
Robust Semi-Supervised Learning when Not All
Classes have Labels

Lan-Zhe Guo∗ , Yi-Ge Zhang∗ , Zhi-Fan Wu, Jie-Jing Shao, Yu-Feng Li†
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

{guolz,zhangyg,wuzf,shaojj,liyf}@lamda.nju.edu.cn

Abstract

Semi-supervised learning (SSL) provides a powerful framework for leveraging
unlabeled data. Existing SSL typically requires all classes have labels. However,
in many real-world applications, there may exist some classes that are difficult to
label or newly occurred classes that cannot be labeled in time, resulting in there
are unseen classes in unlabeled data. Unseen classes will be misclassified as seen
classes, causing poor classification performance. The performance of seen classes
is also harmed by the existence of unseen classes. This limits the practical and
wider application of SSL. To address this problem, this paper proposes a new
SSL approach that can classify not only seen classes but also unseen classes. Our
approach consists of two modules: unseen class classification and learning pace
synchronization. Specifically, we first enable the SSL methods to classify unseen
classes by exploiting pairwise similarity between examples and then synchronize
the learning pace between seen and unseen classes by proposing an adaptive thresh-
old with distribution alignment. Extensive empirical results show our approach
achieves significant performance improvement in both seen and unseen classes
compared with previous studies.

1 Introduction

Machine learning, especially deep learning, has achieved great success in various tasks by leveraging
sufficient labeled training data [21]. However, for many practical tasks, it can be difficult to attain a
number of labeled examples due to the high cost of the data labeling process [41, 23], which limits
the widespread adoption of machine learning techniques.

Semi-supervised learning (SSL) [43] provides a powerful framework for leveraging unlabeled data
when labels are limited or expensive to obtain. There has been a rapid development of SSL methods in
recent years, such as entropy minimization methods [22, 8], consistency regularization methods [24,
29, 20, 32], and holistic methods[30, 2, 1, 35, 37]. It has been reported that in certain cases, such as
image classification [30], SSL methods can achieve the performance of purely supervised learning
even when a substantial portion of the labels in a given dataset have been discarded.

All the positive results of SSL, however, are based on a basic assumption that there are labels for
each of the classes that one wishes to learn, i.e., all training and testing data are from seen classes
that are observed in the labeled dataset. However, in many real-world applications, particularly those
involving open-environment scenarios [42, 11], such an assumption is difficult to hold. For example,
in the product recognition task, thousands of new types of products are introduced to the supermarkets
every once in a while, and it would be expensive to label them all in time; in the judicial sentencing
task, some sentencing elements are naturally scarce, resulting in labeled judgment documents being
difficult to obtain for these elements in the training phase.

∗Contribute to this work equally
†Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Figure 1: SSL when not all classes have labels. Training data includes labeled examples from a few
seen classes as well as unlabeled examples from both seen and unseen classes. Testing data includes
unlabeled examples from both seen and unseen classes. The goal is to classify not only seen class
examples into accurate classes but also partition unseen class examples into proper clusters.

It is evident that existing SSL methods will misclassify unlabeled examples from unseen classes into
seen classes. Even on the seen classes, SSL performance can also degrade severely with the presence
of unseen classes unlabeled data [25, 10, 40]. The problem is related to open-set SSL and novel
class discovery (NCD) studies. Open-set SSL [10, 6, 36, 28] aims to decrease the negative impact of
unseen classes and maintain the performance robustness of seen classes. However, these methods
simply detect and drop examples from unseen classes and fail to classify them. NCD [13, 15, 38]
aims to discover unseen classes automatically. However, they ignore the classification task on seen
classes, which results in performance degradation in seen classes.

An illustration of the problem concerned in this paper is presented in Figure 1. It is evident that both
existing SSL methods and NCD methods could not tackle the problem. This inspires us to consider
answering the following question in this study:

Can we design an robust SSL algorithm that can classify both seen and unseen classes when not
all classes have labels in the training data?

To this end, we propose a new SSL method called NACH, which consists of two key modules: unseen
class classification and learning pace synchronization. Specifically, we first propose a novel unseen
class classification loss that can exploit pairwise similarity to classify similar example pairs into
the same class and eliminate noisy pairs based on a similarity filter. We then adopt an adaptive
threshold with distribution alignment to alleviate the issue that different learning paces between seen
and unseen classes. Experimental results on CIFAR-10, CIFAR-100, and ImageNet-100 datasets
show that NACH achieves 37.7% improvement in unseen classes compared with SSL methods, and
26.3% improvement in seen classes compared with NCD methods.

2 Related Work

Semi-Supervised Learning. SSL assumes all training and testing data are from seen classes, no
matter whether labeled or unlabeled, and the goal is to classify unlabeled examples into the ground-
truth classes. SSL has a long research history [4]. Our paper is mainly related to deep SSL, which
introduces SSL techniques to deep neural networks and has achieved significant advancement in
recent years. The mainstream of deep SSL can be broadly categorized into entropy minimization
methods [22, 8], consistency regularization methods [24, 29, 20, 32], and holistic methods [30, 2, 1].
When not all classes have labels in the training data, these methods will misclassify unlabeled data
from unseen classes as the seen classes and fail to address the problem concerned in this paper.

Open-Set Semi-Supervised Learning. Open-set SSL relaxes the assumption of SSL and considers a
more practical scenario that training data could contain unseen class unlabeled examples. However,
they still assume all testing examples are from seen classes, and the goal is to decrease the negative
impact of unseen class unlabeled data in order to maintain the performance robustness in seen

2

classes. Many open set SSL methods have been proposed in recent years [10, 6, 36, 31, 28, 16, 26,
17], such as DS3L [10], which assign weights to unlabeled data based on a bi-level optimization,
UASD [6], which filter unlabeled examples based on the prediction consistency, MTC [36], which
adopt a multi-task curriculum learning framework to detect unseen classes and classify seen classes
simultaneously, T2T [16], which propose a novel cross-modal matching strategy to detect unseen
classes. OpenMatch [28], which unify FixMatch algorithm with novelty detection based on one-vs-all
(OVA) classifiers. However, these methods can still not classify unseen classes.

Novel Class Discovery. NCD assumes training data consists of seen class labeled examples and
unseen class unlabeled examples, and the goal is to classify both seen and unseen classes during
the testing phase. The NCD problem is first formally introduced in [13]. Recently, many NCD
methods have been proposed based on a two-step training strategy [13–15, 7, 12, 39, 38], i.e., a data
embedding is learned on the labeled data using a metric learning technique, and then fine-tuned while
learning the cluster assignments on the unlabeled data. In contrast to the problem studied in this
paper, NCD methods ignore the abundant seen unlabeled examples that are usually easy to collect in
real-world applications.

3 Preliminary and Background

Give the training data which contains n labeled examples Dl = {(x1,y1) , · · · , (xn,yn)} and m
unlabeled examples Du = {xn+1, · · · ,xn+m}. Usually, m ≫ n. x ∈ RD,y ∈ Y = {1, · · · , CL}
where D is the feature dimension and CL is the number of seen classes. We use CU to represent the
total number of classes in unlabeled data, Previous SSL studies assume CL = CU and NCD assumes
CL ∩ CU = ∅. In this paper, the number of seen classes Cseen = CL ∩ CU and the number of unseen
classes Cunseen = CU \ CL. The goal is to learn a classification model f(x; θ) from training data.
Specifically, the f(x; θ) can be decomposed of a representation learning model g(x; θ) : RD → Rd

to learn a low-dimensional feature z and a classification model h(z) : Rd → RCseen+Cunseen .

The training loss of an SSL algorithm usually contains supervised loss Ls and unsupervised loss Lu

with a trade-off parameter λu > 0: Ls + λuLu, where Ls is constructed on Dl and Lu is constructed
on Du. Typically, Ls applies the standard cross-entropy loss on labeled examples:

Ls =
1

n

n∑
i=1

H(yi, p(xi)) (1)

where p(x) = Softmax(f(x; θ)) indicate the predicted probabilities produced by the model f for the
input x, and H(·, ·) is the cross-entropy function.

Different constructions of the unsupervised loss Lu lead to different SSL algorithms. Typically, there
are two ways of constructing Lu: one is to assign pseudo-labels to formulate a "supervised loss" such
as the cross-entropy loss, and another one is to optimize a regularization that does not depend on
labels such as consistency regularization.

Take the FixMatch [30] and UDA [34] for examples, FixMatch adopts the pseudo-label loss which
can be written as:

Lu =
1

m

n+m∑
i=n+1

I (max (p(α(xi))) ≥ τ)H (ŷi, p(A(xi))) (2)

where α(x) and A(x) indicate the weak and strong augmentation, ŷi = argmax p(α(xi)) represent
the pseudo-label for unlabeled example xi, τ is the confidence threshold for pseudo-label selection,
I(·) is the indicator function.

UDA [34] adopts the consistency regularization which can be written as

Lu =
1

m

n+m∑
i=n+1

∥p(aug(xi))− p(aug′(xi))∥22 (3)

where aug(·) and aug′(·) represents different augmentation strategies.

3

Figure 2: Framework of the proposed NACH algorithm. The unsupervised loss of NACH can be
decomposed into LUC and LDTA. The flowchart of how to compute LUC and LDTA lies in the
green box (top) and blue box (bottom), respectively.

4 The NACH Method

In this section, we present the proposed NACH method. The overall framework of NACH is
illustrated in Figure 2. Specifically, NACH consists of two main parts: i) unseen class classification,
which contains a new unsupervised loss to discover unseen classes automatically; ii) learning pace
synchronization, which contains an adaptive threshold with distribution alignment to synchronize
the different learning paces between seen and unseen classes. We first provide an overview of the
learning objective. The concrete details of the objective are provided in the following.

4.1 NACH: An Overview for Two Problems

Previous SSL methods do not have the ability to classify unseen classes, which leads to a number of
examples from unseen classes being misclassified into seen classes when not all classes have labels.
To address this problem, two main challenges need to be considered.

The first one is how to automatically classify unseen classes during model training. We propose to
cluster unlabeled examples using the pairwise objective [12], and then we adjust the results of the
clustering using a known prior distribution. Specifically, we adopt the cosine similarity to find the
most similar example in a mini-batch for each example as the positive pairs. To avoid the mismatched
situation where an example from seen classes and an example from unseen classes are wrongly paired,
we design a similarity-based filter to get rid of the appearance of such noisy pairs.

The second is how to synchronize the different learning paces caused by the different learning styles
between seen and unseen classes. We propose a metric to measure the difference between the learning
status of seen and unseen classes. Then, we formulate this metric into an adaptive threshold with
distribution alignment. By selecting pseudo-labels with the adaptive threshold, the model can adjust
the predicted probability adaptively to synchronize the learning differences between seen classes and
unseen classes.

Moreover, we adopt the contrastive learning method SimCLR [5] to pre-train the backbone network
on the whole dataset in an unsupervised fashion in order to learn a good representation.

Overall, the objective of NACH consists of three parts: i) a supervised loss Ls for labeled data; ii) an
unseen classes classification loss LUC by exploiting pairwise similarity to classify unseen classes;
iii) an unsupervised loss LDTA by assigning pseudo-labels using the adaptive threshold to achieve
robust performance on both seen and unseen classes:

L = Ls + λ1LUC + λ2LDTA (4)

where λ1 and λ2 are trade-off hyper-parameters, which are all set to 1 in default.

4

4.2 Unseen Class Classification

To enable SSL the ability to classify unseen classes, one way is to adopt the binary cross-entropy
(BCE) loss which can effectively exploit the pairwise similarity. The classical BCE loss can be
written as:

LBCE =− 1

(m+ n)2

m+n∑
i=1

m+n∑
j=1

[
sij log p (xi)

⊤
p (xj)

+ (1− sij) log
(
1− p (xi)

⊤
p (xj)

)] (5)

where sij is a measure of the similarity between xi and xj (e.g., cosine similarity). The first term
aims to pull two similar examples closer, while the latter term aims to push two dissimilar examples
farther apart. Taking advantage of the BCE loss, we can achieve clustering of unseen classes by
pairing similar examples.

This BCE loss is commonly adopted in NCD studies. However, in our study, directly using the BCE
loss can not effectively classify unseen classes since both seen and unseen classes are in the unlabeled
data. Due to the different learning paces between seen and unseen classes, two examples belonging
to the same unseen class are likely to be pushed apart at the early training stage due to their low
similarity. To address this issue, we neglect the push-apart strategy and adopt the cosine similarity to
find the most similar example to be pulled together for each example in a batch [3]. Moreover, to
further improve the pair accuracy, we propose a new filter strategy to decrease the wrong pairs that
consist of examples from seen and unseen classes.

Specifically, given a batch of B labeled examples {(xl
b,y

l
b) : b ∈ (1, · · · , B)} and a batch of µB

unlabeled examples {xu
b : b ∈ (1, · · · , µB)} where µ determines the relative batch size of labeled

and unlabeled data. For labeled examples, we can match pairs based on their ground-truth labels.
For unlabeled example xu

b , we first find the example x̃u
b which is the most similar to xu

b according
to their representation, then compute the cosine similarity between x̃u

b and the batch of labeled
examples: {cos(g(x̃u

b), g(x
l
1)), cos(g(x̃u

b), g(x
l
2)), · · · , cos(g(x̃u

b), g(x
l
B))}. We sort the similarity

in descending order and obtain {d1, d2, · · · , dB}, where di indicates the i-largest similarity. Consider
the fact that if xu is an example from unseen classes and x̃u is an example from seen classes,
then cos(g(xu), g(x̃u)) is likely to be less than some values dk, k ∈ {1, · · · , B}. Based on this
phenomenon, we can set a threshold k, and retain the example xu

b only when two examples xu
b and

x̃u
b satisfy cos(g(xu

b), g(x̃
u
b)) ≥ dk. Then the filtered BCE loss (LFBCE) can be obtained as follows:

LFBCE = − 1

B

B∑
b=1

log
(
p(xl

b)
⊤p(x̃l

b)
)

− 1

µB

µB∑
b=1

I(cos(g(xu
b), g(x̃

u
b)) ≥ dk) log

(
p(xu

b)
⊤p(x̃u

b)
) (6)

Moreover, inspired by [3], we regularize the predictive distribution of the pseudo-label to be close to
a prior probability distribution P of labels y to prevent the model from classifying all unseen classes
into one class and thus hindering the performance of unseen classes classification:

LENT = KL
(1

B

B∑
b=1

p(xl
i) +

1

µB

µB∑
b=1

p(xu
b)
∥∥P(y)

)
(7)

The definition of LUC can be written as:

LUC = LFBCE + LENT (8)

4.3 Learning Paces Synchronization

For the learning of seen classes, the supervision is from the ground-truth labels. However, for
unseen classes, the model can only learn from the pairwise objective. This results in the learning
pace of unseen classes being slower than seen classes. To maintain robust performance in seen
classes, we propose to synchronize the learning paces between seen and unseen classes. Previous

5

SSL algorithms, e.g., FixMatch [30], select pseudo-labels based on a fixed confidence threshold. In
this paper, we propose an adaptive threshold to synchronize the learning paces adaptively. Different
from previous SSL methods with adaptive threshold [35, 37, 9], we assign different threshold for
seen and unseen classes separately in order to synchronize their learning paces. First, we define a
metric to measure the difference in learning status between seen and unseen classes. We calculate the
maximum classification confidence and the corresponding pseudo-label for each example:

p̂i = max(p(α(xi))), ŷi = argmax(p(α(xi)) (9)

Then we define the metric U as follows:

U =
(1

Nseen

∑
xi∈Xseen

p̂i

)
−

(1

Nunseen

∑
xj∈Xunseen

p̂j

)
(10)

where Nseen and Nunseen denote the total number of examples which are classified as seen classes
and unseen classes. Xseen refers to examples with pseudo-label belongs seen classes and Xunseen

refers to examples with pseudo-label belongs to unseen classes.

U can effectively assess the degree of learning difference between seen classes and unseen classes.
We applied U to adaptively adjust the confidence threshold for unseen classes. For seen classes we
assume that the confidence threshold is τ , then for unseen classes, we heuristically set the threshold
to τ − βU where β is the trade-off parameters.

The above operation ensures that more examples predicted as unseen classes can be selected in the
model training process. To further exploit the pseudo-label, we adopted an distribution alignment
strategy. It should be noted that although LENT already takes into account distribution alignment,
that is for all examples. Here we consider distribution alignment based on examples with confidence
above the threshold.

Our goal is to have the distribution of these above-threshold examples converge to a known prior
distribution to better learn the unseen classes, so we add distribution alignment as a fine-tuning for
logits to LDTA. Specifically, we define:

P(Xselect) =
∑

xi∈Xseen

I (p̂i ≥ τ) p(α(xi))

+
∑

xj∈Xunseen

I (p̂j ≥ τ − βU) p(α(xj))
(11)

We then require P(Xselect) and prior distribution P(y) to be aligned:

Fali = logP(Xselect)/P(y) (12)

The adjustment factor Fali aims to align the distribution of selected data to a prior distribution.
We then compute the cross-entropy between prediction on strong augmented examples and the
corresponding pseudo-label as the LDTA loss:

LDTA =
∑

xi∈Xseen∪Xunseen

I (p̂i ≥ τi)H (ŷi, p(A(xi)) + Fali) (13)

where τi is τ for xi belongs to Xseen and τ−βU for xi belongs to Xunseen. It is important to note that
the adaptive thresholds and logit adjustment with distribution alignment factor are complementary:
adaptive threshold adjustment is designed for preventing the fixed confidence threshold from hindering
the learning of unseen classes. Thus, we adaptively adjust the threshold so that more examples of
unseen classes could be learned by the model, which is beneficial to logit adjustment with distribution
alignment. Distribution alignment as a factor for logit adjustment also makes the model less biased
towards seen classes and thus facilitate the learning of unseen classes.

5 Experiments

In this section, we give a comprehensive evaluation of NACH. Experimental results and detailed
analysis are reported to demonstrate the effectiveness of our proposal.

6

Table 1: Classification accuracy of compared methods on seen, unseen and all classes. The underline
indicates the performance is worse than the baseline SSL methods.

Classes Dataset SSL Open-Set SSL NCD
Fixmatch DS3L CGDL DTC RankStats ORCA OURS

Seen
CIFAR-10 71.5 77.6 72.3 53.9 86.6 88.2 89.5
CIFAR-100 39.6 55.1 49.3 31.3 36.4 66.9 68.7

ImageNet-100 65.8 71.2 67.3 25.6 47.3 89.1 91.0
Average 59.0 68.0 63.0 36.9 56.8 81.4 83.1

Unseen
CIFAR-10 50.4 45.3 44.6 39.5 81.0 90.4 92.2
CIFAR-100 23.5 23.7 22.5 22.9 28.4 43.0 47.0

ImageNet-100 36.7 32.5 33.8 20.8 28.7 72.1 75.5
Average 36.9 33.9 33.6 27.7 46.0 68.5 71.6

All
CIFAR-10 49.5 40.2 39.7 38.3 82.9 89.7 91.3
CIFAR-100 20.3 24.0 23.5 18.3 23.1 48.1 52.1

ImageNet-100 34.9 30.8 31.9 21.3 40.3 77.8 79.6
Average 34.9 31.7 31.7 26.0 48.8 71.9 74.3

5.1 Experimental Setup

Datasets. We evaluate NACH and compared methods on three SSL benchmark datasets CIFAR-10,
CIFAR-100 [18] and ImageNet [27]. Specifically, for the ImageNet dataset, 100 classes are sub-
sampled following [33, 3]. We first divide classes into 50% seen and 50% unseen classes, then select
50% of seen classes as the labeled data, and the rest as unlabeled data.

Compared Methods. We compare NACH with representative SSL, open-set SSL, and NCD methods.
The SSL and open-set SSL methods are extended to be applicable to unseen classes in the following
way: examples are divided into known classes and unknown classes, we report their performance on
seen classes and apply K-means clustering to unseen class examples to obtain clustering results. For
SSL, the FixMatch [30] is adopted due to its empirical success and estimate unseen classes based on
softmax confidence scores. For open-set SSL, we adopt two representative methods DS3L [10] which
tries to assign lower weights to unseen classes unlabeled data, and CGDL [31] which automatically
rejects unseen class examples. NCD methods are extended to classify seen classes by using the
Hungarian algorithm [19] to match some of the discovered classes with classes in the labeled data.
Specifically, two NCD methods are employed: DTC [13] and RankStats [12], which have been
reported to achieve the state-of-the-art performance on NCD tasks. Moreover, we also compare
NACH with ORCA [3] methods, which consider a similar setting with our paper.

All compared methods are implemented based on the pre-trained model using the contrastive learning
algorithm SimCLR [5]. The only exception is DTC which has its own specialized pre-training
procedure on labeled data [13].

Implementation Details. For CIFAR datasets, we use ResNet-18 as the backbone model. The
model is trained by using the standard Stochastic Gradient Descent method with a momentum of
0.9 and a weight decay of 0.0005. We trained the model for 200 epochs with a batch size of 512.
Following [3], we only update the parameters of the last block of ResNet in the second training stage
to avoid over-fitting. For the ImageNet dataset, we use ResNet-50 as the backbone model. The model
is trained by using standard SGD with a momentum of 0.9 and a weight decay of 0.0001. We train
the model for 90 epochs with a batch size of 512. For all experiments, the cosine annealing learning
rate schedule is adopted. All experiments are performed on a single NVIDIA 3090 GPU.

5.2 Main Results

The mean classification accuracy on CIFAR-10, CIFAR-100, and ImageNet-100 dataset are provided
in Table 1. From the results, it can be observed that open-set SSL methods can address the perfor-
mance degradation problem on seen classes, but can not classify unseen classes accurately. NCD
methods, e.g., RankStats, can improve the unseen classification performance, but suffer performance

7

0.50.1 0.3
Ratio of labeled data

82

84

86

88

90

92

A
cc

ur
ac

y
(%

)

All. OURS
All. ORCA Seen.
OURS Seen.
ORCA Unseen.
OURS Unseen.
ORCA

(a) Classification accuracy on CIFAR-10.

0.50.1 0.3
Ratio of labeled data

10

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

All. OURS
All. ORCA Seen.
OURS Seen.
ORCA Unseen.
OURS Unseen.
ORCA

(b) Classification accuracy on CIFAR-100.

Figure 3: Performance of NACH and ORCA with different numbers of labeled data.

degradation problem on seen classes, DTC performs even worse than SSL on unseen class classifica-
tion. On the contrary, our proposal NACH can not only classify unseen classes accurately but also
maintain robust performance on seen classes. For example, NACH achieves a 24.1% improvement
on seen classes and 34.7% on unseen classes compared with the FixMatch methods. Compared with
ORCA, NACH also achieves a significant performance improvement in both seen and unseen classes.

To further demonstrate the effectiveness of our proposal with varying label sizes, we evaluate the
performance of NACH and ORCA with different numbers of labeled data, as shown in Figure 3. The
results show that the performance of NACH is always better than ORCA in all cases with a significant
margin. Moreover, the results also demonstrate that our proposal NACH is robust with label size, for
example, even with only 10% of labeled examples, the unseen-class accuracy of our method can still
reach more than 89.4 and 37.5.

5.3 Detail Analysis

In this subsection, detailed analyzes are shown to help understand the superiority of our proposal,
including analyzes of the two modules: LUC and LDTA, and hyper-parameter sensitivity analysis.

Analysis of Unseen-Class Classification Loss: LUC . We first show the effectiveness of the proposed
FBCE loss by proposing a basic model (BM) with Cseen+Cunseen classification heads and optimize
the model by directly minimizing the standard BCE loss and our proposed FBCE loss separately.
The comparison results are reported in Figure 4, including the ratio of wrongly selected seen-unseen
pairs and correctly selected unseen-unseen pairs during the model training process. From the results,
we can see that the proposed FBCE loss can effectively decrease the ratio of wrongly selected seen-
unseen pairs while selecting more correct unseen-unseen pairs. This demonstrates the effectiveness of
the proposed filter strategy. We also study the effectiveness of the LUC loss, the results are presented
in Table 2. From the results, we can see the performance on both seen and unseen classes can be
improved by applying the LUC loss.

Table 2: Analysis of LUC : classification accu-
racy on CIFAR-100.

Method Seen Unseen All

FixMatch 39.6 23.5 20.3
BM + LBCE 72.8 28.3 31.5
BM + LBCE + LENT 67.2 44.2 50.7
BM + LUC (UC Model) 68.2 44.3 50.2

Table 3: Analysis of LDTA: classification accu-
racy on CIFAR-100.

Method Seen Unseen All

UC Model 68.2 44.3 50.2
UC Model + DA 68.6 44.8 50.3
UC Model + DT 69.3 45.6 49.6
UC Model + DTA 68.7 47.0 52.1

Analysis on Adaptive Threshold: LDTA. We compare the performance between the proposed
adaptive threshold and the static threshold (e.g., τ = 0.95 in FixMatch), the results are reported
in Figure 5. From Figure 5a, we can see that the prediction confidence between seen and unseen

8

0 25 50 75 100 125 150 175 200
Epoch

15

20

25

30

35

40

45

W
ro

ng
 p

ai
rs

 (%
)

BCE
FBCE

(a) Wrongly selected seen-unseen pairs

0 25 50 75 100 125 150 175 200
Epoch

15

20

25

30

35

C
or

re
ct

 p
ai

rs
 (%

)

BCE
FBCE

(b) Correctly selected unseen-unseen pairs

Figure 4: (a) Wrongly selected seen-unseen pairs; (b) Correctly selected unseen-unseen pairs. Both
the above results are conducted on CIFAR-100 dataset.

classes are significantly different, thus, it is not proper to adopt a static threshold. Figure 5b and
Figure 5c show that the proposed adaptive threshold can help select more pseudo-labels for unseen
class examples and improve the accuracy of pseudo-label assignment significantly. Results in Table 3
give a more clear ablation study to demonstrate the effectiveness of our proposed LDTA loss.

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
on

fid
en

ce

Seen classes
Unseen classes
Uncertainty

0 25 50 75 100 125 150 175 200

(a) Learning difference between
seen and unseen classes

0

Epoch

0

25

50

75

100

125

150

175

Se
le

ct
ed

 u
ns

ee
n

ex
am

pl
es Adaptive threshold

Static threshold

25 50 75 100 125 150 175 200

(b) Selected pseudo-labels for un-
seen classes

Epoch

32.5
35.0
37.5
40.0
42.5
45.0
47.5
50.0
52.5

A
cc

ur
ac

y
(%

)

Adaptive threshold
Static threshold

0 25 50 75 100 125 150 175 200

(c) Accuracy of pseudo-labels for
unseen classes

Figure 5: (a) learning difference between seen classes and unseen classes during training; (b) number
of pseudo-labels for unseen classes; (c) accuracy of pseudo-labels for unseen classes. All the above
results are conducted on CIFAR-100 dataset.

5.4 Parameter Sensitivity Analysis

Evaluating different k used in LFBCE . The intention of LFBCE is to filter mismatched pairs
containing examples from seen classes and unseen classes and the hyper-parameter k determines the
threshold of the noisy pairs filter. We provide the performance with different k in Figure 6. From
the results, we can see that, when k = 2, the proposal achieves the best performance on all classes,
and the performance does not degrade severely with k changes. This demonstrates that our proposal
is quite robust with the selection of k. Moreover, we also study how the wrongly selected pairs
and correctly selected pairs changes with different k. The results show that, the filter strategy can
decrease the wrong pairs significantly compared with no filter, with the decrease of k the wrong pairs
are decreased. Meanwhile, the filter strategy can also increase the correct pairs. When k = 2 the
proposal achieves a satisfying balance between the wrongly selected pairs and correctly selected
pairs. so that the proposed method achieves the best performance.

Evaluating different β used in LDTA. We further analyze the impact of the adaptive threshold
hyper-parameter β. β controls the margin of confidence threshold between seen and unseen classes.
More pseudo-labels for unseen classes will be selected with a larger β. The results show the when
β = 2 the proposal achieves the best result and the performance does not degrade severely with β
changes. This demonstrate that the proposal is quite robust to the selection of β.

9

0 1 2 3 4
Ablation of k

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Seen
Unseen
All

(a) Accuracy with different
hyper-parameter k

0 25 50 75 100 125 150 175 200

Epoch
5

10

15

20

25

30

35

40

45

W
ro

ng
 p

ai
rs

 (%
)

No filter
K = 1
K = 2
K = 3
K = 4
K = 5

(b) Wrongly selected seen-
unseen pairs

0 25 50 75 100 125 150 175 200

Epoch

15

20

25

30

35

C
or

re
ct

 p
ai

rs
 (%

)

No filter
K = 1
K = 2
K = 3
K = 4
K = 5

(c) Correctly selected
unseen-unseen pairs

0 1 2 3
Ablation of

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Seen
Unseen
All

(d) Accuracy with different
hyper-parameter β

Figure 6: (a) accuracy with different k; (b) wrongly selected pairs with different k; (c) correctly
selected pairs with different k; (d) accuracy with different β.

6 Conclusion

In this paper, we tackle an important and practical scenario of SSL, that is, SSL when not all classes
have labels. We propose a robust SSL algorithm NACH that consists of an unseen class classification
objective that can exploit pairwise similarity and eliminate noisy pairs, and an adaptive threshold
with distribution alignment that can synchronize the learning paces between seen and unseen classes.
Extensive experiments clearly show the effectiveness of our proposal. The code is available at
https://www.lamda.nju.edu.cn/code_NACH.ashx

How to classify unseen classes with no labeled data is an important problem in SSL. Our work puts
a promising scheme in this direction. One limitation of our scheme is it does not have theoretical
guarantees. We will put efforts into this direction in future work, such as giving generalization risk
analysis on unseen classes.

Broader Impact

This paper studies the problem of SSL when not all classes have labels, which has been less
investigated in SSL. We hope this work can attract more future attention to explore the robustness of
SSL in more practical scenarios and promote SSL in wider applications.

Acknowledgment

This research was supported by the National Key R&D Program of China (2022YFC3340901), the
National Science Foundation of China (62176118, 61921006), and the Huawei Cooperation Fund.

References
[1] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang,

and Colin Raffel. Remixmatch: Semi-supervised learning with distribution alignment and
augmentation anchoring. In Proceedings of the 8th International Conference on Learning
Representations, 2020.

[2] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural
Information Processing Systems, pages 5050–5060, 2019.

[3] Kai-Di Cao, Maria Brbic, and Jure Leskovec. Open-world semi-supervised learning. In
Proceedings of the 10th International Conference on Learning Representations, 2022.

[4] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning. MIT
Press, 2006.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Proceedings of the 37th International
Conference on Machine Learning, pages 1597–1607, 2020.

10

https://www.lamda.nju.edu.cn/code_NACH.ashx

[6] Yan-Bei Chen, Xia-Tian Zhu, Wei Li, and Shao-Gang Gong. Semi-supervised learning un-
der class distribution mismatch. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence, pages 3569–3576, 2020.

[7] Enrico Fini, Enver Sangineto, Stéphane Lathuilière, Zhun Zhong, Moin Nabi, and Elisa Ricci.
A unified objective for novel class discovery. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9264–9272, 2021.

[8] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In
Advances in Neural Information Processing Systems, pages 529–536, 2004.

[9] Lan-Zhe Guo and Yu-Feng Li. Class-imbalanced semi-supervised learning with adaptive
thresholding. In Proceedings of the 39th International Conference on Machine Learning, pages
8082–8094, 2022.

[10] Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li, and Zhi-Hua Zhou. Safe deep semi-
supervised learning for unseen-class unlabeled data. In Proceedings of the 37th International
Conference on Machine Learning, pages 3897–3906, 2020.

[11] Lan-Zhe Guo, Zhi Zhou, and Yu-Feng Li. Record: Resource constrained semi-supervised
learning under distribution shift. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1636–1644, 2020.

[12] Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Andrea Vedaldi, and Andrew Zisser-
man. Automatically discovering and learning new visual categories with ranking statistics. In
Proceedings of the 8th International Conference on Learning Representations, 2020.

[13] Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning to discover novel visual categories
via deep transfer clustering. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8401–8409, 2019.

[14] Yen-Chang Hsu, Zhao-Yang Lv, and Zsolt Kira. Learning to cluster in order to transfer
across domains and tasks. In Proceedings of the 6th International Conference on Learning
Representations, 2018.

[15] Yen-Chang Hsu, Zhaoyang Lv, Joel Schlosser, Phillip Odom, and Zsolt Kira. Multi-class
classification without multi-class labels. In Proceedings of the 7th International Conference on
Learning Representations, 2019.

[16] Jun-Kai Huang, Chao-Wei Fang, Wei-Kai Chen, Zhen-Hua Chai, Xiao-Lin Wei, Peng-Xu
Wei, Liang Lin, and Guan-Bin Li. Trash to treasure: Harvesting ood data with cross-modal
matching for open-set semi-supervised learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8310–8319, 2021.

[17] Zhuo Huang, Chao Xue, Bo Han, Jian Yang, and Chen Gong. Universal semi-supervised
learning. In Advances in Neural Information Processing Systems, 2021.

[18] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report, 2009.

[19] Harold W Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

[20] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In Proceedings
of the 5th International Conference on Learning Representations, 2017.

[21] Yann LeCun, Bengio Yoshua, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[22] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on Challenges in Representation Learning, ICML, page
896, 2013.

[23] Yu-Feng Li, Lan-Zhe Guo, and Zhi-Hua Zhou. Towards safe weakly supervised learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 43(1):334–346, 2019.

11

[24] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:
a regularization method for supervised and semi-supervised learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 41(8):1979–1993, 2019.

[25] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and Ian Goodfellow.
Realistic evaluation of deep semi-supervised learning algorithms. In Advances in Neural
Information Processing Systems, pages 3239–3250, 2018.

[26] Alex Yuxuan Peng, Yun Sing Koh, Patricia Riddle, and Bernhard Pfahringer. Investigating the
effect of novel classes in semi-supervised learning. In Proceedings of the 11th Asian Conference
on Machine Learning, pages 615–630, 2019.

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-Heng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[28] Kuniaki Saito, Donghyun Kim, and Kate Saenko. Openmatch: Open-set semi-supervised
learning with open-set consistency regularization. In Advances in Neural Information Processing
Systems, pages 25956–25967, 2021.

[29] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic transfor-
mations and perturbations for deep semi-supervised learning. In Advances in Neural Information
Processing Systems, pages 1163–1171, 2016.

[30] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and ChunLiang Li. Fixmatch: Simplifying semi-supervised
learning with consistency and confidence. In Advances in Neural Information Processing
Systems, pages 596–608, 2020.

[31] Xin Sun, Zhen-Ning Yang, Chi Zhang, Keck-Voon Ling, and Guo-Hao Peng. Conditional
gaussian distribution learning for open set recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13480–13489, 2020.

[32] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In Advances in Neural
Information Processing Systems, pages 1195–1204, 2017.

[33] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and Luc
Van Gool. Scan: Learning to classify images without labels. In Proceedings of the European
Conference on Computer Vision, pages 268–285, 2020.

[34] Qi-Zhe Xie, Zi-Hang Dai, Eduard H. Hovy, Thang Luong, and Quoc Le. Unsupervised data
augmentation for consistency training. In Advances in Neural Information Processing Systems,
pages 6256–6268, 2020.

[35] Yi Xu, Lei Shang, Jin-Xing Ye, Qi Qian, Yu-Feng Li, Bai-Gui Sun, Hao Li, and Rong Jin. Dash:
Semi-supervised learning with dynamic thresholding. In Proceedings of the 38th International
Conference on Machine Learning, pages 11525–11536, 2021.

[36] Qing Yu, Daiki Ikami, Go Irie, and Kiyoharu Aizawa. Multi-task curriculum framework for
open-set semi-supervised learning. In Proceedings of the European Conference on Computer
Vision, pages 438–454, 2020.

[37] Bo-Wen Zhang, Yi-Dong Wang, Wen-Xin Hou, Hao Wu, Jin-Dong Wang, Manabu Okumura,
and Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo
labeling. In Advances in Neural Information Processing Systems, pages 18408–18419, 2021.

[38] Zhun Zhong, Enrico Fini, Subhankar Roy, Zhi-Ming Luo, Elisa Ricci, and Nicu Sebe. Neigh-
borhood contrastive learning for novel class discovery. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 10867–10875, 2021.

[39] Zhun Zhong, Lin-Chao Zhu, Zhi-Ming Luo, Shao-Zi Li, Yi Yang, and Nicu Sebe. Openmix:
Reviving known knowledge for discovering novel visual categories in an open world. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
9462–9470, 2021.

12

[40] Zhi Zhou, Lan-Zhe Guo, Zhan-Zhan Cheng, Yu-Feng Li, and Shi-Liang Pu. Step: Out-of-
distribution detection in the presence of limited in-distribution labeled data. In Advances in
Neural Information Processing Systems, pages 29168–29180, 2021.

[41] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National Science Review,
5(1):44–53, 2017.

[42] Zhi-Hua Zhou. Open-environment machine learning. National Science Review, 2022.

[43] Xiao-Jin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 3(1):1–130, 2009.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Preliminary and Background
	The NACH Method
	NACH: An Overview for Two Problems
	Unseen Class Classification
	Learning Paces Synchronization

	Experiments
	Experimental Setup
	Main Results
	Detail Analysis
	Parameter Sensitivity Analysis

	Conclusion

