3.75 64.634+3.14  79.444+193  T1.67+1.25 64.47+1.65 67.59+1.06 +2.72
w/o VI & Pro. 74.3740.56 44.0845.26  65.32+1.84  79.04+143  70.64+1.71 63.59+2.43 66.17+0.43 0.00
(a) Ablation results on TweetEval

GoEmotions EmotionEval Emobank EI-Reg
Methods M-F1 M-F1 v A D Pear Spear Avg.  Apf
VIP-MTL 49.38+1.37 79.47+0.45 78.55+1.01 55.51+048 45.73+128 56.46+1.17 57.19+1.10 | 61.40+058  +7.66
w/o VI 48.8740.79 78.1540.57 74.234+401  51.0243.15  39.62+3.19  50.62+£3.79  51.16+4.20 | 58.21+196  +1.46
w/o VI & Pro. 47.13+0.33 77.97+0.63 75.62+0.79 49.44+470 36.47+4.02 51.014+4.62 52.23+4.68 | 57.64+2.12 0.00

(b) Ablation results on AffectEval
Table 9: Fine-grained ablation study of VIP-MTL. We experiment with the RoBERTa backbone.
) GoEmotions Emobank ) Emobank ‘ EI-Reg

Methods M-F1 v A D Avg. Ap T Methods A v D Pear  Spear Avg. Ap?
EW (baseline) 46.69 73.10 48.17 33.09 | 49.07 0.00 EW (baseline) | 79.40 55.52 46.71 57.96 58.83 | 59.47 0.00
SI 46.59 73.10 49.04 3459 | 4942  +0.95 SI 80.50 5635 49.38 59.82 60.50 | 61.12 +2.94
Uuw 48.91 77.70 5397 44.87 | 53.88 +11.36 Uw 8140 5134 4499 6148 62.19 | 60.54 +1.50
GLS 46.23 79.24 51.73 4427 | 5232 +7.77 GLS 80.11 56.23 48.13 60.05 60.90 | 60.98 +2.65
IMTL-L 48.37 76.18 51.82 3848 | 51.93 +6.47 IMTL-L 81.32 50.79 44.58 61.93 6248 | 60.55 +1.48
MT-VIB 46.28 74.65 48.84 30.83 | 48.86  -1.00 MT-VIB 79.92 54.83 47.39 60.09 60.74 | 60.57 +1.88
VMTL 46.32 75.61 5130 41.06 | 51.16  +5.27 VMTL 79.70 54.87 46.94 59.75 6049 | 6031 +1.43
VIP-MTL 50.67 78.86 55.84 45.81 | 5542 +14.63 VIP-MTL 81.21 56.61 5094 60.79 61.40 | 62.01 +4.53

(a) (a)

EmotionEval El-Reg GoEmotions EmotionEval

Methods M-F1 Pear  Spear Avg. Apt Methods M-F1 M-F1 Avg. Ap?
EW (baseline) 76.96 5594 56.38 | 66.56  0.00 EW (baseline) 46.69 77.05 61.87  0.00
SI 78.07 5544 56.36 | 66.99 +0.49 SI 47.13 77.09 62.11 +0.50
uw 78.83 59.26 5995 | 69.22 +4.28 Uw 48.01 77.23 62.62 +1.53
GLS 77.48 5949 60.19 | 68.66 +3.62 GLS 42.41 79.02 60.72 -3.31
IMTL-L 78.33 59.62  60.30 | 69.40 +4.60 IMTL-L 47.62 76.94 62.28 +0.93
MT-VIB 76.53 58.74 59.11 | 67.72 +2.18 MT-VIB 46.19 77.99 62.09 +0.08
VMTL 75.14 5893 5939 | 67.15 +1.48 VMTL 46.05 77.20 61.63 -0.59
VIP-MTL 79.30 60.20 59.85 | 69.66 +4.96 VIP-MTL 50.17 78.07 64.12 +4.39

(b) ()

Table 10: Results on heterogeneous multi-task scenarios.
We experiment with the RoOBERTa backbone.

variational MTL method based on information bot-
tleneck. VMTL (Shen et al., 2021) is a variational
MTL framework that uses Gumbel-Softmax priors
for both representations and weights. Hierarchical
MTL (de Freitas et al., 2022) is a hierarchical vari-
ational MTL method with compressed task-specific
representations based on information bottleneck.
For LLM, we compare with GPT-3.5, an en-
hanced generative pre-trained transformer model
based on text-davinci-003°, optimized for chatting.

B.3 Evaluation Metrics

The average performance Avg. is computed as,
1

— M,

Nt ; t,n

SWe present the results of the snapshot from June 13th
2023 based on specific inputs, including task descriptions,
task instructions, and evaluation texts.

T

D

t=1

1

Avg. =
vg T
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Table 11: Results on homogeneous multi-task scenarios.
We experiment with the RoOBERTa backbone.

where M, ,, denotes the performance of a task bal-
ancing method for the n-th metric in task ¢. N
denotes the number of metrics in task . T refers
to the number of tasks.

Ap measures the average of the relative im-
provement over the baseline EW on each metric of
each task, i.e.,

Ap= L3 L §h CU (M- MEY)
P=7 LNy, MEW !
t=1 n—1 ;1

where anw is the n-th metric score for EW on
task ¢t. p; , = 0 if a higher value is better for the
n-th metric in task ¢ and 1 otherwise (Maninis et al.,
2019; Liu et al., 2021a).

B.4 Implementation Details

We conduct experiments using an epoch number
of 20, a total batch size of 128, and a maximum



TweetEval AffectEval
Methods BERT backbone  RoBERTa backbone | BERT backbone  RoBERTa backbone
Avg. Ap 1T  Avg. Ap T Avg. Ap 1 Avg. Ap T
EwW 49.07 0.00 66.56 0.00 61.87 0.00 59.47 0.00
T VIP-MTL (3 =0.001) | 67.42 =~ +3.11 6875 =~ +4.42 ~ | 5673 ~ +13.95 6140 = +7.66
w/o VI 65.36 -0.58 67.79 +3.26 5290 +2.63  58.21 +1.46
VIP-MTL (5 =0.01) 66.75  +1.96  69.09 +5.06 56.43  +11.59 60.52 +6.09
w/o VI 65.16 -0.84  67.59 +2.72 5321 +3.72 5745 -0.09
VIP-MTL (5 =0.1) 67.18  +2.62  68.27 +3.98 58.16 +17.80 60.69 +6.42
w/o VI 6540 042 67.81 +2.75 53.08 +5.17 56.28 -2.17
Table 12: Results with different sampling distributions
EmotionEval and EI-Reg (EW) EmotionEval and El-Reg (VIP-MTL) EmotionEval and EI-Reg (w/o VI)
15 F —— validation loss for EmotionEval 15 k> —— validation loss for EmotionEval 15 F —— validation loss for EmotionEval
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training loss for EmotionEval

1.0 F\™ ini
K -+ training loss for El-Reg

Loss

0.5 [

0.0 k&= . L 1 L 1

training loss for EmotionEval "
=+ training loss for EI-Reg §

training loss for EmotionEval
training loss for EI-Reg

I R R 0.0 ey 3 ! L1 L

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6
Epoch
Emobank and El-Reg (EW)

8

10 12 14 16 18 20 0 2 4 6
Epoch
Emobank and El-Reg (VIP-MTL)

8 10 12 14 16 18 20
Epoch
Emobank and EI-Reg (w/o VI)

—— validation loss for Emobank
—— validation loss for EI-Reg
training loss for Emobank
training loss for El-Reg

0.2

Loss

01 >\

0.0 [

—— validation loss for Emobank
—=— validation loss for El-Reg
training loss for Emobank
Iﬂning loss for El-Reg

—— validation loss for Emobank

—=— validation loss for El-Reg
training loss for Emobank
training loss for El-Reg

10 12 14 16 18 20 o 2 4 6
Epoch

8 10 12 14 16 18 20 0o 2 4 6 8
Epoch

10 12 14 16 18 20
Epoch

Figure 5: Loss analysis during training phase on pair-wise tasks on AffectEval. RoOBERTa is the default backbone

model.

token length of 256. The maximum patience for
early stopping is set to 3 epochs. Following Liu
et al. (2019b), we clip the gradient norm within
1 for all methods to avoid the exploding gradient
problem. We report the detailed hyperparameter
settings of VIP-MTL with RoBERTa and BERT
backbone models on two benchmarks in Table 8.

For each comparison method, we fine-tune the
key parameters following the original paper for fair
comparison and to obtain corresponding optimal
performance.

C Supplementary Results
C.1 Fine-grained Results of Ablation Study

Table 9 shows fine-grained ablation results of each
task on TweetEval and AffectEval.

C.2 Fine-grained Results across Different
Pair-wise Task Combinations

For multi-task evaluations on pairs of tasks, we
consider two distinct combinations of tasks: ho-
mogeneous scenarios (i.e., EmotionEval & GoE-
motions, and Emobank & EI-Reg), and heteroge-
neous scenarios (i.e., EmotionEval & EI-Reg, and
GoEmotions & Emobank). Table 10 and Table 11
shows fine-grained results across pair-wise hetero-
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geneous and homogeneous MTL scenarios. VIP-
MTL achieves the best performance in terms of
Avg. and Ap on all scenarios. This emphasizes the
effectiveness of VIP-MTL in both heterogeneous
and homogeneous MTL settings.

C.3 Supplementary Results of Sampling
Distribution

Table 12 shows results against different sampling

distributions.

C.4 Supplementary Results of
Scale-invariance Property Evaluation

Figure 5 shows loss curves on two pairwise task
combinations with AffectEval.
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