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Abstract

Task-oriented semantic communication (ToSC) emerges as
a promising approach for executing remote inference tasks.
While existing ToSC systems are generally trained under
specified channel conditions, the volatile nature of real-world
channel conditions poses significant adaptation challenges to
ToSC. To this end, we propose an adaptive ToSC system
for dynamic environments via few-shot learning in this pa-
per. The method utilizes the data-driven mechanism named
vector quantized variational autoencoder (VQ-VAE) to dy-
namically optimize the codebook and generate non-uniform
modulation codebooks that are closely aligned with specific
task objectives. In addition, few-shot learning and transfer
learning techniques are adopted to facilitate efficient learn-
ing on small datasets, allowing the system to swiftly ad-
just its operating parameters to adapt to new communica-
tion conditions. Experimental results show that the proposed
method achieves superior performance compared to tradi-
tional channel-adaptive methods, especially in environments
with low signal-to-noise ratios (SNR).

Introduction
The massive artificial intelligence (AI) applications pose a
major challenge to communication bandwidth. Applications
such as smart city (Mylonas et al. 2021) and intelligent fac-
tory (Wang et al. 2021) demand substantial data support,
and their real-time transmission could consume considerable
bandwidth, risking network capacity saturation. To address
the challenges posed by limited bandwidth, a new paradigm,
task-oriented semantic communication (ToSC) (Xie, Qin,
and Li 2022; Zhang, Wang, and et al 2024) was proposed
for remote inference. ToSC can alleviate the scarcity of
transmission resources by leveraging transceivers’ compu-
tational resources through split learning. Moreover, when
tasks are distributed across edge networks, ToSC signifi-
cantly enhances the reliability and real-time performance
of communication systems, due to its high flexibility. ToSC
mainly uses deep neural networks (DNN) to implement joint
source-channel coding (JSCC) (Choi et al. 2019) and ex-
tracts task-related continuous semantic information for ef-
ficient transmission. To transmit continuous feature data,
element-wise quantization is often used. However, this ap-
proach is susceptible to distortion, as task performance de-
pends on the collective contribution of the entire feature vec-

tor rather than the individual element. To address this prob-
lem, vector quantized variational autoencode (VQ-VAE)
(Hu et al. 2023) technology is introduced, incorporating a
vector quantization mechanism to map continuous features
into discrete codes.

It is important to note that current ToSC systems are typ-
ically trained under the assumption of static data and chan-
nel distributions, with the implicit expectation that channel
conditions will remain unchanged. However, the dynamic
nature of real-world communication environments, where
channel conditions are subject to fluctuation, often leads to
the failure or suboptimal performance of these systems. To
enhance the adaptability of the system across varying chan-
nel conditions, (Raghuram et al. 2021) suggested employ-
ing autoencoders for domain adaptation to reduce the need
for frequent retraining. This method was developed for task-
agnostic end-to-end communication systems relying on uni-
form distributed one-hot encoding, which struggles to effec-
tively capture the potential structure and task relevance in
semantic information.

Motivated by the above challenges, this paper proposes
a few-shot adaptive method based on non-uniform feature
codebook mapping, called FA-NFM. Specifically, to im-
prove the system’s resilience to the rapid changes of chan-
nel conditions, we adopt a mixture density network (MDN)
(Garcia Marti et al. 2020) to solve the domain adaptation
(DA) problem in the autoencoder. It uses a Gaussian mix-
ture model (GMM) (Plataniotis and Hatzinakos 2017) to
model channel characteristics and adopts few-shot learning
to quickly capture changes in channel distribution. Based on
the learned task-related features, an optimal transformation
is designed at the decoder input to compensate for the dis-
tribution shift caused by channel changes, ensuring high de-
coding accuracy and transmission reliability. Experimental
results show that this method provides reliable transmission
of task-related features and demonstrates robust adaptability
to varying channel conditions.

Related Work
Recent progress in ToSC has introduced innovative methods
to enhance communication efficiency and adaptability. For
example, (Hu et al. 2023) and (Wang et al. 2024a) proposed
a semantic bit quantization (SBQ)-driven resource allocation
paradigm, which optimizes semantic communication qual-
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Figure 1: Architecture of the Proposed FA-NFM System

ity of service (SC-QoS) through hybrid uniform-nonuniform
quantization. Complementing this, (Fu et al. 2023) intro-
duced semantic evolution, an automated approach to gen-
erate high-quality semantic information, reducing the need
for complex network structures.

To further minimize communication overhead, (Li et al.
2024) proposed extracting task-focused subgraphs that pre-
serve critical information. Additionally, (Zhang and Guo
2024) developed a multi-rate task-oriented communication
(MR-ToC) framework, which dynamically adapts to varia-
tions in data rates, improving robustness. Beyond efficiency,
privacy remains a key concern. (Wang et al. 2024b) ad-
dressed this with the Information Bottleneck and Adversar-
ial Learning (IBAL) framework, which safeguards user pri-
vacy against model inversion attacks.

For channel adaptivity, recent advancements have focused
on addressing the challenges of bias elimination and domain
adaptation in few-shot learning. (Zhang et al. 2019) intro-
duced a variational Bayesian framework utilizing stochastic
variational inference to approximate bias-eliminated, class-
specific sample distributions, significantly improving few-
shot learning performance. Methods like DANN (Ganin
et al. 2016) employ adversarial training to align source
and target distributions by learning shared representations.
While effective, these approaches often require extensive
source-domain labels and are computationally intensive,
making them less suitable for rapid test-time adaptation.
Few-shot DA frameworks, such as (Motiian et al. 2017), al-
leviate the dependency on labeled data but focus primarily
on training-time adaptation, leaving the critical challenge of
test-time adaptation insufficiently addressed.

Methodology
Overall Design
We propose an adaptive discrete ToSC system consisting of
an encoder, codebook, modulation, physical channel, chan-
nel adaptor, demodulation, and task inference module.

1) Feature Encoding The system input x ∈ Rn is pro-
cessed by a feature extractor and a joint source-channel
(JSC) encoder to obtain a continuous representation ze(x) ∈
RD:

ze(x) = T (x; θ), (1)
where T (x; θ) combines the feature extractor and JSC en-
coder with parameters θ.

2) Discrete Codebook Mapping To ensure compatibility
with digital systems, vector quantization maps zc(x) to a
discrete codebook Zc = {ej ∈ RD | j = 1, . . . ,K}:

zc(x) = argmin
ej

∥ze(x)− ej∥2, ∀ej ∈ Zc. (2)

3) Codebook Training The codebook Zc is jointly trained
with the encoder and task inference module. To handle
the non-differentiability of argmin, we use a straight-
through estimator, approximating the forward propagation
loss LVQ(van den Oord, Vinyals, and kavukcuoglu 2017) as:

LVQ = ∥sg[ze(x)]− ej∥22 + γ∥ze(x)− sg[ej ]∥22, (3)

where γ is a hyperparameter and sg[·] represents the stop-
gradient operation.

4) Digital Modulation and Demodulation The discrete
representation is transmitted via digital modulation, map-
ping the codebook indices to constellation symbols. The re-
ceived signal ẑ is:

ẑ = g(h(z)), (4)



where h(·) is the channel function, and g(·) is the demod-
ulation function. The receiver then performs demapping to
obtain zd(z) based on ẑ.

Channel Modeling
The channel (i.e., propagation medium and transceiver im-
perfections) can be represented as a stochastic transfer func-
tion that transforms its input z ∈ Rd to an output x ∈ Rd.
In order to learn the encoder and decoder networks using
stochastic gradient descent (SGD)-based optimization, it is
necessary to have a differentiable backward path from the
decoder to the encoder through the channel. We address this
by learning a parametric generative model of the channel
Pθc(x | z) (with parameters θc) that closely approximates
the true channel conditional density p(x | z). In this work,
we model the conditional density of the channel using a set
of m Gaussian mixtures:

Pθc(x | z) =
k∑

i=1

πi(z)N
(
x | µi(z),Σi(z)

)
, (5)

where k is the number of components, µi(z) ∈ Rd is the
mean vector, Σi(z) ∈ Rd×d is the (symmetric, positive-
definite) covariance matrix, and πi(z) ∈ [0, 1] is the prior
probability of the i-th component, satisfying

∑k
i=1 πi(z) =

1. The prior probabilities πi(z) are expressed using the soft-
max function:

πi(z) = eαi(z)
/ k∑

j=1

eαj(z), ∀i ∈ [k], (6)

where αi(z) ∈ R are the component prior logits. To capture
all parameters, we define the parameter vector of component
i as:

ϕi(z)
T = [αi(z), µi(z)

T , vec(Σi(z))
T ], (7)

wherevec(Σi(z)) is the vectorized form of the unique en-
tries of the symmetric covariance matrix Σi(z) (e.g., upper
triangular or lower triangular elements).

Finally, the combined parameter vector for all compo-
nents is defined as:

ϕ(z)T = [ϕ1(z)
T , . . . , ϕk(z)

T ]. (8)

A mixture density network (MDN) (Bishop 1994), which
combines a feedforward network with Gaussian mixtures, is
employed to capture complex conditional distributions.

Fine-Tuning with Gaussian Mixture Models
To adapt an existing GMM-based channel model to new
channel conditions, we adjust the model parameters through
affine transformations to ensure statistical consistency with
the new channel distribution. The fine-tuning adjustments
includes the following key steps:

1) Affine Transformation of Mean Vectors Adjust each
Gaussian component’s mean vector µi(z) with a transforma-
tion matrix Ai and a bias vector bi as follows:

µ̂i(z) = Aiµi(z) + bi. (9)

2) Affine Transformation of Covariance Matrices Mod-
ify the covariance matrices Σi(z) with a scaling factor ma-
trix Ci as follows:

Σ̂i(z) = CiΣi(z)C
T
i . (10)

3) Weight Adjustment of Gaussian Components Up-
date the mixing weights αi(z) with scaling and offset pa-
rameters βi and γi as follows:

α̂i(z) = βiαi(z) + γi. (11)

This method presents two principal advantages: firstly, it
circumvents the need to retrain the entire network, signifi-
cantly reducing computational cost; second, the transforma-
tion parameters for fine-tuning are far fewer than the origi-
nal network parameters, necessitating less data for effective
adaptation. As supported by (Garcı́a Martı́ et al. 2020), such
affine transformations in GMMs not only efficient but also
preserve the model’s analytical traits, rendering them well-
suited for dynamic channel modeling.

Inverse Transformation for Feature Alignment
To address domain adaptation in low-sample scenarios, we
introduce an efficient inverse feature transformation, g−1,
which aligns target input features xt with source feature dis-
tributions. This transformation is based on an affine adjust-
ment of Gaussian components, avoiding encoder retraining.
The transformation is defined as:

x̂s = g−1
zi (xt) := C−1

i

(
xt−Aiµi(z)−bi

)
+µi(z), (12)

where Ci is the covariance matrix of the i-th Gaussian com-
ponent, Ai is the linear transformation matrix, bi is the bias
vector, and µi(z) is the mean vector. This formulation en-
ables domain alignment by projecting target features back
into the source distribution.

To solve for the posterior distribution, the target posterior
Pθ̂c

(z, i | xt) is computed as:

Pθ̂c
(z, i | xt) =

p(z)π̂i(z)N(xt | µ̂i(z), Σ̂i(z))∑
z′
∑

j p(z
′)π̂j(z′)N(xt | µ̂j(z′), Σ̂j(z′))

,

(13)
where Pθ̂c

(z, i | xt) represents the conditional probability,
θ̂c denotes the model parameters, p(z) refers to the prior
probability of symbol z, and π̂i(z) denotes the probabil-
ity of selecting component i given the symbol z, N(xt |
µ̂i(z), Σ̂i(z)) represents the probability density function of
xt under the given symbol z and component i, µ̂i(z) is the
mean vector, and Σ̂i(z) is the covariance matrix.

The denominator represents the summation of the numer-
ator over all possible z′ and j, ensuring that the conditional
probabilities are properly normalized to sum to 1. This nor-
malization factor guarantees that the result is a valid proba-
bility distribution.

The affine transformation also defines the regularized in-
verse feature mapping as:

g−1(xt) := EPθ̂c
(z,i|x)

[
g−1
zi (xt) | xt

]
=

∑
z∈Z

∑
i∈[k]

Pθ̂c
(z, i | xt)g−1

zi (xt), (14)



which ensures that the target feature is mapped optimally
to the source domain under the posterior distribution. This
approach, based on Gaussian mixture alignment, provides a
practical solution for adapting varying channels while mini-
mizing computational overhead.

Experiments
In this section, we conduct comprehensive experiments
to demonstrate the superiority of the proposed FA-NFM
method. In this study, we focus on the task of image recon-
struction, utilizing the CIFAR-10 dataset as our experimen-
tal data and adopting the peak signal-to-noise ratio (PSNR)
as the metric to assess adaptability. A 16-QAM constel-
lation is employed for modulation, with a codebook size
of 256. Channel variations are simulated based on stan-
dard wireless communication models: (i) additive Gaussian
noise (AWGN), (ii) Ricean fading, and (iii) uniform fad-
ing (Goldsmith 2005). The initial channel condition is es-
tablished with an SNR of 14 dB, and the system’s perfor-
mance is evaluated across a range of test SNR values, specif-
ically SNRtest ∈ {0 dB, 2 dB, 4 dB, 6 dB, 8 dB, 10 dB}.
For comparative analysis, we have chosen four following
cutting-edge methodologies as our benchmarks:

• Systerm Without Adjustment (STWA):semantic infor-
mation of images using VQ-VAE without any adjust-
ments to the model after channel variations. It serves as
a benchmark to assess the degradation in image recon-
struction performance caused by channel variations.

• Fine-Tune & Random (FTR):(Raghuram et al. 2021)
This method utilizes a small number of randomly gener-
ated uniform one-hot encodings to first fine-tune the en-
tire MDN model. Subsequently, the fine-tuned channel
model is used to generate data for further optimization of
the entire ToSC model.

• Selective Noise Adaptation (SNA): This method fine-
tunes the entire TOSC system by selecting a small
amount of unknown noise data. The goal is to improve
the system’s adaptability and robustness in complex en-
vironments.

• Adaption & Random (ATR):(Raghuram et al. 2021)
This method employs a small number of randomly gen-
erated uniform one-hot encodings to create an MDN
model with target channel characteristics through an
affine transformation of the original channel model. Sub-
sequently, an adaptive layer is introduced to perform in-
verse affine transformations on the data.

Table 1: PSNR performance under conditions transitioning
from Uniform fading to Ricean fading

SNR (dB) STWA ATR FTR SNA FA-NFM
10 17.81 18.36 17.69 17.50 18.57
8 17.40 17.70 17.15 16.75 17.98
6 16.83 17.19 16.73 16.35 17.35
4 16.11 16.66 16.24 15.94 16.67
2 15.22 17.86 17.63 16.97 18.50

Table 2: PSNR performance under conditions transitioning
from AWGN to Uniform fading

SNR (dB) STWA ATR FTR SNA FA-NFM
10 15.48 15.89 16.05 16.66 16.53
8 14.48 15.52 15.36 15.61 16.32
6 13.50 15.10 14.84 14.44 15.32
4 12.68 14.35 14.46 13.37 15.07
2 11.93 14.27 14.21 12.97 14.45

Table 3: PSNR performance under conditions transitioning
from Ricean fading to Uniform fading

SNR (dB) STWA ATR FTR SNA FA-NFM
10 16.09 16.87 16.77 16.98 17.00
8 15.02 16.30 16.29 15.96 16.61
6 14.02 15.79 15.74 14.81 15.93
4 13.11 15.11 15.38 14.24 15.63
2 12.35 14.95 15.14 13.98 15.18

The experimental results in Tables 1-3 demonstrate that
our proposed method exhibits superior stability compared to
fine-tuning and non-adaptive approaches, while significantly
enhancing the quality of image reconstruction.

We further evaluated the impact of few-shot learning ad-
justing the number of adaptive samples assigned to each
constellation symbol. Figure 2 presents the relationship be-
tween the target sample per class and the PSNR of the recon-
structed images, with experiments conducted under condi-
tions transitioning from an AWGN channel with SNR=14dB
to a uniform fading channel with SNR=6dB. The results in-
dicate that when the number of adaptive samples reaches 20,
our proposed method demonstrates a significant improve-
ment in PSNR, highlighting its effectiveness in scenarios
with a limited number of samples.
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Conclusion
In this study, we investigated the challenge of channel adap-
tation in ToSC systems and proposed a few-shot adap-
tive solution based on non-uniform codebook feature map-
ping, named FA-NFM. Our approach involves designing a
VQ-VAE system tailored for task-oriented communication,
leveraging a data-driven mechanism to dynamically opti-
mize the codebook that is tightly coupled to the specific task
objective. To enhance adaptability to channel variation, few-
shot learning is employed to achieve effective adaptation un-
der different channel conditions. Experimental results show
that our approach achieves superior performance in image
reconstruction tasks while requiring fewer resources com-
pared to existing methods. Looking ahead, FA-NFM has the
potential to provide an effective solution for channel adapta-
tion in AI-native communication systems.
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