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Abstract

Recent advancements in large language models001
(LLMs) have significantly enhanced their abil-002
ity to understand both natural language and003
code, driving their use in tasks like natural004
language-to-code (NL2Code) and code sum-005
marization. However, LLMs are prone to hal-006
lucination—outputs that stray from intended007
meanings. Detecting hallucinations in code008
summarization is especially difficult due to009
the complex interplay between programming010
and natural languages. We introduce a first-of-011
its-kind dataset with ∼10K samples, curated012
specifically for hallucination detection in code013
summarization. We further propose a novel014
Entity Tracing Framework (ETF) that a) uti-015
lizes static program analysis to identify code016
entities from the program and b) uses LLMs to017
map and verify these entities and their intents018
within generated code summaries. Our experi-019
mental analysis demonstrates the framework’s020
effectiveness, leading to a 73% F1 score. This021
approach provides an interpretable method for022
detecting hallucinations by grounding entities,023
allowing us to evaluate summary accuracy.024

1 Introduction025

Hallucination in natural language processing is de-026

fined as a condition in which a language model027

produces a text that is either incoherent or does028

not faithfully represent the provided source input029

(Ji et al., 2023). Similarly, in the context of code030

summarization, hallucination can be defined as a031

condition in which the generated summary does not032

accurately capture the intent and implementation033

details of the given input code.034

Hallucination can originate from a combination035

of factors, where one common reason could be the036

misinterpretation of code entities. This misunder-037

standing can impact the model’s ability to interpret038

the intended functionality of the code, resulting in039

an inaccurate portrayal of its purpose. For instance,040

consider the Example 1, where the intention of the041

public RowBuilder int16(String name){
ColumnInt16 column =
new ColumnInt16(_columns.size(), name

, _offset);
_offset += column.length ();
_columns.add(column);
return this;}

Summary: ....... This method is used to add a new col-
umn of data type int16 (16-bit integer) to the existing data
structure. It creates a new ColumnInt16 object with the
given name and size (16 bits), updates the offset value to
accommodate the new column............

Example 1 (LLama3-70B): Confused Data Type

int16 java method is to create a new 16-bit integer 042

column (ColumnInt16) with a specified name, up- 043

date the position for the next column, add it to the 044

list of columns, and then return the RowBuilder 045

object. However, the generated explanation intro- 046

duces a non-existent int16 datatype and proceeds 047

to discuss the rest of the logic as if it were valid. 048

This could mislead a novice Java developer into 049

believing that an int16 datatype exists in Java. Fur- 050

thermore, several large language models (LLMs) 051

like LLaMA and Granite failed to detect this hallu- 052

cination. One reason could be that int16 is a valid 053

datatype in other programming languages such as 054

C, C++, C#, and Go, causing both humans and 055

LLMs to confuse it with learning from those lan- 056

guages. Similarly, in the example shown in Figure 057

1, the java method getJobID() takes “jobName" 058

as an argument and simply returns -1. The sum- 059

mary generated by the model provides a detailed 060

explanation, including how the method getJobID() 061

connects to the database and attempts to retrieve 062

the jobID using the given jobName. Additionally, 063

the summary mentions it stores the “jobStatus" in 064

a variable. Clearly, the generated summary has no 065

supporting entities in the code for db access and the 066

model is relying on the method name to hallucinate 067

a plausible summary of the method. 068

In this work, we study different factors that can 069
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Figure 1: Proposed Methodology: This diagram illustrates our end-to-end Entity Tracing Framework (ETF), which
takes source code and a corresponding summary as input and returns if the summary is hallucinated or not. First,
we use code parsers to extract entities from the source code and employ large language models (LLMs) to identify
entities from the summary. Next, we apply string-based heuristics to match entities from the summary to the code.
Following this, an LLM verifies the accuracy of each entity’s description by cross-referencing the source code with
relevant sentences in the summary. This process enables the localization of hallucinated content in the summary,
ultimately enhancing its interpretability.

lead to hallucination and list down a taxonomy to070

map the common causes easily. Noting a lack of071

datasets to reliably research this topic. Therefore,072

we create a first-of-its-kind dataset for studying073

hallucination in code summarization with 411 sum-074

maries generated by seven different large language075

models, broken into 9933 entity-level samples.076

This dataset consists of code and a corresponding077

summary describing the code. The annotation con-078

sists of a) NER, b) Entity Description Verification,079

and (c) Overall Summary Quality (not focusing on080

completeness or conciseness). We then introduce a081

framework that evaluates the correctness of the gen-082

erated summary. For this, we verify if the entities083

discussed in the summary are present in the code084

and correctly described in the summary. The frame-085

work leverages code parsers like javalang1 to list086

the different entities in the code snippet and prompt-087

based approaches to detect entities in summary. We088

note that detecting entities in the generated sum-089

mary is more difficult due to the high degree of090

polysemy (Tabassum et al., 2020). For example,091

entities like "list", "while", "if", etc, can be a code092

entity or natural language entities. This necessi-093

tates our reliance on large language models with094

high reasoning capabilities for detecting entities095

on the summary side. We then map the detected096

entities from the summary to code by using string-097

matching heuristics. The sentences with unmapped098

entities can be considered as ungrounded (source099

1https://github.com/c2nes/javalang

of extrinsic hallucination). For each mapped entity, 100

we then have a tuple <code, entity, intent-related 101

sentence>, where the intent-related sentence can be 102

considered as the sentence in summary mentioning 103

the entity. The final step is to verify each tuple from 104

the summary for intrinsic hallucination to assess 105

the correctness of the code summary. Our exper- 106

iments demonstrate the importance of localizing 107

entities in the summary for effective hallucination 108

detection. Our contributions are : 109

• A taxonomy covering diverse reasons that 110

might lead to hallucination in the code sum- 111

marization (Figure 2). 112

• A novel dataset2 for studying hallucination 113

detection in code summarization, featuring 114

411 summaries from 7 LLMs and 10K entity- 115

level samples (Table 1) with an explanation of 116

causes for hallucination as per taxonomy. 117

• A first-of-its-kind approach for entity-level 118

hallucination detection in code summarization 119

inspired by the insights from human behaviour 120

during code reviews leading to a performance 121

of 73% F1 score (Table 2). 122

2 Related Work 123

Recent advances in the NLP community have wit- 124

nessed significant improvements in hallucination 125

detection pipelines. In this section, we discuss 126

some of the works that are relevant to ours. 127
2We plan to open source the Data and Code
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Hallucination in Natural Langauge: Rawte128

et al. (2024); Sahoo et al. (2024) review recent129

advances in hallucination detection in natural lan-130

guage, emphasizing its practical significance. Re-131

cently, prompt-based methods (Arora et al. (2022),132

Manakul et al. (2023), Agrawal et al. (2023), Dhu-133

liawala et al. (2023)) are being used to detect hal-134

lucinations in the text produced by LLMs. Xiao135

and Carenini (2022) and Zhang et al. (2022) at-136

tempt to address entity-level verification in natural137

language inputs. Both of these works involve im-138

proving the correctness of natural language sum-139

maries and do not discuss anything in the context140

of code. We note that most of the hallucination141

detection frameworks (Manakul et al., 2023; Arora142

et al., 2022; Dhuliawala et al., 2023; Valentin et al.,143

2024; Rebedea et al., 2023) in natural language do144

not enforce reference text for grounding. In our145

setup of code summarisation, the generated sum-146

mary has to be evaluated with respect to a reference147

text (the code snippet). Therefore, neccessiating148

an approach which could compare the code sum-149

mary to the code snippet. Maynez et al., 2020; Ji150

et al., 2023 discuss further fine-graining of halluci-151

nation in natural language as intrinsic and extrinsic152

hallucination. More specifically, Intrinsic halluci-153

nation occurs when the given text contradicts the154

reference, while Extrinsic hallucination happens155

when the text cannot be verified against the refer-156

ence. We use a similar convention in our paper.157

Hallucination in Code Generation: The code158

generation space has captured significant attention159

due to its practical significance in software devel-160

opment. (Jiang et al., 2024b) discusses recent de-161

velopments in code generation and suggests the162

importance of addressing hallucination for improv-163

ing the reliability of LLMs. Liu et al. (2024) stud-164

ies hallucination in code generation and proposes165

a categorization that encompasses five categories166

of hallucinations based on the conflicting objec-167

tives and varying degrees of deviation observed in168

code generation. Tian et al., 2024; Agarwal et al.,169

2024; Spracklen et al., 2024 advanced the field with170

datasets and frameworks addressing hallucination171

in code generation. These studies highlight that172

while LLM-generated code may be syntactically173

correct and semantically plausible, it often fails to174

execute as intended or meet requirements.175

Despite progress in hallucination detection, code176

summarization remains underexplored. Kang et al.,177

2024 and Zhang, 2024 focused on inconsistencies178

in comment generation, addressing specific aspects179

like design constraints and parameter types, but 180

their methods face challenges due to reliance on 181

execution environments. In contrast, our approach 182

validates the full functionality of generated outputs, 183

independent of external dependencies, offering a 184

more reliable solution by grounding entities in the 185

input code and verifying their intent. 186

3 Datasets 187

To create the hallucination dataset for code summa- 188

rization, we consider code snippets from Java pro- 189

gramming language and CodeXGLUE (Lu et al., 190

2021) – Code-To-Text dataset. We focused on Java 191

programming language due to its widespread rele- 192

vance in the industry. It offers a rich set of entities 193

(such as classes, methods, and variables) due to 194

its structured design and strict typing system. The 195

dataset was annotated by 8 annotators who are ex- 196

perts in Java and held at least a Master’s degree 197

in Computer Science, with some having a PhD in 198

the field. On average, the annotators had 4+ years 199

of experience in Java programming. We report the 200

statistics in Table 1 and describe the data curation 201

process below: 202

Summary Generation: We generate summaries 203

from CodeXGLUE by prompting seven different 204

LLMs (Appendix A) with 600 code snippets. By 205

producing multiple summary variants, we can as- 206

sess hallucination generation by different LLMs 207

and evaluate hallucination detection techniques un- 208

der varied conditions. We present quantitative re- 209

sults (Table 3) and qualitative analysis in Section 6. 210

During initial annotation, we found that annotators 211

spent considerable time verifying summaries, often 212

requiring online documentation searches, leading 213

to an average annotation time of 30 minutes or 214

more per summary. To ensure feasibility, we ran- 215

domly prune samples and use ∼ 10% of the data 216

for the final hallucination annotation task (Table 1). 217

Named Entity Recognition Since our frame- 218

work involves tracing entities from summary to 219

code, we perform NER of the summaries based on 220

the tagset suggested in Tabassum et al. (2020) ( 221

prompt in Appendix 5). 222

Hallucination Labeling: For each detected 223

code entity in a summary, all sentences describ- 224

ing that entity are considered relevant. To account 225

for the scenario where the relevant sentence can 226

be noisy, we introduced a third label, "IRRELE- 227

VANT", which can be used to evaluate the perfor- 228

mance of the intent-detection module and removed 229
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Category Count Percentage (%)
Summary Level Classification

Hallucinated 130 31.63%
Not Hallucinated 281 68.36%
Total Summaries 411 100%

Entity Level Classification
CORRECT 9024 90.84%
INCORRECT 303 3.05%
IRRELEVANT 606 6.11%
Total Entities 9933 100%

Table 1: Overall Data Statistics

during the preprocessing. Thus, we obtain tuples230

of (code, entity, relevant sentences) for each entity.231

A total of 9933 such tuples, sampled from 441 sum-232

maries, were selected for human annotation (hired233

based on volunteering) to detect hallucinations.234

Out of these, 4354 tuples (from 222 summaries)235

were independently reviewed by two different sets236

of annotators, leading to a Cohen Kappa score of237

0.72, implying high agreement. The conflicts were238

resolved by two independent meta-annotators. The239

annotators were asked to evaluate the overall sum-240

mary by assigning a label of ‘GOOD’, ‘FAIR’, and241

‘POOR" We observe that, on average, 1.33 entities242

were marked as hallucinated for the summaries243

rated as ’FAIR’ or ’POOR’. Therefore, we con-244

sider a summary as hallucinated if at least one of245

the entities is hallucinated. After pre-processing,246

we consider the instance with labels "CORRECT"247

and "INCORRECT" in human data and treat the248

"IRRELEVANT" label predicted by the model as249

"INCORRECT". We provide the complete annota-250

tion guideline in Appendix E.2.251

4 Categorization of Factors for252

Hallucination in Code Summarization253

In this section, we describe the various factors that254

could lead to hallucination in code summaries (Fig-255

ure 2) based on what we learned from the anno-256

tation process. This classification, based on the257

underlying factors of hallucination, offers insights258

into the generative behaviors of language and code259

models. We describe these categories of halluci-260

nation factors below and discuss their statistical261

analysis in Figure 5.2.262

HC1: Based on Identifier Name Bias: Name263

Bias refers to the tendency of language models to264

rely on identifier names when interpreting code.265

We classify this bias into three subcategories based266

on its source: 1)variables, 2)functions, 3)libraries. 267

The model can misinterpret code due to the linguis- 268

tic characteristics of these entity names. As the 269

semantics of the code is defined by the underly- 270

ing logic rather than their lexical meaning of enti- 271

ties, this may lead to hallucination. In the example 272

shown in Figure 1, the model (Granite-20B) incor- 273

rectly assumes that getJobID is about retrieving a 274

job ID, based purely on their names, even though 275

the actual code logic suggests otherwise. 276

HC2: Insufficient knowledge: This involves 277

scenarios where the model generates incorrect sum- 278

maries due to lack of knowledge. This may include 279

an incorrect explanation of the imported libraries 280

that the model did not see in its training data, in- 281

correct information about the keyword, etc. We 282

further divide this category into two parts: 283

1) Contextual code:This occurs when the model 284

fails to correctly explain the code, often because 285

it has not encountered the functionality of code 286

during training or is working with a low-resource 287

language like COBOL, where fundamental rules 288

may be misrepresented in the summary. 289

2) Non-contextual code involves the scenario 290

when the input does not contain the complete code 291

and mentions an unseen library or an unknown 292

construct whose functionalities are not understood 293

by the model. For example, in the code sample 294

shown in the HC2 Example, the model incorrectly 295

describes the purpose of SQLException. 296

public String getString (int
columnPosition) throws

SQLException {
return (String) resultSet.

getObject(columnPosition);}

Summary: ...The method first checks if the ResultSet
object is null. If it is, a SQLException is thrown. . . .

HC2: Granite-20B insufficient knowledge
297

HC3: Code Complexity: This pertains to the 298

model’s tendency to produce incorrect code sum- 299

maries due to high code complexity. This may stem 300

from the model’s insufficient reasoning capabilities 301

to understand the code or the misinterpretation of 302

user instructions. Key factors contributing to com- 303

plexity include: 1) Length: Longer code is more 304

complex and involves more interdependencies with 305

more potential points of failure. 2) Lexical Com- 306

plexity: Complex vocabulary, including diverse 307

operands and operations, increases the number of 308

elements to track and understand. 3) Logical Com- 309

plexity: Code with high cyclomatic complexity, 310
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Figure 2: Taxonomy of hallucination in code summarization based on the causes of hallucination. We start with
four broad categories and then present a fine-grained classification of each category.

multiple paths, or distant method invocations in-311

creases the challenge of comprehension.312

public <V>V execute(RedisCallback <V>
cb) { Jedis jedis = jedisPool.
getResource ();

boolean success = true;
try {return cb.execute(jedis);}
catch (JedisException e) {

success = false;
if (jedis != null){

jedisPool.returnBrokenResource(jedis)
;} throw e;

} finally { if (success) { jedisPool.
returnResource(jedis);}}}

Summary: ...it then returns the ‘jedis" object to the pool
using the ‘returnBrokenResource" method if the ‘success"
variable is ‘false"...

HC3: Codellama-7B confusion with conditions

In the code snippet shown in HC3 Example, the313

model Codellama-7b (Roziere et al., 2023) pro-314

duces an incorrect interpretation of the condition.315

This may be due to increased complexity due to316

nesting leading to more complicated logic that are317

challenging to understand by model.318

HC4: Natural language Context: This refers to319

cases where natural language in code snippets, such320

as outdated comments or log statements, causes321

hallucinations in code summaries. In the code322

snippet shown in HC4 Example, the LLama3-70B323

model incorrectly infers that the property variable324

contains a list of key-value pairs inferred from a325

commented line. However, the ‘property" variable326

contains an alphanumeric string followed by one327

or more semi-colons.328

5 Methodology329

A code summary typically has a global and local330

view similar to texts (Maharaj et al., 2023). While331

the global view includes purpose, functionality,332

control flow, data flow, etc., the local view includes 333

the details of key entities (variables, functions, etc.) 334

from the source code and their purpose (hereby re- 335

ferred to as the intent of the entity). Our approach 336

is based on the intuition that software developers, 337

while verifying the documentation for a given code 338

repository, first understand the local aspects of the 339

code and then build a bottom-up concept for un- 340

derstanding the global aspects of the code. This 341

involves reading the code line by line and tracing 342

the specific code entities from the documentation 343

to the original code. 344

This behaviour aligns with working memory 345

theory in cognitive science (Baddeley and Hitch, 346

1994); working memory is a brain system that tem- 347

porarily stores and manipulates the information 348

necessary for complex cognitive tasks like learning 349

and reasoning. The capacity of working memory is 350

bounded by 7±2 object at any point in time, which 351

further reduces to 2-3 objects if the objects have re- 352

lational dependencies with each other. Since code 353

summaries often involve interdependent objects, 354

developers must focus on local aspects to build 355

a global understanding, suggesting a bottom-up 356

heuristic for code summary comprehension. 357

We leverage these behavioural insights to de- 358

public static HashSet <String >
createSetFromProperty(String
property){...

if (property != null && !property.
equals("null")) { // "([\\w]*)
=([\\w]*);"
Pattern params = Pattern.

compile("([\\w]+) [;]*"); ...}

Summary: ... The input string is expected to contain a
list of properties in a specific format, where each property
consists of a name-value pair (e.g., "name=value;")...

HC4: LLama3-70B mislead by the comment
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sign an LLM-powered framework for detecting359

hallucinations in code summaries, which involves360

tracing the entities from the summary to the code.361

This aspect of mapping the entities from the sum-362

mary to the code aims to simulate the bottom-up363

behavioural model of verifying the description of364

coding entities at a time. With these insights, we365

aim to measure the correctness of a code summary366

as a two-step process: (1) Entity Verification and367

(2) Entity-Intent Verification. The detailed flow of368

this framework can be found in Figure 1.369

5.1 Entity Verification370

In entity verification, we check if the entities in371

the summary are present in the source code to de-372

tect extrinsic hallucination. This involves extract-373

ing entities from both the code and summary, then374

mapping entities from summary to the code. We375

elaborate on this process below:376

Entity Extraction from code: We leverage377

program analysis to extract entities from code378

(Javalang Python package 3). The code is tok-379

enized (lexer) and parsed into an abstract syntax380

tree (AST). This tree structure represents the hier-381

archical organization of code elements, making it382

easier to analyze. This yields a fine-grained classi-383

fication of all the tokens present in the code such as384

variable names, class names, function names, etc.385

Entity Extraction from summary: Tabassum et al.386

(2020) propose the task of entity detection in code387

summaries and introduce a relevant NER tagset.388

We adopt this tagset for extracting entities from389

code summaries (Prompt: Appendix A Figure 5).390

Leveraging LLMs to recognize entities intro-391

duces the risk of hallucinations, where the model392

may fabricate entities not present in the code sum-393

mary. To address this, we implement a filtration394

step to remove such fabricated entities. We evalu-395

ate Gemini and GPT-4-Omni for Code NER using396

human-collected data, with results in Appendix C.397

Additionally, we assess an open-source model as398

part of our contribution. Our findings show a strong399

correlation between GPT-4-Omni predictions and400

human data, confirming its effectiveness for entity401

detection in our framework.402

Entity Matching: Once the entities from the403

code and summary are extracted, we compare them404

to identify the subset of entities present in the sum-405

mary but not in the code. These entities are termed406

ungrounded, and all the sentences in the summary407

3https://github.com/c2nes/javalang

containing these entities can be labelled as extrin- 408

sic hallucination. The subset of entities in both 409

the summary and the code goes through an addi- 410

tional verification round for intrinsic hallucination. 411

This is to validate if the intent of the entity in the 412

summary is correctly described as per the code. 413

5.2 Entity-Intent Verification 414

The presence of an entity in both the summary and 415

code indicates that the entity is valid but does not 416

warrant the correctness of the context in which it 417

is discussed. For example, in Figure 1 jobId is a 418

correct entity, but the context of retrieving jobID 419

from the database is incorrect. To address this 420

problem, we propose verifying whether the intent 421

of each mapped entity is accurately described in 422

the summary. We extract all sentences containing 423

the entity of interest from the summary to form 424

its intent context. To identify these relevant sen- 425

tences that describe an entity’s intent, we explored 426

two approaches: (1) prompt-based and (2) string- 427

matching heuristics. Our qualitative assessment, 428

detailed in Appendix D, demonstrates that rule- 429

based heuristics were both more effective and ef- 430

ficient than prompt-based methods, which were 431

prone to hallucinations. Therefore, we relied on 432

string-matching-heuristics for our framework. Af- 433

ter identifying the entity and intent, we use LLMs 434

with zero-shot prompting to verify their correct- 435

ness with the code (Prompt: Appendix 5). We 436

also experimented with few-shot prompts by in- 437

cluding examples of various hallucination types 438

in code summaries along with the representative 439

code. However, performance degraded due to the 440

increased prompt length, consistent with findings 441

in recent works like Mirzadeh et al. (2024). 442

To identify the quality of the whole summary 443

with respect to the code, we aggregate the individ- 444

ual entity-intent hallucination and set the threshold 445

for labelling as 1, as discussed in (Section 3) fol- 446

lowing human annotation where a summary was 447

rated as ’FAIR’ or ’POOR’ when an average of 448

1.33 entities were wrongly described. 449

6 Experiments and Results 450

For summary generation, we consider instruction- 451

tuned versions of the SOTA models from the IBM- 452

Granite family (20B and 34B) (Mishra et al., 2024), 453

Llama3 family (8B and 70B) (Touvron et al., 2023), 454

CodeLlama family (7B and 34B) (Roziere et al., 455

2023) and Mistral-7B (Jiang et al., 2023). 456
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Figure 3: Distribution of different hallucination cate-
gories proposed in the taxonomy. We observe that the
models tend to hallucinate most frequently due to the
high complexity of the code, while significant instances
of insufficient knowledge were also identified.

For intent verification, we consider Llama3.1-70B,457

Llama3-8B (Touvron et al., 2023), Mixtral-8x22B458

(Jiang et al., 2024a), Mistral7B-v3 (Jiang et al.,459

2023), GPT4-Omni (Achiam et al., 2023) and460

Gemini2-Flash (Team et al., 2023). All experi-461

mental details can be found in Appendix (B).462

Model P R F1
Instance Level

Gemini-2.0-Direct 0.51 0.50 0.42
Gemini-2.0-ETF* 0.64 0.65 0.64
GPT4-Omni-Direct 0.48 0.50 0.28
GPT4-Omni-ETF* 0.72 0.74 0.73
Mixtral-8x22B-Direct 0.48 0.48 0.45
Mixtral-8x22B-ETF* 0.62 0.61 0.61
Llama-3.1-70B-Direct 0.57 0.54 0.38
Llama-3.1-70B-ETF* 0.62 0.62 0.54
Llama3-8B-Direct 0.60 0.59 0.48
Llama3-8B-ETF* 0.51 0.55 0.50
Mistral-7Bv3-Direct 0.16 0.50 0.24
Mistral-7Bv3-ETF* 0.51 0.50 0.41

Entity Level
Gemini-2.0 0.58 0.62 0.60
GPT4-Omni 0.59 0.69 0.61
Mixtral-8x22B 0.48 0.38 0.39
Llama-3.1-70B 0.55 0.62 0.56
Llama3-8B 0.59 0.51 0.26
Mistral-7Bv3 0.52 0.59 0.49

Table 2: We report macro Precision (P), Recall (R) and
F1 for two evaluation aspects: 1) Instance Level- label
the entire summary, and 2) Entity level-label individual
entities in summaries.

Entity-Intent Verification: In this aspect of eval- 463

uation, we aim to verify the intent of an individ- 464

ual entity. We report the results of entity-intent 465

verification in the Table 2. In general, we observe 466

consistent improvements across all the models com- 467

pared to direct approach. It can be observed that 468

the GPT4-Omni F1-Score is 0.61 while the Gemini 469

F1 Score is 0.64. Upon analysis, we found that 470

these models often classify INCORRECT tuples 471

as CORRECT when the code references a function 472

or library that is not defined in the input. In such 473

cases, the model infers the functionality based on 474

the library name (Identifier Name Bias 4), which 475

can be difficult to verify. 476

Instance Level Hallucination Verification: In 477

this aspect of evaluation, we aim to verify the over- 478

all summary instance. To compare our approach, 479

we consider a direct setup which involves provid- 480

ing a <code, summary> tuple to identify if the sum- 481

mary is hallucinated or not. We provide these re- 482

sults in Table 2, and it can be observed that our 483

approach provides significant improvement in F1- 484

Score when compared to the Direct approach. In 485

general, the direct evaluation method suffers from 486

hallucinations, such as when identified entities for 487

hallucination are absent from the summary or when 488

natural language entities are mistakenly considered 489

code entities, overall resulting in poor performance. 490

This conveys that our finer-grained evaluation ap- 491

proach provides a more reliable method to identify 492

hallucinated summaries. It also helps with inter- 493

pretability as it identifies the hallucinated sections 494

of the summary. 495

7 Analysis 496

In this section, we discuss various quantitative and 497

qualitative insights of our framework. We first dis- 498

cuss summaries generated by individual models 499

and then elaborate on the general predictive be- 500

haviour of our framework and cases of errors. 501

7.1 Quantitative Analysis 502

As shown in Table 3, Granite-20B produced shorter 503

summaries, while Llama3-70B generated longer 504

ones. Other models had similar average lengths, 505

reflecting varying elaboration due to differences in 506

training methodologies. For entity mapping, we 507

observe that Llama3-70B has the most mapped en- 508

tities, indicating the tendency of the model to stay 509

grounded. Granite-20B has the most unmapped 510

entities, which indicates its tendency to produce 511
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Models Summary Length CE count Fabricated (↓) Mapped(↑) Unmapped (↓)
Codellama-7B 236.10 8.638 35.68% 80.17% 17.65%

Mistral-7B 227.91 6.961 8.59% 79.92% 17.22%
Llama3-8B 257.21 9.45 6.44% 84.50% 12.77%
Granite-20B 148.95 7.10 4.25% 79.54% 19.64%
Granite-34B 214.50 6.55 2.45% 85.69% 12.41%

Codellama-34B 278.67 8.22 4.87% 79.78% 19.05%
Llama3-70B 313.58 10.01 0.15% 88.44% 8.69%

Table 3: Quantitative Analysis: This table presents summary statistics for all seven models, where (↑) means a
higher score is better and (↓) means lower is better. "CE count" is the number of code entities in the summary.
"Fabricated" is the percentage of fabricated entities during named entity recognition, normalized by the total entities.
"Mapped" is the percentage of entities correctly mapped to the code, and "Unmapped" refers to those unmapped,
both normalized by the total entity count.

content which may not be directly related to the512

code, leading to extrinsic hallucination.513

7.2 Predictive Analysis514

private List <Transaction >
retrieveTransactions(String
rowStatusCd) throws HubException
{................}

Summary: This method retrieves transactions using the
“Hub" API based on the input parameters by the “Hub
database". It interacts with several key entities, including
“squid:s1166" and “squid:s1172", to gather the data......

Analysis: Hallucination and Unmapped Entities

Our framework captures ungrounded entities in515

summaries. For example, when the model refers516

to a non-existent Hub API based on the keyword517

‘HubException", the unmapped entities such as518

"Hub" are identified. This enables fine-grained519

and interpretable detection of hallucinations.520

7.3 Error Analysis521

This section discusses the two major error cases in522

our framework:523

Error Case 1-Creative Summary:524

public static int writeShort(
ArrayView target , int offset ,
short value) {...}

Summary: Here’s a more detailed implementation of the
above method: ....{JAVA CODE}.....

Creative Summary by Mistral 7B
525

During the generation, the model may mention526

certain aspects of the code in a creative way which527

may not be incorrect. In the given example, the528

code summary discusses a more elaborate version529

of the input code by restating an elongated ver- 530

sion. Here, the entities present in the summary are 531

predicted to be ungrounded by our framework. 532

Error Case 2- Changed Entity Form: Lan- 533

guage models may not use the exact names of code 534

entities in summaries. For example, the entity "Pre- 535

paredStatement" may be referred to as "prepared 536

statement," which could be missed during named 537

entity recognition due to the change in form. The 538

verification of these kinds of summaries may not 539

reflect the inaccuracies due to such sentences. 540

protected PreparedStatement
setObjects(Connection connection ,
String query , Object ... objects)
throws SQLException {....}

Summary: ......set the parameters of the prepared state-
ment using the provided objects. This method is likely
responsible for iterating over the objects and setting them
as parameters in the prepared statement. Finally, the
method returns the prepared statement object.....

Changed Entity Form by Llama3-70B
541

8 Conclusion and Future Work 542

Our work addresses the critical challenge of detect- 543

ing hallucinations in code summarization, a task 544

that demands a deep understanding of both pro- 545

gramming and natural languages. By introducing 546

a novel dataset and the Entity Tracing Framework 547

(ETF) with 73% F1 score, we establish a system- 548

atic approach to grounding code entities within 549

summaries, enabling a more interpretable and ac- 550

curate evaluation of explanations. In the future, 551

this framework can be enhanced by incorporating a 552

multi-agent system and leveraging multiple LLMs 553

in tandem to improve prediction accuracy. The cur- 554

rent framework can be further developed to better 555

mitigate the occurrence of hallucinations. 556

8



9 Limitations557

While the framework is designed to be generic,558

certain components—such as code parsers for559

entity detection—may be unavailable for low-560

resource programming languages like COBOL or561

Perl. Moreover, the performance of large language562

models (LLMs) heavily depends on their parameter563

size and the volume of training data. Given the564

complexity of this task, smaller open-source mod-565

els may struggle to perform effectively, reinforcing566

the need for larger LLMs. However, these larger567

models may not be scalable and often demand sig-568

nificantly greater computational resources.569
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A Prompts 721

Summary Generation Prompt

Assume you are an expert in understanding
JAVA code.

Question: As a Java Expert, please provide a
detailed summary of the following Java code
with the following sections:
1. Inputs and outputs of the method
2. Business purpose
3. Detailed functional summary of the method.

“‘
{CODE}
“‘

722

Figure 4: Summary Generation Prompt- This prompt
was used for generating the summaries from different
language models

Intent Verification Prompt

Assume you are an expert in under-
standing JAVA code. Your task is
to verify whether the description of
’mapped_entity’ in the given text is
correct, incorrect, or irrelevant with
respect to the code. Only output one
of the following labels: [“CORRECT",
“INCORRECT", “IRRELEVANT"].

Description:
{relevant_sent}

[CODE]
{CODE}
[/CODE]

723

Figure 5: Intent Verification Prompt- This prompt was
used for verifying the description of a given entity based
on the sentences that mention the entity
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Named Entity Recognition Prompt

Assume you are an expert in understanding
Java and performing named entity recognition
related to Java code. You have to label the
entities by considering the following labels:

Code Entities: CLASS, VARIABLE,
FUNCTION, LIBRARY, VALUE, DATA
TYPE, and HTML or XML TAG
Natural Language Entities: APPLICATION,
UI ELEMENT, LANGUAGE, DATA STRUC-
TURE, ALGORITHM, FILE TYPE, FILE
NAME, VERSION, DEVICE, OS, WEBSITE,
and USER NAME.

For every entity in the input mention the en-
tity_type in the given format only. Strictly
follow this template and only print the output
without any other word. You can follow the
example below:
“‘
{Incontext Example}
“‘
Now consider the summary describing a code
below:
{generated_summary}

724

Figure 6: Named Entity Recognition Prompt

Direct Evaluation Prompt

Assume you are an expert in under-
standing JAVA code. Your task is to
verify if the description of the code
entities present in the given summary is
correctly described or NOT as per the
code logic. Output all the ‘entity_name’
and a relevant_sentence’ corresponding
to the ‘entity_name’, which are incor-
rectly described. Do not provide any
other details. Strictly follow this format:
[entity_name : “”, relevant_sentence : “”]
Summary:
{SUMMARY}

Code:
{CODE}

725

Figure 7: Direct Evaluation Prompt- This prompt was
used to detect the hallucinated entities and sentences
from the summary without breaking into entities

B Experimental Setup 726

In our setup, we conducted all the experiments 727

using NVIDIA A100-SXM4-80GB GPU in a sin- 728

gle or multi-GPU environment. For our exper- 729

iments, we consider instruction-tuned versions 730

of the SOTA code and language models, from 731

IBM-Granite family (20B-instruct; 34B-instruct) 732

(Mishra et al., 2024), Llama3 family (8B-instruct 733

and 70B-instruct) (Touvron et al., 2023), CodeL- 734

lama family (7B and 34B) (Roziere et al., 2023) 735

and Mistral family (7B-instruct) (Jiang et al., 2023). 736

We use the GPT4-Omni version for our frame- 737

work and keep the temperature at 0.3 and set 738

max_new_tokens to 4000. 739

C NER Evaluation 740

This section discusses the NER performance of var- 741

ious models considered in this work. To perform 742

NER using LLMs, we provide the code summary 743

and NER tagset in the prompt (Appendix 5) using 744

a one-shot in-context example to extract all the en- 745

tities discussed in the summary accompanied by 746

their types. To evaluate the entity extraction, we 747

assess two key aspects: entity coverage and en- 748

tity type correctness. 1) Entity Coverage: This 749

measures whether all valid entities in the summary 750

are detected. We quantify this using the Jaccard 751

Similarity between the entities in the generated out- 752

put and those in the ground truth. 2) Entity Type 753

Correctness: This evaluates whether the detected 754

entities have been assigned the correct types. For 755

this, we use the F1 score as the metric. 756

Models Jaccard Similarity F1
GPT-4-Omni 0.81 0.92

Gemini-1.5-Flash 0.64 0.92

Table 4: NER Results on Human Data

We observed a good correlation between GPT4- 757

Omni and human data and, therefore, used it for 758

NER in our pipeline. As an additional contribu- 759

tion, we also evaluate the open-source models con- 760

sidered in this work for the task of Named En- 761

tity Recognition on summaries generated from 600 762

code snippets initially sampled from CodeXGlue 763

data using GPT predictions as ground truth. 764

11



Models Jaccard Similarity F1
Llama3-8B 0.5298 0.78
Llama3-70B 0.5981 0.90
Mistral-7B 0.4458 0.65

Granite-20B 0.4897 0.85
Granite-34B 0.48181 0.84

Codellama-7B 0.4586 0.84
Codellama-34B 0.5079 0.83

Table 5: NER Results on GPT Data

D Intent Detection765

In this section, we describe the two distinct ap-766

proaches for intent detection.767

D.1 String Matching Heuristics768

By string matching heuristics, we mean character-769

level matching with the following regex expres-770

sions:771

• The word is either preceded by or succeeded772

by a space char773

• ignore the “`” characters since some of the774

entities are enclosed using these quoted marks775

by models.776

• Account for brackets: some of the function777

names in the summary include “()” and some778

of the variables include “[]”779

The above regexes are designed to capture all the780

cases of entity forms in summary. It can be noted781

that these regex rules are evaluated in a single mod-782

ule.783

D.2 Prompt based Approaches784

Here, we discuss the general prompt-based ap-785

proach we tried for Intent detection. We give the786

complete prompt in Figure 8. Qualitatively, we ob-787

served the following drawbacks of this approach:788

• We observe high Hallucination in the gener-789

ated output, which leads to the introduction790

of fabricated sentences not present in the sum-791

maries.792

• We observed inaccurate extraction of the sen-793

tences, where the extracted sentence has slight794

variations from the original sentence present795

in the summary.796

• We observe missing sentences, i.e., not all797

the sentences discussed in the summary are798

captured in the generated output.799

Intent Detection Prompt

Assume you are a Java expert. You
have to identify all the relevant sen-
tences about the given entity. Here,
a sentence is relevant to the mapped
entity if the sentence discusses the
given entity. You have to generate
the output strictly in the JSON format:
{entity_name : “”, relevant_sentence : “”}
Given Entity:
{mapped entity}
Given Summary:
{SUMMARY}

800

Figure 8: Intent Detection Prompt- This prompt was
used to retrieve all the relevant sentences from the sum-
mary
These observations led us to prefer simpler 801

string-matching heuristics, which are significantly 802

cheaper in computational aspects. 803

E Annotation Details 804

We discuss our annotation process and the annota- 805

tor’s guidelines here: 806

E.1 Background 807

The dataset was annotated by eight annotators who 808

are experts in Java and held at least a Master’s 809

degree in Computer Science, with some having a 810

PhD in the field. On average, the annotators had 4+ 811

years of experience in Java programming. 812

E.2 Guidelines 813

The annotation process was conducted in two 814

stages. In the first stage, we implemented a three- 815

step procedure to annotate hallucinations in code 816

summaries independent of specific hallucination 817

categories. 818

The first part of the annotation process involved val- 819

idating the Named Entity Recognition Output. This 820

involved annotating missed or incorrectly identi- 821

fied entities in the summary itself by selecting the 822

appropriate label from the drop-down. 823

The second part of the annotation involved evaluat- 824

ing if each sentence accurately describes the entity 825

in the code snippet, marking the entity-sentence 826

pair as: 827

• CORRECT: If the relevant sentence correctly 828

describes the code 829
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• INCORRECT: If the relevant sentence incor-830

rectly describes the code831

• IRRELEVANT: If the relevant sentence does832

not talk about the mapped entity itself833

The third part involved rating the summary based834

on hallucination severity as835

• POOR (Most part is hallucinated): The gen-836

erated code summary shows below-average837

correctness.838

• FAIR (Only some part is hallucinated): The839

generated code summary meets expectations.840

• GOOD (Almost no hallucination): The gen-841

erated code summary is completely correct.842

The second stage involved defining hallucination843

categories based on annotator feedback and orga-844

nizing them into a structured taxonomy (Figure 2).845

This finalized taxonomy was then provided to the846

annotators, who were asked to assign a specific847

hallucination category from the predefined options.848

Annotators were also encouraged to include com-849

ments explaining their annotations, as these expla-850

nations can be useful for researchers utilizing our851

dataset.852
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