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Abstract

Several studies have investigated the reasons001
behind the effectiveness of fine-tuning, usually002
through the lens of probing. However, these003
studies often neglect the role of the size of the004
dataset on which the model is fine-tuned. In005
this paper, we highlight the importance of this006
factor and its undeniable role in probing per-007
formance. We show that the extent of encoded008
linguistic knowledge depends on the number009
of fine-tuning samples, specifically the number010
of iterations for which the model is updated.011
The analysis also reveals that larger training012
data mainly affects higher layers, and that the013
extent of this change is a factor of the number014
of iterations in fine-tuning rather than the diver-015
sity of the training samples. Finally, we show016
through a set of experiments that fine-tuning017
introduces shallow and recoverable changes to018
model’s representation.019

1 Introduction020

The outstanding performance of pre-trained lan-021

guage models (LMs) on many NLP benchmarks022

has provoked curiosity about the reasons behind023

their effectiveness. To this end, several probes have024

been proposed to explore their capacity (Tenney025

et al., 2019b; Hewitt and Manning, 2019; Wu et al.,026

2020). The investigations have clearly highlighted027

the abilities of LMs in capturing various types of028

linguistic knowledge (Liu et al., 2019; Clark et al.,029

2019; Michael et al., 2020; Klafka and Ettinger,030

2020; Tenney et al., 2019a).031

However, to take full advantage of the encoded032

knowledge of pre-trained models in specific target033

tasks, it is usually required to perform a further034

fine-tuning (Devlin et al., 2019). The broad appli-035

cation of fine-tuning has garnered the attention of036

many researchers to explore its peculiarities. Try-037

ing to understand the fine-tuning procedure, recent038

analyses have shown that most of the pre-trained039

linguistic knowledge is preserved after fine-tuning040

(Tenney et al., 2019b). Furthermore, by encod- 041

ing the essential linguistic knowledge in the lower 042

layers, this procedure makes the upper layers task- 043

specific (Durrani et al., 2021). Focusing on the 044

role of the encoded knowledge in the probing accu- 045

racy, Mosbach et al. (2020) introduce the attention 046

distribution as an effective factor on probing per- 047

formance of fine-tuned models. 048

In this work, we present another important factor 049

in interpreting probing results for fine-tuned mod- 050

els. Our investigations reveal that the conclusions 051

drawn by previous probing studies that investigate 052

the impact of fine-tuning on acquiring or forgetting 053

knowledge might not be fully reliable, unless the 054

size of the fine-tuning dataset is also taken into 055

account. Through several experiments, we show 056

that the encoded linguistic knowledge can highly 057

depend on the size of target tasks’ datasets. Specifi- 058

cally, the larger the task data, the more the probing 059

performance deviates from the pre-trained model, 060

irrespective of the fine-tuning tasks. 061

To address the overlooked role of data size, we 062

run several experiments by limiting training sam- 063

ples and probing the fine-tuned models. Our results 064

indicate that models fine-tuned on large training 065

datasets witness more change in their linguistic 066

knowledge compared to pre-trained BERT. How- 067

ever, by reducing fine-tuning training data size (e.g., 068

from 393k in MNLI to 7k), the gap between prob- 069

ing scores becomes smaller. Moreover, we expand 070

our analysis and evaluate to what extent large train- 071

ing datasets affect the captured knowledge across 072

layers. The layer-wise results show that the effect 073

of data size is more notable on higher layers. Also, 074

this pattern is significantly obvious in the models 075

fine-tuned by a larger dataset. We take our analy- 076

sis a step further, and show that the difference in 077

probing performance among different data sizes are 078

due to the total number of optimization steps rather 079

than the diversity of training samples. However, 080

we have realized that the modifications from fine- 081
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tuning is somehow shallow, to the extent that the082

linguistic knowledge can be recovered even after083

fine-tuned on several tasks.084

The findings of this paper can be summarized as085

follows:086

• Data size is a factor that highly impacts fine-087

tuned model’s linguistic knowledge.088

• Higher layers are the most susceptible layers089

to data size.090

• The number of training steps are actually what091

makes larger datasets have higher impacts on092

the model’s linguistic knowledge (rather than093

the diversity in training samples).094

• The linguistic knowledge introduced to a095

model by a fine-tuning task can be retrieved096

through re-fine-tuning even after sequentially097

fine-tuning on other downstream tasks.098

2 Related Work099

Recently, many studies have shown that pre-trained100

language models, such as BERT (Devlin et al.,101

2019), encode certain linguistic knowledge in their102

internal representations (Tenney et al., 2019b).103

For instance, Hewitt and Manning (2019) found104

that syntactic dependencies can be obtained from105

BERT’s token embeddings, suggesting that BERT106

encodes syntactic knowledge in its representations.107

Nevertheless, not all layers behave similarly in cap-108

turing linguistic features: lower layers tend to en-109

code surface-level knowledge, middle layers seem110

to be responsible for syntactic information and111

higher layers capture semantic knowledge in their112

representations (Jawahar et al., 2019).113

While models such as BERT capture consid-114

erable amount of linguistic features, one still re-115

quires to fine-tune them to take advantage of their116

full potential in specific downstream tasks (Wang117

et al., 2018). Fine-tuning affects BERT in various118

ways, for instance, Hao et al. (2020) found that119

fine-tuning mainly affects the attention mode of120

last layers and altering the feature extraction mode121

of the middle and last layers. In addition, fine-122

tuning BERT on a negation scope task improves123

the model’s attention sensitivity to negation (Zhao124

and Bethard, 2020).125

Apart from the changes made to BERT’s atten-126

tion, recent work has studied how fine-tuning af-127

fects BERT’s representations and, as a result, its128

linguistic knowledge. Merchant et al. (2020) found129

Full 7k 2.5k 1k

CoLA 57.55 56.87 46.68 42.72
SST-2 92.78 91.28 89.79 86.81
MNLI 83.19 73.73 68.63 60.16
QQP 90.63 82.37 79.93 76.93
MRPC 86.43 - 81.78 77.82

Table 1: The performance of fine-tuned BERT on five
tasks from GLUE (dev set) after fine-tuning on training
data of varying size. The numbers are reported based on
accuracy for SST, MNLI, QQP, MRPC and Matthew’s
correlation for CoLA.

that fine-tuning primarily affects the representa- 130

tions in higher layers, and depending on the down- 131

stream task, the changes made to lower layers could 132

be either deep or shallow. Moreover, on only a 133

small number of downstream tasks, fine-tuning 134

seems to have a positive impact on the probing 135

accuracy (Mosbach et al., 2020). Given the fact 136

that fine-tuning mostly affects higher layers, Dur- 137

rani et al. (2021) showed that after fine-tuning most 138

of the model’s linguistic knowledge is transferred 139

to lower layers to reserve the capacity in the higher 140

layers for task-specific knowledge. 141

Studies so far have relied on probing accuracy to 142

explain how fine-tuning affects a model’s linguistic 143

knowledge (Mosbach et al., 2020; Durrani et al., 144

2021; Merchant et al., 2020). However, given the 145

fact that fine-tuning tasks do not share the same 146

number of samples, concluding to what extent tar- 147

get tasks contribute to the model’s linguistic knowl- 148

edge is not fully reliable. To the best of our knowl- 149

edge, none of the previous studies have considered 150

the role of data size in fine-tuned models’ linguistic 151

knowledge. In this work, we show that the size of 152

the dataset plays a crucial role in the amount of 153

knowledge captured during fine-tuning. By design- 154

ing different experiments, we analyze the effect of 155

the size of the dataset in-depth. 156

3 Experimental Setup 157

We have carried out over 600 experiments to study 158

the linguistic features captured during fine-tuning. 159

This allows us to examine how much different fac- 160

tors impact performance on different probing tasks. 161

Moreover, varying the sample size lets us under- 162

stand its importance in analyzing fine-tuned models. 163

In this section, we provide more details on setups, 164

downstream tasks, and probing tasks. 165
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3.1 Fine-tuning166

For our analyses, we concentrate on the BERT-base167

model, which is arguably the most popular pre-168

trained model. We fine-tuned the 12-layer BERT169

on a set of tasks from the GLUE Benchmark (Wang170

et al., 2018) for five epochs and saved the best171

checkpoint based on performance on the validation172

set. We used the [CLS] token for classification and173

set the learning rate as 2e−10. We have chosen the174

following target tasks:175

CoLA. The Corpus of Linguistic Acceptability is176

a binary classification task in which 8.5k training177

samples are labeled based on their grammatical178

correctness (Warstadt et al., 2019).179

MRPC. The Microsoft Research Paraphrase Cor-180

pus includes 3.6k training sentence pairs in which181

the semantic equivalence of two sentences is deter-182

mined (Dolan and Brockett, 2005).183

SST-2. The Stanford Sentiment Treebank is a sen-184

timent classification task containing 67k training185

sentences (Socher et al., 2013).186

QQP. With 364k question pairs, the goal of187

the Quora Question Pairs dataset is to determine188

whether two questions in a pair are semantically189

similar.190

MNLI. The Multi-Genre Natural Language In-191

ference is a Natural Language Inference (NLI)192

task with about 393k records in its training set193

(Williams et al., 2018).194

3.2 Fine-tuning performance195

The performance of the fine-tuned models on these196

tasks is illustrated in Table 1. We report the re-197

sults on different training data sizes1 to highlight198

the extent to which reducing training data affects199

a model’s performance on the corresponding tasks.200

It is worth mentioning that even though the perfor-201

mance of target tasks decreases by reducing their202

training data, it is still far better than the pre-trained203

version. Therefore, the models have learned the204

corresponding target tasks to some extent.205

3.3 Probing tasks206

We probe the pre-trained and fine-tuned BERT207

models by training a linear classifier on top while208

the weights of the encoders are frozen. Keeping the209

1Since MRPC only has 3.6k training samples, we do not
report any 7k results for this dataset.

probing classifier simple lets us scrutinize the lin- 210

guistic knowledge by eliminating the possibility of 211

the classifier learning itself. All probes are trained 212

with a batch size of 32, a learning rate of 3e−4, 213

for 10 epochs. Due to limited resources, we fine- 214

tuned models with three random seeds and probed 215

selected ones with three random seeds to determine 216

the noise in probing accuracy. The probing accu- 217

racy remained stable, ranging within ±1.0. Finally, 218

we report the evaluation scores on test sets for the 219

models with the highest validation accuracy on the 220

validation set. 221

We opted for four syntactic and semantic prob- 222

ing tasks from the SentEval benchmark (Conneau 223

and Kiela, 2018) to study the linguistic knowledge 224

encoded in the models. The binary classification 225

tasks are as follows: 226

Bigram Shift is a task that aims to test the 227

model’s ability to predict whether two random suc- 228

cessive tokens in the same sentence have been in- 229

verted. 230

Object Number focuses on the model’s ability 231

to determine the singularity or plurality of the main 232

clause’s direct object. 233

Coordination Inversion examines the model’s 234

ability to distinguish between original sentences 235

and sentences where the order of two coordinated 236

clausal conjoints have been inverted. 237

Semantic Odd Man Out is a task that tests the 238

model’s ability to predict if a sentence is original 239

or whether a random word has been replaced with 240

another word from the same part of speech. 241

4 Data Size Analysis 242

In this section, we first provide insight on the role 243

of target tasks in capturing or forgetting different 244

types of knowledge (e.g., syntactic and semantic) 245

during fine-tuning. Then, we investigate the role of 246

datasets’ sizes on linguistic knowledge. 247

4.1 Probing Linguistic Knowledge 248

We empirically evaluate the linguistic knowledge 249

captured by several fine-tuned models through the 250

means of probing. 251

Figure 1 illustrates the layer-wise probing per- 252

formance of fine-tuned models, considering pre- 253

trained BERT as our baseline. As can be observed, 254

different models carry similar linguistic knowledge 255
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(a) Bigram Shift (b) Object Number

(c) Coordination Inversion (d) Semantic Odd Man Out

Figure 1: Probing accuracy on all the layers of fine-tuned models. As shown, there is a large accuracy gap between
models fine-tuned on larger data sizes (e.g., MNLI and QQP) and the baseline.

up to the middle layers, and the difference gradu-256

ally increases as we move up to the higher layers.257

This observation is consistent with the reported re-258

sults by Merchant et al. (2020). Their experimental259

analysis indicates that fine-tuning mostly changes260

the higher layers while having very less impact on261

the lower layers. Durrani et al. (2021) also reported262

a similar behavior in other LMs through different263

probing tasks.264

The results illustrated in Figure 1 clearly show265

that how data size impacts probing accuracy. As266

stated in Section 3.1, fine-tuning tasks contain dif-267

ferent number of samples, some of which are much268

larger than the others. We can witness that the prob-269

ing performance of the baseline and models fine-270

tuned on small datasets are within a close range,271

while fine-tuning on larger data sizes (e.g., QQP272

and MNLI) can significantly impact the models’273

linguistic knowledge. Following this interesting274

pattern, we carry out a set of experiments to under-275

stand whether the mentioned pattern in the models’276

linguistic knowledge can be due to different data 277

sizes. 278

4.2 The Impact of Data Size 279

One of the popular studies in probing is to check 280

fine-tuned models for specific linguistic knowledge. 281

The changes brought to the model upon fine-tuning 282

are taken as a means to explain the nature of the 283

corresponding task on which fine-tuning has been 284

done. Existing studies usually consider several 285

tasks, many of which do not have datasets of com- 286

parable size. For instance, MNLI is 46 times larger 287

than CoLA. Regardless of the number of samples 288

that every target task has, previous studies have 289

only relied on the type of downstream tasks. There- 290

fore, they can not answer why some target tasks 291

cause more profound modifications to the encoded 292

linguistic knowledge compared to others. 293

The results of Section 4.1 reinforce the hypothe- 294

sis that the number of samples (data size) could be 295

an important cause of improving or impairing the 296
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(a) Bigram Shift (b) Object Number

(c) Coordination Inversion (d) Semantic Odd Man Out

Figure 2: An illustration of models’ performance fine-tuned on fixed-size training set across four probing tasks. The
pre-trained BERT’s performance has been shown by dashed red line. The figures suggest that different fine-tuned
models almost encode similar linguistic knowledge, specifically semantic knowledge, when they are trained with
equal size training data.

linguistic knowledge captured during fine-tuning.297

In Figure 1, we observe that there is a significant298

difference between the probing accuracy of models299

fine-tuned on large datasets (e.g., MNLI and QQP)300

and the ones on small datasets (e.g., MRPC). So,301

our hypothesis can explain this significant differ-302

ence in the encoded linguistic knowledge across303

fine-tuned models.304

We examine our hypothesis by fine-tuning pre-305

trained BERT on the selected downstream tasks306

with a set of different number of samples. Taking307

the pre-trained BERT as the baseline, we analyze308

the effect of the training set size on the encoded lin-309

guistic knowledge by limiting the number of sam-310

ples to 7k, 2.5k, and 1k. Figure 2 is an illustration311

of our experiments regarding the data size’s effect312

on the encoded linguistic knowledge. These results313

confirm our hypothesis that data size in fact plays314

a significant role in probing accuracy. We further315

elaborate on this effect in the following discussion.316

317

4.3 Discussion 318

The effect of data size on both the syntactic and 319

semantic probing tasks is notable. However, the dif- 320

ference is more significant on syntactic knowledge, 321

Figure 2(a). This could be attributed to the model’s 322

resistance to losing its semantic knowledge, as wit- 323

nessed by a more stable performance in semantic 324

probing tasks, in Figures 2(b), 2(c), and 2(d). 325

We observe that as the number of samples in- 326

creases, the gap between fine-tuned models and the 327

pre-trained BERT (baseline) becomes more appar- 328

ent. For instance, probing the model fine-tuned on 329

QQP’s full training set demonstrates that it has far 330

less linguistic knowledge than the baseline. How- 331

ever, after fine-tuning the model on QQP with fewer 332

training samples (7k, 2.5, and 1k), the results as- 333

similate to each other. This shows that fine-tuning 334

data size indeed affects the linguistic knowledge 335
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Bigram Shift Semantic Odd Man Out

Full 7k 2.5k 1k baseline Full 7k 2.5k 1k baseline

Layer 2 -0.49 0.16 -0.63 -0.82 53.60 -0.65 -0.25 -0.06 -0.23 53.92
Layer 7 1.78 1.36 1.57 2.03 75.93 -3.40 -2.31 -0.80 -1.43 59.41
Layer 11 6.78 7.09 6.29 5.10 82.39 2.08 1.78 1.83 0.98 61.32C

oL
A

Layer 12 6.22 6.09 5.56 4.85 83.23 1.84 -0.44 -0.58 -1.23 62.40

Layer 2 -0.74 -0.82 -0.30 -0.94 53.60 -0.55 -0.55 -0.52 -0.10 53.92
Layer 7 -2.26 -1.94 -1.94 -0.24 75.93 -1.81 -1.56 -1.29 -1.22 59.41
Layer 11 -3.81 -2.48 -1.89 -1.33 82.39 -1.33 -0.87 -0.88 -0.55 61.32SS

T
2

Layer 12 -5.77 -4.87 -3.40 -3.20 83.23 -2.24 -1.83 -1.37 -1.89 62.40

Layer 2 -2.01 -0.78 -0.32 0.51 53.60 -1.69 -0.38 -0.62 -0.13 53.92
Layer 7 -7.94 -1.68 -0.85 -0.83 75.93 -2.55 -0.54 -0.74 -2.61 59.41
Layer 11 -17.31 -6.54 -4.49 -1.52 82.39 -5.25 -0.32 -1.30 -0.45 61.32M

N
L

I

Layer 12 -19.52 -8.84 -6.44 -3.14 83.23 -7.12 -1.65 -1.76 -1.55 62.40

Layer 2 1.93 0.68 0.35 -0.26 53.60 -0.46 -0.12 -0.27 -0.21 53.92
Layer 7 -12.63 -1.55 -0.05 0.60 75.93 -4.82 -0.01 0.30 -0.53 59.41
Layer 11 -26.97 -3.78 -1.05 -2.46 82.39 -9.22 0.89 0.90 0.65 61.32Q

Q
P

Layer 12 -29.12 -5.70 -1.81 -3.00 83.23 -10.45 -0.65 0.13 -0.22 62.40

Layer 2 -1.08 — -0.82 -0.96 53.60 -0.37 — -0.56 -0.53 53.92
Layer 7 -0.53 — -1.04 -0.09 75.93 -0.36 — 0.29 -0.34 59.41
Layer 11 -1.94 — -1.9 -1.41 82.39 -1.05 — 1.36 1.35 61.32M

R
PC

Layer 12 -3.87 — -3.45 -2.31 83.23 -2.13 — -1.7 -1.86 62.40

Table 2: Layer-wise performance of models on the probing tasks. Each cell represents the difference (delta) in
performance between the corresponding fine-tuned model and the baseline. The pre-trained BERT performance
(baseline) is shown in the right columns.

encoded by the model.336

Overall, in this section, we have uncovered the337

role of data size in affecting the amount of linguis-338

tic knowledge through fine-tuning. This suggests339

that data size should be taken into account when340

analyzing fine-tuned models. We will study this341

effect by individually probing each layer through342

further experiments.343

5 Layer-wise Analysis344

Given the previous observations (Figure 2) that345

data size affects the linguistic knowledge captured346

by BERT through fine-tuning, we would like to see347

on which layers these changes are more significant.348

As Jawahar et al. (2019) stated, BERT layers are349

divided into three classes in terms of the linguistic350

knowledge they capture. To this end, we probe351

layer 2 (lower layers), layer 7 (middle layers), and352

layers 11, 12 (higher layers) to demonstrate the353

changes that data size applies to each category of354

layers.355

Table 2 depicts our results obtained from this356

experiment, which are compared with BERT-base.357

Due to our limited resources and an excessive num-358

ber of experiments, we discard probing tasks that359

have no distinguished patterns in the previous sec-360

tions (Figure 1 and 2). Hence, we have omitted361

Coordination Inversion and Object Number from362

the probing tasks. 363

The heatmap follows a similar trend to the one 364

depicted in Figure 2. As we decrease the number of 365

training samples, the probing performance on the 366

fine-tuned models becomes closer to the baseline 367

across all layers. MNLI and QQP’s behavior are 368

compelling evidence of the effectiveness of data 369

size across layers. Such models fine-tuned with 370

larger datasets undergo more considerable changes 371

than those with smaller data sizes. 372

Regardless of data size, we can also observe 373

that fine-tuning mostly affects higher layers. Our 374

finding is aligned with Merchant et al. (2020) that 375

fine-tuning has a greater impact on higher layers 376

and negligible effects on lower layers. 377

There is also an interesting pattern concerning 378

CoLA’s performance. Though its performance 379

drops for about 15 scores from the full to 1k ver- 380

sion (Table 1) its linguistic knowledge has been 381

negligibly affected by data size. We leave the inves- 382

tigation on CoLA’s interesting behavior to future 383

work. 384

6 Fixed Iteration Analysis 385

Given the observations from Section 5, we have re- 386

alized that by training BERT on larger datasets, the 387

model’s performance deviates substantially from 388

the baseline. However, by reducing the size of train- 389
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Full 7k 2.5k

Bigram Shift

Layer 2 52.87 0.07 -0.03
Layer 7 71.88 -2.08 -1.12
Layer 11 74.08 0.49 2.90Q

Q
P

Layer 12 73.25 -0.10 1.81

Layer 2 51.9 -0.24 -1.16
Layer 7 71.03 0.88 -0.02
Layer 11 67.69 1.93 2.47M

N
L

I

Layer 12 65.82 1.48 1.57

Semantic Odd Man Out

Layer 2 53.73 0.73 0.49
Layer 7 56.12 0.95 1.61
Layer 11 58.11 1.23 1.16Q

Q
P

Layer 12 58.03 1.34 0.31

Layer 2 53.23 0.24 0.76
Layer 7 57.00 1.54 1.60
Layer 11 57.27 2.10 1.17M

N
L

I

Layer 12 56.77 2.43 1.22

Table 3: The performance of models trained with fixed
and equal number of iterations across different sizes
on each downstream task. Every cell demonstrates the
difference (delta) between the full and the fixed-sized
models. With an equal number of iterations, in each
layer, fine-tuned models have a similar performance.

ing data, the gap between fine-tuned model and the390

baseline decreases. This behavior could be due to391

either the diversity of training samples or the larger392

number of iterations through which the model is393

updated.394

To factor out the role of the number of itera-395

tions, we repeat the same experiment carried out396

in Section 5 by fixing the number of iterations on397

all data sizes. This will allow the model to be up-398

dated equally across different data sizes within a399

task. Consequently, this experiment will determine400

which of the mentioned hypotheses best explains401

the large gap between the baseline and the full mod-402

els. Note that we fine-tuned the full models for just403

1 epoch to avoid a large number of iterations for404

the 7k and 2.5k models.405

Since SST2, CoLA, and MRPC have notably406

smaller datasets, and the number of iterations does407

not differ across the full, 7k, and 2.5k models, we408

have dropped them from this scenario.409

Table 3 summarizes our results. The first inter-410

esting pattern is that fine-tuning for more epochs 411

impairs the captured linguistic knowledge signifi- 412

cantly. As an instance, we can observe the impact 413

of longer training by comparing Bigram Shift per- 414

formance in the last layer on the full version of 415

QQP in Table 2 (54.11) and Table 3 (73.25).2 416

As Table 3 suggests, fixing the number of iter- 417

ations reduces the gap across different data sizes, 418

causing the 7k and 2.5k models to behave almost 419

similarly to the full models. For instance, in Table 420

2, there is about a difference of 24 scores in the 421

last layer’s performance between the full and the 422

7k QQP on Bigram Shift, which has been reduced 423

to approximately −0.1 with equal training steps, 424

Table 2. 425

This finding is interesting because, firstly, it indi- 426

cates that the high variance between baselines and 427

full models is mainly due to the number of times 428

their weights are updated during fine-tuning rather 429

than the diversity of the training samples. Secondly, 430

with equal data sizes, the role of target tasks be- 431

comes less influential in the linguistic knowledge 432

introduced into the model by fine-tuning, reinforc- 433

ing the conclusions from Section 5. 434

7 Sequence Analysis 435

Our previous results indicate that the size of fine- 436

tuning data indeed affects the encoded linguistic 437

knowledge in the higher layers of pre-trained BERT. 438

In this section, we investigate whether data size has 439

the same effects on re-fine-tuning a model as it has 440

on fine-tuning a pre-trained model for the first time 441

and whether these changes can be recovered. 442

To address this question, we have designed an 443

experiment in which we fine-tune BERT sequen- 444

tially on CoLA and SST2, and once again on CoLA 445

(CoLA → SST2 → CoLA). We also carried out the 446

same procedure with SST2 → CoLA → SST2. By 447

probing the final models, we verify the role played 448

by data size on manipulating model’s knowledge 449

captured during fine-tuning. 450

Results are reported in Table 4. We can see that 451

whenever we re-fine-tune a model, its linguistic 452

knowledge is replaced by the latest fine-tuning task. 453

For example, Bigram Shift accuracy of BERT fine- 454

tuned on CoLA is 89.45, but with re-fine-tuning 455

on SST-2, the accuracy drops to 79.59, which is 456

almost similar to SST-2’s accuracy on Bigram Shift. 457

This means that the knowledge introduced to the 458

2As mentioned in Section 3.1, the models in Table 2 were
fine-tuned for five epochs.
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BShift ObjNum CoordInv SOMO

SST-2 77.46 70.48 66.46 60.16
CoLA 89.45 77.76 69.40 64.24

SST2 → CoLA 87.96 73.68 63.19 63.19
CoLA → SST2 79.59 72.21 65.91 61.58
SST2 → CoLA → SST2 79.11 70.37 66.10 60.06
CoLA → SST2 → CoLA 88.13 73.70 68.07 62.50

Table 4: Results of probing linguistic knowledge through sequential fine-tuning. Accuracy is used as the evaluation
metric. A → B means we continue fine-tuning on B after fine-tuning on A.

model by CoLA is forgotten after fine-tuning on459

SST2.460

Moreover, we assume that re-fine-tuning the461

model on a different task with a larger data size462

might have a greater impact on the model’s linguis-463

tic knowledge than fine-tuning on a smaller data464

size. However, even though the number of sam-465

ples in SST-2 is much more than CoLA, both SST2466

→ CoLA and CoLA → SST2 seem to have simi-467

lar impacts. This indicates that CoLA has similar468

effects on the linguistic knowledge of BERT fine-469

tuned on SST-2 as SST-2 has on BERT fine-tuned470

on CoLA. Therefore, we can conclude that the size471

of target task data plays a less significant role in472

impacting the linguistic knowledge obtained during473

fine-tuning.474

Fine-tuning is known to cause models to forget475

the previously encoded knowledge (Chen et al.,476

2020), and we witnessed earlier that re-fine-tuning477

a model does in fact lead a model to forget its478

knowledge. Hence, we are motivated to ask if and479

to what extent these “forgotten” knowledge caused480

by re-fine-tuning is retractable. To answer this, we481

fine-tune our SST2 → CoLA and CoLA → SST2482

models on the task on which they were first fine-483

tuned. The reported results in Table 4 suggest that484

regardless of the fine-tuning task and its data size,485

changes made to a fine-tuned model can be recov-486

ered through re-fine-tuning. As an instance, fine-487

tuning on SST-2 dropped CoordInv performance488

of the model fine-tuned on CoLA from 69.40 to489

65.91. Nevertheless, after re-fine-tuning on CoLA,490

the accuracy increased to 68.07, which is almost491

similar to its first state.492

Overall, as observed in Table 4, none of the fine-493

tuning tasks made deep unrecoverable adjustments494

to the model’s linguistic knowledge. We conclude495

that the changes introduced to the model by fine-496

tuning are shallow irrespective of the fine-tuning497

data size. 498

8 Conclusion 499

In this paper, we carried out a set of experiments 500

to determine the effects of training data size on the 501

linguistic knowledge captured by fine-tuning. To 502

begin with, by individually probing all layers, we 503

found out that models fine-tuned on larger datasets 504

deviate more from the base model in terms of the 505

encoded linguistic knowledge. We realized that 506

the gaps are more significant in the higher layers, 507

while lower layers possess a similar amount of 508

linguistic knowledge under a fixed data size. As 509

a result, we propose that the comparison of the 510

linguistic knowledge of fine-tuned models is valid 511

if trained on equal data size. Furthermore, the 512

difference in linguistic knowledge across different 513

data sizes can be explained with the number of 514

iterations updating the model during fine-tuning. 515

This suggests that linguistic knowledge is rather 516

affected by the number of fine-tuning iterations 517

than the diversity of the training data. Finally, we 518

discovered that after sequentially fine-tuning on 519

two different downstream tasks, some knowledge 520

is forgotten but can be recovered through re-fine- 521

tuning on the initial downstream task. 522

We argue that probing accuracy cannot fully rep- 523

resent the linguistic knowledge captured by fine- 524

tuned models, given the fact that a factor, such as 525

size of the dataset, can highly affect probing accu- 526

racy. As a future direction, it is crucial to take the 527

undesirable factors that affect probing performance 528

into account. Moreover, evaluating the reliability 529

of existing accuracy-based probes and designing 530

more robust metrics for encoded knowledge assess- 531

ment are the other important aspects of interpreting 532

LMs. 533
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