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Abstract

Several studies have investigated the reasons
behind the effectiveness of fine-tuning, usually
through the lens of probing. However, these
studies often neglect the role of the size of the
dataset on which the model is fine-tuned. In
this paper, we highlight the importance of this
factor and its undeniable role in probing per-
formance. We show that the extent of encoded
linguistic knowledge depends on the number
of fine-tuning samples, specifically the number
of iterations for which the model is updated.
The analysis also reveals that larger training
data mainly affects higher layers, and that the
extent of this change is a factor of the number
of iterations in fine-tuning rather than the diver-
sity of the training samples. Finally, we show
through a set of experiments that fine-tuning
introduces shallow and recoverable changes to
model’s representation.

1 Introduction

The outstanding performance of pre-trained lan-
guage models (LMs) on many NLP benchmarks
has provoked curiosity about the reasons behind
their effectiveness. To this end, several probes have
been proposed to explore their capacity (Tenney
et al., 2019b; Hewitt and Manning, 2019; Wu et al.,
2020). The investigations have clearly highlighted
the abilities of LMs in capturing various types of
linguistic knowledge (Liu et al., 2019; Clark et al.,
2019; Michael et al., 2020; Klafka and Ettinger,
2020; Tenney et al., 2019a).

However, to take full advantage of the encoded
knowledge of pre-trained models in specific target
tasks, it is usually required to perform a further
fine-tuning (Devlin et al., 2019). The broad appli-
cation of fine-tuning has garnered the attention of
many researchers to explore its peculiarities. Try-
ing to understand the fine-tuning procedure, recent
analyses have shown that most of the pre-trained
linguistic knowledge is preserved after fine-tuning

(Tenney et al., 2019b). Furthermore, by encod-
ing the essential linguistic knowledge in the lower
layers, this procedure makes the upper layers task-
specific (Durrani et al., 2021). Focusing on the
role of the encoded knowledge in the probing accu-
racy, Mosbach et al. (2020) introduce the attention
distribution as an effective factor on probing per-
formance of fine-tuned models.

In this work, we present another important factor
in interpreting probing results for fine-tuned mod-
els. Our investigations reveal that the conclusions
drawn by previous probing studies that investigate
the impact of fine-tuning on acquiring or forgetting
knowledge might not be fully reliable, unless the
size of the fine-tuning dataset is also taken into
account. Through several experiments, we show
that the encoded linguistic knowledge can highly
depend on the size of target tasks’ datasets. Specifi-
cally, the larger the task data, the more the probing
performance deviates from the pre-trained model,
irrespective of the fine-tuning tasks.

To address the overlooked role of data size, we
run several experiments by limiting training sam-
ples and probing the fine-tuned models. Our results
indicate that models fine-tuned on large training
datasets witness more change in their linguistic
knowledge compared to pre-trained BERT. How-
ever, by reducing fine-tuning training data size (e.g.,
from 393k in MNLI to 7k), the gap between prob-
ing scores becomes smaller. Moreover, we expand
our analysis and evaluate to what extent large train-
ing datasets affect the captured knowledge across
layers. The layer-wise results show that the effect
of data size is more notable on higher layers. Also,
this pattern is significantly obvious in the models
fine-tuned by a larger dataset. We take our analy-
sis a step further, and show that the difference in
probing performance among different data sizes are
due to the total number of optimization steps rather
than the diversity of training samples. However,
we have realized that the modifications from fine-



tuning is somehow shallow, to the extent that the
linguistic knowledge can be recovered even after
fine-tuned on several tasks.

The findings of this paper can be summarized as
follows:

* Data size is a factor that highly impacts fine-
tuned model’s linguistic knowledge.

» Higher layers are the most susceptible layers
to data size.

* The number of training steps are actually what
makes larger datasets have higher impacts on
the model’s linguistic knowledge (rather than
the diversity in training samples).

e The linguistic knowledge introduced to a
model by a fine-tuning task can be retrieved
through re-fine-tuning even after sequentially
fine-tuning on other downstream tasks.

2 Related Work

Recently, many studies have shown that pre-trained
language models, such as BERT (Devlin et al.,
2019), encode certain linguistic knowledge in their
internal representations (Tenney et al., 2019b).
For instance, Hewitt and Manning (2019) found
that syntactic dependencies can be obtained from
BERT’s token embeddings, suggesting that BERT
encodes syntactic knowledge in its representations.
Nevertheless, not all layers behave similarly in cap-
turing linguistic features: lower layers tend to en-
code surface-level knowledge, middle layers seem
to be responsible for syntactic information and
higher layers capture semantic knowledge in their
representations (Jawahar et al., 2019).

While models such as BERT capture consid-
erable amount of linguistic features, one still re-
quires to fine-tune them to take advantage of their
full potential in specific downstream tasks (Wang
et al., 2018). Fine-tuning affects BERT in various
ways, for instance, Hao et al. (2020) found that
fine-tuning mainly affects the attention mode of
last layers and altering the feature extraction mode
of the middle and last layers. In addition, fine-
tuning BERT on a negation scope task improves
the model’s attention sensitivity to negation (Zhao
and Bethard, 2020).

Apart from the changes made to BERT’s atten-
tion, recent work has studied how fine-tuning af-
fects BERT’s representations and, as a result, its
linguistic knowledge. Merchant et al. (2020) found

Full 7k 2.5k 1k
CoLA 57.55 56.87 46.68 42.72
SST-2 92.78 91.28 89.79 86.81
MNLI 83.19 73.73 68.63 60.16
QQpP 90.63 82.37 79.93 76.93
MRPC 86.43 - 81.78 77.82

Table 1: The performance of fine-tuned BERT on five
tasks from GLUE (dev set) after fine-tuning on training
data of varying size. The numbers are reported based on
accuracy for SST, MNLI, QQP, MRPC and Matthew’s
correlation for CoLA.

that fine-tuning primarily affects the representa-
tions in higher layers, and depending on the down-
stream task, the changes made to lower layers could
be either deep or shallow. Moreover, on only a
small number of downstream tasks, fine-tuning
seems to have a positive impact on the probing
accuracy (Mosbach et al., 2020). Given the fact
that fine-tuning mostly affects higher layers, Dur-
rani et al. (2021) showed that after fine-tuning most
of the model’s linguistic knowledge is transferred
to lower layers to reserve the capacity in the higher
layers for task-specific knowledge.

Studies so far have relied on probing accuracy to
explain how fine-tuning affects a model’s linguistic
knowledge (Mosbach et al., 2020; Durrani et al.,
2021; Merchant et al., 2020). However, given the
fact that fine-tuning tasks do not share the same
number of samples, concluding to what extent tar-
get tasks contribute to the model’s linguistic knowl-
edge is not fully reliable. To the best of our knowl-
edge, none of the previous studies have considered
the role of data size in fine-tuned models’ linguistic
knowledge. In this work, we show that the size of
the dataset plays a crucial role in the amount of
knowledge captured during fine-tuning. By design-
ing different experiments, we analyze the effect of
the size of the dataset in-depth.

3 Experimental Setup

We have carried out over 600 experiments to study
the linguistic features captured during fine-tuning.
This allows us to examine how much different fac-
tors impact performance on different probing tasks.
Moreover, varying the sample size lets us under-
stand its importance in analyzing fine-tuned models.
In this section, we provide more details on setups,
downstream tasks, and probing tasks.



3.1 Fine-tuning

For our analyses, we concentrate on the BERT-base
model, which is arguably the most popular pre-
trained model. We fine-tuned the 12-layer BERT
on a set of tasks from the GLUE Benchmark (Wang
et al., 2018) for five epochs and saved the best
checkpoint based on performance on the validation
set. We used the [CLS] token for classification and
set the learning rate as 2e~'. We have chosen the
following target tasks:

CoLA. The Corpus of Linguistic Acceptability is
a binary classification task in which 8.5k training
samples are labeled based on their grammatical
correctness (Warstadt et al., 2019).

MRPC. The Microsoft Research Paraphrase Cor-
pus includes 3.6k training sentence pairs in which
the semantic equivalence of two sentences is deter-
mined (Dolan and Brockett, 2005).

SST-2. The Stanford Sentiment Treebank is a sen-
timent classification task containing 67k training
sentences (Socher et al., 2013).

QQP. With 364k question pairs, the goal of
the Quora Question Pairs dataset is to determine
whether two questions in a pair are semantically
similar.

MNLI. The Multi-Genre Natural Language In-
ference is a Natural Language Inference (NLI)
task with about 393k records in its training set
(Williams et al., 2018).

3.2 Fine-tuning performance

The performance of the fine-tuned models on these
tasks is illustrated in Table 1. We report the re-
sults on different training data sizes! to highlight
the extent to which reducing training data affects
a model’s performance on the corresponding tasks.
It is worth mentioning that even though the perfor-
mance of target tasks decreases by reducing their
training data, it is still far better than the pre-trained
version. Therefore, the models have learned the
corresponding target tasks to some extent.

3.3 Probing tasks

We probe the pre-trained and fine-tuned BERT
models by training a linear classifier on top while
the weights of the encoders are frozen. Keeping the

!Since MRPC only has 3.6k training samples, we do not
report any 7k results for this dataset.

probing classifier simple lets us scrutinize the lin-
guistic knowledge by eliminating the possibility of
the classifier learning itself. All probes are trained
with a batch size of 32, a learning rate of 3e™%,
for 10 epochs. Due to limited resources, we fine-
tuned models with three random seeds and probed
selected ones with three random seeds to determine
the noise in probing accuracy. The probing accu-
racy remained stable, ranging within +1.0. Finally,
we report the evaluation scores on test sets for the
models with the highest validation accuracy on the
validation set.

We opted for four syntactic and semantic prob-
ing tasks from the SentEval benchmark (Conneau
and Kiela, 2018) to study the linguistic knowledge
encoded in the models. The binary classification
tasks are as follows:

Bigram Shift is a task that aims to test the
model’s ability to predict whether two random suc-
cessive tokens in the same sentence have been in-
verted.

Object Number focuses on the model’s ability
to determine the singularity or plurality of the main
clause’s direct object.

Coordination Inversion examines the model’s
ability to distinguish between original sentences
and sentences where the order of two coordinated
clausal conjoints have been inverted.

Semantic Odd Man Out is a task that tests the
model’s ability to predict if a sentence is original
or whether a random word has been replaced with
another word from the same part of speech.

4 Data Size Analysis

In this section, we first provide insight on the role
of target tasks in capturing or forgetting different
types of knowledge (e.g., syntactic and semantic)
during fine-tuning. Then, we investigate the role of
datasets’ sizes on linguistic knowledge.

4.1 Probing Linguistic Knowledge

We empirically evaluate the linguistic knowledge
captured by several fine-tuned models through the
means of probing.

Figure 1 illustrates the layer-wise probing per-
formance of fine-tuned models, considering pre-
trained BERT as our baseline. As can be observed,
different models carry similar linguistic knowledge
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Figure 1: Probing accuracy on all the layers of fine-tuned models. As shown, there is a large accuracy gap between
models fine-tuned on larger data sizes (e.g., MNLI and QQP) and the baseline.

up to the middle layers, and the difference gradu-
ally increases as we move up to the higher layers.
This observation is consistent with the reported re-
sults by Merchant et al. (2020). Their experimental
analysis indicates that fine-tuning mostly changes
the higher layers while having very less impact on
the lower layers. Durrani et al. (2021) also reported
a similar behavior in other LMs through different
probing tasks.

The results illustrated in Figure 1 clearly show
that how data size impacts probing accuracy. As
stated in Section 3.1, fine-tuning tasks contain dif-
ferent number of samples, some of which are much
larger than the others. We can witness that the prob-
ing performance of the baseline and models fine-
tuned on small datasets are within a close range,
while fine-tuning on larger data sizes (e.g., QQP
and MNLI) can significantly impact the models’
linguistic knowledge. Following this interesting
pattern, we carry out a set of experiments to under-
stand whether the mentioned pattern in the models’

linguistic knowledge can be due to different data
sizes.

4.2 The Impact of Data Size

One of the popular studies in probing is to check
fine-tuned models for specific linguistic knowledge.
The changes brought to the model upon fine-tuning
are taken as a means to explain the nature of the
corresponding task on which fine-tuning has been
done. Existing studies usually consider several
tasks, many of which do not have datasets of com-
parable size. For instance, MNLI is 46 times larger
than CoLA. Regardless of the number of samples
that every target task has, previous studies have
only relied on the type of downstream tasks. There-
fore, they can not answer why some target tasks
cause more profound modifications to the encoded
linguistic knowledge compared to others.

The results of Section 4.1 reinforce the hypothe-
sis that the number of samples (data size) could be
an important cause of improving or impairing the
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Figure 2: An illustration of models’ performance fine-tuned on fixed-size training set across four probing tasks. The
pre-trained BERT’s performance has been shown by dashed red line. The figures suggest that different fine-tuned
models almost encode similar linguistic knowledge, specifically semantic knowledge, when they are trained with

equal size training data.

linguistic knowledge captured during fine-tuning.
In Figure 1, we observe that there is a significant
difference between the probing accuracy of models
fine-tuned on large datasets (e.g., MNLI and QQP)
and the ones on small datasets (e.g., MRPC). So,
our hypothesis can explain this significant differ-
ence in the encoded linguistic knowledge across
fine-tuned models.

We examine our hypothesis by fine-tuning pre-
trained BERT on the selected downstream tasks
with a set of different number of samples. Taking
the pre-trained BERT as the baseline, we analyze
the effect of the training set size on the encoded lin-
guistic knowledge by limiting the number of sam-
ples to 7k, 2.5k, and 1k. Figure 2 is an illustration
of our experiments regarding the data size’s effect
on the encoded linguistic knowledge. These results
confirm our hypothesis that data size in fact plays
a significant role in probing accuracy. We further
elaborate on this effect in the following discussion.

4.3 Discussion

The effect of data size on both the syntactic and
semantic probing tasks is notable. However, the dif-
ference is more significant on syntactic knowledge,
Figure 2(a). This could be attributed to the model’s
resistance to losing its semantic knowledge, as wit-
nessed by a more stable performance in semantic
probing tasks, in Figures 2(b), 2(c), and 2(d).

We observe that as the number of samples in-
creases, the gap between fine-tuned models and the
pre-trained BERT (baseline) becomes more appar-
ent. For instance, probing the model fine-tuned on
QQP’s full training set demonstrates that it has far
less linguistic knowledge than the baseline. How-
ever, after fine-tuning the model on QQP with fewer
training samples (7k, 2.5, and 1k), the results as-
similate to each other. This shows that fine-tuning
data size indeed affects the linguistic knowledge



Bigram Shift Semantic Odd Man Out
Full 7k 2.5k 1k baseline Full 7k 2.5k 1k baseline
Layer 2 -0.49 0.16 -0.63 -0.82 53.60 -0.65 -0.25 -0.06 -0.23 53.92
f Layer 7 1.78 1.36 1.57 2.03 75.93 -3.40 -2.31 -0.80 -1.43 59.41
S Layer 11 6.78 7.09 6.29 5.10 82.39 2.08 1.78 1.83 0.98 61.32
Layer 12 6.22 6.09 5.56 4.85 83.23 1.84 -0.44 -0.58 -1.23 62.40
Layer 2 -0.74 -0.82 -0.30 -0.94 53.60 -0.55 -0.55 -0.52 -0.10 53.92
[ Layer 7 -2.26 -1.94 -1.94 -0.24 75.93 -1.81 -1.56 -1.29 -1.22 59.41
A Layer 11 -3.81 -2.48 -1.89 -1.33 82.39 -1.33 -0.87 -0.88 -0.55 61.32
Layer 12 -5.77 -4.87 -3.40 -3.20 83.23 -2.24 -1.83 -1.37 -1.89 62.40
. Layer 2 -2.01 -0.78 -0.32 0.51 53.60 -1.69 -0.38 -0.62 -0.13 53.92
E] Layer 7 -7.94 -1.68 -0.85 -0.83 75.93 -2.55 -0.54 -0.74 -2.61 59.41
= Layer 11 -17.31 -6.54 -4.49 -1.52 82.39 -5.25 -0.32 -1.30 -0.45 61.32
Layer 12 -19.52 -8.84 -6.44 -3.14 83.23 -7.12 -1.65 -1.76 -1.55 62.40
Layer 2 1.93 0.68 0.35 -0.26 53.60 -0.46 -0.12 -0.27 -0.21 53.92
6 Layer 7 -12.63 -1.55 -0.05 0.60 75.93 -4.82 -0.01 0.30 -0.53 59.41
o Layer 11 -26.97 -3.78 -1.05 -2.46 82.39 =9.22 0.89 0.90 0.65 61.32
Layer 12 -29.12 -5.70 -1.81 -3.00 83.23 -10.45 -0.65 0.13 -0.22 62.40
o Layer 2 -1.08 — -0.82 -0.96 53.60 -0.37 — -0.56 -0.53 53.92
& Layer 7 -0.53 — -1.04 -0.09 75.93 -0.36 — 0.29 -0.34 59.41
S Layerll -1.94 — -9 -141 82.39 -1.05 — | 136 135 61.32
Layer 12 -3.87 — -3.45 -2.31 83.23 -2.13 — -1.7 -1.86 62.40

Table 2: Layer-wise performance of models on the probing tasks. Each cell represents the difference (delta) in
performance between the corresponding fine-tuned model and the baseline. The pre-trained BERT performance

(baseline) is shown in the right columns.

encoded by the model.

Overall, in this section, we have uncovered the
role of data size in affecting the amount of linguis-
tic knowledge through fine-tuning. This suggests
that data size should be taken into account when
analyzing fine-tuned models. We will study this
effect by individually probing each layer through
further experiments.

5 Layer-wise Analysis

Given the previous observations (Figure 2) that
data size affects the linguistic knowledge captured
by BERT through fine-tuning, we would like to see
on which layers these changes are more significant.

As Jawahar et al. (2019) stated, BERT layers are
divided into three classes in terms of the linguistic
knowledge they capture. To this end, we probe
layer 2 (lower layers), layer 7 (middle layers), and
layers 11, 12 (higher layers) to demonstrate the
changes that data size applies to each category of
layers.

Table 2 depicts our results obtained from this
experiment, which are compared with BERT-base.
Due to our limited resources and an excessive num-
ber of experiments, we discard probing tasks that
have no distinguished patterns in the previous sec-
tions (Figure 1 and 2). Hence, we have omitted
Coordination Inversion and Object Number from

the probing tasks.

The heatmap follows a similar trend to the one
depicted in Figure 2. As we decrease the number of
training samples, the probing performance on the
fine-tuned models becomes closer to the baseline
across all layers. MNLI and QQP’s behavior are
compelling evidence of the effectiveness of data
size across layers. Such models fine-tuned with
larger datasets undergo more considerable changes
than those with smaller data sizes.

Regardless of data size, we can also observe
that fine-tuning mostly affects higher layers. Our
finding is aligned with Merchant et al. (2020) that
fine-tuning has a greater impact on higher layers
and negligible effects on lower layers.

There is also an interesting pattern concerning
CoLA’s performance. Though its performance
drops for about 15 scores from the full to 1k ver-
sion (Table 1) its linguistic knowledge has been
negligibly affected by data size. We leave the inves-
tigation on CoLA’s interesting behavior to future
work.

6 Fixed Iteration Analysis

Given the observations from Section 5, we have re-
alized that by training BERT on larger datasets, the
model’s performance deviates substantially from
the baseline. However, by reducing the size of train-



Full 7k 2.5k
Bigram Shift

Layer 2 52.87 0.07 -0.03

%“, Layer 7 71.88 -2.08 -1.12
O Layerll 74.08 0.49 2.90
Layer 12 7325 -0.10 1.81

_ Layer2 519 -024 -1.16
E Layer 7 71.03  0.88 -0.02
> Layerl1l 67.69 1.93 247
Layer 12 65.82  1.48 1.57

Semantic Odd Man Out

Layer 2 53.73  0.73 0.49

& Layer7 5612 095 1.6l
O Layer1l 5811 1.23 1.16
Layer 12 58.03 134 031

_ Layer2 5323 024 0.76
E Layer 7 57.00 154 1.60
= Layer11 5727 2.10 1.17
Layer 12 56.77  2.43 1.22

Table 3: The performance of models trained with fixed
and equal number of iterations across different sizes
on each downstream task. Every cell demonstrates the
difference (delta) between the full and the fixed-sized
models. With an equal number of iterations, in each
layer, fine-tuned models have a similar performance.

ing data, the gap between fine-tuned model and the
baseline decreases. This behavior could be due to
either the diversity of training samples or the larger
number of iterations through which the model is
updated.

To factor out the role of the number of itera-
tions, we repeat the same experiment carried out
in Section 5 by fixing the number of iterations on
all data sizes. This will allow the model to be up-
dated equally across different data sizes within a
task. Consequently, this experiment will determine
which of the mentioned hypotheses best explains
the large gap between the baseline and the full mod-
els. Note that we fine-tuned the full models for just
1 epoch to avoid a large number of iterations for
the 7k and 2.5k models.

Since SST2, CoLA, and MRPC have notably
smaller datasets, and the number of iterations does
not differ across the full, 7k, and 2.5k models, we
have dropped them from this scenario.

Table 3 summarizes our results. The first inter-

esting pattern is that fine-tuning for more epochs
impairs the captured linguistic knowledge signifi-
cantly. As an instance, we can observe the impact
of longer training by comparing Bigram Shift per-
formance in the last layer on the full version of
QQP in Table 2 (54.11) and Table 3 (73.25).2

As Table 3 suggests, fixing the number of iter-
ations reduces the gap across different data sizes,
causing the 7k and 2.5k models to behave almost
similarly to the full models. For instance, in Table
2, there is about a difference of 24 scores in the
last layer’s performance between the full and the
7k QQP on Bigram Shift, which has been reduced
to approximately —0.1 with equal training steps,
Table 2.

This finding is interesting because, firstly, it indi-
cates that the high variance between baselines and
full models is mainly due to the number of times
their weights are updated during fine-tuning rather
than the diversity of the training samples. Secondly,
with equal data sizes, the role of target tasks be-
comes less influential in the linguistic knowledge
introduced into the model by fine-tuning, reinforc-
ing the conclusions from Section 5.

7 Sequence Analysis

Our previous results indicate that the size of fine-
tuning data indeed affects the encoded linguistic
knowledge in the higher layers of pre-trained BERT.
In this section, we investigate whether data size has
the same effects on re-fine-tuning a model as it has
on fine-tuning a pre-trained model for the first time
and whether these changes can be recovered.

To address this question, we have designed an
experiment in which we fine-tune BERT sequen-
tially on CoLA and SST2, and once again on CoLA
(CoLA — SST2 — CoLA). We also carried out the
same procedure with SST2 — CoLA — SST2. By
probing the final models, we verify the role played
by data size on manipulating model’s knowledge
captured during fine-tuning.

Results are reported in Table 4. We can see that
whenever we re-fine-tune a model, its linguistic
knowledge is replaced by the latest fine-tuning task.
For example, Bigram Shift accuracy of BERT fine-
tuned on CoLA is 89.45, but with re-fine-tuning
on SST-2, the accuracy drops to 79.59, which is
almost similar to SST-2’s accuracy on Bigram Shift.
This means that the knowledge introduced to the

2 As mentioned in Section 3.1, the models in Table 2 were
fine-tuned for five epochs.



BShift ObjNum CoordInv SOMO
SST-2 77.46 70.48 66.46 60.16
CoLA 89.45 77.76 69.40 64.24
SST2 — CoLA 87.96 73.68 63.19 63.19
CoLA — SST2 79.59 72.21 65.91 61.58
SST2 — CoLA — SST2 79.11 70.37 66.10 60.06
CoLA — SST2 — CoLA 88.13 73.70 68.07 62.50

Table 4: Results of probing linguistic knowledge through sequential fine-tuning. Accuracy is used as the evaluation
metric. A — B means we continue fine-tuning on B after fine-tuning on A.

model by CoLA is forgotten after fine-tuning on
SST2.

Moreover, we assume that re-fine-tuning the
model on a different task with a larger data size
might have a greater impact on the model’s linguis-
tic knowledge than fine-tuning on a smaller data
size. However, even though the number of sam-
ples in SST-2 is much more than CoLA, both SST2
— CoLA and CoLA — SST2 seem to have simi-
lar impacts. This indicates that CoL A has similar
effects on the linguistic knowledge of BERT fine-
tuned on SST-2 as SST-2 has on BERT fine-tuned
on CoLA. Therefore, we can conclude that the size
of target task data plays a less significant role in
impacting the linguistic knowledge obtained during
fine-tuning.

Fine-tuning is known to cause models to forget
the previously encoded knowledge (Chen et al.,
2020), and we witnessed earlier that re-fine-tuning
a model does in fact lead a model to forget its
knowledge. Hence, we are motivated to ask if and
to what extent these “forgotten” knowledge caused
by re-fine-tuning is retractable. To answer this, we
fine-tune our SST2 — CoLA and CoLA — SST2
models on the task on which they were first fine-
tuned. The reported results in Table 4 suggest that
regardless of the fine-tuning task and its data size,
changes made to a fine-tuned model can be recov-
ered through re-fine-tuning. As an instance, fine-
tuning on SST-2 dropped CoordInv performance
of the model fine-tuned on CoLA from 69.40 to
65.91. Nevertheless, after re-fine-tuning on CoL A,
the accuracy increased to 68.07, which is almost
similar to its first state.

Opverall, as observed in Table 4, none of the fine-
tuning tasks made deep unrecoverable adjustments
to the model’s linguistic knowledge. We conclude
that the changes introduced to the model by fine-
tuning are shallow irrespective of the fine-tuning

data size.

8 Conclusion

In this paper, we carried out a set of experiments
to determine the effects of training data size on the
linguistic knowledge captured by fine-tuning. To
begin with, by individually probing all layers, we
found out that models fine-tuned on larger datasets
deviate more from the base model in terms of the
encoded linguistic knowledge. We realized that
the gaps are more significant in the higher layers,
while lower layers possess a similar amount of
linguistic knowledge under a fixed data size. As
a result, we propose that the comparison of the
linguistic knowledge of fine-tuned models is valid
if trained on equal data size. Furthermore, the
difference in linguistic knowledge across different
data sizes can be explained with the number of
iterations updating the model during fine-tuning.
This suggests that linguistic knowledge is rather
affected by the number of fine-tuning iterations
than the diversity of the training data. Finally, we
discovered that after sequentially fine-tuning on
two different downstream tasks, some knowledge
is forgotten but can be recovered through re-fine-
tuning on the initial downstream task.

We argue that probing accuracy cannot fully rep-
resent the linguistic knowledge captured by fine-
tuned models, given the fact that a factor, such as
size of the dataset, can highly affect probing accu-
racy. As a future direction, it is crucial to take the
undesirable factors that affect probing performance
into account. Moreover, evaluating the reliability
of existing accuracy-based probes and designing
more robust metrics for encoded knowledge assess-
ment are the other important aspects of interpreting
LMs.
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