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Abstract

Large reasoning models (LRMs) achieve strong
reasoning performance by emitting long chains
of thought. Yet, these verbose traces slow
down inference and often drift into unneces-
sary detail, known as the overthinking phe-
nomenon. To better understand LRMs’ be-
havior, we systematically analyze the token-
level misalignment between reasoning and non-
reasoning models. While it is expected that
their primary difference lies in the stylistic
“thinking cues”, LRMs uniquely exhibit two
pivotal, previously under-explored phenom-
ena: a Global Misalignment Rebound, where
their divergence from non-reasoning models
persists or even grows as response length in-
creases, and more critically, a Local Misalign-
ment Diminish, where the misalignment con-
centrates at the “thinking cues” each sentence
starts with but rapidly declines in the remain-
ing of the sentence. Motivated by the Local
Misalignment Diminish, we propose FoReaL-
Decoding, a collaborative fast-slow thinking
decoding method for cost-quality trade-off. In
FoReaL-Decoding, a Leading model leads the
first few tokens for each sentence, and then a
weaker draft model completes the following
tokens to the end of each sentence. FoReaL-
Decoding adopts a stochastic gate to smoothly
interpolate between the small and the large
model. On four popular math-reasoning bench-
marks (AIME24, GPQA-Diamond, MATH500,
AMC23), FoReaL-Decoding reduces theoreti-
cal FLOPs by 30 – 50% and trims CoT length
by up to 40%, while preserving 86 – 100% of
model performance. These results establish
FoReaL-Decoding as a simple, plug-and-play
route to controllable cost-quality trade-offs in
reasoning-centric tasks.

1 Introduction

Reasoning has become a pivotal capability of large
language models (LLMs), driving rapid progress
in mathematical problem solving, code generation,

and commonsense question answering (Huang and
Chang, 2023; Li et al., 2024d; Ahn et al., 2024;
Wang et al., 2024b, 2025b). Contemporary Large
Reasoning Models (LRMs) such as OpenAI’s GPT-
o1 (OpenAI, 2024) and the open-source DeepSeek-
R1 (DeepSeek-AI et al., 2025) demonstrate this
trend by producing explicit long chains of thought
(CoT) (Wei et al., 2023) that markedly improve
performance on challenging tasks in mathematics
(Xiong et al., 2025; Xia et al., 2025b), program-
ming (Liu et al., 2024a), and other complex do-
mains. These deeper, longer, and more precise rea-
soning trajectories are cultivated by reinforcement-
learning-based optimization (DeepSeek-AI et al.,
2025) or supervised fine-tuning on expert demon-
strations (Ye et al., 2025; Muennighoff et al., 2025;
Li et al., 2025a), representing advanced “slow-
thinking” patterns (Kahneman, 2011; Li et al.,
2024d, 2025b). Although these slow-thinking
LRMs showcase impressive reasoning skills, com-
munities are increasingly concerned about the ef-
ficiency and fidelity of their often-lengthy chains
of thought, a phenomenon known as “overthink-
ing” (Chen et al., 2025c; Fan et al., 2025), where
excessive computational resources are allocated for
simple problems with minimal benefit.

To alleviate overthinking and improve efficiency,
a series of methods has been proposed (Yu et al.,
2024; Team et al., 2025; Aggarwal and Welleck,
2025; Xia et al., 2025a; Luo et al., 2025; Hao
et al., 2024; Xu et al., 2025; Renze and Guven,
2024; Sun et al., 2024; Wan et al., 2024; Wu et al.,
2025). Most of these, however, require further post-
training or manipulate the LRM’s distribution itself,
adding complexity or computational overhead. Mo-
tivated by Speculative Decoding (Leviathan et al.,
2023) and the distinctions between fast and slow
thinking, we ask: Is it possible to design a collab-
orative, training-free decoding method that mixes
fast and slow thinking models to effectively trade-
off quality and efficiency?



To answer this and develop such a method,
we first seek to pinpoint what truly differentiates
strong reasoning models from standard instruction-
following LLMs at the token level. For instruction-
following models, LIMA (Zhou et al., 2023) pro-
poses the “superficial alignment” hypothesis, in
which it shows that most of the knowledge has been
learned in the pretraining and only a small amount
of data is needed for alignment. Although a line
of work tries to use various methods for data se-
lection on either instruction-following (Chen et al.,
2023b; Li et al., 2024f; Liu et al., 2023) or rea-
soning (Muennighoff et al., 2025; Ye et al., 2025)
capabilities, (Lin et al., 2023) verifies this hypoth-
esis from token-level analysis between the base
model and the aligned model.

Leveraging the diagnostic framework of (Lin
et al., 2023), our systematic analysis of misalign-
ment across various model types (large reasoning,
small reasoning, instruction-following, and pre-
trained base model) reveals critical insights. We
observe a “superficial alignment” phenomenon sim-
ilar to (Lin et al., 2023), where misaligned tokens
are predominantly stylistic (e.g., “Hmmm”, “Wait”,
“Let me check”) rather than content-specific, often
related to explicit thinking patterns. More strik-
ingly, while previous work showed that misalign-
ment between instruction-following and base mod-
els diminishes with longer context, we find this
does not hold for reasoning models. Instead, we
identify a Global Misalignment Rebound, where
overall misalignment between reasoning and non-
reasoning models can slightly grow with response
length, suggesting that increasing the length can-
not reduce the misalignment. This indicates that
the reasoning abilities are not as superficial as
instruction-following. Crucially, despite this global
trend, we uncover a corresponding Local Misalign-
ment Diminish phenomenon: most token misalign-
ments occur at the beginning of each sentence,
then rapidly decrease until the next sentence starts.
These findings reveal a novel periodical, sentence-
level misalignment diminishing pattern unique to
LRMs, driven by thinking-pattern indicators con-
centrated at sentence openings, shedding light on a
better understanding of token-level divergences of
these two types of models.

Based on this core insight that the reasoning pat-
tern of LRMs is often front-loaded in each sentence,
we hypothesize that strategic, limited intervention
by a strong LRM can guide a weaker model, bal-
ancing reasoning quality with efficiency. To this

end, we propose Follow the Reasoning Leader
(FoReaL-Decoding), an efficient collaborative de-
coding method. In FoReaL-Decoding, a strong
Leading model generates the initial few tokens of
each sentence (capturing the misaligned “thinking
cues”), after which a weaker Draft model com-
pletes the sentence. To further mitigate potential
overthinking from the Leading model (e.g., end-
lessly generating “Wait”), we introduce a stochas-
tic binary gate that controls whether the Leading
model intervenes on a given sentence. These two
control knobs, lead token count and lead probabil-
ity, allow FoReaL-Decoding to smoothly interpo-
late between the Draft and Leading models, offer-
ing controllability over the cost-quality spectrum.

Contributions.

• We conduct a systematic token-level analysis
comparing LRMs with non-reasoning models,
identifying two pivotal, under-explored phenom-
ena: (1) Global Misalignment Rebound, where
the token distribution of LRMs diverges from
that of non-reasoning models and their gap
even increases with longer responses; (2) Lo-
cal Misalignment Diminish, where LRMs only
make noticeable difference on generating stylis-
tic “thinking-patterns” at the very beginning
of each sentence. But such divergence from
non-reasoning models rapidly drops on subse-
quent tokens within the sentence. This periodical
sentence-level misalignment diminishing pattern
has not been explored previously. These two dis-
coveries significantly advance the understanding
of LRMs.

• Leveraging these analytical insights (particularly
the Local Misalignment Diminish), we propose
FoReaL-Decoding, a training-free, collaborative
algorithm that mixes the strength of a “slow-
thinking” LRM (as Leading model) with the ef-
ficiency of a “fast-thinking”, weaker model (as
draft model). FoReaL-Decoding is designed to
be plug-and-play, offering strong controllabil-
ity to balance the cost and quality under diverse
budgets of tokens.

• Experimental results on several reasoning-
heavy math tasks (AIME24, GPQA-Diamond,
MATH500, AMC23) demonstrate that FoReaL-
Decoding reduces FLOPS by 30-55% and CoT
length by up to 40%, while preserving 86-100%
of the leading model’s performance, effectively
mitigating “overthinking”.



Figure 1: Left: An example comparing the token distribution alignment between DeepSeek-R1-Distill-Qwen-32B
and Qwen2.5-1.5B-Instruct, qualitatively showing that the misaligned tokens (colored in red) are related to thinking
patterns, and probably appear at the start of sentences. Right: The WordCloud of the misaligned tokens calculated
on a mix of math datasets, quantitatively showing the high-frequency misaligned tokens like “wait”, “perhaps”,
“maybe”, “let”, and “alternatively”.

2 Token Distributions of Reasoning vs.
Non-Reasoning Models

Large-scale reasoning models (LRMs) often outper-
form smaller instruction-tuned models on complex
reasoning-heavy tasks, yet how their generation be-
havior differs from instruction models within the
same model family remains unclear. (Lin et al.,
2023) proposes an analytical method through the
lens of token-distribution shifts and finds that align-
ments between instruction-following and base pre-
trained models are often superficial. This phe-
nomenon is supported by nearly identical decoded
tokens in the majority of token positions under
the same input contexts, with distribution shifts
occurring mainly with stylistic tokens like dis-
course markers. However, the critical question re-
mains: “Does this superficial alignment finding on
instruction-following LLMs still hold for today’s ca-
pable LRMs?” Thus, our work systematically inves-
tigates token misalignment across various model
combinations involving LRMs.

Experimental Setup & Metric. In this anal-
ysis, we utilize DeepSeek-R1-Distill-Qwen-32B
as the targeting LRM, which we notate as the
Leading model PL(·). The corresponding small
models, within the same family, that are used
for comparison are noted as the Draft models
PD(·). The Draft models can be (i) the pretrained
base model (Qwen2.5-1.5B), (ii) the instruction-
following model (Qwen2.5-1.5B-Instruct), or (iii)
the small reasoning model (DeepSeek-R1-Distill-
Qwen-1.5B) in our analysis and method. For a
user query q, the output response generated greed-
ily from the Leading model can be notated as

y = {y1, ..., yT }, where T represents the length
of the response. This response serves as the target
for calculating the token distribution for the Draft
model. At each position t, the context for predict-
ing this token can be presented as ct =< q; y<t >,
where <;> represents the concatenation operation.

In the analysis, the aligned positions are defined
as those token steps where the Draft model, when
conditioned on the Leading model’s history, would
greedily generate exactly the same token as the
Leading model, which means that the two models
have the same most probable behavior under the
same context, indicating the alignment.

Suppose V is the vocabulary for next-token pre-
diction, then the aligned token indices are:

A =
{
t : argmax

y∈V
PD

(
y | ct

)
= argmax

y∈V
PL

(
y | ct

)}
,

(1)

which collects exactly those positions where the
Draft model’s top-1 prediction matches the Lead-
ing model’s emitted token under the shared causal
context ct. Thus, the aligned and misaligned tokens
can be defined:

yA = { yt | t ∈ A} yA∁ = { yt | t /∈ A} (2)

Qualitative Analysis on Misaligned Tokens.
Figure 1 (left) shows a qualitative example (trun-
cated) from MATH500, comparing the token dis-
tribution alignment between DeepSeek-R1-Distill-
Qwen-32B as the Leading model and Qwen2.5-
1.5B-Instruct as the Draft model. The shown re-
sponse y is generated by the Leading model, the
aligned tokens yA are colored in blue, and mis-
aligned tokens yA∁ are colored in red. Through
the example, it can be intuitively perceived that the



misaligned tokens are mostly stylistic tokens re-
lated to thinking patterns, and the beginning of
each sentence has a larger probability of being
misaligned. To further quantitatively investigate
what exactly these misaligned tokens are, we ex-
tract all the misaligned tokens from the mix of
AIME24, AMC23, GPQA, and MATH datasets,
count their frequencies, and generate the corre-
sponding WordCloud shown in Figure 1 (right).
From the WordCloud, it is observed that most of
the high-frequency misaligned tokens are related to
thinking patterns of LRMs, like “wait”, “perhaps”,
“maybe”, “let”, and “alternatively”, which shows a
similar but different superficial phenomenon than
previous instruction-following LLMs: While mis-
alignment in both types of models is primarily
stylistic rather than content-based, those in LRMs
are distinctively characterized by tokens reflect-
ing their overt reasoning or self-correction patterns.
Thus, our qualitative exploration reveals that LRM
misalignment is characterized by stylistic “thinking
cues” concentrated at sentence beginnings, prompt-
ing a more detailed quantitative analysis of their
underlying distribution patterns.

Global Misalignment Rebound. Existing anal-
ysis on token distribution shifts between instruct
and base models has identified that such shifts will
gradually diminish over time during the decoding
process due to the more comprehensive context
given, as shown in Figure 2 (upper, red line). In the
figure, the y-axis represents the average misalign-
ment rate at each token position, while the x-axis
represents the token position within the whole re-
sponse (upper panel) or sentence (lower panel). As
shown, the red line, representing misalignment be-
tween the instruct model and base model, decreases
and remains at a low rate. This implies that provid-
ing longer context can gradually compensate for
the misalignment between them.

However, this response-level misalignment di-
minishing phenomenon does not strictly hold for
LRMs. As illustrated in Figure 2 (upper), lines cor-
responding to LRM as the Leading model exhibit
different behaviors. When the Draft models are in-
struct (blue line) or base (orange line) models, the
misalignment rates initially decrease dramatically
to around 0.2, then rebound and persist around 0.3.
In contrast, the green line, representing misalign-
ment between large and small reasoning models
(which belong to the same family and are trained on
similar data), shows consistently low misalignment

Figure 2: Top: Response-level misalignment changes
with response length. Bottom: sentence-level mis-
alignment changes with response length. The y-axis
represents the average misalignment rate at each token
position, the x-axis represents the token position within
the whole response or sentence. We reveal the novel
Global Misalignment Rebound and Local Misalignment
Diminish phenomenon that only occurs on current
LRMs, shown as the blue, orange, and green lines of the
upper figure. This phenomenon does not hold for the
previous alignment between the instruction-following
and base models, shown in the red line.

from the beginning, indicating a distinct trend. We
term the observed persistent or rebounding diver-
gence between LRMs and non-reasoning models
the Global Misalignment Rebound phenomenon.
This phenomenon, characteristic of LRM compar-
isons with non-reasoning models, is mainly caused
by LRMs continuously generating thinking patterns
at the beginning of sentences, partly to prevent pre-
mature conclusion of the generation process. This
finding demonstrates that merely extending context
length is insufficient to resolve the misalignment
between reasoning and non-reasoning models, indi-
cating that reasoning capability is not as superficial
as instruction-following.

Local Misalignment Diminish. It is uncommon
that a longer context does not benefit the alignment.
Thus, to further understand this behavior, we con-
duct the sentence-level analysis by calculating the
token misalignment rate at each sentence-level po-
sition. In the response, sentences can be separated
by periods, question marks, exclamation marks,



and the newline symbol. Specifically, for any po-
sition x, we first collect every sentence that is at
least x tokens long. Mark the x-th token in each of
those sentences as 1 if it is misaligned and 0 if it is
aligned. The average of these 0-1 indicators across
all sentences is the misalignment rate for x.

As shown in Figure 1 (lower), for the red line,
there is no obvious misalignment decrease that can
be observed. It means that between the instruct
and the base model, the misalignment occurs rel-
atively evenly across the whole sentence. On the
contrary, for LRM-involved model combinations,
the blue, orange, and green lines, the misalignment
rates drop dramatically at the first several tokens,
e.g., from 0.4 to 0.15, and then keep diminishing,
indicating a totally different behavior. Thus, we
term this phenomenon the Local Misalignment Di-
minish phenomenon for reasoning models. These
findings reveal a novel periodical, sentence-level
misalignment diminish pattern unique to LRMs,
driven by thinking-pattern indicators concentrated
at sentence openings, shedding light on a better
understanding of token-level divergences of these
two types of models.
Findings. From this section, several key findings
can be concluded:

• LRM misalignment with non-reasoning mod-
els, while largely superficial and characterized
by stylistic “thinking cues”, uniquely exhibits a
Global Misalignment Rebound. Unlike instruct
models that increasingly align with more context,
token divergence at the response level can per-
sist or even grow, underscoring deeper, ingrained
differences in their generative behavior.

• LRMs distinctively display a Local Misalign-
ment Diminish. This manifests as a novel, pe-
riodical sentence-level pattern where high mis-
alignment, driven by “thinking cues” concen-
trated at sentence beginnings, rapidly decreases
as the sentence progresses. This predictable
intra-sentence dynamic is a crucial insight for
developing LRM-guided decoding and under-
standing LRM patterns.

3 FoReaL-Decoding
Motivated by the above token divergence analysis,
we propose a collaborative fast-slow thinking de-
coding method for cost-quality Trade-off, Follow
the Reasoning Leader (FoReaL-Decoding), a
plug-and-play training-free method that mixes the

strength of a slow but highly capable large reason-
ing model with the speed of a small model. The
central idea is to let the strong, large (Leading)
model lead at the beginning of sentences, and allow
the weaker, small (Draft) model to complete the
rest of the tokens. This decoding algorithm is of
strong controllability, which can smoothly transfer
into the Leading model only or downgrade to the
Draft model only, by controlling the probability
and the number of tokens to lead.

Preliminaries. The two control knobs that gov-
ern the trade-off between cost and quality:

1. Required lead count n ∈ N: the minimum
number of tokens the Leading model generates
before yielding control to the Draft model.

2. Lead probability p ∈ [0, 1]: probability that a
sentence is led by the Leading model.

When p = 0, the decoding system degenerates to
pure Draft model decoding; when p = 1 and n
exceeds the sentence length, it transfers to Lead-
ing model decoding. Intermediate settings form a
continuity of compute–accuracy trade-offs.

In addition, let t ∈ N represent the global token
index in the response, and s ∈ N represent the
sentence index. gs ∼ Bernoulli(p) represents the
sentence-level gate to decide what model to start
the sentence s: the sentence will be led by the
Leading model if gs = 1. τs represents the global
position of the first token in s. s(t) = max{s :
τs ≤ t} is the function that maps the token t to the
sentence index that t belongs to. λt = t− τs(t) + 1
is the local position of token t within its sentence.

Intra-Sentence Lead Within a sentence s, the
generation of each token at position t is governed
by the token-level policy,

πt =

L gs(t) = 1 ∧
[
λt ≤ n ∨ t < Hhit

s(t)

]
,

D otherwise.
(3)

gs(t) = 1 represents this sentence s(t) should
be led by the Leading model, decided by the gate.
L and D represent the Leading model and Draft
model, respectively. λt ≤ n represents the index of
this token within this sentence that is smaller than
the required lead count n, thus should be generated
by the Leading model. Hhit

s is the first token index
within s where the top-1 token generated by the
Draft model matches that of the Leading model for
k consecutive steps:



Hhit
s = min{t : s(t) = s, λt > n, ht = k}, (4)

where ht represents the number of consecutive hits
within the max sliding window of k:

ht =

k−1∑
i=0

δt−i, δt = 1
{
argmax

y∈V
PD(·|ct) = argmax

y∈V
PL(·|ct)

}
(5)

Put it simply, for each sentence, if the Bernoulli
gate decides to let PL lead the sentence with the
probability p, PL will generate the first n tokens.
Then, PD begins the generation process as well,
with the purpose of measuring the alignment be-
tween the two models. When the top-1 predictions
of these two models aligned with each other for
k times, the generation process is yielded to PD,
otherwise, PL generates the whole sentence. On
the contrary, if the gate decides not to let PL lead,
then the whole sentence will be generated by PD.

Whenever πt = L, the factor draws its probabil-
ity from the distribution PL of the Leader model;
otherwise from the Draft model of distribution PD.

Inter-Sentence Transfer Upon encountering a
sentence boundary at the token t, i.e., the sentence
is complete, we execute the inter-sentence update
by resetting the hit counter and resampling the gate
for the next sentence.

s← s+ 1, gs ∼ Bernoulli(p), ht ← 0 (6)

4 Experiments

4.1 Implementation Details
Models, Datasets, and Setup. To assess the
effects of FoReaL-Decoding, extensive experi-
ments are conducted for different model combi-
nations in the Qwen2.5 family, including reasoning
models like R1-Distill-Qwen-32B (DeepSeek-AI
et al., 2025), R1-Distill-Qwen-1.5B (DeepSeek-
AI et al., 2025), non-reasoning instruct models
like Qwen2.5-7B-Instruct (Team, 2024), Qwen2.5-
1.5B-Instruct (Team, 2024), and base models like
Qwen2.5-1.5B (Team, 2024). To cover a wide
scope of potential trade-offs, we utilize the rea-
soning models as the Leading models, while any
of the above types as the Draft models. Moreover,
our extensive experiments on the recently released
Qwen3 (Team, 2025) series further verify the gener-
alizability of our method. We evaluate our method
on relatively hard, reasoning-heavy math datasets,
including AIME2024 (AI-MO, 2024a), GPQA-
Diamond (Rein et al., 2024), AMC23 (AI-MO,

2024b), and MATH500 (Lightman et al., 2023).
All experiments were conducted on NVIDIA A100
GPUs (80G), utilizing the Huggingface Transform-
ers package. During the generation, we follow the
recommended generation configuration from R1-
Distill models as temperature=0.6, top_p=0.95,
top_k=40 for all the experiments. During the gen-
eration, we always let the Leading model generate
the first paragraph, and we fix the required hits for
generation transfer as k = 5 for all the experiments.

4.2 Main Results
Table 1 presents the comparisons between accu-
racy and efficiency (TFLOPs) of FoReaL-Decoding
on commonly used reasoning-heavy math problem
tasks. We provide some different configurations as
controls to show the wide trade-off scopes of our
method. We also present the reported results of the
concurrent work, Speculative Thinking (Yang et al.,
2025), for better comparison. The accuracies on
each line are compared with the Draft model, and
the TFLOPs are compared with the Leading mod-
els: better values are colored in green, otherwise
red. We utilize the theoretically estimated TFLOPs
as the efficiency measurement since it takes the
generation length into account, different from the
estimated speed. In the main comparison, we focus
on 3 collaborative settings. Across four bench-
marks, FoReaL-Decoding cuts inference cost by
30 – 55% relative to Leader-only decoding while
retaining 86 – 100% of its accuracy. The detailed
statistics, including response length and leading ra-
tios on AIME24, can be found in Table 2 for better
understanding.

R1-Distill-Qwen-32B for Leading, R1-Distill-
Qwen-1.5B for Draft. This collaborative setting
yields the highest accuracies for all of the math
reasoning datasets. In this setting, the larger 32B
reasoning model takes charge of the leading of the
sentences, while the smaller 1.5B reasoning model
needs to complete the remaining sentence. In this
setting, both models have the reasoning capabil-
ities, but FoReaL-Decoding implicitly separates
the generation of each sentence into two phases
and yields the less informative Draft phase to the
smaller model for better efficiency. As shown in
the table, all our results obtain better performances
compared with the Draft model and efficiencies
compared with the Leading model, and also exceed
Speculative Thinking, indicating the capability of
our methods. Moreover, on all of the tasks ex-
cept GPQA-D, FoReaL-Decoding reaches similar



Table 1: Comparisons of Accuracy and Efficiency (TFLOPs) of FoReaL-Decoding on commonly used math problem
tasks. To further show the wide trade-off scopes of our method, we provide some different configurations as the
control. The results of Speculative Thinking are the reported results. The accuracies are better with higher (↑)
values, while the TFLOPs are better with lower (↓) values. The accuracies on each line are compared with the Draft
model, and the TFLOPs are compared with the Leading models: better values are colored in green, otherwise red.

Model AIME24 GPQA-D MATH500 AMC23

Method Config ACC (%) ↑ TFLOPs ↓ ACC (%) ↑ TFLOPs ↓ ACC (%) ↑ TFLOPs ↓ ACC (%) ↑ TFLOPs ↓

DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B

DeepSeek-R1-Distill-Qwen-32B 66.7 15.72 59.6 8.09 93.6 4.13 95.0 7.54
DeepSeek-R1-Distill-Qwen-1.5B 23.3 2.86 22.2 1.13 81.4 1.14 65.0 2.51
Speculative Thinking 32.2 5.75 41.9 2.62 89.4 1.51 80.0 3.31
FoReaL-Decoding n=15,p=0.4 33.3 (+10.0) 5.60 (-10.12) 43.3 (+21.1) 2.47 (-5.62) 90.2 (+8.8) 1.43 (-2.88) 80.0 (+15.0) 2.91 (-4.63)

FoReaL-Decoding n=15,p=0.6 50.0 (+26.7) 6.77 (-8.95) 48.2 (+26.0) 4.50 (-3.59) 91.4 (+10.0) 2.40 (-1.26) 80.0 (+15.0) 3.99 (-3.55)

FoReaL-Decoding n=15,p=0.8 50.0 (+26.7) 8.47 (-7.25) 54.6 (+32.4) 4.69 (-3.40) 93.4 (+12.0) 2.70 (-1.43) 90.0 (+25.0) 5.37 (-2.17)

FoReaL-Decoding n=15,p=1.0 66.7 (+43.4) 9.16 (-6.56) 56.6 (+34.4) 6.21 (-1.88) 93.2 (+11.8) 3.14 (-0.99) 92.5 (+27.5) 5.28 (-2.26)

FoReaL-Decoding n=25,p=0.8 53.3 (+30.0) 10.95 (-4.77) 57.1 (+34.9) 5.65 (-2.44) 92.6 (+11.2) 3.13 (-1.0) 92.5 (+27.5) 4.99 (-2.55)

FoReaL-Decoding n=25,p=1.0 66.7 (+43.4) 10.54 (-5.18) 57.6 (+35.4) 6.68 (-1.41) 94.5 (+13.1) 3.50 (-0.63) 95.0 (+30.0) 5.66 (-1.88)

DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct

DeepSeek-R1-Distill-Qwen-32B 66.7 15.72 59.6 8.09 93.6 4.13 95.0 7.54
Qwen2.5-1.5B-Instruct 0.0 0.12 23.7 0.12 49.2 0.09 15.0 0.10
FoReaL-Decoding n=15,p=0.8 20.0 (+20.0) 9.05 (-6.67) 38.4 (+14.7) 5.63 (-2.46) 76.2 (+27.0) 2.85 (-1.28) 65.0 (+50.0) 5.22 (-2.32)

FoReaL-Decoding n=15,p=1.0 20.0 (+20.0) 11.19 (-4.53) 47.5 (+23.8) 5.86 (-2.23) 85.9 (+36.7) 3.28 (-0.85) 85.0 (-70.0) 6.15 (-1.39)

FoReaL-Decoding n=25,p=0.8 36.7 (+36.7) 9.58 (-6.14) 45.0 (+21.3) 4.37 (-3.72) 82.0 (+32.8) 2.52 (-1.61) 72.5 (+57.5) 4.65 (-2.89)

FoReaL-Decoding n=25,p=1.0 40.0 (+40.0) 11.00 (-4.72) 57.1 (+33.4) 6.27 (-1.82) 90.8 (+2.8 3.36 (-0.77) 92.5 (-77.5) 6.88 (-0.66)

DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct

DeepSeek-R1-Distill-Qwen-1.5B 23.3 2.86 22.2 1.13 81.4 1.14 65.0 2.51
Qwen2.5-7B-Instruct 6.7 0.95 38.4 0.89 76.0 0.61 52.5 0.75
Speculative Thinking 6.7 4.93 31.8 6.73 74.8 2.04 55.0 4.97
FoReaL-Decoding n=15,p=0.8 16.7 (+10.0) 2.05 (-0.81) 34.3 (-4.1) 1.07 (-0.06) 76.4 (+0.4) 0.57 (-0.57) 57.5 (+5.0) 1.08 (-1.43)

FoReaL-Decoding n=15,p=1.0 16.7 (+10.0) 6.47 (+3.61) 29.8 (-8.6) 3.08 (+1.95) 79.6 (+3.6) 1.42 (+0.28) 52.5 (+0.0) 3.35 (+0.84)

FoReaL-Decoding n=25,p=0.8 20.0 (+13.3) 1.57 (-1.29) 33.3 (-5.1) 0.80 (-0.33) 78.6 (+2.6) 0.55 (-0.59) 65.0 (+12.5) 1.76 (-0.75)

FoReaL-Decoding n=25,p=1.0 23.3 (+16.6) 3.18 (+0.32) 29.3 (-9.1) 2.53 (+1.40) 79.2 (+3.2) 1.04 (-0.1) 65.0 (+12.5) 1.66 (-0.85)

or even slightly higher performances than the 32B
Leading model with fewer TFLOPs.

R1-Distill-Qwen-32B for Leading, Qwen2.5-
1.5B-Instruct for Draft. This setting represents a di-
rect mixture of a large reasoning model and a small
non-reasoning model. As shown in the table, the
1.5B instruct model performs badly on the given
difficult math problems. The use of a stronger rea-
soning model for leading largely improves the ac-
curacy, although with more computation required.
The response lengths are largely shorter than R1-
Distill-Qwen-1.5B, representing an alleviation of
overthinking. Compared with using another small
reasoning model for Draft, utilizing the instruc-
tion model leads to suboptimal performance. To
understand this phenomenon, further experiments
are conducted where the base pretrained model
Qwen2.5-1.5B is utilized as the Draft model. As
shown in Table 2, the accuracies, response lengths,
and TFLOPs are almost identical compared with
using base and instruct models, which means the
previous instruction-aligned process does not bene-
fit the current reasoning settings.

R1-Distill-Qwen-1.5B for Leading, Qwen2.5-7B-
Instruct for Draft. Different from the above set-

Table 2: The detailed results of different collaborative
settings on AIME. Length represents the averaged re-
sponse length, Ratio represents the average ratio of to-
kens decoded by using the Leading model, for each task.
Additional configuration that uses base model for Draft
is included.

Model AIME24

Method Config ACC (%) Length Ratio TFLOPs

DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B

FoReaL-Decoding n=15, p=0.4 33.3 11 876 0.272 5.60
FoReaL-Decoding n=15, p=0.6 50.0 10 934 0.401 6.77
FoReaL-Decoding n=15, p=0.8 50.0 11 532 0.527 8.47
FoReaL-Decoding n=15, p=1.0 66.7 10 617 0.666 9.16
FoReaL-Decoding n=25, p=0.8 53.3 12 081 0.676 10.95
FoReaL-Decoding n=25, p=1.0 66.7 11 116 0.683 10.54

DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct

FoReaL-Decoding n=15, p=0.8 20.0 12 584 0.571 9.05
FoReaL-Decoding n=15, p=1.0 20.0 14 188 0.588 11.19
FoReaL-Decoding n=25, p=0.8 36.7 11 575 0.710 9.58
FoReaL-Decoding n=25, p=1.0 40.0 11 239 0.813 11.00

DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B (Base)

FoReaL-Decoding n=15, p=0.8 23.3 12 224 0.547 9.56
FoReaL-Decoding n=15, p=1.0 20.0 12 107 0.664 10.39

DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct

FoReaL-Decoding n=15, p=0.8 16.7 4 120 0.545 2.05
FoReaL-Decoding n=15, p=1.0 16.7 14 132 0.651 6.47
FoReaL-Decoding n=25, p=0.8 20.0 4 474 0.693 1.57
FoReaL-Decoding n=25, p=1.0 23.3 11 436 0.841 3.18



tings, in which a strong but large reasoning model
is used as the Leading model, this setting considers
a different and most efficient scenario, utilizing a
small reasoning model for leading and a slightly
larger instruct model for Draft. In this setting, the
efficiencies are reduced to an extremely low level,
even faster than directly utilizing the small rea-
soning models. As shown in Table 2, FoReaL-
Decoding largely reduces the length required for
the problem, thus largely reducing the computation
required. On AIME24 and AMC23, our method
reaches the same accuracy as the Leading model
with similar or less computation. On GPQA, our
method reaches an intermediate accuracy, since the
abnormal situation where a non-reasoning model
has better performance than the reasoning model.

Estimation of TFLOPs. Empirical latency de-
pends on vendor-specific kernel fusion and memory
layouts, so a timing measured on one backend may
not transfer to another. Counting floating-point
operations (FLOPs) provides a hardware-agnostic
yardstick that isolates algorithmic differences. The
performance figures we report are presented in Ter-
aFLOPs (TFLOPs), where one TFLOP equals 1012

FLOPs. Typically, the generation process proceeds
in two modes, prefill and decode. Prefill processes
the full prompt of length s once without any KV
cache, and decode autoregressively emits output to-
kens while re-using cached keys and values. When
GPU memory is sufficient, profiling shows that
producing multiple tokens during the prefix phase
costs almost the same as decoding a single token.
Therefore, we upper-bound the prefix cost by the
single-token decode cost. For the TFLOPs values
cited in our results, we calculate the precise total
FLOPs using the detailed formulas presented in
Appendix A.1. This calculation methodology is
based on (Chen et al., 2024; Han, 2024), and the re-
sulting total FLOPs are then converted to TFLOPs
for reporting.

4.3 Trade-Off Curves
Figure 3 plots the trade-off curves between accu-
racy and TFLOPs for every (n, p) configuration
tested on AIME24 (left) and AMC23 (right), ac-
cording to the experiment scopes from the above
section. Blue markers correspond to FoReaL-
Decoding variants, red circles denote the corre-
sponding LRMs, and the dashed line is the empir-
ically computed Pareto frontier. On both bench-
marks, every LRM point is Pareto dominated:
an alternative FoReaL-Decoding setting always

Figure 3: The trade-off curves between accuracy
and TFLOPs. Blue markers correspond to FoReaL-
Decoding variants, red circles denote the corresponding
LRMs, and the dashed line is the empirically computed
Pareto frontier. On both benchmarks, every LRM point
is Pareto dominated.

achieves higher accuracy at lower cost. Moreover,
we find that the frontier rises sharply between 0.5
and 2 TFLOPs, as each additional TFLOP yields
10–15 percentage points of accuracy. However, be-
yond≈5 TFLOPs, the curve flattens; extra compute
buys only marginal improvements to the ceiling.

5 Conclusion

Our systematic token-level analysis comparing
Large Reasoning Models (LRMs) with non-
reasoning models has uncovered two pivotal, previ-
ously under-explored divergence phenomena. First,
we identified a Global Misalignment Rebound,
where LRM token divergence from non-reasoning
models can unexpectedly persist or even increase
over entire responses, underscoring deep-seated
generative differences not easily bridged by ex-
tended context. Second, and critically for our
method, we characterized the Local Misalignment
Diminish: a novel, periodical sentence-level pat-
tern wherein LRM-specific stylistic “thinking cues”
cause high token divergence at the very beginning
of sentences, after which this misalignment rapidly
decreases within the sentence.

Leveraging the predictable nature of the Lo-
cal Misalignment Diminish, we proposed FoReaL-
Decoding (FoReaL-Decoding), a training-free,
plug-and-play collaborative decoding algorithm.
FoReaL-Decoding strategically allows a strong
LRM to lead the crucial initial tokens of sentences
(capturing these divergent “thinking cues”), while
a lightweight Draft model efficiently completes
the subsequent, more aligned portions. A stochas-
tic gate further modulates the LRM’s interven-
tion to mitigate overthinking and control the cost-
quality trade-off. Our experiments demonstrate that
FoReaL-Decoding achieves significant efficiency
gains, reducing theoretical TFLOPs.
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gen Müller, Łukasz Flis, Hannes Eberhard, Hubert
Niewiadomski, and Torsten Hoefler. 2025. Rea-
soning language models: A blueprint. Preprint,
arXiv:2501.11223.

Alexander Bukharin and Tuo Zhao. 2023. Data diver-
sity matters for robust instruction tuning. Preprint,
arXiv:2311.14736.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv:2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023a. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.
2023b. Alpagasus: Training a better alpaca with
fewer data. Preprint, arXiv:2307.08701.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng,
Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang
Zhou, Te Gao, and Wanxiang Che. 2025a. Towards
reasoning era: A survey of long chain-of-thought
for reasoning large language models. Preprint,
arXiv:2503.09567.

Runjin Chen, Gabriel Jacob Perin, Xuxi Chen, Xilun
Chen, Yan Han, Nina ST Hirata, Junyuan Hong,
and Bhavya Kailkhura. 2025b. Extracting and un-
derstanding the superficial knowledge in alignment.
arXiv preprint arXiv:2502.04602.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi

Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang,
Zhaopeng Tu, Haitao Mi, and Dong Yu. 2025c. Do
not think that much for 2+3=? on the overthinking of
o1-like llms. Preprint, arXiv:2412.21187.

Yushuo Chen, Tianyi Tang, Erge Xiang, Linjiang Li,
Wayne Xin Zhao, Jing Wang, Yunpeng Chai, and Ji-
Rong Wen. 2024. Towards coarse-to-fine evaluation
of inference efficiency for large language models.
arXiv preprint arXiv:2404.11502.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao
Wang, Yichuan Wang, Siyuan Zhuang, Shu Liu,
Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao,
Nicholas Thumiger, Aditya Desai, Ion Stoica, Ana
Klimovic, Graham Neubig, and Joseph E. Gonzalez.
2025. The danger of overthinking: Examining the
reasoning-action dilemma in agentic tasks. Preprint,
arXiv:2502.08235.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang,
Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu
Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan
Yao, Xu Han, Hao Peng, Yu Cheng, and 4 others.
2025. Process reinforcement through implicit re-
wards. Preprint, arXiv:2502.01456.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, and etc. 2025. Deepseek-r1: Incentiviz-
ing reasoning capability in llms via reinforcement
learning. Preprint, arXiv:2501.12948.

Qianlong Du, Chengqing Zong, and Jiajun Zhang. 2023.
Mods: Model-oriented data selection for instruction
tuning. Preprint, arXiv:2311.15653.

Chenrui Fan, Ming Li, Lichao Sun, and Tianyi Zhou.
2025. Missing premise exacerbates overthinking:
Are reasoning models losing critical thinking skill?
arXiv preprint arXiv:2504.06514.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu
Zhao, Shiqing Ma, and Zhenyu Chen. 2024.
Token-budget-aware llm reasoning. arXiv preprint
arXiv:2412.18547.

Xiaotian Han. 2024. Reproduce the inference-time scal-
ing experiment.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.
Training large language models to reason in a contin-
uous latent space. arXiv preprint arXiv:2412.06769.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
Preprint, arXiv:2212.10403.

Lifeng Jin, Baolin Peng, Linfeng Song, Haitao Mi,
Ye Tian, and Dong Yu. 2024. Collaborative decod-
ing of critical tokens for boosting factuality of large
language models. arXiv preprint arXiv:2402.17982.

https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2503.04697
https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/2024.eacl-srw.17/
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://arxiv.org/abs/2501.11223
https://arxiv.org/abs/2501.11223
https://arxiv.org/abs/2311.14736
https://arxiv.org/abs/2311.14736
https://arxiv.org/abs/2307.08701
https://arxiv.org/abs/2307.08701
https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2311.15653
https://arxiv.org/abs/2311.15653
https://ahxt.github.io/blog/2024-12-30-inference-time-scaling-exp/
https://ahxt.github.io/blog/2024-12-30-inference-time-scaling-exp/
https://arxiv.org/abs/2212.10403
https://arxiv.org/abs/2212.10403


Daniel Kahneman. 2011. Thinking, fast and slow.
macmillan.

Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena
Karpinska, Mohit Iyyer, Amir Houmansadr, and Eu-
gene Bagdasarian. 2025. Overthink: Slowdown at-
tacks on reasoning llms. Preprint, arXiv:2502.02542.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Jianwei Li and Jung-Eun Kim. 2024. Superfi-
cial safety alignment hypothesis. arXiv preprint
arXiv:2410.10862.

Ming Li, Han Chen, Chenguang Wang, Dang Nguyen,
Dianqi Li, and Tianyi Zhou. 2024a. Ruler: Improv-
ing llm controllability by rule-based data recycling.
arXiv preprint arXiv:2406.15938.

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Jiuxi-
ang Gu, and Tianyi Zhou. 2024b. Selective reflection-
tuning: Student-selected data recycling for LLM
instruction-tuning. In Findings of the Association for
Computational Linguistics ACL 2024, pages 16189–
16211, Bangkok, Thailand and virtual meeting. As-
sociation for Computational Linguistics.

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, and
Tianyi Zhou. 2023. Reflection-tuning: Recycling
data for better instruction-tuning. In NeurIPS 2023
Workshop on Instruction Tuning and Instruction Fol-
lowing.

Ming Li, Pei Chen, Chenguang Wang, Hongyu Zhao,
Yijun Liang, Yupeng Hou, Fuxiao Liu, and Tianyi
Zhou. 2024c. Mosaic-it: Free compositional data
augmentation improves instruction tuning. arXiv
preprint arXiv:2405.13326.

Ming Li, Yanhong Li, Ziyue Li, and Tianyi Zhou.
2025a. How instruction and reasoning data shape
post-training: Data quality through the lens of layer-
wise gradients. arXiv preprint arXiv:2504.10766.

Ming Li, Yanhong Li, and Tianyi Zhou. 2024d. What
happened in llms layers when trained for fast vs. slow
thinking: A gradient perspective. arXiv preprint
arXiv:2410.23743.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu
Zhao, Jianzong Wang, Ning Cheng, and Tianyi Zhou.
2024e. Superfiltering: Weak-to-strong data filtering
for fast instruction-tuning. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
14255–14273, Bangkok, Thailand. Association for
Computational Linguistics.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2024f. From quantity to quality: Boosting
LLM performance with self-guided data selection
for instruction tuning. In Proceedings of the 2024

Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 7595–7628, Mexico City, Mexico. Association
for Computational Linguistics.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
moyer, and Mike Lewis. 2022. Contrastive decoding:
Open-ended text generation as optimization. arXiv
preprint arXiv:2210.15097.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Ji-
axin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu,
Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingy-
ing Zhang, Fei Yin, Jiahua Dong, Zhiwei Li, Bao-
Long Bi, Ling-Rui Mei, Junfeng Fang, Zhijiang Guo,
Le Song, and Cheng-Lin Liu. 2025b. From system
1 to system 2: A survey of reasoning large language
models. Preprint, arXiv:2502.17419.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li,
Christof Monz, Silvio Savarese, Doyen Sahoo, and
Caiming Xiong. 2025. Reward-guided speculative
decoding for efficient llm reasoning. arXiv preprint
arXiv:2501.19324.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu,
Nouha Dziri, Melanie Sclar, Khyathi Chandu, Chan-
dra Bhagavatula, and Yejin Choi. 2023. The unlock-
ing spell on base llms: Rethinking alignment via in-
context learning. arXiv preprint arXiv:2312.01552.

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza
Ibrahimzada, and Reyhaneh Jabbarvand. 2024a.
Codemind: A framework to challenge large lan-
guage models for code reasoning. Preprint,
arXiv:2402.09664.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2023. What makes good data for
alignment? a comprehensive study of automatic
data selection in instruction tuning. arXiv preprint
arXiv:2312.15685.

Xiaoxuan Liu, Cade Daniel, Langxiang Hu, Woosuk
Kwon, Zhuohan Li, Xiangxi Mo, Alvin Cheung,
Zhijie Deng, Ion Stoica, and Hao Zhang. 2024b.
Optimizing speculative decoding for serving large
language models using goodput. arXiv preprint
arXiv:2406.14066.

Yue Liu, Jiaying Wu, Yufei He, Hongcheng Gao,
Hongyu Chen, Baolong Bi, Jiaheng Zhang, Zhiqi
Huang, and Bryan Hooi. 2025. Efficient inference
for large reasoning models: A survey. Preprint,
arXiv:2503.23077.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-
wei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,

https://arxiv.org/abs/2502.02542
https://arxiv.org/abs/2502.02542
https://aclanthology.org/2024.findings-acl.958
https://aclanthology.org/2024.findings-acl.958
https://aclanthology.org/2024.findings-acl.958
https://aclanthology.org/2024.acl-long.769
https://aclanthology.org/2024.acl-long.769
https://aclanthology.org/2024.naacl-long.421
https://aclanthology.org/2024.naacl-long.421
https://aclanthology.org/2024.naacl-long.421
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2503.23077
https://arxiv.org/abs/2503.23077


and Dacheng Tao. 2025. O1-pruner: Length-
harmonizing fine-tuning for o1-like reasoning prun-
ing. Preprint, arXiv:2501.12570.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. Preprint, arXiv:2501.19393.

OpenAI. 2024. OpenAI o1 System Card.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao
Yan, Dongrui Liu, Ganqu Cui, Daizong Liu, Shuxian
Liang, Junxian He, Peng Li, Wei Wei, Jing Shao,
Chaochao Lu, Yue Zhang, Xian-Sheng Hua, Bowen
Zhou, and Yu Cheng. 2025. A survey of efficient rea-
soning for large reasoning models: Language, multi-
modality, and beyond. Preprint, arXiv:2503.21614.

Mohit Raghavendra, Vaskar Nath, and Sean Hendryx.
2024. Revisiting the superficial alignment hypothesis.
arXiv preprint arXiv:2410.03717.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2024. Gpqa:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Matthew Renze and Erhan Guven. 2024. The benefits
of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International
Conference on Foundation and Large Language Mod-
els (FLLM), pages 476–483. IEEE.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Shannon Zejiang Shen, Hunter Lang, Bailin Wang,
Yoon Kim, and David Sontag. 2024. Learning to
decode collaboratively with multiple language mod-
els. arXiv preprint arXiv:2403.03870.

Xuan Shen, Yizhou Wang, Xiangxi Shi, Yanzhi Wang,
Pu Zhao, and Jiuxiang Gu. 2025a. Efficient
reasoning with hidden thinking. arXiv preprint
arXiv:2501.19201.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu,
Yali Du, and Yulan He. 2025b. Codi: Compress-
ing chain-of-thought into continuous space via self-
distillation. arXiv preprint arXiv:2502.21074.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao
Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. 2024. Fast best-of-n
decoding via speculative rejection. arXiv preprint
arXiv:2410.20290.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, and 1 others.
2025. Kimi k1. 5: Scaling reinforcement learning
with llms. arXiv preprint arXiv:2501.12599.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Qwen Team. 2025. Qwen3.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, and etc. 2023. Llama 2: Open
foundation and fine-tuned chat models. Preprint,
arXiv:2307.09288.

Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li.
2024. Dynamic self-consistency: Leveraging reason-
ing paths for efficient llm sampling. arXiv preprint
arXiv:2408.17017.

Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin
Lu, Linjie Li, Chung-Ching Lin, Kevin Lin, Furong
Huang, and Lijuan Wang. 2025a. Sota with less:
Mcts-guided sample selection for data-efficient vi-
sual reasoning self-improvement. arXiv preprint
arXiv:2504.07934.

Xiyao Wang, Zhengyuan Yang, Linjie Li, Hongjin
Lu, Yuancheng Xu, Chung-Ching Lin, Kevin Lin,
Furong Huang, and Lijuan Wang. 2024a. Scaling
inference-time search with vision value model for
improved visual comprehension. arXiv preprint
arXiv:2412.03704.

Xiyao Wang, Yuhang Zhou, Xiaoyu Liu, Hongjin Lu,
Yuancheng Xu, Feihong He, Jaehong Yoon, Taixi
Lu, Gedas Bertasius, Mohit Bansal, and 1 others.
2024b. Mementos: A comprehensive benchmark
for multimodal large language model reasoning over
image sequences. arXiv preprint arXiv:2401.10529.

Yaoting Wang, Shengqiong Wu, Yuecheng Zhang,
Shuicheng Yan, Ziwei Liu, Jiebo Luo, and Hao Fei.
2025b. Multimodal chain-of-thought reasoning: A
comprehensive survey. Preprint, arXiv:2503.12605.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka,
and Yisen Wang. 2025. When more is less: Un-
derstanding chain-of-thought length in llms. arXiv
preprint arXiv:2502.07266.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang,
and Wenjie Li. 2025a. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint
arXiv:2502.12067.

https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://cdn.openai.com/o1-system-card-20241205.pdf
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen3/
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2503.12605
https://arxiv.org/abs/2503.12605
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903


Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and
Pengfei Liu. 2025b. Evaluating mathematical reason-
ing beyond accuracy. Preprint, arXiv:2404.05692.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen,
Nan Jiang, and Tong Zhang. 2025. Self-rewarding
correction for mathematical reasoning. Preprint,
arXiv:2502.19613.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng
He. 2025. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. 2024. A survey on knowl-
edge distillation of large language models. ArXiv,
abs/2402.13116.

Wang Yang, Xiang Yue, Vipin Chaudhary, and Xiao-
tian Han. 2025. Speculative thinking: Enhancing
small-model reasoning with large model guidance at
inference time. Preprint, arXiv:2504.12329.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. Preprint, arXiv:2502.03387.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. 2024.
Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023.

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo,
Shuofei Qiao, Lun Du, Da Zheng, Huajun Chen,
and Ningyu Zhang. 2025. Lightthinker: Think-
ing step-by-step compression. arXiv preprint
arXiv:2502.15589.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, and 1 others. 2023. Lima: Less is more
for alignment. Advances in Neural Information Pro-
cessing Systems, 36:55006–55021.

https://arxiv.org/abs/2404.05692
https://arxiv.org/abs/2404.05692
https://arxiv.org/abs/2502.19613
https://arxiv.org/abs/2502.19613
https://api.semanticscholar.org/CorpusID:267760021
https://api.semanticscholar.org/CorpusID:267760021
https://arxiv.org/abs/2504.12329
https://arxiv.org/abs/2504.12329
https://arxiv.org/abs/2504.12329
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387


Table of Contents for Appendix

A Detailed Ablations 14

B Pseudo Code 16

C FLOPs Calculation 17

D Related Works 18

E Detailed Results 20



A Detailed Ablations

A.1 Effects of Lead Count and Lead Probability
Figure 4 sweeps the two hyperparameters that govern the controllability of FoReaL-Decoding, lead count
n and lead probability p on AIME24 and AMC23 datasets, based on 2 collaborative configurations,
DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-1.5B
+ Qwen2.5-7B-Instruct, representing the high-performance and high-efficiency settings, respectively. For
each model combination, we run experiments on n ∈ {5, 15, 25,+∞}, p ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}.
When p = 0, FoReaL-Decoding utilizes the Draft model only, and utilizes the Leading model only when
p = 1 and n = +∞. According to the figure, FoReaL-Decoding provides a smooth cost-quality trade-off,
making the transition from the weak Draft model to the strong Leading model smooth and controllable.
For any fixed n, increasing the probability p of the Leader intervention shifts the operating point up and to
the right: accuracy rises while TFLOPs grow almost linearly. The resulting curve is smooth, allowing
practitioners to trade latency for quality by adjusting (n, p). The jump from n = 5 to n = 15 yields large
accuracy gains at a modest cost increase. Further enlarging the Leader count (n ≥ 25) adds little accuracy
yet inflates compute up a lot, indicating that sentence-level guidance already captures most of the benefit
of slow reasoning. A sweet spot is around (n, p ) = (15, 0.6).

Figure 4: Effects of lead count and lead probability on AIME24 and AMC23 datasets, based on 2 collaborative
configurations. FoReaL-Decoding provides a smooth cost-quality trade-off, making the transition from the weak
Draft model to the strong Leading model smooth and controllable.

A.2 Results on Qwen3 Families
To further verify the effectiveness and generalizability of FoReaL-Decoding, additional experiments are
conducted on the Qwen3 series of models, including Qwen3-32B, Qwen3-1.7B, and Qwen3-0.6B, due to
the various sizes of models provided in the family. Specifically, we utilize the reasoning modes for these
models and follow exactly the same generation configuration for our main experiments. The detailed
experimental results are shown in Table 3. As shown in the table, FoReaL-Decoding shows promising
performances on both Qwen3-32B + Qwen3-1.7B and Qwen3-32B + Qwen3-0.6B configurations. For the
former configuration, FoReaL-Decoding reaches a similar accuracy (73.3% to 76.6%) with approximately
half of the TFLOPs (8.83 to 15.75).



Table 3: The detailed results of Qwen3 series models on AIME. FoReaL-Decoding shows promising performance
in this additional family.

Model AIME24

Method Config ACC (%) Length Ratio TFLOPs

Base Models

Qwen3-32B – 76.6 13 275 – 15.75
Qwen3-1.7B – 40.0 14 990 – 2.81
Qwen3-0.6B – 13.3 15 839 – 1.14

Qwen3-32B + Qwen3-1.7B

FoReaL-Decoding n=15, p=0.4 60.0 14 840 0.272 7.20
FoReaL-Decoding n=15, p=0.6 73.3 14 110 0.412 8.83
FoReaL-Decoding n=15, p=0.8 73.3 15 081 0.536 11.43

Qwen3-32B + Qwen3-0.6B

FoReaL-Decoding n=15, p=0.4 36.7 17 782 0.281 7.44
FoReaL-Decoding n=15, p=0.6 63.0 14 279 0.410 8.18
FoReaL-Decoding n=15, p=0.8 60.0 15 478 0.560 11.01



B Pseudo Code

The pseudo code of our FoReaL-Decoding is provided below, all the variables are kept the same as in the
main context.

Algorithm 1: FoReaL-Decoding
Input: Leading model PL, Draft model PD, lead count n, lead probability p, hit threshold k, input

prompt q, max new tokens MAX_LEN
Output: Generated tokens y
y← [], h← 0, λ← 0;
c← q ; // Initial context
g ← 1 ; // Initialize gate
while len(y) < MAX_LEN do

if is_sentence_boundary(y[−1]) then
g ∼ Bernoulli(p) ; // Sample gate for new sentence
h← 0 ; // Reset hit counter
λ← 0 ; // Reset position in sentence

λ← λ+ 1 ; // Increment position in sentence
// Generate next token
if g = 1 and (λ ≤ n or h < k) then

t← sample(PL(·|c)) ; // Use Leading model
else

t← sample(PD(·|c)) ; // Use Draft model

// Check alignment when approaching transition point
if g = 1 and λ > n− k then

if top-1(PD(·|c)) = top-1(PL(·|c)) then
h← h+ 1;

else
h← 0;

y.append(t);
c← concat(c, t) ; // Update context
if t ∈ EOS_tokens then

break;

return y;



C FLOPs Calculation

The calculation of Floating Point Operations (FLOPs) for the prefill and decoding stages is based on the
methodology from (Chen et al., 2024; Han, 2024). These calculations assume a batch size of 1.

The variables involved are defined as:

• s: Represents the sequence length.

– For the prefill stage (FLOPsprefill(s)), s is the length of the input prompt, denoted as pl.
– For the decode stage (FLOPsdecode(s)), s is the current length of the context (prompt + tokens

generated so far) that the model attends to via its Key-Value (KV) cache.

• h: The hidden size of the model.

• h′: The intermediate size of the feed-forward network (FFN).

• n: The number of attention heads.

• pl: The length of the initial problem prompt.

• dl: The number of tokens to be generated in the solution.

It is noted that the hidden size h relates to the number of attention heads n and the size of each attention
head d by h = n · d.

The FLOPs for the prefill stage, which processes the initial input prompt of length s = pl, is given by
Equation 7:

FLOPsprefill(s) = 8sh2 + 16sh+ 4s2h+ 4s2n+ 6shh′ + 2sh′ (7)

The FLOPs for the decode stage, which generates a single token when the current KV cache has a
length of s, is given by Equation 8:

FLOPsdecode(s) = 8h2 + 16h+ 4sh+ 4sn+ 6hh′ + 2h′ (8)

The total FLOPs to generate dl tokens from a prompt of length pl combines the prefill cost for the
prompt and the sum of decode costs for each generated token, as shown in Equation 9:

FLOPstotal = FLOPsprefill(pl) +

dl−1∑
i=0

FLOPsdecode(pl + i) (9)

In this formula, for the i-th token being generated (0-indexed), the argument to FLOPsdecode is pl + i,
representing the sequence length in the KV cache at that generation step.



D Related Works

D.1 Large Reasoning Models

Recent advances in large language models (LLMs) have spurred a surge of work aimed at strengthening
their reasoning abilities (Ahn et al., 2024; Besta et al., 2025; Chen et al., 2025a). Core reasoning skills
are already instilled during pre-training, where models absorb commonsense and mathematical patterns
from vast text corpora (Touvron et al., 2023; OpenAI, 2024). Researchers have therefore concentrated on
post-training techniques to further polish these skills. One prominent direction employs reinforcement
learning to nudge models toward more effective chains of thought (Shao et al., 2024; Xiong et al., 2025;
Cui et al., 2025; Wang et al., 2025a). Another line shows that carefully curated instruction-tuning data
can likewise deliver sizable gains in reasoning accuracy (Ye et al., 2025; Muennighoff et al., 2025; Wang
et al., 2024a).

Despite the impressive benchmark scores of recent Reasoning Language Models, several studies have
begun to probe the quality and efficiency of the reasoning they generate. (Xia et al., 2025b) conduct
a broad assessment and reveal substantial redundancy in many model-produced solutions. Follow-up
investigations (Chen et al., 2025c; Cuadron et al., 2025; Qu et al., 2025; Liu et al., 2025; Fan et al., 2025)
underscore an “overthinking” phenomenon, whereby models craft unduly verbose derivations even for
simple problems. Capitalizing on this trait, (Kumar et al., 2025) demonstrate a slowdown attack: small
input perturbations can trigger excessive reasoning, markedly degrading inference speed.

To alleviate overthinking and improve efficiency for reasoning models, a series of efficient reasoning
methods has been proposed. For example, (Yu et al., 2024; Team et al., 2025; Aggarwal and Welleck,
2025; Xia et al., 2025a; Luo et al., 2025) utilize model-based methods that either add further constraints
on RL rewards or SFT on diverse lengths of CoTs, (Hao et al., 2024; Shen et al., 2025b,a; Zhang et al.,
2025) utilize latent-space reasoning methods that transfer the massive tokens into the embedding space,
(Han et al., 2024; Xu et al., 2025; Renze and Guven, 2024) utilize the prompt-based methods, (Sun et al.,
2024; Wan et al., 2024; Wu et al., 2025) utilize the sampling methods. Most of these methods either
require further post-training or manipulating the distribution of LRM itself.

D.2 Alignment and Token Pattern Analysis

A key empirical foundation for LLM Alignment is LIMA (Zhou et al., 2023), which demonstrated that just
1, 000 carefully curated instruction–response pairs are already enough for LLM alignment, crystallizing
the “superficial alignment” hypothesis. While a line of work directly follows the hypotheses by introducing
data selection or alignment methods (Chen et al., 2023b; Li et al., 2024f, 2023, 2024b; Du et al., 2023; Li
et al., 2024a; Bukharin and Zhao, 2023; Liu et al., 2023; Li et al., 2024e,c, 2025a; Xu et al., 2024), there
are also works that try to further investigate this phenomenon.

(Lin et al., 2023) provides a comprehensive token-level evidence by comparing the top-k token
distributions of base models and their chat-tuned counterparts. The authors show that almost all divergence
concentrates on discourse markers, politeness phrases, and safety disclaimers, while core content tokens
remain unchanged. (Chen et al., 2025b) dissects which prompt-level cues are sufficient (and which are not)
for alignment, showing that reasoning gaps emerge precisely where superficial patterns end. The debate
has sparked push-back as well: (Raghavendra et al., 2024) demonstrates systematic performance gains
when the amount of post-training data scales up, arguing that some deeper representational changes do
accrue beyond mere style. Researchers are also probing where superficial signals live: (Li and Kim, 2024)
argues that data curation, not extra optimization steps, is the primary lever: filtering for safety disclaimers
yields larger alignment jumps than adding thousands of generic examples. Together, these works paint a
nuanced picture: much of the alignment gap after pre-training is indeed “superficial”, residing in a narrow
band of stylistic tokens that can be manipulated through tiny prompts, judicious data selection. However,
in this paper, we show that the reasoning capabilities might not be as superficial as previous findings.

D.3 Speculative Decoding and Collaborative Decoding

Speculative decoding, inaugurated by (Leviathan et al., 2023), uses a small “draft” model to propose
several tokens that the large “target” model then verifies in one batch, yielding 2–3× latency reductions



with provably identical output distributions. Follow-up work, such as (Chen et al., 2023a) extends the idea
to 70 B-parameter models and confirms similar speed-ups, while (Cai et al., 2024) replaces the external
draft model with extra decoding heads to remove system complexity System-level schedulers like (Liu
et al., 2024b) dynamically adapt draft length to traffic conditions and push end-to-end gains beyond 3× in
production settings.

Collaborative decoding improves text quality by letting multiple models cooperate during generation.
(Li et al., 2022) runs a weak “amateur” model alongside a strong “expert” and selects tokens that maximize
their likelihood gap, sharply reducing repetition and incoherence without retraining. (Jin et al., 2024)
introduces a critical-token strategy that switches to the pretrained base model whenever factual precision
is needed, cutting hallucinations in instruction-tuned LLMs. At an even finer grain, (Shen et al., 2024)
treats “who should emit the next token” as a latent variable, enabling on-the-fly delegation between a
generalist LLM and domain specialists and outperforming any single model on cross-domain tasks.

For the recent models with strong reasoning capabilities, several recent works (Liao et al., 2025; Yang
et al., 2025) based on speculative decoding have also been released, which we have introduced in the main
method section. Our FoReaL-Decoding provides a different method with a better trade-off scope.



E Detailed Results

Table 4 and Table 5 show the detailed results of different settings of our method.

Table 4: The detailed results of different collaborative settings on AIME24, GPQA-D, MATH500, and AMC23,
including length and ratio.

Model AIME24 GPQA-D MATH500 AMC23

Method Config ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs

DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B

DeepSeek-R1-Distill-Qwen-32B 66.7 13035 - 15.72 59.6 6602 - 8.09 93.6 3542 - 4.13 95.0 6243 - 7.54
DeepSeek-R1-Distill-Qwen-1.5B 23.3 18021 - 2.86 22.2 8696 - 1.13 81.4 6704 - 1.14 65.0 13311 - 2.51

FoReaL-Decoding n=15, p=0.4 33.3 11876 0.272 5.60 43.3 5841 0.294 2.47 90.2 3402 0.312 1.45 80.0 6043 0.304 2.91
FoReaL-Decoding n=15, p=0.6 50.0 10934 0.401 6.77 48.2 7007 0.431 4.50 91.4 3995 0.452 2.40 80.0 6460 0.429 3.99
FoReaL-Decoding n=15, p=0.8 50.0 11532 0.527 8.47 54.6 6110 0.570 4.69 93.4 3658 0.590 2.70 90.0 7037 0.571 5.37
FoReaL-Decoding n=15, p=1.0 66.7 10617 0.666 9.16 56.6 6796 0.692 6.21 93.2 3655 0.726 3.14 92.5 5942 0.708 5.28
FoReaL-Decoding n=25, p=0.8 53.3 12081 0.676 10.95 57.7 6223 0.702 5.65 92.6 3585 0.719 3.13 92.5 5529 0.710 4.99
FoReaL-Decoding n=25, p=1.0 66.7 11116 0.683 10.54 57.6 6065 0.882 6.68 94.5 3403 0.890 3.50 95.0 5422 0.872 5.66

DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct

DeepSeek-R1-Distill-Qwen-32B 66.7 13035 - 15.72 59.6 6602 - 8.09 93.6 3542 - 4.13 95.0 6243 - 7.54
Qwen2.5-1.5B-Instruct 0.0 998 - 0.12 23.7 923 - 0.12 49.2 747 - 0.09 15.0 818 - 0.10

FoReaL-Decoding n=15, p=0.8 20.0 12584 0.571 9.05 47.5 7013 0.587 5.63 76.2 3792 0.614 2.85 65.0 7629 0.514 5.22
FoReaL-Decoding n=15, p=1.0 20.0 14188 0.588 11.19 47.5 6294 0.737 5.86 85.9 3894 0.750 3.28 65.0 7673 0.707 6.15
FoReaL-Decoding n=25, p=0.8 36.7 11575 0.710 9.58 56.7 4718 0.719 4.37 82.0 3025 0.729 2.52 72.5 5415 0.649 4.65
FoReaL-Decoding n=25, p=1.0 40.0 11239 0.813 11.00 57.1 5944 0.887 6.27 90.8 3403 0.894 3.36 92.5 6989 0.867 6.88

DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct

DeepSeek-R1-Distill-Qwen-1.5B 23.3 18021 - 2.86 22.2 8696 - 1.13 81.4 6704 - 1.14 65.0 13311 - 2.51
Qwen2.5-7B-Instruct 6.7 1243 - 0.95 38.4 1054 - 0.89 76.0 773 - 0.61 52.5 994 - 0.75

FoReaL-Decoding n=15, p=0.8 16.7 4120 0.545 2.05 34.3 2130 0.602 1.07 76.4 1341 0.634 0.57 57.5 2515 0.580 1.08
FoReaL-Decoding n=15, p=1.0 16.7 14132 0.651 6.47 29.8 7913 0.703 3.08 79.6 3480 0.735 1.42 52.5 7330 0.686 3.35
FoReaL-Decoding n=25, p=0.8 20.0 4474 0.693 1.57 33.1 1801 0.718 0.80 78.6 1498 0.736 0.55 65.0 3778 0.683 1.76
FoReaL-Decoding n=25, p=1.0 23.3 11436 0.841 3.18 29.3 6800 0.863 2.53 79.2 3586 0.891 1.04 60.0 5721 0.865 1.66



Table 5: The detailed results of different collaborative settings on AIME24 and AMC23, including length and ratio.

Model AIME24 AMC23

Method Config ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs

DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B

DeepSeek-R1-Distill-Qwen-32B 66.7 13035 - 15.72 95.0 6243 - 7.54
DeepSeek-R1-Distill-Qwen-1.5B 23.3 18021 - 2.86 65.0 13311 - 2.51

FoReaL-Decoding n=5, p=0.2 23.3 12926 0.076 3.47 77.5 5634 0.089 1.39
FoReaL-Decoding n=5, p=0.4 26.7 11590 0.145 3.92 80.0 6549 0.157 2.18
FoReaL-Decoding n=5, p=0.6 36.7 11560 0.202 4.81 80.0 7081 0.228 2.95
FoReaL-Decoding n=5, p=0.8 43.3 11907 0.270 5.82 82.5 6399 0.294 3.29
FoReaL-Decoding n=5, p=1.0 50.0 13750 0.328 7.82 85.0 6916 0.355 3.86
FoReaL-Decoding n=15, p=0.2 26.7 12457 0.138 4.03 70.0 6680 0.154 2.05
FoReaL-Decoding n=15, p=0.4 33.3 11876 0.272 5.60 80.0 6043 0.303 2.91
FoReaL-Decoding n=15, p=0.6 50.0 10934 0.401 6.77 80.0 6460 0.429 3.99
FoReaL-Decoding n=15, p=0.8 50.0 11532 0.527 8.47 90.0 7037 0.571 5.37
FoReaL-Decoding n=15, p=1.0 66.7 10617 0.666 9.16 92.5 5942 0.708 5.28
FoReaL-Decoding n=25, p=0.2 36.7 10805 0.178 3.88 77.5 6798 0.193 2.32
FoReaL-Decoding n=25, p=0.4 33.3 11428 0.347 6.30 80.0 5929 0.362 3.17
FoReaL-Decoding n=25, p=0.6 50.0 10816 0.515 7.71 90.0 6169 0.537 4.49
FoReaL-Decoding n=25, p=0.8 53.3 12081 0.675 10.95 92.5 5529 0.710 4.99
FoReaL-Decoding n=25, p=1.0 66.7 11117 0.683 10.54 95.0 5422 0.872 5.66
FoReaL-Decoding n=∞, p=0.2 30.0 12241 0.204 4.84 75.0 6502 0.216 2.43
FoReaL-Decoding n=∞, p=0.4 46.7 11906 0.417 7.37 85.0 6719 0.423 4.07
FoReaL-Decoding n=∞, p=0.6 50.0 11515 0.605 9.69 92.5 5671 0.607 4.42
FoReaL-Decoding n=∞, p=0.8 60.0 10538 0.798 10.83 92.5 5925 0.797 5.87
FoReaL-Decoding n=∞, p=1.0 66.7 13035 1.000 15.72 95.0 6244 1.000 7.54

DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct

DeepSeek-R1-Distill-Qwen-1.5B 23.3 18021 - 2.86 65.0 13311 - 2.51
Qwen2.5-7B-Instruct 6.7 1243 - 0.95 52.5 994 - 0.75

FoReaL-Decoding n=5, p=0.2 10.0 1047 0.170 0.73 50.0 923 0.179 0.64
FoReaL-Decoding n=5, p=0.4 10.0 1381 0.230 0.91 55.0 1065 0.244 0.69
FoReaL-Decoding n=5, p=0.6 13.3 2377 0.306 1.61 62.5 2574 0.302 1.97
FoReaL-Decoding n=5, p=0.8 13.3 4203 0.345 2.87 47.5 2897 0.373 1.83
FoReaL-Decoding n=5, p=1.0 16.7 7236 0.382 4.45 50.0 5614 0.428 3.24
FoReaL-Decoding n=15, p=0.2 3.3 1936 0.208 1.38 47.5 985 0.224 0.65
FoReaL-Decoding n=15, p=0.4 16.7 1189 0.339 0.70 45.0 1055 0.360 0.61
FoReaL-Decoding n=15, p=0.6 16.7 1793 0.455 0.92 52.5 1307 0.482 0.65
FoReaL-Decoding n=15, p=0.8 16.7 4120 0.545 2.05 57.5 2515 0.580 1.08
FoReaL-Decoding n=15, p=1.0 16.7 14132 0.651 6.47 52.5 7330 0.686 3.35
FoReaL-Decoding n=25, p=0.2 13.3 1243 0.249 0.80 50.0 958 0.231 0.62
FoReaL-Decoding n=25, p=0.4 20.0 1317 0.389 0.73 42.5 1077 0.405 0.59
FoReaL-Decoding n=25, p=0.6 16.7 1743 0.536 0.79 57.5 2047 0.560 1.14
FoReaL-Decoding n=25, p=0.8 20.0 4474 0.693 1.57 65.0 3778 0.683 1.76
FoReaL-Decoding n=25, p=1.0 23.3 11436 0.841 3.18 65.0 5721 0.865 1.66
FoReaL-Decoding n=∞, p=0.2 13.3 1072 0.260 0.69 50.0 986 0.290 0.61
FoReaL-Decoding n=∞, p=0.4 6.7 1276 0.420 0.68 42.5 1140 0.467 0.56
FoReaL-Decoding n=∞, p=0.6 10.0 1914 0.614 0.78 57.5 1324 0.618 0.53
FoReaL-Decoding n=∞, p=0.8 23.3 4244 0.788 1.26 65.0 2854 0.817 0.79
FoReaL-Decoding n=∞, p=1.0 23.3 18021 1.000 2.86 65.0 13311 1.000 2.51
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