Under review as a conference paper at ICLR 2021

TO UNDERSTAND REPRESENTATION OF
LAYER-AWARE SEQUENCE ENCODERS AS
MULTI-ORDER-GRAPH

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose a unified explanation of representation for layer-aware
neural sequence encoders, which regards the representation as a revisited multi-
graph called multi-order-graph (MoG), so that model encoding can be viewed
as a processing to capture all subgraphs in MoG. The relationship reflected by
Multi-order-graph, called n-order dependency, can present what existing simple
directed graph explanation cannot present. Our proposed MoG explanation allows
to precisely observe every step of the generation of representation, put diverse re-
lationship such as syntax into a unifiedly depicted framework. Based on the pro-
posed MoG explanation, we further propose a graph-based self-attention network
empowered Graph-Transformer by enhancing the ability of capturing subgraph
information over the current models. Graph-Transformer accommodates differ-
ent subgraphs into different groups, which allows model to focus on salient sub-
graphs. Result of experiments on neural machine translation tasks show that the
MoGe-inspired model can yield effective performance improvement.

1 INTRODUCTION

Vaswani et al.| (2017) propose self-attention (SAN)-based neural network (called Transformer) for
neural machine translation (NMT). As state-of-the-art NMT model, several variants of the Trans-
former have been proposed for further performance improvement (Shaw et al., 2018} He et al.| [2018))
and for other natural language process tasks such as language model (Devlin et al.| 2019), parsing
(Kitaev & Klein, 2018} [Zhou & Zhaol [2019)), etc.

Similar as recurrent neural network (RNN)-based (Kalchbrenner & Blunsom,[2013;Bahdanau et al.,
2015; Sutskever et al., 2014) model, SAN-based models try to make representation of one word
containing information of the rest sentence in every layer. Empirically, one layer alone cannot result
in satisfactory result, in the meantime, staking layers may greatly increase the complexity of model
(Hao et al., 2019; Yang et al., 2019; |Guo et al., [2019).

Better understanding the representations may help better solve the problem and further improve
performance of SAN-based models. It is common to model the representation as a simple directed
graph, which views words as nodes and relationships between words as edges. However, such under-
standing of representations may be still insufficient to model various and complicated relationship
among words such as syntax and semantics, let alone presenting a unified explanation for the repre-
sentations given by SAN- or RNN-based models (Eriguchi et al., [2016j; |Aharoni & Goldberg, 2017}
‘Wang et al.,2018b). In addition, simple directed graph mostly models the relationship among words
but is incapable of modeling the relationship among phrases or clauses.

To overcome the shortcomings of modeling the representation as a simple directed graph and then
in the hope of helping further improve SAN-based model, in this paper, we propose a novel ex-
planation that representation generated by SAN-based model can be viewed as a multigraph called
multi-order-graph (MoG). In MoG, a set of nodes and edges between these nodes form a subgraph.
Meanwhile, one edge not only connects words, but also connects subgraphs which words belong
to. Thus we call the relationship reflected by MoG n-order dependency, where n is the number
of words involved in this relationship. With such an explanation, we can precisely observe every

Under review as a conference paper at ICLR 2021

step of the generation of representation, unify various complicated relationship such as syntax into
n-order dependency and understand the model encoding eventually.

Inspired by our proposed explanation, we further propose a graph-based SAN empowered Graph-
Transformer by enhancing the ability of capturing subgraph information over the current SAN-based
sequence encoder. First of all, we generally define a full representation as the fusing result of all
concerned subgraph representations. Then let the representation of one layer split into two parts,
previous representation and incremental representation. The previous representation reflects
full representation from previous layer, and the incremental representation reflects new information
generated in this layer. Based on this, the encoding process is modified to adapt to such representa-
tion division. We split the original self-attention into three independent parts to generate incremental
representation. Our method accommodates subgraphs of different orders into different parts of in-
cremental representation, and reduces the information redundancy. To fuse the full representation,
We consider three fusing strategies in terms of different weighting schemes so that let the model
focus on salient parts of the representation.

2 MULTI-ORDER-GRAPH EXPLANATION

In graph theory, a directed multigraph (or pseudograph) is a graph has multiple parallel edges, and
these edges have the same end nodes. Two vertices may be connected by more than one directed
edge. In fact, multigraph is enough to reflect representation generated by model after encoding,
while definition of edge cannot reflect relationship between subgraphs and the process of generation.
In this paper, we propose a multigraph called multi-order-graph (MoG) for representation of input,
which defines edges to reflect relationship between nodes more accurately.

2.1 ENCODING OF MODELS

General speaking, encoding of sentence is a process to transfer a sequence of words to a sequence of
vectors. During encoding, model is treated as a stable function independent of data without change
of parameters. Representation generated by model only reflects information of input sentence.

2.2 MULTI-ORDER-GRAPH

We generally define MoG as G = (V, E, SN, TN) over a given sentence S = {sq,..., S}, in
which nodes V' = {vy,...,v,} reflect words of S, edges E = {ey,..., e, } reflect relationship
between words of S, SN = {snq, ..., snm|snj € V,1 < j < m} is the set of source node of each
edge in E and TN = {tnq,...,tny,|tn; € V,1 < j < m} is the set of target node of each edge in
E. Node v; € V in G can access other nodes in one step. Information captured from .S is splited
into two parts, (1) Word information, which are contained in V" and reflects word, (2) Relationship
information, which are contained in E' and reflect relationship of word-pairs.

Note that £ in G is the most difference between MoG and standard multigraph. As mentioned above,
MoG revises the definition of edges to reflect relationship between subgraphs of G. In Section[2.4]we
will discuss the definition of edge e; € F, subgraph and relationship between edges and subgraphs
in detail.

2.3 NODE AND WORD

Similar as simple directed graph, nodes in MoG reflect word of input sentence, which means number
of nodes in MoG is equal to the number of words of input. Words are represented by nodes of MoG.
Without relationship between words, MoG is just a set of graphs which have only one node and no
edge. Obviously, one word is independent of others, and model cannot enrich word information.

2.4 EDGE AND SUBGRAPH

In this section, we define edge, subgraph and relationship between edge and subgraph in MoG.

A subgraph of G is a graph whose vertex set is a subset of 1/, and whose edge set is a subset of E.
We define Subg = {sub¥, ..., subf } as the set of all subgraphs of G. Subgraph can be defined as

Under review as a conference paper at ICLR 2021

sub§ = (V& EY, SNE TN). Order of subgraph sub$’, which is equal to |[V,7|, i.e., the number
of nodes in it, and also means number of the words involved in this subgraph. The simplest subgraph
has one node and no edge, and order of it is 1.

Edge in MoG connects two nodes which is same as simple direct graph. However, edges in MoG
reflect not only relationship between words, but also the relationship between subgraphs. Given
one node-pair, several edges are generated because nodes may belong to different subgraph-pairs.
p(vi,v; € VkG|vj, v; € VhG) is the conditional probability to present one relationship between v;
and v;. It indicates that edge e; is determined by four variables, (1) source node sn; of edge ¢;,
(2) target node tn; of edge e;, (3) subgraph sub$ in which sn; € V,¢, (4) subgraph sub{ in which
tn; € VhG.

When e; is generated, e; will connect subf and subf and generate a novel subgraph, which we call
this subgraph related subgraph of e¢; and use subg(;) to represent it, where R(j) is a function to
get the identifier of related subgraph of e;. To reflect importance of e; and complexity of subg()
we define order of e;, which is represented by o; and equal to the order of subg(j).We can use a

6-tuple
€5 = (Snj7 tnjv SUkaa SUbg, Subg(j)7 Oj)

to present edge e;. If we only focus on source and target node, we can use (sn; — tn;, 0;) for e;.

(d>e2) (@>b2) U a->e,2) (>3
+ (

/

(b) Loop. (c) Overlap of nodes. (d) Overlap of nodes and edges.
(a) No loop or over-

lap.

Figure 1: Generation of different kinds of subgraph.

Figure [T| shows generation of four kinds of subgraph. To make the process of generating subgraph
clear to understand, we only focus on subgraph without loop and overlap, which is the most simple
kind of subgraph. Obviously, subgraphs and edges cannot be generated in random order. The order
in which edges are generated is the order in which related subgraph of these edges are generated,
which is also the order in which all subgraphs are generated. It also means that the process of
subgraph (edge) generation is an iterative process, in which one subgraph (edge) relies on previous
generated subgraphs (edges).

We define an operation to express the process of generating subgraphs,
suby, = (sub;) — vy U (subj) — vy,

This operation means that one new edge (vp,, vy, sub;, sub;, suby, |V;|+|V;|) and one new subgraph
suby, are generated, where |V;| and |V;| are orders of sub; and sub;, vy, € sub; is the source node
of new edge, v, € sub; is the target node of new edge and suby, is generated by connecting sub;
and sub;. Note that the commutative property, distributive property and associative property do not
apply in this formula. For an example, the process of generating subgraph in Figure can be
expressed as

(((subg) = v U (subp) — vp) = vp U (sube) = ve) = v U ((subg) — vg U (sube) = ve) — vg,

where sub,, suby, sub., suby and sub, are subgraphs with only one node. It also means that
this process can be expressed as binary tree. Especially, given a sentence, if we add words to one
subgraph according to the order of word in the sentence, this subgraph can reflect the order of the
sentence.

Under review as a conference paper at ICLR 2021

| |
|
| ©. 0 0.0 O |
| [
| |
| Input |
| Order 1 O @ @ o) @ :
| Layer 1 |
| Order 1 |
| |
| Order 1 Order 2 Order 3 Order 4 Order 5 |
LLayer—IeveI Iteration Sentence-level Iteration !

Figure 2: Iteration.

As mentioned above, relationship which e; reflects is not only relationship between words but also
relaitonship between subgraphs. In this paper, we call this relationship, which is a combination of
relationship between words and between subgraphs, n-order dependency where n is equal to o;.
In fact, n-order dependency relationship can conveniently model quite a lot of relationships among
words, typically, various syntax.

2.5 FOUR KEY QUESTIONS FOR MODELS

Based on the proposed MoG explanation, an effective model should better generate edges and cap-
ture subgraphs iteratively, which triggers the following four basic questions.

e How to preserve subgraph information? Neural models have to use vector for this purpose,
which lets the dimension of vectors become an important factor to define the vector accommodation.

e How to implement iterative encoding? Two kinds of iteration are shown in Figure 2] Sentence-
level iteration allows model to encode words one by one as used in RNN-based model. With
sentence-level iteration, the order of subgraph is the sentence length. All layer-aware models imple-
ment layer iteration by generating representations in one layer to feed next layer.

e How to capture edges and subgraphs? RNN-based models use recurrent networks, convo-
lutional neural network based models (Gehring et al., 2017; Dauphin et al., 2017) use convolua-
tion+gating blocks, and SAN-based models use self-attention.

e Which architecture will be selected? A proper architecture can focus on advantages of solutions
of other three questions.

These four questions are correlated to each other. Using vector causes dimension of vector im-
portant. Iteration makes number of layer important and affects architecture of model. Methods to
generate edges is related to a proper iteration and architecture.

Inspired by the MoG explanation for the representations and following the path well answering the
related four questions, we may further improve the encoder design. Thus we propose a graph-aware
Transformer as follows.

3 GRAPH-TRANSFORMER

3.1 MULTI-ORDER-GRAPH IN THE TRANSFORMER

SAN-based models use self-attention to capture edges and subgraphs, and use layer-level iteration
only. Regarding representation as a MoG G, we can use a one-dimensional matrix to contain all
information of (G, which means that we may use a matrix with the same shape as representation
to represent a subgraph. Given representation for a set of subgraphs, one representation-pair can
be expanded into a set of subgraph-pair. Given representations r, and rp, {sub{,...sub®} are n
subgraphs contained in r, and {sub?, ...sub® } are m subgraphs contained in 7y,
n a m b
To =y, subf,ry =" subj.

Self-attention has to get an attention matrix M using query and key accoring to Equation (3)). In

the i-th layer of SAN-based model, representation of word s,,, generated by this layer is r;, and

Under review as a conference paper at ICLR 2021

Previous
information

Previous r Linear |_. Low

NULL information Order
Multi-Head Middle

Attention Order

Input Incremental Multi-Head] __ Middle

Inputs o
P Embedding P information Attention Order
e Multi-Head High

Attention Order

| Incremental
information

Positional
Encoding

Figure 3: Graph-Transformer.

attention matrix is M. To calculate matrix M;, if r, is query and ry is key,

o (1) = (Z subf) - (Z sub?) T = Z subf - (subg)—r (1)
i i]

i

Value in M, reflects relationship between two words which can be reflect as edge in MoG. Equation
shows that relationship of all subgraph-pairs which are extended from r, and 7, can be calculated
at once and new subgraphs by connecting old subgraphs from r, and r; are also generated.

In the i-th layer, representations used as query, key and value are from the ¢ — 1-th layer, which
means that subgraphs generated by ¢ — 1-th layer will affect the largest order of subgraphs in i-th
layer. Connecting two input subgraphs of the largest order will generate a subgraph of the largest
order in ¢-th layer, which makes the largest order of subgraphs increases exponentially as layers
increases and the largest order of subgraphs in i-th layer is 2°.

However, SAN-based model cannot accurately capture all subgraphs and obtain information of input
because the largest order of subgraphs is limited by the number of layers. Information obtained by
n -layer model cannot be complete if the length of input exceeds 2.

Naturally, models always capture subgraphs of low order repeatedly. A generated subgraph is always
contained in representation and used to generate new subgraphs. As a result, the earlier subgraph is
generated, the more times it will be generated. It increases weight of subgraphs of low-order in a
latent way. Besides, saving multiple information of subgraphs in one vectors makes model difficult
to distinguish them and extract salient subgraphs from vectors.

3.2 ARCHITECTURE OF GRAPH-TRANSFORMER

Figure [3is the architecture of our graph-Transformer. First, we define a full representation for the
fusing results of all concerned subgraph information. We split full representation generated by one
layer into previous representation and incremental representation to group subgraphs. Previous
representatin is full representation from previous layer which is also the sum of input previous and
incremental representations. Incremental representation is designed for new information generated
by one layer. To generate incremental representation, we split self-attention into three parts to gen-
erate subgraphs of different order. A gate is used to adjust weights of different groups of subgraphs.
The sum of previous and incremental representations is the final representation of one layer.

3.3 SELF-ATTENTION GROUP FOR SUBGRAPHS OF DIFFERENT ORDER

The original SAN-based model uses input representation as query, key and value to calculate self-
attention. Split input representation into previous representation and incremental representation, it
is obvious that calculation of self-attention can be viewed as the sum of four parts

rf 'T)T = (rp+ri) - (rp+1:) 7 i

— T T T .
=Tp Ty *+Tp-Ty +1i-T, +150Ty

where 7 is full representation, 7, is previous representation and r; is incremental representation.
Note that 1}, is also the ¢ of the previous layer, which means that r,, - rg has been calculated by
previous layer and makes subgraphs be generated repeatedly. It is also the key to increase the weight
of subgraphs of low-order. To avoid redundancy, we only calculate other three parts of self-attention.
There are three levels for the subgraph order.

Output

Under review as a conference paper at ICLR 2021

e High order. Subgraphs generated by r; - r,| belong to high order, and one part of self-attention
is used to process subgraph of high order, which uses input incremental representation as its query,
key and value. In the i-th layer, the order of subgraph is in the range of 2/~ ! to 2°.

e Middle order. Subgraphs generated by r, - ;' and 7; - rpT belong to middle order and other two
parts of self-attention. The second part of self-attention uses input incremental representation as
query and input previous representation as key and value. The third part of self-attention uses input
previous representation as query and input incremental representation as key and value. In the ¢-th

layer, the order of subgraph is in the range of 2¢=2 to 20~ 1.

e Low order. Subgraphs generated by ry, - 7“;— belong to low order. As we discuss above, it is no
need to calculate 7, - rpT again. Instead of self-attention, we use a linear function for transformation
of vector space. The subgraph order is in the range of 1 to 2¢~2

To reduce number of parameters and avoid overfitting, we share vector of query, key and value
in three parts of self-attention, while it is difficult to train such a model because different group
of subgraphs requires different vector spaces. We can also drop the dimension of model in self-
attention. To keep the least effect over the performance, we reduce dimension of model to half of
original dimension.

3.4 FUSION OF REPRESENTATIONS

To get the full representation, we introduce three fusing strategies to combine previous and incre-
mental representation. Calculating the sum is the most simple strategy. However, this strategy
depends on the quality of previous representation and incremental representation. Besides, model
gives four groups of subgraphs equal weights, which cannot weight important subgraphs.

Representations generated by self-attention are new subgraphs which have not been weight by
model. Viewing these three parts of representation as one group, we can use a gate to calculate
their importance and merge them.

w = Sigmoid(ip + im +41),7f = (Ih +im) - w+ 4 - (1 —w),

where iy, i,, and 4; are subgraph of high order, middle order and low order. With gate to assign
weight, model can explicitly distinguish new and old subgraph and pay attention on important group
of subgraph. Disadvantage of this method is that the model cannot distinguish subgraph of high and
middle order. We call this method weight-gate.

Wang et al.[(2018a) propose a fusion function based on self-attention with hops for fusion of rep-
resentation of different layers. Similar as Wang et al.| (2018al), we use self-attention to generate a
matrix of weight which stands for relationship between representations. To assign weight of four
representations, we concatenate four representations to form a new sequence R and calculate the
matrix of relationship between different representation.

Ry = softmax(R,RY /dy)R, /4,

where Ry is the representation sequence, 1?4, I?;, and R, are vector of query, key and value, d}, is
the dimension of model. This method can capture relationships between representations and weight
them. Weight of one group will be larger if it is more important than others. To make sum of weight
equal to 1, representation is divided by 4. We call this method self-gate. Self-gate can weight all
representations by model while according to the function of self-attention, self-gate will generate
subgraphs of higher order which makes model deeper and more difficult to be trained.

4 EXPERIMENTS AND RESULTS

4.1 NEURAL MACHINE TRANSLATION

In this paper, we evaluate our model on four machine translation tasks, IWSLT14 German-English
(De-En), WMT 14 English-German (En-De), WMT 14 English-French (En-Fr) and WMT 16 English-
Romanian(En-Ro).

Our baselines for En-De, En-Fr and En-Ro are Transformer-base, and baseline for De-En is
Transformer-small. Without the proposed graph mechanism, our model is a variant of the Trans-

Under review as a conference paper at ICLR 2021

De-En En-De En-Fr En-Ro
Model
BLEU BLEU BLEU BLEU
Existing NMT systems
Transformer (small) (He et al.(2018)) 329 - - -
Transformer (base) (He et al.| (2018))) - 27.3 - -
Transformer (base) (Shaw et al.[(2018))) | - 26.5 38.2 -
He et al.[(2018) 35.1 (+2.2) | 28.3 (+1.0) | - -
Shaw et al.[(2018) - 26.8 (+0.3) | 38.7(+0.5) | -
B N Our NMT systems
Transformer(small) 36.5 - - -
Transformer(base) - 27.1 40.1 33.9
Graph-Transformer 37.1 (+0.6) | 27.5(+0.4) | - -
©+half-dim & gate 0 [37.2(+0.7) | 28.2(+1.1) | 40.8 (+0.7) | 34.6 (+0.7)

Table 1: Multi-BLEU scores on De-En, En-De, En-Fr and En-Ro. The baselines are Transformer-
small and Transformer-base, respectively.

De-En En-De
Model
BLEU #Para #Speed | BLEU #Para #Speed #PPL
Transformer(small) 36.5 42M 50K - - - -
Transformer(base) - - - 27.1 66M 137K 4.92
Graph-Transformer 37.1 50M 42K 27.5 7™M 112K 4.92
- +half-dm | 375 4M 39K | 274 7IM 107K 495
+gate 37.3 57TM 39K 28.0 80M 109K 4.94
+self-gate 36.9 53M 30K 27.6 7™M 91K -
+shared-gkv & gate 37.1 51M 40K 27.7 75M 121K 491
+half-dim & gate 37.2 50M 35K 28.2 74M 111K 4.89
+half-dim &gate &shared-qgkv | 37.5 47M 38K 27.7 70M 115K 493

Table 2: Multi-BLEU scores of ablations on De-En and En-De. #Para, #Speed, #Mem and #PPL
denote the size of model paragraphs, training speed (tokens/second), GPU memory model used (GB)
and perplexity respectively.

former with three parts of self-attention. We test several methods such as half-dimension (half-dim),
weight-gate (gate), shared-query-key-value (shared-gkv) and self-gate (self-gate). We further com-
pare our model with|Shaw et al.[(2018) and |[He et al.|(2018).

o Shaw et al.|(2018) introduce relative position encoding which adds the relative distance into the
representation.

e He et al. (2018) propose a method to coordinate the learning of hidden representations of the
encoder and decoder together layer by layer.

Table [T| compares our Graph-Transformer with the baseline, showing that our model enhances both
tasks and outperforms all baselines. For De-En tasks, our model with half-dimension gets the best
performance of 37.5 BLEU points with 47 million parameters. For En-De tasks, our model with
half-dimension and weight-gate gets the best performance of 28.2 BLEU points outperforming
the Transformer-base by 1.1 BLEU points with 74 million paramenters. For En-Fr and En-Ro,
our model with half-dimension and weight-gate gets hte performance of 40.8 BLEU points out-
performing the Transformer-base by 0.7 BLEU points and 34.63 BLEU points outperforming the
Transformer-base by 0.7 BLEU points respectively. With a baseline of 27.1 BLEU point on En-De
and 40.1 BLEU point on En-Fr, the improvement of Graph-Transformer is better than |Shaw et al.
(2018)) and [He et al.|(2018) on En-De and En-Fr tasks.

Fusion methods perform differently on De-En and En-De. For De-En tasks, self-gate gets the lowest
performance of 36.9 BLEU points. For En-De tasks, calculating the sum gets the lowest performance

Under review as a conference paper at ICLR 2021

32 - T
—o— baseline model
—— half-dim —a— gate
30 —a— self-gate — 48~ - half-dim-gate — 04 B N
R 28| 1 %
= 2 02 :
26 | 1 —6— 0-10 —m— 10-20
—4— 2030 30-40
24 | . ol @ —a— 4050 - - - 50+
| ! ! ! ! ! Lo T
10 20 30 40 50 50+ 23456738 9101112
Length of Sentence Layers
(a) BLEU points of different lengths. (b) Subgraph weights vs. sentence lengths in different
layers.

Figure 4: The effect of sentence length and layers on performance

of 27.5. For both tasks, weight-gate is the most effective among all fusing methods. Using weight-
gate to weight different groups of subgraphs has shown indeed helpful.

Figure fi(a)] shows the relationship between performance and length of input sentences. With the
longer input sentences, all our methods outperform baseline.

Figure[4(b)|shows that how weight of subgraph of high order change in different layers with different
length of sentence. This result is based on one 12-layer model with combination of half-dimension
and gate. The trend of weight change means that our model will pay more attention on subgraphs of
higher order in higher layers of model. In the appendix, Figure [5(h)|means that the trend of weight
change is independent of number of layers.

4.2 NAMED-ENTITY RECOGNITION, PART-OF-SPEECH TAGGING, TEXT SUMMARIZATION

We also conduct new experiments on Named-entity recognition (NER), part-of-speech tagging (POS
tagging) and text summarization. We use CoNLL-2003 [Sang & Meulder|(2003) dataset, Wall Street
Journal (WSJ) Corpus and Annotated Gigaword |Napoles et al.| (2012) corpus as benchmark of NER
task, POS tagging task and text summarization respectively. In these experiments, we use the Trans-
former as the baseline and evaluate our model with halfdim-gate. Table [3] shows the result of NER
and POS tagging. Table @] shows the result of text summarization.

NER (F1) | POS tagging (F1)
Transformer 80.2 96.40
Graph-Transformer (halfdim&gate) | 80.3 (+0.1) 96.45 (+0.05)

Table 3: Results of NER and POS tagging

ROUGE-1 ROUGE-2 ROUGE-L
Transformer (base) 36.84 18.01 34.31
Graph-Transformer (halfdim&gate) | 37.38 (+0.54) | 18.59 (+0.58) | 34.58 (+0.27)

Table 4: Results of text summarization.

For NER and POS tagging tasks, Graph-Transformer improves the performance tiny. For text sum-
marization, our model with halfdim-gate outperforms the baseline on all evaluation metrics.

In NER and POS tagging tasks, lengths of sentences in the dataset is often short and make the
advantages of Graph-Transformer useless. As we discussed in Section the largest order of
subgraphs generated by model is limited by the number of layer while it is also limited by the length
of sentence. Subgraphs of high order will be generated early and weight of these subgraphs will be
increased in following layer.

Under review as a conference paper at ICLR 2021

5 ANALYSIS OF RESULT

According to MoG explanation and the design of Graph-Transformer, not calculating subgraph of
low order can avoid generating subgraph repeatedly. It ensures that every subgraph to only be
generated once and has the same weight, so that the model performance should be slightly improved.
Meanwhile, weighting subgraphs allows model to figure out salient subgraphs. Without weighting
subgraph, our model can only outperform baseline 0.4 BLEU points in En-De task, and outperform
baseline more than 0.9 BLEU points after weighting subgraph by weight-gate, which is the same as
we expected and indicates the reasonableness of our MoG explanation.

Fusion Methods. Table |l| compares different fusion methods, in which weight-gate gets the best
performance, while self-gate is not the best one as expected. Calculating sum of representation only
makes every subgraph be generated once and have the same weight while it cannot allow model to
figure out salient subgraphs. This method also performs worst.

Self-gate can weight every group of subgraphs which cannot be done by weight-gate. However,
using self-attention and representation, self-gate will generate new subgraphs of high order and
unnecessary redundancy. Self-gate also makes model deeper and difficult to train.

Although weight-gate cannot distinguish every subgraph in representation, it makes model focus on
specific parts. In fact, using the same query, key and value to produce representations, there are
some stable relationship between them. Dividing them into two groups can mostly distinguish this
relationship and allow model to capture it.

Dimension of Models. Table [1| shows that model with half dimension can get a similar or better
result compared with model with full dimension. Larger model dimension enables vector to accom-
modate more features. Our results do not mean larger dimension is unimportant. Though we use less
parameters, our model can capture subgraph more accurately. Our model can distinguish subgraph
with different orders with three independent parts of self-attention.

Besides, more parameters usually let model more difficultly trained and more easily be overfitting.
Thus half dimension setting helps the resulted model to outperform the model with full dimension.

6 RELATED WORK

Several variants have been proposed to improve performance of the original SAN-based model.
Shaw et al.| (2018) proposed relative position representations in the self-attention mechanism to re-
place the absolute position encoding and it enhances the ability of capturing local information of
the input sentence. He et al.| (2018)) shared the parameters of each layer between the encoder and
decoder to coordinate the learning between encoder and decoder. BERT (Devlin et al.,2019) is a lan-
guage model which is to pre-train deep bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers. |Dai et al.[|(2019) enabled the Transformer to
learn dependency beyond a fixed length without disrupting temporal coherence. Koncel-Kedziorski
et al.|(2019) propose a Graph-based model on text generation. [Zhu et al.|(2019) use graph structures
for AMR. Cai & Lam|(2020) propose a graph structure network for AMR.

7 CONCLUSIONS

This paper presents a unified explanation for representations given by sequence encoders, especially,
the SAN empowered Transformer. Instead of a simple directed graph modeling in previous work,
we re-define multigraph into multi-order-graph to accommodate a broad categories of complicated
relationships inside the representations. MoG connects not only words but also subgraphs. With
the built relationship by MoG, which is called n-order dependency, we can understand diverse rela-
tionships inside representations as complicated as syntax in a unified way. Inspired by the proposed
MoG explanation, we further propose a graph-Transformer to enhance the ability of capturing sub-
graph information on the SAN-based encoder. Experimental results indicate that our proposed MoG
explanation for representations is empirically reasonable.

Under review as a conference paper at ICLR 2021

REFERENCES

Roee Aharoni and Yoav Goldberg. Towards string-to-tree neural machine translation. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), Vancouver, Canada, July 2017. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.), 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015.

Deng Cai and Wai Lam. Graph transformer for graph-to-sequence learning. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp.
7464-7471. AAAI Press, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, July 2019.
Association for Computational Linguistics.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pp. 933-941. PMLR, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171-4186.
Association for Computational Linguistics, 2019.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. Tree-to-sequence attentional neural
machine translation. In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), Berlin, Germany, August 2016. Association for
Computational Linguistics.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional
sequence to sequence learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 1243—-1252. PMLR,
2017.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang. Star-
transformer. In Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

Jie Hao, Xing Wang, Baosong Yang, Longyue Wang, Jinfeng Zhang, and Zhaopeng Tu. Modeling
recurrence for transformer. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

Tianyu He, Xu Tan, Yingce Xia, Di He, Tao Qin, Zhibo Chen, and Tie-Yan Liu. Layer-wise coordi-
nation between encoder and decoder for neural machine translation. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicold Cesa-Bianchi, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pp.
7955-7965, 2018.

10

Under review as a conference paper at ICLR 2021

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Washington,
USA, October 2013. Association for Computational Linguistics.

Nikita Kitaev and Dan Klein. Constituency parsing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Melbourne, Australia, July 2018. Association for Computational Linguistics.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh Hajishirzi. Text
Generation from Knowledge Graphs with Graph Transformers. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pp. 2284-2293, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and
Yoshua Bengio. A structured self-attentive sentence embedding. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017.

Courtney Napoles, Matthew R. Gormley, and Benjamin Van Durme. Annotated gigaword. In James
Fan, Raphael Hoffman, Aditya Kalyanpur, Sebastian Riedel, Fabian M. Suchanek, and Partha Pra-
tim Talukdar (eds.), Proceedings of the Joint Workshop on Automatic Knowledge Base Con-
struction and Web-scale Knowledge Extraction, AKBC-WEKEX@NAACL-HLT 2012, Montreal,
Canada, June 7-8, 2012, pp. 95-100. Association for Computational Linguistics, 2012.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In Walter Daelemans and Miles Osborne (eds.), Proceed-
ings of the Seventh Conference on Natural Language Learning, CoNLL 2003, Held in cooperation
with HLT-NAACL 2003, Edmonton, Canada, May 31 - June 1, 2003, pp. 142-147. ACL, 2003.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), New
Orleans, Louisiana, June 2018. Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pp- 3104-3112, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp.
5998-6008, 2017.

Qiang Wang, Fuxue Li, Tong Xiao, Yanyang Li, Yinqgiao Li, and Jingbo Zhu. Multi-layer represen-
tation fusion for neural machine translation. In Proceedings of the 27th International Conference
on Computational Linguistics, Santa Fe, New Mexico, USA, August 2018a. Association for Com-
putational Linguistics.

Xinyi Wang, Hieu Pham, Pengcheng Yin, and Graham Neubig. A tree-based decoder for neural
machine translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October-November 2018b. Association for Computa-
tional Linguistics.

Baosong Yang, Longyue Wang, Derek F. Wong, Lidia S. Chao, and Zhaopeng Tu. Convolutional
self-attention networks. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, Volume
I (Long and Short Papers), Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

11

Under review as a conference paper at ICLR 2021

Junru Zhou and Hai Zhao. Head-Driven Phrase Structure Grammar parsing on Penn Treebank.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
Florence, Italy, July 2019. Association for Computational Linguistics.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min Zhang, and Guodong Zhou. Modeling graph
structure in transformer for better amr-to-text generation. In Kentaro Inui, Jing Jiang, Vincent Ng,
and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Process-
ing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 5458-5467. Associa-
tion for Computational Linguistics, 2019.

A APPENDIX

A.1 BACKGROUND OF GRAPH-TRANSFORMER

Transformer (Vaswani et al.,[2017) is state-of-the-art NMT model empowered by self-attention net-
works (SANs) (Lin et al., [2017), in which an encoder consists of one self-attention layer and a
position-wise feed-forward layer, decoder contains one self-attention layer, one encoder-decoder
attention layer, and one position-wise feed-forward layer. SAN-based model is also used in other
tasks such as language model (Devlin et al., 2019), parsing (Kitaev & Klein, |2018}; [Zhou & Zhao),
2019), etc. SAN-based model uses residual connections around the sublayers followed by a layer
normalization layer.

The encoder reads an input sentence, which is a word sequence = {1, ...z, }, and encodes it as
a context vector c. Decoder is trained to predict the next word given the context vector generated by
encoder and all previously predicted words {1, ..., y+—1 }. The decoder defines a probability over
the translation y by decomposing the joint probability into the ordered conditionals,

Ty
p(y) = 1o [{v1,- w1}).)
t=1

Scaled dot-product attention is the key component in Transformer. The input of attention contains
queries (@), keys (X)), and values (V) of input sequences. The attention is generated using queries
and keys like Equation (3)),

QK™
Vi
Different from RNN-based models which process words/subwords one by one, dot-product attention

allows Transformer to generate the representation in parallel.

Attention(Q, K, V) = softmax(W. 3)

Vaswani et al.[|(2017) also propose multi-head attention which generates representation of sentence
by dividing queries, keys, and values to different heads and gets representative information from
different subspaces.

Quality of encoding sentence and generating representation can influence performance of NMT
model significantly. RNN-based and SAN-based models use different mechanisms to implement
encoding, thus show different natures for the resulted representation. RNN-based model is good at
capturing localness information and not good at parallelization and long-range dependency captur-
ing, while SAN-based model is better at capturing long-range dependencies with excellent paral-
lelization.

A.2 DATASETS OF EXPERIMENTS

IWSLT14 German-English IWSLT14 De-En dataset contains 153K training sentence pairs. We
use 7K data from the training set as validation set and use the combination of dev2010, dev2012,
tst2010, tst2011 and tst2012 as test set with 7K sentences which are preprocessed by scriptﬂ BPE
algorithm is used to process words into subwords, and number of subword tokens is 10K.

"https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-iwslt14.sh

12

Under review as a conference paper at ICLR 2021

Parameter DE-EN EN-DE

Layers 6 6
Dimension 512 512
Head 4 8
FF 1024 1024
Dropout 0.3 0.1

Table 5: Hyperparameters for our experiments. FF is short for feed-forward layer.

WMT14 English-German We use the WMT 14 En-De dataset with 4.5M sentence pairs for training.
We use the combination of newstest2012 and newstest2013 as validation set and newstest2014 as
test set which are preprocessed by scrip The sentences longer than 250 are removed from the
training dataset. Dataset is segmented by BPE so that number of subwords in the shared vocabulary
is 40K.

A.3 HYPERPARAMETERS OF EXPERIMENT

The hyperparameters for our experiments are shown in Table[5] For De-En, we follow the setting of
Transformer-small. For En-De, we follow the setting of Transformer-base.

A.4 TRAINING OF EXPERIMENT

Our models for En-De, En-Fr and En-Ro are trained on one CPU (Intel i7-5960X) and four nVidia
RTX TITAN X GPUs, and models for De-En are trained on one CPU (Intel i7-5960X) and one
nVidia RTX TITAN X GPU. The implementation of model for NMT tasks is based on fairseq-0.6.2.
We choose Adam optimizer with 31 = 0.9, 82 = 0.98, ¢ = 107 and the learning rate setting
strategy, which are all the same as|Vaswani et al.|(2017),

Ir=d=9% - min(step=®, step - warmup;té';’),

where d is the dimension of embeddings, step is the step number of training and warmupgt.y is the
step number of warmup. When the number of step is smaller than the step of warmup, the learning
rate increases linearly and then decreases.

We use beam search decoder for De-En task with beam width 6. For En-De, following [Vaswani
et al.[(2017), the width for beam search is 6 and the length penalty « is 0.2. The batch size is 1024
for De-En and 4096 for En-De. We evaluate the translation results by using multiBLEU.

A.5 AN EXAMPLE OF MODELING SYNTAX IN MOG

Figure [/|shows an example of modeling syntax in MoG. Similar as this example, one syntactic tree
can be viewed as one subgraph of MoG. Generating a syntactic tree can be viewed as a process of
generating a subgraph. We can use an equation to express the example,

stbsens =(((subpo) — Vpo U (stbgo) = Vdo) = Vdo

U ((SUbRom,ans) — URomans U (SUbthe) — Uthe) — URomans) — VUdo (4)
U (stubgs) = Vas

where subsens i the subgraph to reflect whole sentence.

A.6 LAYER-LEVEL AND SENTENCE-LEVEL ITERATION

As we discussed in Section [2.4] process of subgraph (edge) generation is an iterative process, in
which one subgraph (edge) relies on previous generated subgraphs (edges). Here is one question for
this operation,

* Where did previous generated subgraphs come from?

Zhttps://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-wmt14en2de.sh

13

Under review as a conference paper at ICLR 2021

Weight

Weight

Weight

Weight

0.6

0.5

0.4

0.5

0.4

0.3

0.4

0.2

—6— 0-10 —m— 10-20 ‘L N
—4— 2030 30-40
—a— 40-50 - - - 50+ 05 - —
=
B N .20
)
=
04} —e— 0-10 —m— 10-20
| N —— 20-30 30-40
—A— 4050 — - 50+
| | | | | |
2 3 4 5} 2 3 4 5 6
Layers Layers
(a) 5 layers. (b) 6 layers.
0.5 N
= 04} s
| . .90
)
=
—e— 0-10 —m— 10-20 0.3 —e— 0-10 —m— 10-20
B —4— 20-30 30-40 —— 20-30 30-40
—A— 40-50 — - 50+ —A— 4050 — - 50+
| | | 02 | | |
2 3 4 5 6 7 2 3 4 5 6 7 8
Layers Layers
(c) 7 layers. (d) 8 layers.
I I
| N 04} .
=
.20
| N é’ 0.2 =
—6— 0-10 —m— 1020 —e— 0-10 —m— 10-20
—4—20-30 30-40 ——20-30 30-40
- — A 40-50 — - 50+ 0 — A 40-50 — - 50+
| | | | | | | |
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 1011
Layers Layers
(e) 9 layers. (f) 10 layers.
I I I
0.4 =
=
.20
| N é’ 0.2} .
—e— 0-10 —m— 10-20 —e— 0-10 —m— 10-20
—4—20-30 30-40 ——20-30 30-40
I —A— 40-50 — - - S0+ o = —A— 40-50 — - - 50+
| | | | | | | | | |
23 45 6 7 8 9101112 2345678 9101112
Layers Layers
(g) 11 layers. (h) 12 layers.

Figure 5: Subgraph weights in models with different layers on WMT14 En-De.

14

Under review as a conference paper at ICLR 2021

QuO —t

'
'

'

L

el Capture i
Subgraph '

'

— '
'

'

'

Layer 2
Order 1~4

Figure 6: An example of layer-level iteration in Figure[2] Note that in one layer, layer-level iteration
only operates once which only takes output of previous layer as input and generates new subgraphs.

root
advcl

mark

det [mark
&

@U@ @B-® GB-® @
U - u@®—
(Fomam) U () — @omemd) () (i) Fommeng o

Figure 7: An example of modeling syntax in MoG.

which can also be transferred to another question,
* Where will subgraphs generated be used to capture new subgraphs?

Two kinds of iteration are answers to the question. Layer-level iteration means that one layer uses
subgraph generated by previous layer to capture subgraph, and generated subgraph will be used in
next layer. Sentence-level iteration means that one layer uses subgraphs generated in the same layer
at previous time step, and generated subgraph will be used in the same layer at next time step.

Note that layer-level iteration is not the opposite of sentence-level iteration. They can be used
together in one model, or can exist independently in one model. However, in most of layer-aware
model with multiple layers, layer-level iteration is necessary.

A.7 MoG EXPLANATION FOR RNN
MoG can also explain encoding of RNN-based model, and analysing RNN-based model with four

questions in Section [2.3]is a good start. Considering the various variants of RNN, we focus on
GRU-based model and give an explanation of GRU-based model as an example.

15

Under review as a conference paper at ICLR 2021

* How to preserve subgraph information? = GRU-based model uses vector to preserve
subgraph information same as other neural models.

* How to implement iterative encoding? GRU-based model uses Layer-level iteration and
Sentence-level iteration, which means that (1) GRU-based model can capture order infor-
mation directly from the encoding. (2) one layer is enough to capture subgraphs of largest
order theoretically.

* How to capture edges and subgraphs? GRU-based model uses one GRU cell to capture
edges and subgraphs. The key component in GRU cell to capture edges is gate.

* Which architecture will be selected? Architecture of GRU-based model is simple which
is only a stack of GRU layer.

Given input sentence (x1, ...,), one layer of GRU-based model encodes words sequentially and
representation of one word depends on representation of previous words

hy = f(hi™" by),

_ ohio 5)
¢t = Q({hzh X3} h;})

where hi €" is a hidden state of i-th layer at time step ¢, and ¢’ is a vector generated from the
sequence of the hidden states of i-th layer. f and g are some nonlinear functions. Time ¢ is also
position of words in the sentence.

The GRU transition equations are the following

r
Ti (h) i h)pi h) ©
hi = tanh(W R + UM R + oM,
hy=(1=2)Ohi +50h "
where 2} and r} is the update gate and reset gate of ¢-th time step in i-th layer respectively, and h} is
the hidden state of ¢-th time step in ¢-th layer.

Besides, the LSTM transition equation are the following

ini = oW + US4 607),
fti _ U(Wi(f)hi_l + Ui(f)hi—l + bz(-'f)),
0} = U(Wi(())hi_l + Ui(O)hi—l + bz(‘O)),
ub = tanh(W R+ UM B+ 6,
G =iy Oup+ fy © ¢y,

hi = o! ® tanh(c!)

(7

where in?, f} and o! are the input gate, forget gate and output gate of ¢-th time step in i-th layer
. t t . t ;.
respectively, c; is the state of cell and hy is the hidden state of ¢-th time step in ¢-th layer.

LSTM and GRU are depended on gate
Wihi™' + Usht | + b, ®)

Given representation for a set of subgraphs, one representation-pair can be expanded into a set of
subgraph-pair. Given representation r,, and rp, {sub{, ...sub®} are n subgraphs contained in r, and
{subl, ...sub%,} are m subgraphs contained in r;,

Ta = z": subl,rp = i subf, 9

16

Under review as a conference paper at ICLR 2021

Equation of gate can be transferred to

Wro+Urp+b=W subf +U Y sub+b
i J
:l~m'Wisubq+l~n~Uisubb-+b
m - on - J

n a m b
:m~WZS:L::i +n-ZU$1:lbj +b

J

L sub subl
:;;(W +U nj)+b

(10)

m

which means that calculating relationship between r, and r; can be transferred to calculating rela-
tionship all subgraph-pairs of r, and ;. Relationship of sub? and sub’ is calculated by gate. New
representation generated by LSTM or GRU is also a set of subgraph information.

Note that weights of edges always decrease with the increase of subgraphs. It causes that the earlier
subgraph is generated, the larger its weight is, which is similar as SAN-based model. Different from
RNN-based model, weight of subgraph is reflected by the number of times it is repeatedly generated.

RNN-based model uses layer-level and sentence-level iteration. Different from SAN-based model
which uses more layers to generate subgraphs of higher order, RNN-based model can generate
subgraphs of largest order in one layer. Therefore, design of deeper model is more suitable for
SAN-based model. Even if the SAN-based model cannot capture subgraph of higher order, it can
also adjust and balance the weight of subgraph using more layers.

A.8 USING MOG EXPLANATION TO SOLVE EXISTING PROBLEMS
A.8.1 WHAT IS POSITION-ENCODING IN SAN-BASED MODEL?

Position-encoding is a component to mark the position of words. In SAN-based model, position
encoding is implemented as one-dimensional vector which can also be viewed as a special feature,
and is combined into the representation of input which becomes one part of word information
discussed in Section 2.2. Encoding of input sentence can generate relationship between different
positions while it cannot reflect order of input sentence directly. Relationship between positions is
contained in representation, which is also contained in edge from the perspective of MoG.

Position and order of words are two related property while they are not exactly the same. In some
cases, these two property cannot be converted to each other. Position is an absolutely fixed property
which can exist independent from other positions, while order is an relatively property which must
depend on other words. In NLP, position of words can be converted to order of words because the
input sentence is usually a continuous uninterrupted one-dimensional word sequence and the value
of position is often one integer which can obtain order by comparing the value of position. It is
also the reason why SAN-based model try to use position-encoding to make use of the order of the
sequence.

Although there are various methods to indicate the location information in position-encoding and
it is easy for human to convert position to order, it is difficult for SAN-based model to effectively
obtain the order of sequence from location information. We conduct an experiment on IWSLT 14
De-En to show that SAN-based model views position-encoding as a feature and cannot capture
indirect order information of sequence which we put in position-encoding. In our experiment, we
replace well organized and designed position-encoding with another position-encoding which is
designed by us. Without any well organized functions to generate vector for position-encoding, we
full all vector of position-encoding with random value in a range from O to 1, which means that
there is no meaningful information in position-encoding. Table [6] shows the result of experiment
that position-encoding with random value does not impact performance negatively.

17

Under review as a conference paper at ICLR 2021

Transformer | Transformer (no PE) | Transformer (random PE)
MultiBLEU 36.5 21.5 36.8

Table 6: Results of experiments on IWSLT 14 De-En about position-encoding. Word PE is short for
position-encoding.

This evidence shows that here is no need to add position information to position-encoding because
model views position-encoding as feature instead of converting them to order of sequence. It also
shows that MoG cannot capture sequential information using position-encoding.

Position-encoding is still necessary for Graph-Transformer. Position-encoding is still the only com-
ponent for Graph-Transformer to capture position information which is the same as the original
Transformer. If one sentence contains one word multiple times, model can distinguish them at least.
However, position-encoding cannot solve the problem that SAN-based model cannot capture local-
ness information. Position is not order.

A.8.2 WHY DOES PERFORMANCE OF MODEL DECREASE WHEN THE SENTENCE IS TOO
LONG?

First, given a sentence, the MoG to reflect all relationship between words is definite and fixed, and
cannot change. Performance of model reflects the ability to capture information for rebuilding this
MoG from input sentence.

When the sentence is too long, models cannot capture enough information. As mentioned above,
RNN-based model and SAN-based model cannot capture all subgraphs to rebuild the entire multi-
graph for different reason. Therefore, whether it is RNN-based model or SAN-based model, there
should be a special length of sentence. If sentence is longer than this length, performance will drop
very quickly.

Besides, in the training data, the proportion of long sentences is often very low, which makes model
fail to learn long sentences.

A.8.3 WHY PRE-TRAINING DATA CAN IMPROVE PERFORMANCE OF MODEL?

According to MoG explanation, word information cannot be enriched. In most of models, word
information is generated by embeddings. A pre-training data feeds model better word information
which can improve performance. Relationship information generated by using word information
can also be more precise.

A.8.4 WHAT IS NECESSARY TO DO DURING DESIGNING A NOVEL ENCODER?

A novel method to capture all subgraphs to rebuild the multigraph from the input sentence. Re-
fer to RNN-based model and SAN-based model, and four basic questions in Section @ we can
summarize as follows.

* A proper architecture of model.

* A novel method should be proposed to calculate relationship between two given represen-
tations.

* This function should satisfy the modified law of distribution. Namely, given 7, = > . r¢
andry =37 rb, function f should satisfy the law of distribution

n m

Flrame) =YY wii f(ri,rh) (11)
i g

where w;; is the weight for one relationship value.
* Several relationship can be added to one representation.

* f does not satisfy the exchange law. Namely f(a,b) # f(b,a).

18

Under review as a conference paper at ICLR 2021

 Several iterative processes should be proposed for generating representation. Generated
representation should be feed to model for input representation and generate new represen-
tation.

A.8.5 IS INFORMATION MODEL GENERATED ALL BENEFIT THE PERFORMANCE?

No. Some subgraph information like a— > b— > a— > b— > a is one kind of noise which
influences the performance of model.

19

	Introduction
	Multi-order-graph Explanation
	Encoding of Models
	Multi-order-graph
	Node and Word
	Edge and Subgraph
	Four Key Questions for Models

	Graph-Transformer
	Multi-order-graph In the Transformer
	Architecture of Graph-Transformer
	Self-Attention Group for Subgraphs of Different Order
	Fusion of Representations

	Experiments and Results
	Neural Machine Translation
	Named-entity recognition, Part-of-speech tagging, Text Summarization

	Analysis of Result
	Related Work
	Conclusions
	Appendix
	Background of Graph-Transformer
	Datasets of Experiments
	Hyperparameters of Experiment
	Training of Experiment
	An example of modeling syntax in MoG
	Layer-level and Sentence-level Iteration
	MoG Explanation for RNN
	Using MoG Explanation to Solve Existing Problems
	What is position-encoding in SAN-based model?
	Why does performance of model decrease when the sentence is too long?
	Why pre-training data can improve performance of model?
	What is necessary to do during designing a novel encoder?
	Is information model generated all benefit the performance?

