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Abstract

This paper introduces the Quadratic Quantum Variational Monte Carlo (Q2VMC)
algorithm, an innovative algorithm in quantum chemistry that significantly enhances
the efficiency and accuracy of solving the Schrödinger equation. Inspired by the
discretization of imaginary-time Schrödinger evolution, Q2VMC employs a novel
quadratic update mechanism that integrates seamlessly with neural network-based
ansatzes. Our extensive experiments showcase Q2VMC’s superior performance,
achieving faster convergence and lower ground state energies in wavefunction
optimization across various molecular systems, without additional computational
cost. This study not only advances the field of computational quantum chemistry
but also highlights the important role of discretized evolution in variational quantum
algorithms, offering a scalable and robust framework for future quantum research.

1 Introduction

Finding fast and accurate approaches to solving Schrödinger equations is a central challenge in quan-
tum chemistry, with far-reaching implications for material science and pharmaceutical development.
The ability to solve this equation precisely would unlock a plethora of properties inherent to the
microscopic systems being studied. However, the task of deriving exact wavefunctions for even
moderately sized molecules is notoriously difficult, with no analytical solutions in general cases.

The advent of deep learning has significantly advanced the field of quantum chemistry, particularly
through enhancements in the Quantum Variational Monte Carlo (QVMC) method [1–3]. Enhanced
by neural network-based approaches, commonly referred to as neural ansatz, methods like PauliNet
[4] and FermiNet [5, 6] have demonstrated remarkable success. These approaches often match or
surpass the accuracy of traditional "gold standard" methods such as CCSD(T) [7] even for complex
molecules [8, 9]. This rapid development has spurred a broad spectrum of research into more accurate
and efficient neural ansatz models, significantly impacting ab-initio quantum chemistry [10–12].
Recent reviews [13] provide comprehensive overviews of the advancements and diverse applications
extending beyond molecular systems to areas like solid-state physics and electron gases [14–16].

Despite the accuracy and flexibility of Quantum Variational Monte Carlo (QVMC), optimizing it
remains a challenging task, often requiring prolonged convergence times. Various methods have been
developed to accelerate training, such as stochastic reconfiguration (SR) [17–19], Newton method
[20], adaptive imaginary-time evolution [21], and Wasserstein Quantum Monte Carlo (WQMC) [22].
In our work, we enhance optimization efficiency by employing the perspective of imaginary-time
Schrödinger evolution [23, 24], which naturally guides the wavefunction toward the ground state
over an extended time horizon. According to McLachlan’s variational principle, it can be shown that
this continuous-time process yields parametric updates analogous to those in standard QVMC with
infinitesimal learning rates [25]. However, while theoretically robust, implementing this evolution
in practical settings is challenging with finite time steps. Traditional approaches approximate the
updates within parametric space, but this method is limited by the non-convex nature of the objective
and the unpredictability arising from complex theoretical properties. To overcome these challenges,
we propose discretizing the evolution process itself, ensuring convergence to the ground state even
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Algorithm 1 QVMC vs Q2VMC

Require: Molecule Hamiltonian Ĥ , a neural ansatz ψθ(x) of wavefunction parameterized by θ
Require: Initial weights θ0, an optimizer optimizer, and learning rate schedule {ηt}T−1

t=0
while not converged do

Draw sample {x(i) : i = 1, . . . , N} from ψ2
θt
(x) via MCMC. Calculate local energy and loss:

EL(x(i)) = ψ−1
θt

(x(i))Ĥψθt(x
(i)), L(θt) =

1

N

N∑
i=1

EL(x(i)),

Update model weights θ via θt+1 = optimizer(θt,∆θ, F̃ ) (see Eq. 19), where

∆θ = − 1

N

∑
i

c(i) − 1

N

∑
j

c(j)

∇θ logψθt(x
(i))

QVMC: c(i) = ηtEL(x(i)), Q2VMC: c(i) = ηtEL(x(i))− 1

2
η2tE

2
L(x

(i))

end while
return the neural wavefunction ψ2

θT
(x), and samples {x(i)}Ni=1 ∼ ψ2

θT
(x)

with finite time steps. We then project the discretely evolved distribution back into parametric space,
forming an update algorithm that iteratively refines the neural ansatz towards the ground state.

Diffusion Monte Carlo (DMC) [26–28] is a well known method in quantum chemistry that also
employs ground state projection. Known for its promising results, DMC often surpasses the limitations
of specific ansatz choices [29–32]. However, as a non-parametric approach, DMC offers flexibility
and computational efficiency but lacks the ability to provide explicit values of the wavefunction, which
can be essential in applications. Additionally, DMC methods encounter the fixed-node approximation
issue: their effectiveness depends heavily on the accuracy of a fixed trial wavefunction, which cannot
be improved during the computation. By contrast, our approach maintains a parametric representation
of the wavefunction that evolves continuously toward the ground state, effectively sidestepping the
limitations posed by fixed-node constraints.

A few previous works have similarly focused on projecting an evolved quantum state onto the
parametric manifold of an ansatz, as explored in [22, 33]. To the best of our knowledge, all existing
approaches rely on conventional projection methods, specifically the quantum fidelity or the Fubini-
Study metric. Although these metrics are widely used in physics, their mathematical properties
are intricate and remain underexplored [34]. Furthermore, none of these methods account for
finite step size. In contrast, our approach takes advantage of the fact that wavefunction analysis is
primarily conducted through the probability distribution (q ∝ |ψ|2) derived from it. Accordingly, we
project probability distributions using the Kullback-Leibler divergence, chosen for its mathematical
simplicity and its ability to effectively capture distributional differences of interest. The introduction
of a quadratic term naturally emerges from the squared nature of the wavefunction in the probability
distribution, while the preconditioning by the Fisher information matrix arises naturally from the
curvature of this projection.

Building on this framework, we introduce the Quadratic Quantum Variational Monte Carlo (Q2VMC),
an innovative optimization mechanism that enhances the conventional QVMC by allowing finite-time
updates without additional computational overhead, as detailed in Algorithm 1. This novel approach
not only maintains theoretical equivalence with QVMC under infinitesimally small time steps but
also demonstrably achieves twice the optimization speed / significantly better accuracy within the
same computational budget.
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2 Results

In this section, we present a brief overview of the results achieved by the Quadratic Quantum
Variational Monte Carlo (Q2VMC) method, demonstrating its enhanced efficiency and accuracy in
wavefunction optimization. Our method achieves improvements in convergence speed and energy
accuracy across various molecular systems. Technical details about the relevant experiments is written
in the experiments section.

Summary of key results We evaluated the performance of Q2VMC against traditional Quantum
Variational Monte Carlo (QVMC) using state-of-the-art attention based neural network ansatzes:
Psiformer [8] and LapNet [9]. A total of six different molecules with diverse sizes are tested, with
number of electrons ranging from 6 to 30 to demonstrate robustness. Each one of the 12 possible
combinations are optimized with the default settings as in their original papers where possible and
with (our method) or without (baseline reproduce) the quadratic modification. Our findings indicate
that Q2VMC not only accelerates the convergence process but also reduces the variance in batch
energies, suggesting a more stable approach towards reaching the ground state. These enhancements
are highlighted as:

• Faster Convergence: As demonstrate by the training curves in Figure 1 Q2VMC shows a
2x speed-up in optimization comparing with the baselines, achieving the target energies in
approximately half the iterations required by QVMC.

• Enhanced Accuracy: The energy accuracies obtained are consistently superior to those
achieved by conventional QVMC, as detailed in Table of energy accuracies 8. This superior-
ity is particularly pronounced in complex systems with a higher number of electrons, where
the traditional methods struggle to maintain precision and stability.

• Simple Integration and Hyperparameter Robustness: As shown in Algorithm 1, Q2VMC
can be seamlessly incorporated into existing frameworks with only a single line of code
change. This section presents results obtained with the original hyperparameters, highlight-
ing that effective performance gains are achievable without additional tuning efforts. For
completeness, Appendix C provides results from experiments where hyperparameters were
adjusted specifically for Q2VMC, showing that these tuned settings achieve comparable or
superior performance to the Psiformer (Large) model using the traditional QVMC method,
despite the latter’s use of a network approximately four times larger than the Psiformer
(Small) employed here.

Table 1: Energies for a set of molecules studied in Psiformer [8] and LapNet [9]. Reference energies
are taken from the respective papers. In order to eliminate any potential effects from different
evaluation strategies, we also report our reproduced baseline values in the appendix.

System (Electrons) Psiformer Q2VMC+Psi LapNet Q2VMC+Lap

Li2 (6) -14.99486(1) -14.99490(1) -14.99485(1) -14.99486(1)
NH3 (10) -56.56367(2) -56.56374(2) -56.56359(2) -56.56370(2)
CO (14) -113.32416(4) -113.32442(2) -113.32417(4) -113.32428(2)
CH3NH2 (18) -95.86050(4) -95.86073(2) -95.86025(3) -95.86053(2)
C2H6O (26) -155.04656(7) -155.04696(3) -155.04563(6) -155.04619(4)
C4H6 (30) -155.94619(8) -155.94665(4) -155.94528(4) -155.94618(4)

3 Background

3.1 Quantum Variational Monte Carlo (QVMC)

At the heart of quantum mechanics lies the wavefunction, which embodies all possible classical
states of a system. When first quantization is considered, the wavefunction serves as a mapping
from the states of particles to complex amplitudes. For instance, the state of a single electron can
be represented by its position x ∈ R3 and spin σ ∈ {↑, ↓}. Consequently, the wavefunction of an
N -electron system is a mapping ψ :

(
R3 × {↑, ↓}

)N → C, with the square of its magnitude, |ψ|2,
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Figure 1: Optimization curves for different molecules

representing a probability density πψ2 = |ψ|2 /C, where C =
∫
|ψ|2 is the normalization constant.

The probability density πψ2 represents the likelihood of observing the quantum system in a specific
state upon measurement. Note that when the normalization condition is not enforced, wavefunctions
ψ are invariant under scalar multiplication, implying ψ ∼ aψ for any non-zero scalar a, where all
such functions correspond to the identical normalized probability density πψ. With an abuse of
notation, we simply write πψ2 = |ψ|2 when corresponding normalization is clear from the context.

The behavior of non-relativistic quantum systems are dictated by the Schrödinger equation, which,
in its time-independent form, poses an eigenfunction problem Ĥψ = Eψ. Here, Ĥ represents the
Hermitian linear operator known as the Hamiltonian, and the eigenvalue E represents the energy
associated with a specific eigenfunction. The Hamiltonian’s structure is crucial, encapsulating the
physical properties of the quantum system. In quantum chemistry, the Hamiltonian generally takes
the form of:

Ĥ = −1

2
∇2

x + V (x), (1)

where ∇2
x is the Laplacian in coordinate space, and V (x) represents a potential function dependent

on the particle positions (e.g. configurations of the nucleus).

Quantum Variational Monte Carlo (QVMC) is a computational approach used to determine the
ground state, corresponding to the lowest eigenvalue E0, of the Schrödinger equation. In the studies
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of QVMC, two simplifications are commonly employed. First, given that Ĥ is Hermitian, its eigen-
functions ψ can be considered real-valued, permitting a focus solely on real-valued wavefunctions.
Second, the absence of spin variables σi in the Hamiltonian allows for simplification in modeling the
system, permitting us to fix the spins of electrons and shift our focus solely on their positional values.
Hence, in QVMC, we utilize an unnormalized wavefunction ansatz ψθ : R3N → R, parameterized
by θ. The term neural ansatz denotes the representation of ψθ by a neural network.

The quest for the ground state solution is guided by the Rayleigh-Ritz principle, which involves
minimizing the loss function:

L(θ) =
∫
ψθ(x)Ĥψθ(x)dx∫

|ψθ(x)|2 dx
= E|ψθ|2 [ψ

−1
θ (x)Ĥψθ(x)︸ ︷︷ ︸

=EL,θ(x)

] ≥ E0, (2)

where EL,θ(x)
def
= ψ−1

θ (x)Ĥψθ(x) represents the local energy. The gradient of this loss function is
computed as

∇θL(θ) = E|ψθ|2
[(
EL(x)− EL

)
∇θ logψ

2
θ(x)

]
, (3)

with EL = E|ψ2|[EL(x)] denoting the average local energy. Minimizing L with gradient descent
thus yields an iterative process, where Markov Chain Monte Carlo sampling is employed to extract
samples from distribution |ψθ|2 and the samples are used estimate the energy gradient, which then
directs the parameter updates [35].

To improve the efficiency of optimization, the Stochastic Reconfiguration [36, 17] or Quantum Natural
Gradient Descent [37, 38]—has commonly been adopted for QVMC updates. This method enhances
convergence by preconditioning the gradient with an (approximation of) Fisher information matrix
F̂ (θ)−1 related to the quantum state ψ2

θ , which can be implemented efficiently using approximate
natural gradient frameworks like KFAC [39]. Consequently, the practical parameter update step,
considering a learning rate η, is given as

∆θQVMC = ηF̂ (θ)−1∇θL(θ). (4)

4 Quadratic Quantum Variational Monte Carlo

This section introduces our methodology for updating the neural ansatz through the Q2VMC approach.
In Section 4.1, we present a discretized imaginary-time Schrödinger evolution. This process operates
within the non-parametric Hilbert space of wavefunctions, guiding the system progressively toward
the ground state. Subsequently, in section 4.2, we discuss how to project the evolved distributions back
onto the parametric manifold of the neural ansatz by minimizing the Kullback-Leibler divergence
between the evolved and updated distributions, which forms the basis of the Q2VMC algorithm.

4.1 Imaginary-Time Schrödinger Evolution

Consider a Hilbert space equipped with the inner product ⟨u, v⟩ =
∫
uv, and spanned by orthonormal

basis functions {ϕi(x)}. Given a Hermitian operator Ĥ , normalizing its eigenfunctions so that
⟨ϕi, ϕi⟩ = 1, results in a basis that embodies three essential attributes: 1) they are eigenfunctions
of the Hamiltonian with associated eigen-energies Ei, 2) normalized, and 3) mutually orthogonal
for distinct indices. These attributes ensure that any function within our Hilbert space can be
precisely represented as linear combinations of these orthonormal basis functions associated with the
Hamiltonian. The energies of these eigenfunctions are conventionally ordered as E0 < E1 < E2 <
· · ·. Thus, the primary objective of QVMC is to approximate ϕ0, with is associated to the lowest
energy E0, using a parametric ansatz ψθ.

The imaginary-time Schrödinger equation emerges from the time-dependent Schrödinger equation by
substituting t′ with −it, yielding:

−∂ψ(x, t)
∂t

= Ĥψ(x, t). (5)
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Considering an initial wavefunction at t = 0 as ψ(x, t = 0) =
∑∞
i=0 αiϕi, the imaginary-time

Schrödinger evolution has a closed-form solution expressed in terms of these basis functions:

ψ(x, t) = e−tĤ
∞∑
i=0

αiϕi(x) =
∞∑
i=0

αie
−tEiϕi(x).

Scaling the wavefunction by a factor of etE0 reveals the evolution’s impact:

ψ̃(x, t) = ϕ0(x) +
∞∑
i=1

αi
α0
e−t(Ei−E0)ϕi(x). (6)

GivenEi−E0 > 0 for all i > 0, as t→ ∞, the wavefunction’s projection onto any basis other than ϕ0
diminishes to zero. Hence, starting with any wavefunction that overlaps with ϕ0, the imaginary-time
Schrödinger evolution consistently approximates the ground state as t approaches infinity.

While in theory, the operator e−tĤ as t → ∞ can directly yield the ground state function, exact
computation of this operator is impractical. One must discretize the time step to incrementally evolve
the process. The evolution process can conveniently operate with discrete time in the following
manner.
Definition 4.1 (Discretization). For a given time step τ , the Discretized Imaginary-Time Schrödinger
Evolution, corresponding to a Hamiltonian Ĥ and its ground state energy E0, is described by a series
of functions {ψ(n)}∞n=0 such that:

ψ(n+1) =
1− τĤ

1− τE0
ψ(n) =

1− τE
(n)
L

1− τE0
ψ(n), (7)

where E(n)
L = Ĥψ(n)/ψ(n).

This process is proven to converge to the ground state:

Theorem 4.2 (Convergence). Assuming ⟨ψ(0), ϕ0⟩ ̸= 0 and ∥ψ(0)∥2 < ∞, then ψ(n) weakly
converges to ϕ0, up to a constant factor, as n→ ∞.
Remark 4.3. This result differs from its continuous time counterpart as shown in equation 6. The
evolution process in our approach does not require an infinitesimal time step to converge, thus it is
insensitive to the size of the time step taken. Asymptotic convergence is guaranteed regardless of the
time step size. Consequently, unlike previous methods, our approach does not necessitate the use of
very small time steps, which can often impede effective convergence.

The evolution in the Hilbert space of wavefunctions may also be motivated from other perspectives,
e.g gradient flow under Fisher-Rao metric [22] and the discrete evolution is similar to the quantum
power method in the computational quantum literature in the limit that τ → ∞ (see, for example,
[40, 41]). For a more comprehensive theoretical analysis, we direct readers to these sources.

4.2 Parametric Projection of the Evolution Process

In practical applications, operating within the infinite-dimensional space of functions is not feasible.
Instead, we utilize a neural ansatz ψθ parameterized by a finite set of parameters θ to approximate the
underlying functional. This necessitates an iterative process: a) evolving the current ψθ following
discrete evolution to produce (1−τEL)ψθ, b) projecting the evolved function back into the parametric
space to update model parameters, resulting in ψθ+∆θ, and c) updating associated MCMC data
samples based on this projection before repeating the process with the updated neural ansatz.

While step a) is straightforward and efficiently implementable (as detailed in Appendix A), step b)
requires a suitable divergence metric for effective projection. In this study, we minimize the Kullback-
Leibler (KL) divergence between the probability distribution induced by the evolved wavefunction
and that represented by the updated neural ansatz within a trust region [42]:
Proposition 4.4. Let h(∆θ) denote the KL-divergence between the evolved distribution (1 −
τEL(x))2ψ2

θ(x) and the updated distribution ψ2
θ+∆θ:

h(∆θ) = KL
[
(1− τEL(x))2ψ2

θ(x)∥ψ2
θ+∆θ(x)

]
. (8)
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Given the size of trust region ϵ, our objective of projection is

∆θ∗ϵ = argmin
∆θ

{
h(∆θ) s.t. KL(ψ2

θ+∆θ∥ψ2
θ) ≤ ϵ2/2

}
. (9)

As ϵ→ 0+, the optimal update direction approaches to

∆θ∗ = lim
ϵ→0+

1

ϵ
∆θ∗ϵ = − F−1g

g⊤F−1g
, (10)

where g and F are the gradient and Fisher information matrix respectively:

g = E[∇θ logψ
2
θ(x)]−

(
E
[
(1− τEL(x))2

])−1 E
[
(1− τEL(x))2∇θ logψ

2
θ(x)

]
,

F = E
[(
∇θ logψ

2
θ − E

[
∇θ logψ

2
θ

]) (
∇θ logψ

2
θ − E

[
∇θ logψ

2
θ

])⊤]
.

represents the Fisher information matrix associated with the distribution induced by the neural ansatz.
All expectations here are taken with respect to the distribution |ψθ(x)|2.

Proof. Refer to Appendix B.

Therefore, the update given by the projecting the evolution process, i.e. the Q2VMC update, is like:

∆θQ2VMC ∝ F−1g̃

≈ F̂ (θ)−1
(
E
[
(1− τEL(x))2∇θ logψ

2
θ(x)

]
− E

[
(1− τEL(x))2

]
E
[
∇θ logψ

2
θ(x)

])
Because the mean of the scaling factors E

[
(1− τEL(x))2

]
is subtracted from the update, the constant

of 1 does not matter. Therefore, the form of update derived solely from the perspective of discretizing
imaginary-time Schrödinger evolution and projection match closely with the update of QVMC upon
choosing the time step τ = 1

2η except for the quadratic term of 1
2η

2E2
L(x). Because the term EL(x)

has already been computed in the QVMC and the quadratic term can be added on with no effort, our
method has no relative computational overhead. Notably by taking the infinitesimal time step limit
τ → 0 will exactly recover the QVMC update as the additional term decays with O(τ2), thereby
showing the consistency of our method in the small step size regime.

5 Experiments

This section details the experimental setup and evaluation strategy utilized to obtains the results
shown above.

Methodology Overview Two recent cutting-edge, attention-based neural ansatzes, Psiformer [8]
and LapNet [9], are tested in our evaluations. The architectural hyperparameters are delineated in
Table 4 in Appendix. Note that [8] provides two possible model sizes, Psiformer Small and Psiformer
Large with the latter roughly 4x size than the former, and our experiments are all conducted with
the former. To demonstrate the easy integration and robustness of our method, we adhered to all the
original training hyperparameters from their publications (detailed in Appendix Table 5). Training
curves of baseline and horizontal lines representing reference energies from respective papers are
plotted to facilitate comparison and indicate successful reproduction of the claimed performance.
The only modification in our Q2VMC experiments pertains to the gradient coefficients, in accordance
with the Q2VMC update rule 1.

Convergence and Stability Figure 2 presents the energy convergence trajectories for six molecules,
demonstrating that Q2VMC achieves both rapid and consistent convergence across a range of systems.
Specifically, we tested on Li2 (6), NH3 (10), CO (14), methylamine-CH3NH2 (18), ethanol-C2H6O
(26), and bicyclobutane-C4H6 (30), where the numbers in parentheses denote electron counts.
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Training and Evaluation : Consistent with the methodologies as in the referenced studies, we
optimize the models to 200,000 training iterations for all molecular systems. Nevertheless, it was
observed that smaller molecules typically can reach convergence in fewer iterations e.g. Li2 while
larger systems like bicyclobutane has clearly not converged yet within the duration. We encourage
future benchmarking in this field to select the total iterations adaptively. We adopt similar numerical
hacks as in [8, 9] to facilitate numerical stability. Importantly, the local energies are clipped so that
values will be within the range ρ = 5.0 of mean absolute deviation from its median. The coefficients
c(i) are then further computed after clipping.

Following the training, an additional evaluation was conducted over 20,000 steps, employing MCMC
to sample batches of data without updating the network parameters. The computed energies for
the tested molecules, comparing against benchmark values, are tabulated in Table 1. For smaller
molecules like Li2, the energy performance gains were marginal, highlighting the system-dependent
aspect of convergence energy. However, our approach facilitated consistently faster convergence
across the board. For larger molecules, which do not reach convergence within the allocated iterations,
Q2VMC markedly improved energy performance.

5.1 Ablation Study

The update of Q2VMC can be decomposed into two parts:

∆θQ2VMC = ∆θQVMC +
1

2
η2E

[(
E2
L(x)− E2

L

)
∇ logψ2

θ(x)
]

(11)

Therefore, one might suspect that if the better performance of Q2VMC comes solely from its larger

update magnitude ∥∆θQ2VMC∥
?
> ∥∆θQVMC∥ and we can make better performance of QVMC by

utilizing a larger learning rate. Note that the greater relation cannot be confirmed as the terms being
added are not in the same direction. In this section, we confirm that the performance of QVMC can
indeed be boosted by carefully tuning for a larger learning rate within a specific system. However,
one cannot make QVMC perform better than Q2VMC solely by tuning the learning rate.

We primarily study the system of NH3(10) as it is large enough to allow different algorithms
distinguish while not so large to allow objectives to converge within the 200k steps duration. All
experiments in this section are done with the Psiformer model. We take a fine-grained tuning of the
learning rate η0 of QVMC within the range of {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. The strategy of
training and evaluation follows the experiments. The convergence energies are listed in Table 2 and
the training curves can be found in Appendix C.

Table 2: Convergence energies of NH3 trained with QVMC using different η0.

η0 0.01 0.02 0.05

Econverge -56.56327(3) -56.56350(2) -56.56366(2)

η0 0.1 0.2 0.5

Econverge -56.56372 (1) -56.56379(1) Diverge

It is clear from the results that with larger learning rates for QVMC, one can yield better convergence
energy values, while setting it to over-large values will make the training diverge, even if the gradient
clipping in terms of the Fisher norms are enabled [43]. Among the trainings of different learning
rates, the best performance is obtained from the one using learning rate of η0 = 0.2. We therefore
use the matched learning rate for training with Q2VMC to see if it can still do better than this. The
convergence energy values are listed in Table 3.

Table 3: Convergence energies of NH3 trained with Q2VMC using different η0.

η0 0.05 0.2

Econverge -56.56374(2) -56.56384(1)
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Our method is already performing well enough even with the default learning rate of 0.05 not tuned
specifically for the system of NH3. Furthermore, since experiments have already shown that the
performance of Q2VMC is superior to any trials obtained from optimizing the objective using QVMC,
there is no need to further tune the learning rate of Q2VMC for comparison.

Following the heuristics recommended by [10], we further ablated additional hyperparameters,
including increased decay time, reduced learning rate, and reduced norm constraints. The results,
summarized in Table 4, specify the modified hyperparameters alongside the achieved ground state
energies upon convergence. As shown, none of these adjustments matched or exceeded the accuracy
attained by Q2VMC.

Table 4: More experiments for ablation study: Computed ground state energies of NH3 molecules with
standard quantum Monte Carlo method. Tested with different (reduced) learning rates, (increased)
learning rate decay times, and (increased) norm constraints.

Learning Rate Decay Time Norm Constraint Energy

2e-2

1e4
3e-3 -56.56349(3)
1e-2 -56.56366(2)
3e-2 Diverge

3e4
3e-3 -56.56369(1)
1e-2 -56.56366(1)
3e-2 Diverge

5e-2

1e4
3e-3 -56.56371(2)
1e-2 -56.56313(3)
3e-2 Diverge

3e4
3e-3 -56.56374(1)
1e-2 -56.56344(2)
3e-2 Diverge

5.2 Code and Computational Details

All models were implemented using the JAX framework [44], which is available under the Apache-2.0
License. The architectures were adapted from public implementations of FermiNet [43] and LapNet
[45], both of which are also distributed under the Apache-2.0 License. Modifications were made
to these architectures to integrate the Q2VMC algorithm. Natural gradient updates were based on
KFAC-JAX [46], adhering to the same licensing terms. For the LapNet experiments, training was
conducted on four Nvidia GeForce 3090 GPUs, utilizing standard single precision calculations and
double-precision for matrix multiplications, with training durations ranging from 5 to 90 clock hours
depending on the size of the molecule. Similarly, Psiformer experiments were performed in single
precision on four Nvidia V100 GPUs, with each run varying from 8 to 140 clock hours.

6 Conclusions

In this study, we introduced the Quadratic Quantum Variational Monte Carlo (Q2VMC), which
optimizes neural ansatz in quantum variation Monte Carlo by evolving wavefunctions towards the
ground state in non-parametric space, then projecting these onto the neural network’s parametric
manifold using KL divergence minimization. Our experiments demonstrate that Q2VMC not only
strengthens the theoretical foundation but also significantly surpasses traditional QVMC updates in
speed and accuracy.

Limitations and Future Works While Q2VMC demonstrates clear advantages, it also faces several
unresolved challenges, such as determining the optimal imaginary time step and quantifying the
inaccuracies introduced by approximate projection methods. Due to current computational constraints,
our experiments were limited to systems with up to 30 electrons. Similarly, these limitations prevented
us from conducting a complete set of experiments on other important quantum chemistry applications,
such as relative energies [47, 48] and excited states [49–51]. In future work, we aim to extend
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Q2VMC to these domains to further assess its performance. Additionally, our method currently
achieves only a constant factor speed-up, as observed in the experiments, but the fundamental O(N4)
scaling with the number of electrons remains a bottleneck, restricting its application to very large
systems. We hope to address this scaling issue to enable testing on larger molecules.

Broader Impacts Broader impacts of this work could influence computational chemistry, poten-
tially reducing the reliance on physical experiments and accelerating the discovery of new drugs and
environmentally friendly chemical processes, while adhering to stringent ethical standards.
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A Details of Computing Local Energies and Gradients

Hamiltonians for Molecules The characteristics of a chemical system are encapsulated by its
Hamiltonian, which in quantum chemistry typically involves specifying the positions and charges
of the atomic nuclei. Under the Born-Oppenheimer approximation, nuclei are treated as classical
particles with fixed positions, simplifying the Hamiltonian to:

Ĥ = −1

2

∑
i

∇2
i +

∑
i>j

1

|xi − xj |
−
∑
i,I

ZI
|xi −XI |

+
∑
I>J

ZIZJ
|XI −XJ |

(12)

Here, ∇2
i represents the Laplacian operator for the ith electron, and ZI and XI denote the charges and

fixed coordinates of the nuclei, respectively. While potential energies are derived straightforwardly,
the Laplacian components required for kinetic energy calculations can be efficiently computed using
the standard library of JAX [44] or the more advanced Forward Laplacian technique [9].

Computation of Local Energies It is often more stable to parameterize the logarithm of the
wavefunction, represented as fθ(x) = logψθ(x), rather than the wavefunction itself. The local
energies can be expressed entirely in terms of the log wavefunction as follows:

EL,θ(x) = −1

2

(
∇2

x logψ
2(x) + ∥∇x logψ(x)∥2

)
+ V (x) (13)

Here, the gradients and Laplacians are calculated with respect to the positions of all particles, for
i = 1, ..., N and across all spatial dimensions j = 1, 2, 3. This setup facilitates efficient computation
of both the gradient of the log wavefunction with respect to the model parameters ∇θ logψ(x) and in
combined, the overall updates in both the QVMC and Q2VMC methods, as in equations 4 and ??.

B Derivations of various results presented in the paper

Theorem B.1. Assuming ⟨ψ(0), ϕ0⟩ ≠ 0 and ∥ψ(0)∥2 <∞, then ψ(n) weakly converges to ϕ0, up to
a constant factor, as n→ ∞.

Proof. Expressing the initial wavefunction in its spectral decomposition form, ψ(0) =
∑
i αiϕi, the

discretized evolution can be written as:

ψ(n) =
∑
i

αi

(
1− τEi
1− τE0

)n
ϕi =

∑
i

α
(n)
i ϕi. (14)

Given that (1 − τEi)/(1 − τE0) < 1 for i > 0 (negative energies), all coefficients α(n)
i , i > 0

diminish to zero as n approaches infinity, while α(n)
0 remains constant for all n. Therefore, the

sequence weakly converges to α0ϕ0 by definition.

Proposition B.2. Let h(∆θ) denote the KL-divergence between the evolved distribution (1 −
τEL(x))2ψ2

θ(x) and the updated distribution ψ2
θ+∆θ:

h(∆θ) = KL
[
(1− τEL(x))2ψ2

θ(x)∥ψ2
θ+∆θ(x)

]
. (15)

Given the size of trust region ϵ, our objective of projection is

∆θ∗ϵ = argmin
∆θ

{
h(∆θ) s.t. KL(ψ2

θ+∆θ∥ψ2
θ) ≤ ϵ2/2

}
. (16)

As ϵ→ 0+, the optimal update direction approaches to

∆θ∗ = lim
ϵ→0+

1

ϵ
∆θ∗ϵ = − F−1g

g⊤F−1g
(17)

where g and F are the gradient and Fisher information matrix respectively:

g = E[∇θ logψ
2
θ(x)]−

(
E
[
(1− τEL(x))2

])−1 E
[
(1− τEL(x))2∇θ logψ

2
θ(x)

]
,
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F = E
[(
∇θ logψ

2
θ − E

[
∇θ logψ

2
θ

]) (
∇θ logψ

2
θ − E

[
∇θ logψ

2
θ

])⊤]
.

represents the Fisher information matrix associated with the distribution induced by the neural ansatz.
All expectations here are taken with respect to the distribution |ψθ(x)|2.

Proof. Following the results from Section 6 of [42], we establish that for a well-defined objective
h(θ), the optimal update within a trust region is given by:

− F−1g

g⊤F−1g
= lim
ϵ→0

1

ϵ
argmin

∆θ

{
h(∆θ) s.t. KL(ψ2

θ+∆θ∥ψ2
θ) ≤

ϵ2

2

}
(18)

Therefore, the proof left with computing the gradient of the objective and the Fisher information
matrix associated with the distribution |ψθ|2.

Let θ0 represent the fixed part of the parameters, and, with slight abuse of notation, let θ denotes the
variables under optimization. We avoid explicit dependency on θ0 in the notation of local energies
EL(x) for clarity. The objective function h(θ) is expressed as:

h(θ) = KL
[
(1− τEL(x))2ψ2

θ0(x)∥ψ
2
θ0+θ(x)

]
=

∫
(1− τEL(x))2ψ2

θ0
(x)∫

(1− τEL(x))2ψ2
θ0
(x)dx

(
log

(1− τEL(x))2ψ2
θ0
(x)∫

(1− τEL(x))2ψ2
θ0
(x)dx

− log
ψ2
θ0+θ

(x)∫
ψ2
θ0+θ

(x)dx

)
dx

The gradient is then computed as:

g =
∂h

∂θ

∣∣∣∣
θ=0

= − ∂

∂θ

∫
(1− τEL(x))2ψ2

θ0
(x)∫

(1− τEL(x))2ψ2
θ0
(x)dx

log
ψ2
θ0+θ

(x)∫
ψ2
θ0+θ

(x)dx
dx

= −
∫

(1− τEL(x))2ψ2
θ0
(x)∫

(1− τEL(x))2ψ2
θ0
(x)dx

∂

∂θ
log

ψ2
θ0+θ

(x)∫
ψ2
θ0+θ

(x)dx
dx

= E[∇θ logψ
2
θ(x)]−

(
E
[
(1− τEL(x))2

])−1 E
[
(1− τEL(x))2∇θ logψ

2
θ(x)

]
The Fisher information matrix, normalized for the distribution, is:

F = E

[(
∇θ log

ψ2
θ(x)∫

ψ2
θ(x)dx

)(
∇θ log

ψ2
θ(x)∫

ψ2
θ(x)dx

)⊤]
= E

[(
∇θ logψ

2
θ − E

[
∇θ logψ

2
θ

]) (
∇θ logψ

2
θ − E

[
∇θ logψ

2
θ

])⊤]
.

C Additional Experiment Results and Hyperparameters

Table 4 details the network architecture hyperparameters for the neural ansatzes Psiformer and LapNet
used in our experiments. Table 5 outlines the training hyperparameters employed for pretraining and
optimizing these ansatzes. Table 6 presents the results of our efforts to reproduce the baseline energy
values, comparing them with the energies reported in the reference papers. These results affirm the
consistency of our implementations with those described in the original publications.
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Table 5: Neural Network Architecture Hyperparameters

Parameter Psiformer LapNet

Determinants 16 16
Network layers 4 4
Attention heads 4 4
Attention dims 64 64
MLP hidden dims 256 256

Table 6: Optimization Hyperparameters

Parameter Value
Training
Optimizer KFAC
Training iterations 2e5
Batch size 4096
Learning rate at iteration t lr0/(1 + t/t0)
Initial learning rate lr0 0.05
Learning rate decay steps t0 1e4
Local energy clipping 5.0

Pretraining
Optimizer LAMB
Pretraining iterations 2e4
Learning rate 1e-3

MCMC
Decorrelation steps 30

KFAC
Norm constraint 1e-3
Damping 1e-3
Momentum 0
Decay factor of covariance moving average 0.95

Table 7: Energies of reproduced values based on our own experiments comparing the reported
baseline values as in [8] and [9]

System Psiformer Psi Reproduced LapNet Lap Reproduced

Li2 -14.99486(1) -14.99488(1) -14.99485(1) -14.99486(1)
NH3 -56.56367(2) -56.56366(2) -56.56359(2) -56.56361(2)
CO -113.32416(4) -113.32429(2) -113.32417(4) -113.32416(3)
CH3NH2 -95.86050(4) -95.86051(3) -95.86025(3) -95.86026(3)
C2H6O -155.04656(7) -155.04667(3) -155.04563(6) -155.04561(7)
C4H6 -155.94619(8) -155.94618(8) -155.94528(4) -155.94535(3)
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Table 8: Energies for molecules tested with Psiformer. The table includes benchmarking values
from [8], including both small and large models, where the latter has approximately four times the
number of parameters as the former. We present the original results from our paper, obtained using
the hyperparameters from [8] (not tuned), as well as results obtained with tuned hyperparameters.
Both sets of results are derived from the Psiformer (Small). The results with tuned hyperparameters
for the small model match or exceed the accuracies of the benchmarking large model.

System Psiformer (Small) Psiformer (Large) Q2VMC (original) Q2VMC (tuned)

Li2 -14.99486(1) -14.99485(2) -14.99490(1) -14.99492(5)
NH3 -56.56367(2) -56.56381(2) -56.56374(2) -56.56386(2)
CO -113.32416(4) -113.32466(3) -113.32442(2) -113.32469(3)
CH3NH2 -95.86050(4) -95.86096(3) -95.86073(2) -95.86094(3)
C2H6O -155.04656(7) -155.04759(6) -155.04696(3) -155.04740(5)
C4H6 -155.94619(8) -155.94836(7) -155.94665(4) -155.94815(5)

Figure 2: Energy training curves with differ-
ent learning rates in ablation studies.

Figure 3: Variance training curves with dif-
ferent learning rates in ablation studies.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims made in the abstract and introduction can either be found in the
Section 4 of main paper, where we introduce out methodology; or Sections 2 and 4 of the
main paper where we present our experiment results and relevant technical details.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of this work in last section of the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Theoretical results are Theorem 4.2 and Proposition 4.4. Assumptions of both
results are provided in the context and proof is in Appendix Section B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Technical details required to reproduce the main experimental results have
been included in Section 5 of the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code has been attached with the submission of this paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details relevant to this study have been included in Section 5 of experimental
details. Other choices, e.g hyperparameters of KFAC, are defaults that can be found in the
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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