
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

EFFICIENTLY DEMOCRATIZING MEDICAL LLMS FOR 50
LANGUAGES VIA A MIXTURE OF LANGUAGE FAMILY EX-
PERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Adapting medical Large Language Models to local languages can reduce barriers to access-
ing healthcare services, but data scarcity remains a significant challenge, particularly for
low-resource languages. To address this, we first construct a high-quality medical dataset
and conduct analysis to ensure its quality. In order to leverage the generalization capability
of multilingual LLMs to efficiently scale to more resource-constrained languages, we ex-
plore the internal information flow of LLMs from a multilingual perspective using Mixture
of Experts (MoE) modularity. Technically, we propose a novel MoE routing method that
employs language-specific experts and cross-lingual routing. Inspired by circuit theory,
our routing analysis revealed a “Spread Out in the End“ information flow mechanism:
while earlier layers concentrate cross-lingual information flow, the later layers exhibit
language-specific divergence. This insight directly led to the development of the Post-MoE
architecture, which applies sparse routing only in the later layers while maintaining dense
others. Experimental results demonstrate that this approach enhances the generalization
of multilingual models to other languages while preserving interpretability. Finally, to
efficiently scale the model to 50 languages, we introduce the concept of language family ex-
perts, drawing on linguistic priors, which enables scaling the number of languages without
adding additional parameters.

1 INTRODUCTION

The development of medical large language models (LLMs) holds great promise in addressing global
healthcare inequalities (Yan et al., 2023). By democratizing access to expert knowledge, LLMs can help
mitigate disparities in resource availability within healthcare systems worldwide (Tariq et al., 2020). A critical
aspect of ensuring this accessibility is the inclusion of local languages, which can significantly reduce barriers
to adoption and foster more equitable healthcare services (Dai et al., 2024; Permanyer et al., 2023).

However, despite the potential of multilingual LLMs in healthcare, significant challenges persist. A major
obstacle is the scarcity of medical data in many languages, limiting model development for underrepresented
populations. While some research has made strides in addressing this issue, these efforts often focus on only
a few dominant languages, typically fewer than six (Wang et al., 2024; Qiu et al., 2024). To address this gap,
we have expanded the dataset to include 12 major languages, thereby improving population representation
and rigorously evaluating the dataset’s quality and scalability.

Expanding the coverage from 12 major languages to include low-resource languages presents greater chal-
lenges due to data scarcity. Addressing this issue requires analyzing the internal information flow of large
language models from a multilingual perspective to develop a generalizable approach. While some studies em-
ploy neuron analysis to investigate this (Tang et al., 2024), they typically focus on fewer than seven languages,
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and the complexity of neuron decomposition limits the exploration of relationships between languages and the
scalability of applications. To enhance the understanding of these mechanisms, we leverage the modularity of
Mixture of Experts models and introduce Hybrid-k routing. This method not only ensures the activation of
language-specific experts but also achieves performance on par with the vanilla top-k approach, balancing
interpretability and performance.

Inspired by the theory of Circuits (Olah et al., 2020a), we regard experts as nodes, and consider the directed
acyclic graph formed by the information transmission of each token from shallow to deep layers as ”Circuits”.
Through observation and analysis, we identify the “Spread Out in the End” mechanism in the information
flow circuits, where cross-lingual integration occurs in the early layers, while language-specific differentiation
happens in the later layers. This insight suggests that employing the Post-MoE architecture, where the MoE
structure is applied only in the later layers. Experiments demonstrates that the performance of 12 major
languages remained stable, while low-resource languages improved even without additional training.

Building on above foundation, we further explore an efficient approach to extend the model’s multilingual
medical capabilities to 50 languages. Leveraging linguistic priors, we group languages into language families,
reducing the number of expert layers required for multilingual expansion from 50 to 7. Through extensive
experiments with models of 0.5B, 1.5B, and 7B parameters, we demonstrate the scalability of this method
and introduce the Apollo-MoE series1. The series demonstrates significant potential for expansion to more
languages across 50 languages, allowing for the continued increase in the number of languages without the
need for additional parameters while maintaining multilingual generalization.

The main contributions are as follows: 1) We construct a high-quality medical dataset encompassing 12 major
languages, quality of which is validated by experiments. 2) We propose a new circuits-based paradigm for
interpreting routing in a multilingual context. Through circuit analysis, we identify the “Spread Out in the
End” mechanism. 3) By introducing language family experts, we efficiently extend medical LLMs to 50
languages, demonstrating its potential for scaling to more languages.

2 A PRELIMINARY SCALING TO 12 LANGUAGES

We commence our work with data collection. Sec. 2.1 will outline the philosophy and pipeline for collecting
and processing data, while Sec. 2.2 will address quality checks and ablation studies related to data construction.

2.1 DATA COLLECTION AND PROCESSION

Data Collection According to the key sources from which doctors and medical students acquire knowledge,
we categorize these into seven valuable sources: Books, Papers, Encyclopedias, Doctor-Patient Dialogues,
Exams, Websites, and Practical Guidelines, ensuring data quality from the outset. Additionally, we include
general instruction tuning data to maintain foundational skills, as well as Math and Code data to enhance
reasoning capabilities. Utilizing these sources, we gather high-quality data under open source licenses from
the Internet across 12 languages, selected based on population coverage. For specific collection sources of the
dataset, please refer to App. A.1.

Data Processing Inspired by recent work on data construction during the Instruction Tuning phase (Cheng
et al., 2024; Yue et al., 2024; Chen et al., 2023a), we employ ChatGPT2 to transform text into question-answer
pairs, enhancing the quality of our dataset. For data leakage checks, we adhere to the detection strategy
outlined in Med-PaLM2 (Singhal et al., 2023). Specifically, if an entire question or at least 64 consecutive
characters overlapped with any data item, we classify that data item as a leakage instance. In our examination
of the exam data sources, we began with 621,291 exercises, from which we removed 3,479, yielding a

1Named after Apollo, the Greek god of medicine and light
2gpt-3.5-turbo-16k-0613
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Figure 1: Taxonomy and Token statistics of Training Dataset.

Table 1: Monolingual ( ) refers to the accuracy of models trained on single language data and evaluated on
the respective language evaluation set. Multilingual ( ) indicates the accuracy of models trained and evaluated
on all languages’ datasets. The -Math&Code results reflect performance when training on all language data
( ) excluding math and code data. Avg. denotes the average score across languages.

Model #params Avg. Ar De En Es Fr Hi It Ja Ko Pt Ru Zh
Gemma 2B 28.1 18.2 27.6 37.6 31.8 23.1 25.7 26.1 21.2 25.2 23.1 49.6 28.0
+Monolingual 2B - 27.8 34.9 52.1 39.2 27.7 27.6 28.6 23.4 29.9 28.3 54.7 60.6
+Multilingual 2B 48.6 43.7 50.7 57.8 48.1 44.5 40.7 45.2 43.0 45.1 40.6 63.7 60.6
-Math&Code 2B 42.7 36.1 39.4 51.2 43.7 39.3 35.4 42.0 35.4 40.5 32.1 57.0 60.0

screening rate of 0.56%. For other data sources, the filtering ratio was less than 0.01%. Ultimately, we
compile a multilingual medical training set containing 2.5 billion tokens, with statistical data for various
languages and sources illustrated in Fig.1. More detailed information on data processing and relevant prompts
can be found in App. A.2.

Evaluation Setup To ensure the validity of the benchmark, we utilize the multilingual medical benchmark
that is publicly available and peer-reviewed. For evaluating languages with limited resources, we follow
the multilingual evaluation methodology of Llama3 (Dubey et al., 2024), employing Google Translate to
translate the questions and answers of MMLU (Hendrycks et al., 2020). We employed a random selection of
3-shot queries to pose questions to the model, followed by answer extraction and evaluation of the model’s
responses. For detailed information regarding the composition of the evaluation set and the evaluation sample
used, please refer to the App. A.3.

2.2 EXPERIMENTAL RESULTS

While we ensure data quality during source evaluation, we also perform a statistical analysis of the dataset’s
quality and composition. First, we conduct monolingual training, which involves training the model solely on
data from a specific language to assess dataset’s quality in that language. Next, we perform an ablation study
focused on the function of code and math to determine the necessity of including this data. Multilingual
training, which incorporates all available data using a random sampler, serves as our default reference. We
select Gemma-2b (Team et al., 2024a) as our base model due to its moderate number of parameters. The
evaluation setting and training setting used in this section are consistent with other experiments, see App. B.
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Results As shown in Tab. 1, our quality checking indicates that models trained separately with language-
specific data exhibit improved performance on corresponding tests, further confirming the high quality of
the dataset in each language. Regarding the inclusion of math and code data, the model experiences an
average performance loss of 5.9% when trained without this data compared to training with the full dataset,
underscoring the significance of math and code for model performance. This enhancement may be attributed
to the ability of math and code data to strengthen the model’s reasoning capabilities. Additionally, numerals
and coding language, as common elements across languages, likely serve as anchor points in multilingual
training, facilitating mutual alignment of language distributions. We also utilize the dataset to train models of
various architectures and sizes to further validate its effectiveness, with related details and results presented
in App. A.4.

3 SCALING WITH MOE AND ITS ROUTING ANALYSIS

This section leverages Mixture of Experts (MoE) to scale medical LLMs for better efficiency and extensibility.
Sec. 3.1 introduces a new routing method and its experimental validation. Sec. 3.2 delves into a detailed anal-
ysis of the routing mechanisms using circuits; where we observe the “Spread Out in the End” phenomenon:
expert routing paths are shared among languages in early layers and diverge in later layers. Inspired by the
phenomenon, Sec. 3.3 presents a MoE variant called “Post-MoE”, which restricts routing to the later layers.

3.1 A LANGUAGE-SPECIFIC HYBRID ROUTING

While Sec. 2 utilizes a dense model to integrate multilingual data and extend the medical model to 12
languages, this approach presents efficiency limitations. To address these challenges, we adopt a sparse
Mixture of Experts (MoE) model for a better balance between effectiveness and efficiency. The modular and
functional nature of the Experts in the MoE framework is particularly advantageous in further scalability,
which benefit enabling the effective expansion to more languages (especially for minor languages in Sec. 4.

3.1.1 THE PHILOSOPHY OF HYBRID-k

Figure 2: Hybrid routing ensures that the experts corresponding to the input token language are activated. As
illustrated, if the weight of the language-specific expert do not rank among the top two, it will replace the
expert with lower weights; otherwise, no changes will be made.

We propose new MoE consists of language-specific experts and hybrid routing, enhancing both language-
specific expertise and transfer of general medical knowledge across languages.

Language-specific Experts Inspired by Li et al. (2023c); Pfeiffer et al. (2022); Kwon & Chung (2023), we
leverage the MoE structure to modularize the language-specific parameters in the medical domain. Specifically,
we design language-specific experts to more effectively handle language-dependent knowledge and inputs.

4
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Table 2: Comparison between Dense models and MoE models with various routing strategies.

Method Param. (B) Avg. Accuracy Ar De En Es Fr Hi It Ja Ko Pt Ru ZhActive Total Major Minor
Dense Models before and after Training with Various Param.

Qwen-0.5B 0.49 0.49 29.7 31.5 27.3 27.4 39.3 32.9 21.3 25.7 20.7 24.0 19.2 26.3 46.9 45.4
after training 0.49 0.49 37.8 24.6 34.8 33.7 46.7 40.5 33.0 31.0 31.5 31.5 35.5 30.8 53.8 51.0
Same Active 0.81 0.81 38.4 26.2 34.4 35.8 46.1 40.1 34.0 32.2 32.2 32.0 35.1 31.0 54.5 51.8
Same Total 3.95 3.95 42.0 30.9 36.4 40.8 47.8 42.1 38.0 34.6 43.2 32.4 38.7 31.9 62.9 54.8

MoE Models Trained with Different Routing Strategies
Lang-Spec. 0.81 3.95 30.9 26.1 28.8 28.6 39.1 33.3 16.5 24.5 21.4 27.8 31.0 52.3 42.8 53.0
Top-k 0.81 3.95 39.7 29.9 34.5 36.9 43.7 38.9 39.9 32.2 37.7 30.5 35.9 34.8 58.2 53.2
Hybrid-k 0.81 3.95 40.0 32.0 35.1 37.2 44.1 40.8 40.7 28.7 38.9 32.4 36.2 34.3 58.8 53.6

However, this has notable drawbacks: the knowledge encapsulated within each expert tends to be isolated,
which can impede the learning of general medical knowledge.

Hybrid Routing To address this limitation and enhance general knowledge acquisition across languages, we
propose cross-lingual routing within the MoE. This allows routing to go beyond language-specific experts,
enabling knowledge to propagate across languages. As shown in Fig. 2, the result is a hybrid mechanism,
where routing can target both language-specific Experts and dynamically route to other language experts; the
latter is related to the input text itself.

In Hybrid-k, tokens can be routed not only to language-specific experts but also to cross-lingual experts. The
rationale for cross-lingual routing is to view text as a tool for thought, capable of being expressed through
various languages. Given the exceptional multilingual processing abilities of LLMs, it can be inferred that
they adeptly switch between and intertwine multiple languages during text comprehension.

3.1.2 EXPERIMENTAL COMPARISONS BETWEEN ROUTING STRATEGIES

To validate the effectiveness of our method, we compared it with different routing strategies, specifically
vanilla Top-k and Language-Specific (Lang-Spec.) routing. Lang-Spec. routing refers to selecting the
corresponding expert based on the input language type, while keeping a shared expert constantly activated to
enhance performance and align the model’s inference parameters.

Experiment Settings Considering its broad parameter base and impressive multilingual capabilities, we
selected the Qwen2 series for our experiments. Specifically, we conducted experiments using the Qwen2-0.5B
model, based on the training and evaluation datasets described in Sec. 2. To accurately construct a dense
model of equivalent size with corresponding MoE model as baseline, we replicated the MLP following the
approach used in MoE Upcycling and initialized the routing with an average distribution. Unlike MoE, the
initialized dense model employs full activation instead of sparse activation. For token language classification,
tokens are uniformly classified based on their source per document. To construct the evaluation set for minor
languages, we evenly select 38 languages based on their geographical distribution. Similar to Sec. 2, we
use Google Translate to translate the questions and answers from the medical-clinical section of the MMLU
dataset, types of minor languages are detailed in the App. A.5. For Lang-Spec. routing, we use 12 experts
plus one shared expert. For Hybrid-k and Top-k routing, 12 experts are used per layer. The activation count is
fixed at two experts across all configurations (k = 2) if not specified. Additional training settings are provided
in App. B.

Results Tab. 2 shows that the base model in major languages is improved significantly after fine-tuning, but
its performance in minor languages declines substantially. This indicates that partial language fine-tuning of
dense models notably impacts their generalization capabilities to other languages. The Language-Specific
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Figure 3: Visualization for routing patterns. Right: Hybrid-k routing distribution. The x-axis represents
language experts, with values indicating the proportion of tokens allocated to each expert. AVG denotes the
aggregated routing distribution across 12 languages. Left: Visualization of AVG routing distribution from
the perspective of Information Flow Circuits. We retained expert nodes with a token ratio of 0.5.

routing of MoE provides interpretability but results in poor multilingual performance. In contrast, the Top-k
MoE model demonstrates superior multilingual capability and generalization after fine-tuning compared to the
trained base model, highlighting the effectiveness of MoE models over dense models. Moreover, Hybrid-k
routing exhibits a clear advantages than Top-k in nearly all languages, especially in minor languages; this
evidences its superior generalization.

3.2 INTERPRETABLE ROUTING ANALYSIS: INFORMATION FLOW CIRCUIT

To better interpret the routing patterns in multilingual context, we propose to formulate the routing pattern
across layers as circuit in Sec. 3.2.1 and conduct some visualized study in Sec. 3.2.2.

3.2.1 FORMULATION OF INFORMATION FLOW IN ROUTING

During the routing process, each token is routed to both its language-specific expert and other language
experts, enabling cross-lingual routing. This section aims to analyze the cross-lingual routing patterns for each
language. Specifically, we seek to understand how tokens in a given language benefit from other language
experts as they traverse from lower to higher layers. In other words, beyond its own language, the key question
is: How does input in each language leverage other language experts across different layers? As mentioned
in Sec. 3.1.1, the involvement of intermediate language experts may provide insights into the languages the
model utilizes for internal thinking and reasoning.

To investigate the process, we propose a circuit-based formulation as below:

Definition 1. Information Flow Circuit The sequence of Experts that each token passes from shallow to
deeper abstractions forms a directed acyclic graph (DAG), which we refer to as a ‘circuit’.

To examine expert routing within the Hybrid-k routing, we conduct an experiment to track token routing. We
extracted varying amounts of data from 12 languages (details on data quantity and format are provided in
App. D) to obtain approximately 80,000 tokens per language. These 12 single-language datasets were used as
probing sets to record expert routing at the token level.
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3.2.2 RESULTS

The visualization of the routing pattern is shown in Fig. 3. From the perspective of single-language routing,
the routing results for Japanese and Spanish in the figure (routing distributions for other languages are detailed
in the App.G) indicate that Chinese has a significant influence on Japanese, while Portuguese and English
are also integrated into the information flow of Spanish. This phenomenon aligns well with linguistic priors:
the linguistic development of Japanese has been influenced by Chinese, while Spanish, Portuguese, and
English, all belonging to the Romance language family, have historically exerted mutual influence. From the
perspective of cross-linguistic routing for all 12 languages, through the utilization of routing distribution
analysis and Information Flow Circuits visualization, we observe that the information flow circuits exhibit
cross-linguistic concentration in the early layers, while differentiation based on language occurs in the later
layers. We refer to this phenomenon as “Spread Out in the End”:

Phenomenon 1. In the early layers, the model exhibits shared routing patterns across multiple languages.
However, in the later layers, the model diverges, with tokens being routed to language-specific experts,
allowing late routing to specialize in its respective language.

3.3 A MOE VARIANT INSPIRED BY THE ‘SPREAD OUT IN THE END’ PHENOMENON: POST-MOE

(a) Post-MoE from Qwen2-0.5B in Last N Layers (b) Post-MoE from Qwen2-1.5B in Last N Layers

Figure 4: Analysis of Upcycling Layer Depths for the PostMoE Architecture. The X-axis represents the
number of Upcycling layers applied in the final N layers, while the Y-axis indicates the model performance
on both Major and Minor languages. N=0 signifies direct fine-tuning of the model. Qwen2-0.5B-MoE and
Qwen2-1.5B-MoE refer to standard MoE architectures trained with Hybrid routing.

Inspired by the phenomenon of “Spread Out in the End,” we propose the Post-MoE architecture, which
applies the Mixture of Experts (MoE) structure only in the final layers. Using this architecture, we further
validate the observed phenomenon and investigate the impact of the number of MoE layers in the model’s
final layer on its performance.

Experiment Settings To validate the effectiveness of the multilingual mechanism and the Post-MoE archi-
tecture, we use Qwen2-0.5B-MoE and Qwen2-1.5B-MoE, along with the original base model as a baseline.
Qwen2-0.5B-MoE and Qwen2-1.5B-MoE are standard MoE architectures trained with Hybrid routing. To
investigate the impact of the number of MoE layers in the final layer of the model on performance, we extend
the MoE architecture in the last 1, 2, 3, and 4 layers using the hybrid routing method. We also evaluate the
multilingual generalization capability of this architecture using the assessment set of 38 minor languages
mentioned in Sec. 4.

7
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Results As shown in Fig. 4, the architecture with MoE extended in the last two layers achieves the best
performance, balancing both accuracy and multilingual generalization. The experimental results align closely
with the routing pattern visualization in Fig. 3, further validating the “Spread Out in the End” phenomenon.
In the next section, we will further apply this method to 50 languages to fully leverage the advantages and
scalability of this architecture.

4 FURTHER SCALING TO 50 LANGUAGES

To further demonstrate the multilingual capabilities of the Post-MoE architecture, we selected 38 minor
languages, expanding the language variety to 50 (shown in Tab. 3).

Table 3: Classification of Languages with Color Coding Based on Characteristics.

Language Family Languages
Sino-Tibetan Chinese (Zh)
Altaic Korean (Ko), Japanese (Ja), Mongolian (Ne)
Australasian Thai (Th), Vietnamese (Vi), Laotian (Lo)
Austronesian Malagasy (Mg), Cebuano (Ceb), Sundanese (Su), Ilokano (Ilo), Dogue (Doi)
Indo-European English (En), German (De), Portuguese (Pt), Spanish (Es), French (Fr), Russian (Ru)

Italian (It), Croatian (Hr), Galician (Gl), Czech (Cs), Corsican (Co), Latin (La),
Ukrainian (Uk), Bosnian (Bs), Bulgarian (Bg), Esperanto (Eo), Maithili (Mai),
Albanian (Sq), Danish (Da), Sanskrit (Sa), Norwegian (No), Guarani (Gn),
Serbian (Sr), Slovak (Sk), Scottish Gaelic (Gd), Luxembourgish (Lb), Hindi (Hi)

Afro-Asian Arabic (Ar), Kurdish (Sorani) (Ckb), Maltese (Mt), Hebrew (He)
Kongolese Lingala (Ln), Bambara (Bm), Swahili (Sw), Sepeti (Nso), Igbo (Ig),

Kinyarwanda (Rw), Hausa (Ha)

4.1 MIXTURE OF LANGUAGE FAMILY EXPERTS

Following the Hybrid-k which adopts language-specifc experts, training LLMs with n languages would
require n language-specific experts. This expansion strategy would lead to an substantial growth in model
parameters, making the application impractical. To address this challenge, we propose adapting Post-MoE
by introducing the Mixture of Language Family Experts, which groups the 50 languages into 7 established
linguistic families, as detailed in Tab. 3. This approach named ‘Apollo-MoE’ ensures that scaling to additional
languages does not necessitate a corresponding increase in parameters. Each language family employs hybrid
routing tailored to its linguistic characteristics, enabling more efficient training. This method might facilitate
scalable and robust multilingual performance across a wide range of languages. After training 50 languages
on Dense models and ablation study of various routing strategies in PostMoE, we further verify the effective
multilingual generalization of Apollo-MoE in App.E.

4.2 EXPERIMENTS

Experiment Settings Given the extremely limited data for these rare languages, we extracted 2,000 samples
from English data and used Google Translate to create training corpora for each language. The clinical-
knowledge section of MMLU was translated to serve as the corresponding evaluation set. We trained the
Post-MoE model, named Apollo-MoE, using Qwen2-0.5B, 1.5B, and 7B as base models with a Mixture
of Language Family Experts. We evaluated Apollo-MoE on benchmarks for major (see App. 7) and minor
languages and compared it with open-source and high-performing open-source medical models.

Results Tab. 4 demonstrate that our Apollo-MoE models outperform other models of similar sizes in both
major and minor languages. The 2B model achieves 54.8 in major and 44.9 in minor languages, surpassing

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

Table 4: Main Results on 50 languages comparing to existing LLMs

Model Active Average Acc. Ar De En Es Fr Hi It Ja Ko Pt Ru ZhParam. Major Minor
Closed-source Models

Gemini 1.5 Pro - 74.6 73.6 74.9 80.4 63.2 81.9 87.5 75.4 69.1 68.9 78.6 79.9 64.8 70.0
GPT-4 Turbo - 79.4 73.3 79.8 84.7 68.5 85.8 89.7 72.8 80.9 77.5 79.5 87.0 78.1 68.9
Claude 3 Opus - 81.9 76.5 78.8 87.2 69.8 87.9 90.7 78.6 84.6 82.1 85.2 86.7 80.1 70.9
GPT-4o - 85.7 81.1 80.9 90.5 70.5 90.7 93.5 86.9 85.1 89.5 90.2 90.8 78.5 80.9
GPT-4o mini - 77.6 69.8 74.3 80.4 70.2 82.3 84.5 75.4 77.6 76.2 77.1 82.3 80.9 67.5

Open-source Models
JSL-MedPhi2 2.78 B 29.0 30.7 25.0 30.8 42.1 34.6 30.6 13.2 26.6 17.9 21.3 29.7 48.8 26.8
MMed-Llama-3 8.03 B 40.2 36.5 29.5 40.3 54.7 63.6 62.0 38.8 20.7 47.3 20.3 25.9 62.5 16.7
OpenBioLLM 8.03 B 46.1 34.7 27.5 58.1 49.6 59.2 53.3 44.4 41.5 39.1 46.7 27.0 64.8 41.8
Llama3 8.03 B 49.3 33.3 33.5 55.9 48.4 60.5 58.4 48.0 39.9 38.9 49.5 51.5 63.3 43.6

Our Models
Apollo-MoE 0.52 B 40.5 34.6 36.3 38.2 45.4 39.8 38.4 33.1 39.9 26.9 35.2 37.3 64.1 51.3
Apollo-MoE 1.63 B 54.8 44.9 47.2 53.8 56.5 52.5 53.3 39.5 54.4 45.7 49.5 57.3 69.1 66.8
Apollo-MoE 8.02 B 69.9 58.3 58.3 73.5 73.1 69.4 72.4 56.9 71.9 62.4 68.4 73.8 74.2 84.1

Table 5: Ablation Study between Dense and PostMoE Models across 50 Languages at Various Scales.

Languages Active Average acc. Ha Sr La Gn Doi Da Ln Ceb Mai Mg IloParam. Major Minor

Qwen2-0.5B 0.49 B 29.7 31.5 31.1 30.7 36.4 28.4 27.7 33.3 29.9 34.5 27.3 34.8 30.7
Dense 0.49 B 39.2 33.2 33.7 25.0 30.7 33.3 32.6 36.0 34.5 36.7 31.8 34.1 35.2
Dense Same Active 0.52 B 39.4 34.0 34.1 25.5 32.7 34.2 34.2 34.4 38.9 39.2 32.5 32.2 35.9
Top-k routing 0.52 B 39.0 33.4 26.9 17.8 37.5 34.1 29.9 36.7 33.7 32.2 28.8 32.2 32.6
Hybrid-k routing 0.52 B 40.5 34.6 31.1 25.4 38.3 34.8 36.0 39.8 41.3 40.9 33.7 37.9 39.8
Qwen2-1.5B 1.54 B 42.9 38.4 36.0 44.7 39.0 37.5 31.8 45.1 34.8 42.4 34.1 39.0 35.6
Dense 1.54 B 52.2 43.7 36.7 30.3 51.1 47.0 37.1 51.1 44.3 48.9 39.8 40.5 45.8
Dense Same Active 1.63 B 52.8 44.1 38.8 28.3 50.0 49.1 39.9 53.1 44.7 48.1 40.5 40.2 46.5
Top-k routing 1.63 B 53.6 42.6 39.8 24.6 47.7 44.7 36.0 50.4 34.5 48.5 35.6 41.7 43.9
Hybrid-k routing 1.63 B 54.8 44.9 39.0 33.7 48.5 45.8 41.3 55.3 43.9 50.8 42.8 41.7 46.2
Qwen2-7B 7.62 B 55.2 49.2 34.1 57.6 52.3 43.2 40.9 63.3 38.3 58.3 48.5 37.1 45.5
Dense 7.62 B 69.0 55.7 37.9 31.1 60.6 54.9 55.7 68.6 47.3 64.4 55.7 44.7 64.4
Dense Same Active 8.02 B 68.5 56.3 42.2 39.7 59.5 57.9 55.5 69.3 51.1 65.9 57.8 46.8 61.7
Top-k Routing 8.02 B 68.6 56.7 37.1 39.4 60.6 56.1 50.8 67.8 53.4 67.0 59.8 46.2 61.0
Hybrid-k Routing 8.02 B 69.9 58.3 48.5 42.0 62.9 61.0 54.5 71.2 53.0 68.6 58.3 50.8 64.4

open-source models with 8B parameters. The 10B model leads all open-source models, achieving 69.9 in
major and 58.3 in minor languages. Notably, Apollo-MoE excels in major languages like English, French,
and Spanish, with particularly strong performance in French, and outperforms other models significantly in
low-resource languages like Arabic and Hindi.

Ablation Study Tab. 5 provides a detailed comparison of routing performance across 50 languages, with
two experts routed among 7 linguistic family experts in the Post-MoE model (k=2). It shows that routing
strategies consistently outperform Dense models, with Hybrid-k routing achieving an average major language
accuracy of 54.8 for Qwen2-1.5B, compared to 52.2 for Dense. Additionally, Hybrid-k routing shows a
clear advantage over Top-k routing, particularly in minor languages, where the Qwen2-7B model achieves an
average accuracy of 58.3 with Hybrid-k, compared to 56.7 with Top-k.
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Figure 5: Data Scale Performance.

On the Data Scale To investigate the sensitivity to data scale, we
trained Post-MoE model with Qwen2-0.5B base using a combination
of major languages along with 10%, 30%, 50%, and 100% of the
data from minor languages, corresponding to 200, 600, 1,000, and
2,000 data examples per language, respectively. As shown in Fig. 5,
the model’s performance across various languages improves with in-
creasing data but eventually plateaus. This indicates that the proposed
method is not heavily data-dependent, reaching saturation with as few
as 2,000 data examples; this is especially beneficial for low-resources
languages.

5 RELATED WORK

Mixture-of-Experts and Sparse Upcycling Mixture-of-Experts (MoE) models differ from traditional dense
models by activating only a subset of parameters, or ”experts”, for each input token. This selective activation
reduces computational costs while preserving model capacity. First introduced by Shazeer et al. (2017), MoEs
have since evolved in models like GShard (Lepikhin et al., 2020), Switch Transformers (Fedus et al., 2022),
and Mixtral (Jiang et al., 2024), all of which have shown enhanced performance in large-scale language tasks.
Recent advancements, such as Sparse Upcycling (Komatsuzaki et al., 2022), have efficiently initialized MoEs
by replicating pre-trained dense model parameters across MoE layers, specifically duplicating feed-forward
network (FFN) parameters for each expert. BTX (Sukhbaatar et al., 2024) extends this by upcycling multiple
specialized models, further refining MoE efficiency and specialization.

Multilingual Medical LLMs Recent research has increasingly focused on expanding multilingual medical
data and developing models tailored to linguistically diverse populations. A LLM integrated with machine
translation has been proposed to address the scarcity of multilingual medical datasets (Gangavarapu, 2024).
Furthermore, multilingual medical corpora and benchmarks across six languages have been developed (Qiu
et al., 2024; Wang et al., 2024). Our work builds on these efforts by investigating multilingual patterns and
expanding it to 50 languages.

Multilingual Capability Enhancement Research on Multilingual Models has primarily aimed to enhance
multilingual capabilities and understand their mechanisms. GreenPLM (Zeng et al., 2023) shares the same
motivation with our work to efficiently expand the model’s multilingual capabilities. Efforts have improved
performance through translation (Liang et al., 2023) and cross-lingual alignment (Salesky et al., 2023).
Techniques like cross-lingual transfer (Kim et al., 2017) and continuous training in specific languages have
further advanced LLMs (Cui et al., 2023), while training from scratch shows potential (Muennighoff et al.,
2023). Recent models (Zhao et al., 2023; Nguyen et al., 2024) also exhibit strong multilingual abilities without
explicit language alignment. Tang et al. (2024) and Zhao et al. (2024) employ neuron analysis method (Mu &
Andreas, 2020) to investigate the mechanism, but they typically focus on fewer than seven languages.

6 CONCLUSION

In conclusion, this work advances the development of multilingual medical LLMs by addressing key chal-
lenges in data scarcity and model scalability. We first construct a high-quality medical dataset covering 12
major languages. Subsequently, we propose Hybrid-k routing to explore multilingual training in a modular
manner in MoE. Based on the Hybrid-k routing, we propose a circuits-based paradigm for interpreting infor-
mation flow in multilingual contexts. The circuit analysis reveale the ”Spread Out in the End” mechanism,
based on which we introduced the Post-MoE architecture and demonstrate its superior multilingual capabili-
ties. Furthermore, by introducing language family experts, we efficiently extend Post-MoE’s capabilities to
50 languages with limited data, demonstrating scalability without additional parameters.
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LIMITATIONS

Post-MoE expansion in the last two layers has shown good results. However, our base model for Post-MoE
expansion only goes up to 7B parameters. For larger models, the optimal effect might not be achieved by
expanding just the last two layers; a proportional calculation of layers may be required. Nonetheless, using
the last two layers already yields satisfactory results for the 7B model. Research on MoE at the module level
is still in its early stages. Although Post-MoE demonstrates superior performance across multiple languages,
there is still significant room for improvement in model performance.

Future Work The Language-Specific experts and Hybrid routing are not limited to multilingual scenarios
and provides a modular approach for exploring the internal mechanisms of MoE. By aligning multiple related
tasks with a single expert and using experts as modules for model training, it reduces both parameter count
and computational load while maintaining good performance. The Mixture of Language Family Experts in
the Post-MoE architecture offers an approach for applying the model to a variety of tasks, enabling efficient
expansion to more task scenarios.
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Iñigo Alonso, Maite Oronoz, and Rodrigo Agerri. Medexpqa: Multilingual benchmarking of large language
models for medical question answering. arXiv preprint arXiv:2404.05590, 2024b.

Malaikannan Sankarasubbu Ankit Pal. Openbiollms: Advancing open-source large language models for health-
care and life sciences. https://huggingface.co/aaditya/OpenBioLLM-Llama3-70B,
2024.

Anthropic. https://www.anthropic.com/news/claude-3-haiku, 2024.

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel Artetxe, Satya Narayan Shukla, Donald Husa, Naman
Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and Madian Khabsa. The belebele benchmark: a parallel
reading comprehension dataset in 122 language variants. arXiv preprint arXiv:2308.16884, 2023.

Pavel Blinov, A. A. Reshetnikova, Aleksandr Nesterov, Galina Zubkova, and Vladimir Kokh. Rumedbench:
A russian medical language understanding benchmark. In Conference on Artificial Intelligence in Medicine
in Europe, 2022a. URL https://api.semanticscholar.org/CorpusID:246016223.

Pavel Blinov, Arina Reshetnikova, Aleksandr Nesterov, Galina Zubkova, and Vladimir Kokh. Rumedbench: a
russian medical language understanding benchmark. In International Conference on Artificial Intelligence
in Medicine, pp. 383–392. Springer, 2022b.

11

https://api.semanticscholar.org/CorpusID:269005531
https://huggingface.co/aaditya/OpenBioLLM-Llama3-70B
https://www.anthropic. com/news/claude-3-haiku
https://api.semanticscholar.org/CorpusID:246016223


517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Casimiro Pio Carrino, Jordi Armengol-Estapé, Ona de Gibert Bonet, Asier Gutiérrez-Fandiño, Aitor Gonzalez-
Agirre, Martin Krallinger, and Marta Villegas. Spanish biomedical crawled corpus: A large, diverse dataset
for spanish biomedical language models, 2021.

Junying Chen, Xidong Wang, Anningzhe Gao, Feng Jiang, Shunian Chen, Hongbo Zhang, Dingjie Song,
Wenya Xie, Chuyi Kong, Jianquan Li, et al. Huatuogpt-ii, one-stage training for medical adaption of llms.
arXiv preprint arXiv:2311.09774, 2023a.

Zeming Chen, Alejandro Hernández Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba, Francesco
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A DETAILS OF DATASETS, BENCHMARK

A.1 DATASET COLLECTION

Language Source
Books

English Pile Dataset (Gao et al., 2020)
Chinese MedQA (Jin et al., 2020)
Russian ru-medical-textbooks [Link]
German de-books [Link]
Korean ko-books [Link]

Papers
English PubMed (Roberts, 2001)
Chinese Paper from Chinese Medical Association [Link]
French MORFITT (Labrak et al., 2023c), CLEAR (Grabar & Cardon, 2018)

Spanish Mesinesp (Gasco et al., 2021)
Russian ru-medical-paper [Link]
German Germany part of Multilingual Medical Corpora [Link]

Encyclopedias
〈Multiple〉 〈English, Russian, Hindi, Arabic, German, Italian, Korean, Japanese〉wiki [Link]

French CLEAR (Grabar & Cardon, 2018)
Hindi HHD corpus (Jain & Arora, 2018)

Portuguese pt-medical-wiki [Link]
Dialogues

Chinese HuatuoGPT dataset (Zhang et al., 2023), Huotuo 26M (Li et al., 2023b)
English PMC-Patients (Zhao et al., 2022)
Arabic MAQA (Abdelhay & Mohammed, 2022)

Russian RuMedPrimeData [Link]
Portuguese askD [Link]

Italian MedQuaAD-Italian [Link]
Korean MedGPT-5k-ko [Link], ko-medical-chat [Link]

Japanese Real-MedNLP Test Collection [Link], ja-medial-progress-notes [Link]
Exam

Chinese CMB (Wang et al., 2023), CMExam (Liu et al., 2024), MedQA (Zhang et al., 2018)
English MedQA, Medmcqa (Pal et al., 2022), Pubmedqa (Jin et al., 2019)
Spanish HEAD-QA (Vilares & Gómez-Rodrı́guez, 2019)
French Frenchmcqa (Labrak et al., 2023a)
Italian MedExpQA (Alonso et al., 2024a)

Russian RuMedBench (Blinov et al., 2022a), BioInstructQA (Labrak et al., 2024a)
Japanese IgakuQA (Kasai et al., 2023b)

Korean KorMedMCQA (Kweon et al., 2024)
German BioInstructQA

Guideline
English NICE [Link], PubMed, SPOR [Link]

〈Multiple〉 〈Spanish, German, French〉MSD-instruct [Link]
Korean Korean-guidelines-for-primary-physicians [Link]

Web
Chinese WUdao Dataset [Link]
English C4 Dataset (Raffel et al., 2019)
Spanish CoWeSe (Carrino et al., 2021), medical-eval-pt [Link]

Italian it-medical-corpus [Link], it-biomedical-dataset [Link]
German opus-medical-de-en [Link]
Russian medical-qa-ru-data [Link]

Japanese MedNLP-SC Social Media Corpus [Link]
General

〈Multiple〉 〈French, Spanish, Arabic, Hindi, German, Russian, Italian, Portuguese, Japanese, Korean〉Alpaca [Link], Sharegpt [Link]
Ch,En Alpaca, Sharegpt, WizardLM Dataset

English belebele benchmark (Bandarkar et al., 2023), ai2 arc (Clark et al., 2018), Capybara (Daniele & Suphavadeeprasit, 2023)
Math

〈Multiple〉 MathInstruct (Yue et al., 2023)
Code

English Python-Alpaca [Link]
Chinese Leetcode-ZH-11k [Link]

Table 6: The detailed sources of training dataset.
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A.2 DATASET PROCESSION

Adhering to the established data processing standards, we segmented sentences into chunks, filtered them for
medical relevance, and reformatted them into a QA format with prompt shown in App. C.1. The processing
details are as follows:

Books For English books, we use medical dictionary3 to filter the Pile Dataset and select books where
medical terms account for more than 4% of the total words, resulting in 2,312 medical-related books. For
Chinese books, we follow MedQA to collect medical textbooks included in the five-year and eight-year
medical student training programs in mainland China, finally obtaining 90 books. For Russian books, we use
Russian medical textbooks as the data source. For German medical book data, we first divided the German
book data into multiple blocks with a maximum of 512 characters, then filtered the data using 2,590 highly
relevant German medical terms4, and finally rewrote it into QA form. Regarding Korean medical book data,
we adopt the same method and Korean medical dictionary5 to filter out the medical data from Korean books.

Papers For English papers, we sample the public data in PubMed and obtain 878,241 medical abstracts.
For Chinese papers, we also screen a total of 177,261 abstracts of papers published by the Chinese Medical
Association. For French papers, we use the MORFITT dataset and the scientific article portion of the CLEAR.
For the Spanish paper, we use paper abstracts open sourced by the Mesinesp. For medical literature in German
and Russian, we directly divide the medical data into blocks of 512 and rewrite them into QA format for use
respectively.

Encyclopedias For the English Encyclopedia, we also use the English Medical Dictionary to filter out
36107 medical-related wiki pages from wiki dataset. For the French encyclopedia, we select the encyclopedia
articles part of the CLEAR and filtered6 wiki data for supplementation. For the Hindi encyclopedia, we choose
the HHD corpus, which crawls descriptions of people, diseases, medical consumer products, and symptoms
from Indian websites. For Russian, Hindi, Arabic, German, Italian, and Korean, we filtered wiki data using
medical dictionaries of corresponding languages7. For Portuguese, we directly used the pt-medical-wiki data.
As for Japanese data, we screened wiki using medical dictionaries89 to obtain Japanese medical encyclopedia
data.

Doctor-Patient Dialogues For Chinese, we directly use the HuatuoGPT dataset and the simplified data set
in Huatuo 26M. For English, we construct a multi-turn conversation data set based on PMC-Patients using
ChatGPT with the prompt shown in Fig.8. For Arabic, we extract high-quality questions and answers with
both question and answer lengths greater than 128 from the largest Arabic healthcare question and answer
dataset MAQA. For Russian, we use RuMedPrimeData from outpatient hospital patients. For Portuguese, we
utilize medical Q&A data from askD. For Italian, we employ doctor-patient data from MedQuaAD-Italian.
For Korean, we filter the MedGPT-5k-ko and ko-medical-chat data for medically rich doctor-patient dialogues
with the dictionary. For Japanese, we rewrite QA pairs from Real-MedNLP and medical progress note to
serve as Japanese doctor-patient dialogues.

Exams For the Chinese exam, we collect training sets of CMB, CMExam, and MedQA. For the English
exam, we collect the training sets of MedQA, Medmcqa and Pubmedqa. For the Spanish and French exam,
we select the training set of HEAD-QA and Frenchmcqa separately. For Italian, we use the training portion
defined by MedExpQA as the Italian medical exam data. For Russian, we utilize the training part from

3https://www.nlm.nih.gov/research/umls/new_users/online_learning/LEX_001.html
4https://medlineplus.gov/languages/russian.html
5https://medlineplus.gov/languages/korean.html
6https://medlineplus.gov/languages/french.html
7https://medlineplus.gov/languages/languages.html
8https://sociocom.naist.jp/manbyo-dic-en/
9https://sociocom.naist.jp/hyakuyaku-dic-en/
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RuMedBench and the exam portion from BioiInstructQA. For Japanese, we divided IgakuQA into training
and test parts at a 6:4 ratio, using them as training data for the Japanese medical exam and the Japanese
medical benchmark, respectively. For Korean, we use the training part provided by KorMedMCQA. For
German traning set, we employ German sections MedQA, PubMedQA, MedQA-5-options, and MedMCQA
in BioInstructQA.

Guidelines For English Guidelines, we select data from three sub-items of NICE, PubMed and SPOR in
the clinical guidelines introduced by Meditron (Chen et al., 2023b). Regarding the guidelines for Spanish and
German, we use data from MSD-instruct. Additionally, we incorporate the French sections as supplementary
material for the French guidelines. For the Korean section, we extracted and segmented content in 1024
characters from Korean-guidelines-for-primary-physicians, using the medical dictionary for data filtering.

General For all 12 languages, we use the translation and original data of Sharegpt and Alpaca. For Chinese,
we additionally make use of WizardLM Dataset generated by GPT-4 based on WizardLM Method (Xu et al.,
2023). For English, in addition to adding the WizardLM Dataset, we also add belebele to enhance multi-
language reading comprehension capabilities, ai2 arc to enhance abstract reasoning capabilities, Capybara to
enhance instruction following capabilities.

Web For Chinese, we use the medical dictionary10 to filter out medical-related articles from the Wudao
Dataset. For English, we use the English Medical Vocabulary11 to filter out medical related articles in
C4 Datase. For Spanish, we sampled 10% of CoWeSe Dataset and used the medical-eval-pt data for
supplementation. For Italian, we utilize data from it-medical-corpus and it-biomedical-dataset. For German,
we use the German portion of data from opus-medical-de-en. For Russian, we employ data from medical-qa-
ru-data, which contains 190,335 Russian Q&A posts from a medical-related forum. For Japanese, we use the
medical web data from MedNLP-SC Social Media Corpus.

Math For mathematical abilities, we choose MathInstruct, a composite dataset containing various
mathematics-related tasks and problem formats.

Code We choose Python-Alpaca and Leetcode-ZH-11k respectively to strengthen the ability to solve coding
tasks in Chinese and English.

A.3 BENCHMARK ACROSS 12 MAJOR LANGUAGES

To ensure the reliability of our evaluation, we use publicly available multilingual medical benchmarks
consisting of multiple-choice medical questions, with accuracy as the evaluation metric. For languages with
limited evaluations, following multilingual evaluation method of Llama3 (Dubey et al., 2024) we translate
MMLU (Hendrycks et al., 2020) questions and answers using Google Translate. We employed a random
selection of 3-shot queries to pose questions to the model, followed by answer extraction and evaluation of
the model’s responses. Tab. 7 shows the sources of the 12 multilingual benchmark and the test data samples
are shown in Fig. 6.

Specifically, we follow Med-PaLM2 (Singhal et al., 2023) and select six subcategories in MMLU: Clinical
knowledge, Medical genetics, Anatomy, Professional medicine, College biology, and College medicine. For
MedQA, we choose the 4-options version. For CMMLU, we select seven subdirectories: Anatomy, Clinical
knowledge, College medicine, Genetics, Nutrition, Traditional chinese medicine, and Virology.
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Examples

User: You are a medical doctor answering real-world medical exam questions. Select one correct
answer from A to D.
Question: Rickets of prematurity is associated with:
Options:
(A) Hypocalcaemic convulsions
(B) Use of frusemide diuretic
(C) Vitamin D deficiency in the mother
(D) All of the options given are correct
Assistant:The correct answer is (D).

User: You are a medical doctor answering real-world medical exam questions. Select one
correct answer from A to D.
Question: Diagnosis of iron deficiency can be complicated by concurrent infection since many
markers of iron status are altered by infection. Which of the following combinations of iron status
markers is likely to be found in a person with both iron deficiency and a severe infection?
Options:
(A) Low haemoglobin, high ferritin, high serum transferrin receptors, high hepcidin
(B) Low haemoglobin, low ferritin, high serum transferrin receptors, low hepcidin
(C) Low haemoglobin, low ferritin, normal serum transferrin receptors, high hepcidin
(D) Low haemoglobin, low ferritin, low serum transferrin receptors, high hepcidin
Assistant:The correct answer is (A).

User: You are a medical doctor answering real-world medical exam questions. Select one
correct answer from A to D.
Question: What three factors regulate stroke volume?
Options:
(A) Blood volume, preload, and afterload.
(B) Preload, contractility, and afterload.
(C) Contractility, blood volume, and blood pressure.
(D) Cardiac output, contractility, and blood volume.
Assistant: The correct answer is (B).

User: You are a medical doctor answering real-world medical exam questions. Select one
correct answer from A to D.
Question: A lesion causing compression of the facial nerve at the stylomastoid foramen will cause
ipsilateral
Options:
(A) paralysis of the facial muscles.
(B) paralysis of the facial muscles and loss of taste.
(C) paralysis of the facial muscles, loss of taste and lacrimation.
(D) paralysis of the facial muscles, loss of taste, lacrimation and decreased salivation.
Assistant:

Figure 6: Sample English Evaluation Data (Similar to Other Languages).
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Table 7: Benchmark across 12 Languages.

Language Benchmark Composition

Chinese MedQA-MCMLE (Zhang et al., 2018), Medical parts of CMMLU (Li et al., 2023a)
English MedQA-USMLE (Zhang et al., 2018), MedMCQA (Pal et al., 2022)

Medical parts of MMLU (Hendrycks et al., 2020)
Spanish HEAD-QA (Vilares & Gómez-Rodrı́guez, 2019)
Russian RuMedBench (Blinov et al., 2022b)
Korean KorMedMCQA (Kweon et al., 2024)

Japanese IgakuQA (Kasai et al., 2023a)
German MMLU part of BioInstructQA (Labrak et al., 2024b)

Portuguese MMLU part of BioInstructQA (Labrak et al., 2024b)
Italy MedExpQA (Alonso et al., 2024b), Translated medical parts of MMLU

Arabic Translated medical parts of MMLU
Hindi Translated medical parts of MMLU

French FrenchMedMCQA (Labrak et al., 2023b), Translated medical part of MMLU

Table 8: Performance of Diverse Models across 12 Languages, and the comparison before and after training
of base models.

Model Size Ar De En Es Fr Hi It Ja Ko Pt Ru Zh Avg.
Closed-source Models

Gemini-1.5 Pro - 74.9 80.4 63.2 81.9 87.5 75.4 69.1 68.9 78.6 79.9 64.8 70.0 74.6
GPT-4 Turbo - 79.8 84.7 68.5 85.8 89.7 72.8 80.9 77.5 79.5 87.0 78.1 68.9 79.4

Claude-3 Opus - 78.8 87.2 69.8 87.9 90.7 78.6 84.6 82.1 85.2 86.7 80.1 70.9 81.9
GPT-4o - 80.9 90.5 70.5 90.7 93.5 86.9 85.1 89.5 90.2 90.8 78.5 80.9 85.7

GPT-4o mini - 74.1 80.7 70.5 82.3 84.7 75.2 77.7 76.4 77.2 82.2 80.9 67.9 78.2
Open-source Models

MMed-Llama-3 8B 29.5 40.3 54.7 63.6 62.0 38.8 20.7 47.3 20.3 25.9 62.5 16.7 40.2
OpenBioLLM 8B 27.5 58.1 49.6 59.2 53.3 44.4 41.5 39.1 46.7 27.0 64.8 41.8 46.1

Llama3 8B 33.5 55.9 48.4 60.5 58.4 48.0 39.9 38.9 49.5 51.5 63.3 43.6 49.3
Base Models before and after Training

Gemma2 2B 34.6 39.5 47.7 46.7 37.1 37.7 32.4 30.3 34.2 38.3 62.5 36.1 39.8
Aft. 2B 44.1 51.0 59.6 50.9 47.3 39.4 46.8 44.5 48.2 53.5 62.5 64.5 51.0

Phi-3 3.8B 18.3 41.0 43.4 40.0 40.8 19.3 34.6 17.0 18.1 37.8 57.4 22.6 32.5
Aft. 3.8B 36.5 60.7 66.5 59.4 57.0 36.4 59.0 27.1 46.4 63.3 59.8 65.4 53.1

Qwen2 7B 45.7 54.0 58.6 60.5 58.6 35.4 44.7 45.4 52.6 48.0 77.3 81.5 55.2
Aft. 7B 54.8 71.2 62.6 69.7 70.4 55.0 65.4 63.5 67.7 66.1 78.1 85.4 67.5

Gemma2 9B 60.7 69.9 59.1 71.0 71.3 63.2 70.9 58.0 66.3 72.6 71.5 56.5 65.9
Aft. 9B 65.2 78.5 77.2 72.9 75.6 65.8 75.6 67.8 70.6 77.5 69.9 76.9 72.8

A.4 MORE EXPERIMENTAL ANALYSIS ON THE DATASET

To further validate the quality and effectiveness of the data, we increase both model diversity and parameter
count.

Experiment Settings For Baselines, We select Gemma2-2B (Team et al., 2024b), Phi-3-mini-4k (Abdin
et al., 2024) and Qwen2-7B (Yang et al., 2024) as base models. We simultaneously selected the closed-source
models, Claude3 Opus (Anthropic, 2024), and GPT-4o (Achiam et al., 2023), as well as highly competitive

10http://thuocl.thunlp.org/#yixue
11https://www.nlm.nih.gov/research/umls/new_users/online_learning/LEX_001.html

22

http://thuocl.thunlp.org/#yixue
https://www.nlm.nih.gov/research/umls/new_users/online_learning/LEX_001.html


1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2025

open-source models MMed-Llama-3-8B (Qiu et al., 2024), LLama3-OpenBioLLM-8B (Ankit Pal, 2024),
and LLama3-8B (Dubey et al., 2024) as baselines. For Training, We use full-parameter fine-tuning with a
learning rate of 1e-5 for the 7B and 9B models, and a learning rate of 1e-4 for smaller models. All model use
a batch size of 32 and a sequence length of 4096 for training on 8x NVIDIA A800-SXM4-80GB GPUs.

Result Analysis As shown in Tab. 8, the performance of each model significantly improved after training
with 12 major languages data, further validating the effectiveness of data quality. The fine-tuned models
excelled in the medical domain, significantly surpassing open-source medical models with similar parameter
counts. Additionally, the medical model fully fine-tuned based on Gemma2-9B performed nearly as well as
large-scale closed-source models.

A.5 MINOR LANGUAGES DATASET&BENCHMARK

To assess the model’s generalization capability in multilingual contexts, we selected 38 minor languages with
12 major languages, totaling 50 languages.

• Major Languages English, Chinese, German, Portuguese, Spanish, French, Russian, Hindi, Italian,
Korean, Japanese, Arabic

• Minor Languages Mongolian, Thai, Vietnamese, Lao, Malagasy, Cebuano, Sundanese, Ilokano,
Dogue, Croatian, Galician, Czech, Corsican, Luxembourgish, Latin, Ukrainian, Bosnian, Bulgarian,
Esperanto, Maithili, Serbian, Albanian, Slovak, Danish, Sanskrit, Norwegian, Guarani, Scottish
Gaelic, Kurdish (Sorani), Maltese, Hebrew, Lingala, Bambara, Swahili, Sepeti, Igbo, Kinyarwanda,
Hausa

Minor Languages Dataset Given the extremely limited data for these minor languages, we extracted 2,000
samples from English data and used Google Translate to create training sets for each language.

Minor Languages Benchmark For minor languages with limited evaluations, following multilingual
evaluation method of Llama3 (Dubey et al., 2024) we translate medical-clinical part of MMLU (Hendrycks
et al., 2020) questions and answers using Google Translate. We employed a random selection of 3-shot
queries to pose questions to the model, followed by answer extraction and evaluation of the model’s responses.

B GENERAL EXPERIMENT SETUP

In this section, we describe the precise setup for our dense and MoE models. In this work, all our experiments
follow the settings described below, with any specific settings mentioned directly in the main text.

Training All model use AdamW, a batch size of 32, a sequence length of 4096 and a cosine decay learning
rate schedule with a linear warmup of proportion 0.3 for training on 8x NVIDIA A800-SXM4-80GB GPUs.
For model initialization and data sampling, we set the random seed to 42. For MoE models, We fine-tune
them with the same settings as before after sparse upcycling from a dense model. For all routing strategy in
MoE models, router parameters are initialized randomly with a zero-mean normal distribution with standard
deviation 0.02. We set the learning rate of the dense model to 1e-4 and the learning rate of the MoE model to
1e-5.

Evaluation To measure model performance, we extract the options from model output and calculate the
accuracy with the reference answer. All evaluations use 3-shot examples. The optimal value is selected based
on the average accuracy across three tests for each benchmark.
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C PROMPTS

C.1 PROMPTS FOR GENERATING QA PAIRS FROM TEXTS

Prompts

Prompt for Generating Question:
Please create a <question >that closely aligns with the provided <text>. Ensure that the
<question>is formulated in English and does not explicitly reference the text. You may incorporate
specific scenarios or contexts in the <question>, allowing the <text>to serve as a comprehensive
and precise answer.
<text>: {text}
<question>:

Prompt for Generating Answer:
You are Apollo, equipped with in-depth knowledge in medicine. Your task is to directly answer the
user’s <question>in English. In formulating your response, you must thoughtfully reference the
<reference text>, ensuring that your reply does not disclose your reliance on <reference text>.
Aim to provide a comprehensive and informative response, incorporating relevant insights from
<reference text>to best assist the user. Please be cautious to avoid including any content that might
raise ethical concerns.
<question>: {question}
<reference text>: {reference}
<reply>:

Figure 7: Prompts for Generating QA Pairs from Texts. We show the English version of Prompt, and other
languages are similar.

C.2 PROMPT FOR GENERATING DOCTOR-PATIENT DIALOGUES

Prompt

<text>{text}</text>
Please create some dialogues between patients and doctors in English based on the above text. The
format is:
<Patient>Patient’s question</Patient>
<Doctor>Doctor’s answer</Doctor>
Both patient questions and doctor responses are as complex and detailed as possible.

Figure 8: Prompt Template for Generating Doctor-Patient Dialogues

D TOKEN EXPERT ROUTING CONSTRUCTION

Due to the varying number of tokens required for different languages, sentences of the same length may
have different token counts depending on the language. We randomly selected varying amounts of data from
benchmarks in different languages. After removing common English characters, the data was used as a test
set for expert routing analysis, ensuring that each language had 80,000 tokens. Fig. 9 shows sample test data
for several languages; the format is the same for other languages.
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Examples

English
You are a medical doctor answering real-world medical exam questions. Select one correct answer.
Question: Diagnosis of iron deficiency can be complicated by concurrent infection since many
markers of iron status are altered by infection. Which of the following combinations of iron status
markers is likely to be found in a person with both iron deficiency and a severe infection?
Options:
Low haemoglobin, high ferritin, high serum transferrin receptors, high hepcidin
Low haemoglobin, low ferritin, high serum transferrin receptors, low hepcidin
Low haemoglobin, low ferritin, normal serum transferrin receptors, high hepcidin
Low haemoglobin, low ferritin, low serum transferrin receptors, high hepcidin
The correct answer is Low haemoglobin, high ferritin, high serum transferrin receptors, high hepcidin.

French
Vous êtes un médecin et répondez à des questions d’examen médical du monde réel. Veuillez choisir
une bonne réponse.
question: Quelle est la pathologie qui s’accompagne d’un hypercorticisme?
Possibilités:
Maladie d’Addison.
Maladie de Cushing.
Syndrome de Conn.
Maladie de Basedow.
Syndrome de Barterr.
La bonne réponse est Maladie de Cushing.

Portuguese
Você é um médico que responde a perguntas de exames médicos do mundo real. Escolha uma
resposta correta
pergunta:carga de energia da célula é:
Opções:
a diferença entre a carga no exterior e no interior de uma célula.
gerado pela ATPase sódio-potássio.
a taxa geral de uso de energia pela célula
o grau em que o pool total de nucleotı́deos de adenina está fosforilado.
A resposta correta é o grau em que o pool total de nucleotı́deos de adenina está

Germany
Sie sind ein Arzt, der Fragen zu medizinischen Untersuchungen aus der Praxis beantwortet. Bitte
wählen Sie eine richtige Antwort
Frage: Was erklärt am besten, wie Mutationen in der DNA zu einer neuen Phänotyp-Expression
führen können?
Optionen:
Ein anderes Polypeptid wird produziert.
Die Polarität von tRNA wird das Gegenteil von der von DNA.
Nukleinsäuren sind methyliert.
Das Gen wird jetzt in Richtung 3’ bis 5’ gelesen.
Die richtige Antwort ist Ein anderes Polypeptid wird produziert.

Figure 9: Test Data Example in Different Languages. Other Languages are Similar.
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Table 9: Continue Fine-tuning with Bn and Am Data Based on Dense and PostMoE Models.

Models Avg. Accuracy Lang-Spec. Accuracy
Major Minor Bn Am

Based on Qwen2-0.5B
Dense 39.2 33.2 36.4 31.5
+Bn 38.2 (-1.0) 33.1 (-0.1) 37.5 (+0.9) -
+Am 38.1 (-1.1) 32.9 (-0.3) - 33.9 (+2.4)
ApolloMoE 40.5 34.6 37.8 33.0
+Bn 40.6 (+0.1) 34.6 (-0.0) 39.7 (+1.9) -
+Am 40.5 (-0.0) 34.6 (-0.0) - 36.0 (+3.0)

Based on Qwen2-1.5B
Dense 52.2 43.7 44.0 35.0
+Bn 49.1 (-3.1) 39.2 (-4.5) 50.8 (+6.8) -
+Am 47.7 (-4.5) 39.1 (-4.6) - 36.4 (+1.4)
ApolloMoE 54.8 44.9 50.4 38.6
+Bn 54.0 (-0.8) 44.9 (-0.0) 55.7 (+5.3) -
+Am 54.8 (-0.0) 44.9 (-0.0) - 41.9 (+3.3)

Based on Qwen2-7B
Dense 69.0 56.7 66.3 35.7
+Bn 68.4 (-1.0) 55.7 (-1.0) 68.9 (+2.6) -
+Am 68.3 (-1.1) 55.3 (-1.4) - 38.2 (+2.5)
ApolloMoE 69.9 58.3 67.1 40.5
+Bn 69.6 (-0.3) 58.5 (+0.2) 69.5(+2.4) -
+Am 69.5 (-0.4) 58.3 (-0.0) - 42.5 (+2.5)

E ADVANTAGES OF GENERALIZABILITY

The primary method proposed in this paper, PostMoE with language family experts, offers the advantages of
generalizability, enabling adding other languages efficiently and effectively.

Experiments To provide a more intuitive understanding, we selected two additional languages not included
in the 50 languages: Bengali (Bn) and Amharic (Am), which belong to the Indo-European and Afro-Asiatic
language families respectively, to demonstrate the model’s efficient generalization capability. Specifically,
we processed 2,000 data samples for Bengali and Amharic and continued fine-tuning the Dense models and
ApolloMoE models.

Results As shown in Tab.9, the experimental results demonstrate the clear advantages of the proposed method
in adapting to additional languages. For performance improvement in newly added languages, the ApolloMoE
model outperforms the Dense model across all scales, with training-related gains also showing advantages in
most cases. For preserving the performance of original languages, the ApolloMoE model maintains or even
improves performance across nearly all scales, whereas the Dense model generally experiences a decline in
performance.

F MECHANISTIC INTERPRETABILITY

Mechanistic Interpretability Circuit analysis has emerged as a new paradigm of model analysis, providing an
in-depth mechanistic interpretability of the internal information flow and hierarchical structure of models (Olah
et al., 2020b; Merullo et al., 2024). Additionally, the study of modularity (Meng et al., 2022; Wang et al., 2022)
and sparcity (Olsson et al., 2022) within models offers insights into constructing specialized submodules,
which helps to organize information sharing and feature isolation more effectively. Component-level detailed
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analysis (Olsson et al., 2022; Vig et al., 2020; Singh et al., 2024) delves into the contributions of attention
heads, neurons, and other components to model behavior. Lastly, causal mechanism analysis (Vig et al.,
2020; Geiger et al., 2024) provides a method for explaining the relationships between information flow and
functionality, helping to uncover the key mechanisms within models.

G DIFFERENT LANGUAGES FOR HYBRID ROUTING

The Hybrid routing distribution is shown in Fig. 10. It explains how the model allocates tasks of processing
different languages among its internal experts, and how this allocation changes across different network
layers.

H COMPLETE RESULTS ON 12 MAJOR AND 38 MINOR LANGUAGES

To comprehensively evaluate the performance of the proposed model across different languages, Tab. 10
presents the accuracy results on 12 major languages and 38 low-resource languages. We showcase the
performance of MoE models with various routings (in Sec.3.1.2) and the Apollo-MoE series across different
base model sizes (e.g. 0.5B, 1.5B, and 7B parameters in Sec.4) on these languages. The models achieve
accuracy on par with that of the major languages, even for low-resource languages, highlighting the model’s
strong generalization capabilities when handling resource-scarce languages.
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Figure 10: Different Languages for Hybrid Routing.
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Table 10: Vital Model Performances (Accuracy) on Major and Minor Languages.

Langs Qwen2-0.5B Lang-Spec. Top2 Hybrid2 Apollo-MoE-0.5B Apollo-MoE-1.5B Apollo-MoE-7B
Zh 45.4 42.8 53.2 53.6 51.3 67.8 84.1
Ko 19.2 27.8 35.9 36.2 35.2 52.9 68.4
Ja 24.0 21.4 30.5 32.4 26.9 45.7 62.4

Ne 29.2 23.9 29.2 29.2 27.3 40.2 56.1
Th 33.4 32.2 26.1 28.8 39.0 45.5 59.8
Vi 34.1 27.1 30.9 29.1 35.9 45.6 61.1
Lo 34.1 27.3 28.0 30.3 34.1 37.5 45.8

Mg 30.7 22.7 27.7 34.1 32.2 41.7 46.2
Ceb 36.7 26.5 28.8 35.2 32.2 50.8 67.0

Su 32.2 30.7 33.0 35.2 34.8 48.5 67.8
Ilo 29.2 26.1 26.1 28.8 32.6 46.2 61.0

Doi 27.3 24.6 22.7 23.5 29.9 41.3 50.8
En 39.3 39.1 43.7 44.1 45.4 56.5 73.1
De 27.4 28.6 36.9 37.2 38.2 54.8 73.5
Pt 26.3 31.0 34.8 34.3 37.3 57.3 73.8
Es 32.9 33.3 38.9 40.0 39.8 53.5 69.4
Fr 21.3 16.5 39.9 40.7 38.4 53.3 72.4

Ru 46.9 52.3 58.2 58.8 64.1 72.9 74.2
It 20.7 24.5 37.7 38.9 39.9 54.4 71.9

Hr 32.6 26.9 31.8 34.1 35.6 48.9 67.0
Gl 36.0 23.9 37.9 38.6 40.2 56.8 71.6
Cs 34.5 26.9 32.6 32.6 36.4 54.2 67.0
Co 35.2 20.8 36.0 35.2 44.3 56.1 70.8
La 30.3 20.8 29.5 34.8 37.5 48.5 60.6
Uk 31.5 26.5 33.5 30.9 29.0 35.4 53.3
Bs 31.1 25.0 32.2 36.4 37.9 48.9 64.0
Bg 31.1 28.8 35.6 36.0 31.1 41.7 60.2
Eo 28.8 22.0 28.4 31.4 34.5 45.8 62.9

Mai 28.8 25.0 26.1 28.0 28.8 42.8 59.8
Sq 28.4 22.0 30.3 30.7 31.4 40.5 58.3
Da 33.3 25.4 30.7 36.4 36.7 55.3 67.8
Sa 29.2 28.0 27.3 30.3 25.0 40.2 54.5
No 33.7 25.8 27.3 31.8 33.7 47.3 67.8
Gn 30.7 25.4 28.0 36.0 34.1 45.8 56.1
Sr 30.7 28.0 33.0 34.8 17.8 33.7 39.4
Sk 34.1 27.7 35.2 34.1 38.3 50.8 67.0
Gd 31.8 23.1 29.9 30.3 33.7 45.8 50.8
Lb 35.2 24.6 28.8 30.7 38.3 54.2 67.8
Hi 32.9 33.3 38.9 40.2 39.8 53.5 69.4
Ar 27.3 28.8 34.5 35.1 36.3 47.2 58.3

Ckb 26.9 26.1 31.8 31.8 31.8 37.9 48.1
Mt 25.8 24.6 32.2 30.3 25.0 47.7 60.2
He 34.1 27.9 29.0 32.2 37.0 43.5 64.0
Ln 31.8 26.1 29.9 27.7 33.7 43.9 53.4

Bm 31.1 28.0 24.2 29.9 29.2 42.4 40.2
Sw 30.7 27.3 30.3 33.0 37.5 42.0 46.2

Nso 29.5 29.9 27.3 31.8 34.5 40.9 45.8
Ig 30.3 27.3 28.0 30.3 36.0 44.3 49.6

Rw 27.3 27.3 29.9 29.5 36.7 34.5 34.1
Ha 31.1 31.8 26.5 30.7 26.9 39.0 37.1
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