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Abstract

Despite the impressive progress in statistical Optimal Transport (OT) in recent
years, there has been little interest in the study of the sequential learning of OT.
Surprisingly so, as this problem is both practically motivated and a challenging
extension of existing settings such as linear bandits. This article considers (for the
first time) the stochastic bandit problem of learning to solve generic Kantorovich
OT problems from repeated interactions when the marginals are known but the
cost is unknown. By exploiting the intrinsic regularity of the OT problem, we
show that this problem satisfies classical Hilbert space bandit regret guarantees
(Õ(

√
T ) multiplied by log-determinant terms) for both problems. To deal with

learning in infinite dimension, we provide a functional regression method which can
exploit intrinsic regularity of the cost to obtain complete regret bounds interpolating
between Õ(

√
T ) (finite and parametric cases) and O(T ) (unlearnable costs).

1 Introduction

Originally, Optimal Transport (OT) was developed as a mathematical theory to optimise the trans-
portation and logistics of goods (Monge, 1781; Kantorovich, 2006). Over the last two decades,
however, this theory has experienced a meteoric rise in applied mathematics due to a sustained
series of major breakthroughs (Villani, 2003, 2009). The optimisation problem aims to find the most
efficient allocation (given a cost function) of ressources from sources (supply) to sinks (demand).1

Historically, this economic interpretation has been the main application for the theory, see e.g.
(Galichon, 2021; Kreinovich et al., 2024), but the recent theoretical progress has renewed interest for
new domains of applications, such as machine learning. Indeed, many have noticed that the ability to
quantify and minimise “distances” between probability measures parallels key questions in problems
such as generative modelling (Arjovsky et al., 2017) or domain adaptation (Courty et al., 2017). As
these developments have matured, they have percolated into statistical learning theory to create the
rich literature of statistical optimal transport, recently surveyed by Chewi et al. (2024).

In spite of this ongoing activity, the question of sequential learning remains a blind spot of this
emerging field. Barring a handful of exceptions, all existing works consider static (batch) i.i.d.
datasets and traditional statistical estimation. This is despite the many applications of optimal
transport that are naturally sequential. Classical examples include assignment of kidney donors to
recipients (Glorie et al., 2014), doctors to hospitals (Hatfield and Milgrom, 2005), etc. In these
examples the number of assignments is finite, but, as it becomes large, the OT problem is best
modelled by an infinite-dimensional problem, see e.g. Cao et al. (2024); Carlier (2010). Optimal
transport finds countless other naturally sequential applications across economics and operations
research, which motivate the study of sequential learning of OT.

1From a formal standpoint, this problem concerns the minimisations of functionals of measures under
constraints imposed by their marginals.
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In sequential learning tasks, samples are highly correlated which introduces significant new complex-
ities relative to the batch setting. Moreover, sequential learning tasks are more naturally evaluated
during the learning process, rather than at the end. This online evaluation creates a trade-off between
exploration (statistical efficiency) and exploitation (online performance).

Consequently, this paper sets out to investigate the question of the online learnability of the general
OT problem in a stochastic partial feedback setting known as a stochastic bandit.

In this setting (see Section 2 for details), an agent is given the constraints of an optimal transport
problem, but not the cost function. It must partake in a repeated game in which it submits a transport
plan (i.e. an admissible point) at each round, and receives a noisy reward estimate of the cost of the
submitted plan. Importantly, this feedback is bandit: it gives no information about the outcome of
any plan other than the one played. We measure the performance of the agent by its regret, i.e. its
cumulative loss compared to the optimal plan.

This setting raises intriguing connections to classical work in bandit problems. First, since optimal
transport functionals are linear functionals, this problem appears an extension of linear bandits
(Auer, 2003). Closer inspection however reveals that classical tools break down because the cost
function which must be learned does not live in the same space as the actions. Second, the infinite-
dimensionality of the cost function draws a connection to kernel bandits (Valko et al., 2013). In kernel
bandits, the regularity of the hypothesis space is what allows transformation to a linear problem. In
contrast, we will see that the regularity of the OT problem is intrinsic to its geometry and we can thus
work with much larger hypothesis spaces despite this problem not being a linear bandit.

Contributions. As a result of our investigation, we establish the first regret bounds for learning the
general stochastic bandit OT problem. We construct a modified optimistic algorithm which exploits
the intrinsic regularity of the OT problem to construct a coherent action sequence which maintains
valid confidence sets in the style of (Abbasi-Yadkori, 2012). This algorithm incurs a regret of Õ(

√
T )

up to learning-dependent log-determinant terms, which is the same order as the regret of linear bandits
(Auer, 2003). This isolates the statistical sub-problem of estimating the cost function, for which we
propose a functional regression method which is adaptative to the regularity of the cost function,
obtaining a regret that interpolates between Õ(

√
T ) for discrete or parametric problems and O(T )

for unlearnable instances directly from regularity conditions on the cost.

Organisation. We devote Section 2 to clearly defining the technically intricate Bandit Optimal
Transport (BOT) setting. Then, in Section 3, we discuss high-level insights, related work regarding
learning of OT problems, and detail our contributions. Thereafter, we focus Section 4 on the
technicalities of our solution to the BOT problem, detailing algorithms and regret bounds. We
conclude by touching on some promising open directions in Section 5. Appendices extend these
discussion and contain rigourous details of technical contributions and proofs.

2 Setting

2.1 The decision problem of optimal transport

Consider a pair of probability measures (µ, ν) ∈ P(Mµ ×Mν) on two topological measurable
spaces (Mµ,Fµ) and (Mν ,Fν), as well as a cost function c : Mµ × Mν → R. For ease of
exposition, we consider X := Mµ ×Mν ⊆ Rd, d ∈ N, but the problems below are also defined on
highly esoteric spaces (Mµ,Mν) such as a graph or a space of curves.

The Kantorovich formulation of the OT problem (Kantorovich, 2006) asks for the optimal way
to transport all the mass from µ to ν, where the cost of moving an infinitesimal unit of mass from
x ∈ Mµ to y ∈ Mν is captured by c(x, y). If c(x, y) = ∥x− y∥, the cost of transporting x to y
is just the distance between the source and the destination. However, the ability to roll arbitrarily
complex considerations into c is what makes OT highly versatile in applications.

Formally, the Kantorovich (optimal transport) problem is defined as

Kant.(µ, ν, c) := inf
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y) (1)

in which Π(µ, ν) := {π ∈ P(Mµ × Mν) : π(·,Mν) = µ, π(Mµ, ·) = ν} is the set of all
couplings of µ and ν, i.e. any joint distribution whose marginals over Mµ and Mν are µ and ν,
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respectively. Importantly, the Kantorovich problem allows mass located at x to be split and sent to
several y, and vice-versa, but a set S ∈ Fµ may not give more mass that µ(S), just as S′ ∈ Fν may
only receive ν(S′) mass. In fact Π imposes that they give and receive exactly this amount of mass.

Divisibility of mass was absent in the original formulation of OT, which rendered the problem highly
difficult (see Appendix G.2). In contrast, the Kantorovich problem is a linear program and is solvable
when c is lower semi-continuous and bounded below, see (Villani, 2009, Thm. 4.1). The generality of
this result2 explains its adoption as the core problem of OT theory.

The linearity of the optimal transport functional functional refers to the fact that the map π 7→∫
c(x, y)dπ(x, y) is linear in π. In fact, this functional is a bilinear form which can be represented as

a duality pairing ⟨c|π⟩ (see Section 4.1) so that (1) can be rewritten as

Kant.(µ, ν, c) = inf
π∈Π(µ,ν)

⟨c|π⟩ . (2)

This pairing is not an inner product however, as c is a function while π is a measure.

Nevertheless, linearity speaks in favour of the regularity of Equation (1). Intuitively, it behaves like an
infinite-dimensional linear program. Indeed, ⟨c|·⟩ is linear and Π(µ, ν) is defined by linear (integral)
constraints, and, in fact, is convex and compact (Ambrosio et al., 2021, Cor. 2.9). However, unlike in
finite-dimensional linear programs, the optimisation domain Π(µ, ν) is neither a vector space nor flat.
This is the source of significant technical difficulties in the resolution of (1), which appears a difficult
roadblock to the application of standard learning methods.

2.2 The learning problem

Formally, we consider the following learning game: at each round t ∈ N := {1, 2, . . .}, the agent
submits a transport plan πt ∈ Π(µ, ν), and receives a noisy cost feedback

Ct :=

∫
c∗(x, y)dπt(x, y) + ξt ,

in which (ξt)t∈N is a sequence of random variables and c∗ is the unknown true cost function.
Henceforth, we work on a suitable probability space filtered by the natural filtration of (ξt)t∈N. In
our formulation, we consider that (Mµ,Mν , µ, ν) are known ahead of time in order to ensure the
constraints are respected.

In order to assess its performance, we assimilate the algorithm of any learning agent to its action
sequence π := (πt)t∈N. We evaluate the quality of π online (i.e. during the learning rather than at
the end) using the classical tool of regret

RT (π) :=

T∑
t=1

Ct − Kant.(µ, ν, c∗) for T ∈ N . (3)

Low (sub-linear) regret requires performance during learning, which is not the case in classical
learning settings. This is due to the appearance of an exploration-exploitation trade-off, as the agent
must balance between exploring to learn c∗ and exploiting its current knowledge to minimise its cost.

Note that regret is a decision-theoretic criterion: it measures the quality of the decision πt in terms
of the OT problem, not the quality of any estimation of c∗. Achieving low regret thus requires only
learning the structure of c∗ that is relevant to finding its minimum over Π(µ, ν). The structure of the
OT problem itself can thus facilitate learning even with minimal assumptions on c∗.

Our goal is to design a learning algorithm π which achieves the slowest regret growth (as a function
of T ) as possible, in a high-probability sense. This is the standard approach in stochastic bandit
problems, with any sub-linear in T regret growth implying convergence to the optimal value of
the problem, and a regret of Õ(

√
T ) (i.e. growing slower than

√
Tpolylog(T )) being the standard

parametric rate, see e.g. (Lattimore and Szepesvári, 2020, Thm. 9.1, Thm. 19.2, Thm. 38.6).

2One might notice that the provided reference in fact uses even weaker conditions.
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3 Challenges, related work, and contributions

Giving an exhaustive account of the vast literature of Optimal Transport would be outside the scope
of this article. As this article focuses on aspects of online learning, we will limit our attention to this
segment. Nevertheless, we provide the curious reader a modest bibliography in Appendix H.

3.1 Online learning and optimal transport

Online learning to transport The first paper to take interest in online learning of OT appears to
have been (Guo et al., 2022). In this article, the authors take an Online Convex Optimisation (OCO)
approach to the problem, meaning that an adversary chooses a cost function ct at each round t from a
class of suitably regular (convex) functions. The learner aims to choose a sequence of transport plans
πt which has a small regret with respect to the best fixed transport plan in hindsight.

While this work pioneered the study of online (repeated) optimal transport, there are no direct
reductions between this paper and their work. Indeed, most of the work of Guo et al. (2022) is done
under a full-information adversarial setting (as is typical in OCO): the transport problem changes
at each round and is completely revealed after a coupling πt is played. However, in Section 3, the
authors provide a 0-order semi-bandit scheme based on a discretisation of X . In contrast, our work is
directed at a stochastic setting under complete bandit feedback (only Ct is observed).

Due to the use of OCO techniques, as well as PDE-based optimal transport tools based on the work
of Brenier (1989), the results of Guo et al. (2022) are only valid under strong assumptions on the
regularity of the cost functional (and thus the cost function) and the marginals. In contrast, we work
without specific assumptions on the cost function and marginals, beyond the minimal ones for (1) to
be well-defined. This difference arises because they consider general functionals on the Wasserstein
space, while our work focuses on the specific regularity of OT functionals.

This work was followed by Zhu and Ryzhov (2023) which considers the first online learning problem
in semi-discrete optimal transport (i.e. µ discrete, ν continuous). They construct a semi-myopic
algorithm with forced exploration which can learn to behave as the optimal plan from samples of the
continuous marginal. Unfortunately, they do not study a general problem but rather only the case in
which the cost c∗ is a linear parametric model. This choice obfuscates a large part of the complexity
of the general problem and dilutes any insights about the geometry of the problem. Moreover, Zhu
and Ryzhov (2023) do not provide direct regret bounds, but rather performance metrics which may
be converted into regret bounds. Sadly, these metrics fail to generalise to the continuous marginal
case, and their analysis breaks down in the general setting.

3.2 On bandit algorithms

As Section 3.1 shows, bandits and optimal transport have been in peripheral contact for some time.
Nevertheless, despite its interest in many optimisation problems, the bandit literature has remained
uninterested in the general optimal transport problem. Still, let us highlight the key elements of this
theory on which we can build to solve the BOT problem.

Multi-armed bandits. The classical bandit problem (Thompson, 1933; Lai and Robbins, 1985;
Auer et al., 2002) considered the issue of choosing the best amongst a finite set of arms based
on bandit feedback about arm rewards. Since then, bandit theorists have taken some interest in
higher-dimensional optimisation problems either linear or non-linear. For instance, Tran-Thanh and
Yu (2014) show regret bounds for learning a general functional using bandit feedback, but sadly still
considers only finitely many arms. While a general theory of bandits for functionals remains elusive
(Wang et al., 2022), bandits under weaker assumptions on the set of arms have been studied.

Lipschitz bandits. Several papers (Bubeck et al., 2011b; Magureanu et al., 2014; Kleinberg et al.,
2019) have leveraged Lipschitz reward functions to provide regret bounds and algorithms, even
on arbitrary metric spaces. Unfortunately, the bounds for general Lipschitz functions using these
methodology are of the order of Θ(T (d+1)/(d+2)), in dimension d ∈ N (Kleinberg et al., 2019). In
the case of the continuous optimal transport problem, this dimension is infinite, and the regret bounds
become vacuous. The infinite dimensional nature of our problem also prevents the practical usability
of most discretisations, even sophisticated ones like the tree-based scheme of Bubeck et al. (2011a).
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Linear bandits. In the hope of circumventing this problem, we can take inspiration from Kantorovich
and recall that (1) is linear program. Indeed, linear functions have much stronger global regularity
than Lipschitz ones, meaning that linear bandits may escape vacuity even when d = +∞.

The setting of linear bandits was introduced by Auer (2003), and refined by many subsequent works
(Abeille and Lazaric, 2017; Vernade et al., 2020; Hao et al., 2020), most notably for us Abbasi-yadkori
et al. (2011). In his doctoral thesis, Y. Abbasi-Yadkori (2012) includes a version of this article in
which the technical results are given not just for Rd, but for an arbitrary Hilbert space. These works
all use the celebrated Optimism in the Face of Uncertainty (OFU) principle to tackle the previously
mentioned exploration-exploitation dilemma.

Nevertheless, in spite of its generality, Abbasi-Yadkori (2012) is not sufficient to solve the bandit
optimal transport problem, because the action space of our bandit is not a Hilbert space, and in fact
the actions do not live in the same space as c∗. This fundamentally breaks the assumptions of this
work, in spite of the fact that the duality product ⟨c|·⟩ defining Kant. is a linear form.

Kernel bandits. Kernel methods intrinsically consider infinite-dimensional linear rewards, and
may appear, at first, an ideal solution for solving bandit optimal transport. Kernel bandits have
seen extensive work (Chowdhury and Gopalan, 2017; Janz et al., 2020; Takemori and Sato, 2021),
including Valko et al. (2013) which comes closest to our approach by introducing a kernelised OFU
algorithm. These methods posit a particular structure for the reward function c∗, and then use the
representer theorem to reduce the problem to a linear problem. Our problem, in contrast, is already
linear so it should not require any such assumptions.

One place where kernel methods shine is in making infinite-dimensional problems computationally
tractable. While they can be used for this purpose in our setting, we will show that we can obtain
similar bounds directly from the regularity of c∗ without assuming an RKHS structure.

3.3 Challenges and contributions

Challenges. There are three main challenges to the general BOT problem.

A) The actions of this bandit problem are probability measures. In the discrete optimal transport
(matching) problems previously studied in the literature, probability measures remain finite dimen-
sional and can be represented using an inner product. This hides the true complexity of the general
case in which one must confront a continuum of infinite-dimensional actions which require sophis-
ticated tools to analyse. Moreover, this is compounded by the fact that the space of probability
measures has a difficult geometry.

B) The cost function c∗, which plays the role of a “parameter” to estimate, is a continuous function.
Since the optimal transport problem only requires minimal integrability assumptions on c∗, the natural
hypothesis classes for c∗ will be large function spaces3 such as L2. This creates a significant difficulty
for estimation and thus for bandit algorithms. The construction of estimators and confidence sets that
permit the use of OFU algorithms is challenged by the infinite dimensionality of c∗.

C) Even if estimators for c∗ can be constructed, they must face the infinite-dimensionality of c∗.
This raises the challenge of efficient approximation of infinite-dimensional estimators under weak
assumptions, and of their associated regrets.

Contributions. This paper is the first study of the general stochastic bandit optimal transport problem.
It provides a general framework for further work in this area, by showing that the problem is learnable
under weak assumptions. Beyond this, the technical contributions can be summarised as follows.

1) To overcome challenge A, we construct a phase-space representation of the optimal transport
problem which allows us to transform the problem into a linear bandit on a Hilbert space. By
regularising optimism by entropy, and using the dual form of the resulting entropic OT problem
(see (6)), we are able to ensure our algorithm maintains the validity of the phase-space representation
as it learns.

3Circumventing this difficulty by parametrising c∗ as in Zhu and Ryzhov (2023) would dilute any insight
about the geometry of the problem.
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2) Combining 1 with the framework of Abbasi-Yadkori (2012) we are able to construct the necessary
confidence sets and least-squares estimators to estimate c∗ and address challenge B. In the resulting
regret analysis, we leverage the regularity of the entropic problem to prove bounds on the regret.

3) To face the infinite-dimensional quantities which arise in the learning terms of the regret bounds,
we construct a general non-parametric estimation method based on the regularity of the cost function.
This method addresses challenge C by allowing us to obtain regret bounds of order Õ(

√
T ) in simple

cases, and an interpolation up to Õ(T ) dependent on the regularity of c∗.

4 Solving the BOT problem

In this section, we detail the core elements of our contributions in a solution to the Bandit Optimal
Transport (BOT) problem. In Section 4.1, we detail contribution 1 of Section 3, i.e. the construction
of a self-coherent procedure within an optimistic algorithm which reduces the BOT problem to a
linear bandit problem in a Hilbert space. In Section 4.2, we detail contribution 2 by constructing
confidence sets in the phase space of the problem, in the style of (Abbasi-Yadkori, 2012). We give a
complete algorithm in Section 4.3 which combines these two contributions, and finally in Section 4.4
we focus on the estimation aspect of the BOT problem, i.e. contribution 3 of Section 3, by providing
a functional regression method which can exploit the intrinsic regularity of the cost function to obtain
regret bounds interpolating between Õ(

√
T ) and O(T ).

4.1 A self-coherent reduction procedure to a Hilbert-space bandit

The technical issue in challenge A is that the bilinear form ⟨·|·⟩ of (2) is not an inner product. This
prevents us from applying standard linear bandit tools. Recall that, formally, ⟨·|·⟩ is the duality
pairing between continuous functions vanishing at infinity and finite measures (see Appendix A for
notations). To reconcile these two types of objects, we leverage Fourier analysis and represent them
both in phase-space. To ensure the Fourier transform and the transport problems are well defined,
let us assume Assumption 1, in which Lp(Rd; ϱ) for p ≥ 1 is the Lebesgue space associated with a
reference measure ϱ ∈ P(Rd). Note that L2(Rd; ϱ) is a Hilbert space.

Assumption 1. The true cost function c∗ is continuous and belongs to L2(Rd; ϱ).

Let F denote the Fourier transform operator that acts on L2(Rd; ϱ) or on measures, using the formulæ

F : ϕ ∈ L2(Rd; ϱ) 7→
∫
ϕ(x)e−2πi⟨x|·⟩2dϱ(x) and F : γ ∈ P(Rd) 7→

∫
e−2πi⟨x|·⟩2dγ(x) .

when these are well defined (see Appendix B for rigourous constructions of this section). In particular,
since a coupling π is a finite measure, Fπ is (ϱ-a.e.) bounded and thus L2(Rd; ϱ). The operator F is
an isometry on L2(Rd; ϱ), and thus we can write

⟨c∗|π⟩ = ⟨Fc∗(−·)|Fπ⟩L2(Rd;ϱ) :=

∫
Fc∗(−z)Fπ(z)dϱ(z) . (4)

The representation in (4) thus expresses the Kantorovich OT problem as an inner product in the
Hilbert space L2(Rd; ϱ), which allows us to use the standard linear bandit tools. The subtle detail
lies in the fact that this representation of ⟨c∗|π⟩ only holds if Fπ ∈ L2(Rd; ϱ), which is equivalent to
requiring that π have a density dπ/dϱ with respect to ϱ which is itself in L2(Rd; ϱ) (see Lemma B.3).

The challenge of a “coherent” representation is to force the algorithm to only ever play plans
πt ∈ Π(µ, ν) such that Fπt ∈ L2(Rd; ϱ), which is highly non-trivial. The regularity of the OT
problem can be exploited here too, as we will see next.

The entropic OT problem is the regularisation of the linear problem of Kantorovich by relative
entropy (a.k.a. Kullback-Leibler divergence) of π with respect to a reference measure ϱ ∈ P(X ),

H (π|ϱ) :=


∫

log
dπ

dϱ
dπ if π ≪ ϱ

+∞ if π ̸≪ ϱ
, (5)
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in which π ≪ ϱ means that π is absolutely continuous with respect to ϱ, which is sufficient for the
density dπ/dϱ to exist (by Radon-Nikodym). This functional is strictly convex on P(X ), and the
entropic optimal transport problem is then formally defined as

Ent.(µ, ν, c, ε) := inf
π∈Π(µ,ν)

⟨c|π⟩+ εH (π|ϱ) . (6)

In (6), relative entropy penalises concentration of measure on sets to which ϱ assigns low mass, which
one can interpret as forcing the transport to be more spread out on the support of ϱ. For example, if
ϱ = µ⊗ ν, the independent coupling4 of µ and ν, then the entropic regularisation forbids the mass
from any x from being sent wholly to a single y (and vice-versa).

An admissible point of (6) has an L∞(Rd; ϱ) ⊂ L2(Rd; ϱ) density. The problem can be solved using
its dual formulation of the entropic problem

Ent.(µ, ν, c, ε) = sup
(φ,ψ)∈Ξ

{∫
φdµ+

∫
ψdν − ε

∫
eε

−1(φ+ψ−c)d(ϱ) + ε

}
, (7)

wherein Ξ := {(φ,ψ) ∈ L1(Rd;µ), L1(Rdµ) : φ ⊕ ψ ≤ c} with φ ⊕ ψ : (x, y) 7→ φ(x) + ψ(y).
From a dual solution (φ∗, ψ∗) ∈ Ξ, one may recover (see e.g. Nutz (2022, Thm. 4.2)) a primal
solution π∗ with density

dπ∗

dϱ
= e

φ∗⊕ψ∗−c
ε < +∞ .

By (7), a solution to the entropic problem is a transport plan (an action) with an L∞(Rd; ϱ) ⊂
L2(Rd; ϱ) density. Consequently, an optimistic algorithm which chooses a belief-action pair

(π̃t, c̃t) ∈ argmin
{
⟨c|π⟩+ εtH (π|ϱ) : π ∈ Π(µ, ν) , c ∈ F−1Ct(δ)

}
, (8)

guarantees the coherence of the construction of Section 4.1. Moreover, for εt small, the solution of
(8) is close to the unregularised optimistic point, see e.g. (Carlier et al., 2023).

4.2 Confidence sets in the phase space

With our reduction onto the Hilbert space F := L2(Rd; ϱ), we can construct an optimistic algorithm
by following the general methodology of Abbasi-Yadkori (2012). However, this time the confidence
sets are not on the function c∗ itself, but in a phase space representation of the problem. The validity
of this methodology relies on the standard Assumption 2.
Assumption 2. An a priori scale estimate C ≥ ∥c∗∥L2(Rd;ϱ) is known. The sequence (ξt)t∈N is
σ2-sub-Gaussian for some σ ∈ (0,+∞).

Given a history (as, Cs)s≤t of “actions” (as := Fπs ∈ F ) and costs, a strongly convex regulariser Λ
(e.g. ∥·∥2L2(Rd;ϱ)), and λ > 0, the Regularised Least-Squares (RLS) estimator f̂λt of Fc∗ in F is

fλt ∈ argmin
f∈F

t∑
s=1

∥∥Cs − ⟨f |as⟩L2(Rd;ϱ)
∥∥2
2
+ λΛ[f ] . (9)

One can also characterise fλt through a closed form expression, see Proposition C.1. Like in the finite
dimensional problem, the confidence sets requires the definition of the feature operator

Mt : f ∈ F 7→ (⟨f |as⟩L2(Rd;ϱ))
t

s=1
∈ Rt , (10)

its adjointM∗
t , and the covariance operatorDλ

t :=M∗
tMt+λDΛ (D denoting Fréchet differentiation).

Given δ ∈ [0, 1] the confidence set is then defined as

Ct(δ) :=
{
f ∈ F :

∥∥∥f − f̂λt

∥∥∥
Dλt

≤ βt(δ)

}
, (11)

with its width βt(δ) is chosen as

βt(δ) := σ

√
log

(
4 det(DΛ + λ−1MtM∗

t )

δ2

)
+

(
λ

∥DΛ∥op

) 1
2

C . (12)

We defer the proofs of the validity of these confidence sets to Appendix C. Performing least-squares
in the phase space is a novel technique, but the arguments remain standard.

4So called because it is the joint law of random variables X ∼ µ and Y ∼ ν which are independent.
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4.3 Solving the decisional aspect of the problem: EntUCB

The combination of these three technical elements (phase-space representation of the problem, phase-
space least-squares confidence sets, and entropy regularised optimism) into the OFU framework
yields Algorithm 1. We underline that the key contribution is the repeated exploitation of the geometry
of the entropic OT problem, whose strong regularity properties allow us to ensure that the algorithm
preserves the validity of the phase-space representation it uses to learn. By leveraging the regularity
of the OT problem, we show in Theorem 4.1 that Algorithm 1 achieves Õ(

√
T ) regret, up to learning

terms.

Data: Confidence δ, regularization level λ, entropy penalisation (εt)t∈N.
for t ∈ N do

Compute the RLS estimator f̂λt using (9) or (20);
Construct the confidence set Ct(δ) using (11) and (12);
Optimism: pick (π̃t, c̃t) according to (8);
Play πt = π̃t if t > 0, else π0 = µ⊗ ν; receive feedback Rt;

end
Algorithm 1: EntUCB

Theorem 4.1. Under Assumptions 1 and 2, if c∗ is L-Lipschitz on supp(µ)× supp(ν) ⊂ Rd, then
for any δ > 0, λ > 0, α ∈ (0, 1), and T ∈ N, the regret of Algorithm 1 with (εt)t∈N = (αt−α)t∈N,
denoted B, satisfies

RT (B) ≤ σ

√
2T log

(
2

δ

)
+ 2CβT (δ)

√
T log det

(
Id+

1

2λC
MT (DΛ)

−1
M∗
T

)
+

κα

1− α

(
T 1−α log(T ) +

α

2α
log(6)

)
with probability at least 1− δ, in which κ depends only on (C,L, µ, ν).

Proof sketch. Having done the technical work to ensure that the phase space construction is valid,
the proof now follows the standard OFU methodology. One first isolates the noise of the estimations
and controls it using concentration theory and Assumption 2. Next, one uses coherence, modified
optimism, and the high-probability validity of (Ct(δ))t∈N to move from c∗ to the beliefs (Fc̃t)t∈N in
the phase space. Then, one uses the width of the confidence sets to control the regret. The error due
to the modified optimism is controlled by (εt)t∈N and the approximation results for the Kantorovich
problem by the entropic one, see Lemma D.2. The full proof is given in Appendix D.2.

Theorem 4.1 matches the regret rate of Abbasi-Yadkori (2012), showing the problem is learnable in
the same way as a linear bandit. However, one must exercise care in controlling the determinant term,
as MT is infinite-dimensional so the confidence sets may be unbounded.

4.4 Solving the statistical aspect of BOT

In order to control the growth with T of the determinant term in Theorem 4.1, two approaches are
possible, both aiming to control the spectrum of the feature operator MT . On the one hand, one can
apply structural assumptions to the problem, such as a parametric model for c∗ or finite support for
µ and ν. On the other hand, we will modify the least-squares estimator to characterise the learning
complexity of the problem directly in terms of Assumption 3, a general regularity assumption on c∗.
A complete treatment is deferred to Appendix E.
Assumption 3. There is a known orthonormal basis (ϕi)i∈N of L2(Rd; ϱ) in which we write Fc∗ :=∑+∞

i=1 γ
∗
i ϕi and ζ : R+ → [0, 1], a known monotonically increasing continuous function satisfying

inf
n∈N

∑n
i=1 |γ∗i |

2

ζ(n)
≥ ∥c∗∥2L2(Rd;ϱ) .

We now replace infinite-dimensional least-squares estimation of c∗ in Algorithm 1 by a finite-
dimensional approximation on the truncation of the basis (ϕi)i∈N to some order nt ∈ N at time t ∈ N.
The resulting Algorithm 2 is given in Appendix E, and its regret is given in Theorem 4.2.
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Theorem 4.2 (Theorem E.8). Assume Assumptions 1 to 3 and ζ(n) = 1− n−q for some q > 0. For
any δ ∈ (0, 1), λ > 0, ε > 0, let B̃ denote Algorithm 2 with (nt)t∈N = (⌈t

1
q+1 ⌉)t∈N, Λn = 1

2 ∥·∥
2
2,

for all n ∈ N, and (εt)t∈N = (αt−α)t∈N. For any T ∈ N,

RT (B̃) ≤ σ

√
2T log

(
2

δ

)
+ C

(
1 +

2qT
q+2
2q+2

q + 1

)
+ κ(1 +

√
T log(T ))

+ 2CσT
q+2
2q+2

(√
2 log

(
λ−1 + 2T q+2C2

δ

)
+

√
λC

)√
log

(
1 +

2T q+2

C2

)
.

with probability at least 1− δ, in which κ depends only on (C,L, µ, ν).

Theorem 4.2 shows that the regret of Algorithm 2 is controlled by the regularity of the cost function
c∗, which varies from O(

√
T ) for q → +∞ down to O(T ) as q ↓ 0. Note that q = 0 corresponds to

c∗ being an indicator function, in which learning the optimal plan is clearly infeasible. In this manner
the learning complexity is captured directly as a function of the regularity of the cost function.

In particular, the abstract form of Assumption 3 actually allows it to encompass a broad range
of structural assumptions on c∗. For example, in parametric and discrete problems, it leads to
Corollary 4.3, yielding Õ(

√
KK ′T ) on discrete problems, in which |supp(µ)| = K and |supp(ν)| =

K ′, and Õ(
√
pT ) on p-dimensional parametric models. At the same time, Theorem 4.2 also yields a

non-parametric rate of Õ(T
q+2
2q+2 ) when q > 0, showing the flexibility of Assumption 3.

Corollary 4.3 (Proposition E.5). Under Assumptions 1 to 3, if ζ(n) = 1{n≥N} for some N ∈ N,
then Algorithm 2 can achieve a regret of Õ(

√
NT ) with nt = N for all t ∈ N.

Theorem 4.2 thus extends Theorem 4.1 by covering the full spectrum of learning complexities from
finite and parametric problems to non-parametric ones, with a smooth interpolation of sub-linear
regret rates. We detail in Appendix E.6 a Kernel method estimator which can be used instead of the
functional regressor of Algorithm 2, but this approach doesn’t yield this smooth interpolation.

5 Conclusion and open directions

This article provided the first regret analysis of the bandit optimal transport problem. We have shown
(Theorems 4.2 and D.1) that the Kantorovich formulations of the problem can be solved by a modified
optimistic algorithm. This algorithm intrinsically exploits the regularity of the optimal transport
problem and its entropic regularisation to maintain a “coherent” phase-space representation of the
cost function, enforced by a penalised optimism step. Using confidence sets in the phase space and
(non-parametric) functional regression allows us to obtain a smooth interpolation of regret bounds
from Õ(

√
T ) in parametric and finite problems, matching the classical bounds of Abbasi-yadkori

et al. (2011) for linear bandits, and non-parametric rates up to unlearnable problems.

Our exploration of Bandit Optimal Transport raises several open questions for bandit theorists. First,
one wonders what other non-Hilbertian problems can be solved via a “coherent” representation (phase
space or otherwise) of the cost function? Are all convex regularisations of optimism possible? Can
we simply reduce an ambient space to a Hilbert sub-space by penalising optimism by the subspace’s
norm? Are there some other complicated spaces or functional problems in applications which would
benefit from this approach?

Our analysis also raises several questions in OT theory. In order to implement the optimism step (8),
one would need a numerical algorithm which outputs an ϵ-optimal transport plan after finitely many
steps. This appears to be absent from the literature, as Sinkhorn’s algorithm does not output a valid
plan in finite time, only in the limit. This also raises the more general question of the regularity
properties of this entropy-regularised bilinear problem.
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Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the Multiarmed Bandit
Problem. Machine Learning, 47(2):235–256, May 2002. ISSN 1573-0565. doi: 10.1023/A:
1013689704352.

Yann Brenier. The least action principle and the related concept of generalized flows for incompress-
ible perfect fluids. Journal of the American Mathematical Society, 2(2):225–255, 1989. ISSN
0894-0347, 1088-6834. doi: 10.1090/S0894-0347-1989-0969419-8.
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Sébastien Bubeck, Gilles Stoltz, and Jia Yuan Yu. Lipschitz Bandits without the Lipschitz Constant.
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Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution
optimal transportation for domain adaptation. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C.J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 26. Curran Associates, Inc., 2013.

Nabarun Deb, Promit Ghosal, and Bodhisattva Sen. Rates of Estimation of Optimal Transport
Maps using Plug-in Estimators via Barycentric Projections. In Advances in Neural Information
Processing Systems, volume 34, pages 29736–29753. Curran Associates, Inc., 2021.

Stephan Eckstein and Marcel Nutz. Quantitative Stability of Regularized Optimal Transport and
Convergence of Sinkhorn’s Algorithm, July 2022. arXiv:2110.06798 [math].

Gerald B. Folland. Fourier analysis and its applications. Wadsworth & Brooks/Cole mathematics
series. Wadsworth & Brooks/Cole advanced books & software, Pacific Grove (Calif.), 1992. ISBN
978-0-534-17094-3.

Nicolas Fournier and Arnaud Guillin. On the rate of convergence in Wasserstein distance of the
empirical measure. Probability Theory and Related Fields, 162(3-4):707–738, August 2015. ISSN
0178-8051, 1432-2064. doi: 10.1007/s00440-014-0583-7.

Nicolas Fournier and Jacques Printems. Absolute continuity for some one-dimensional processes.
Bernoulli, 16(2):343–360, 2010. ISSN 13507265.

Alfred Galichon. The unreasonable effectiveness of optimal transport in economics, July 2021.
arXiv:2107.04700 [econ].
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Gil, Przemyslaw Grzegorzewski, and Olgierd Hryniewicz, editors, Combining, Modelling and
Analyzing Imprecision, Randomness and Dependence, pages 491–499, Cham, 2024. Springer
Nature Switzerland. ISBN 978-3-031-65993-5. doi: 10.1007/978-3-031-65993-5 60.

13

http://link.springer.com/10.1007/978-3-642-69894-1


Sho Takemori and Masahiro Sato. Approximation Theory Based Methods for RKHS Bandits. In
Proceedings of the 38th International Conference on Machine Learning, pages 10076–10085.
PMLR, July 2021. ISSN: 2640-3498.

M. Talagrand. The Transportation Cost from the Uniform Measure to the Empirical Measure in
Dimension ≥ 3. The Annals of Probability, 22(2):919–959, 1994. ISSN 0091-1798.

Carla Tameling, Max Sommerfeld, and Axel Munk. Empirical optimal transport on countable metric
spaces: Distributional limits and statistical applications. The Annals of Applied Probability, 29(5):
2744–2781, October 2019. ISSN 1050-5164, 2168-8737. doi: 10.1214/19-AAP1463. Publisher:
Institute of Mathematical Statistics.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

Luis Caicedo Torres, Luiz Manella Pereira, and M. Hadi Amini. A Survey on Optimal Transport for
Machine Learning: Theory and Applications, June 2021. arXiv:2106.01963.

Long Tran-Thanh and Jia Yuan Yu. Functional Bandits, May 2014. arXiv:1405.2432 [stat].

A.B. Tsybakov. Introduction to Nonparametric Estimation. Springer Series in Statistics. Springer
New York, 2008.
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Appendices
A Preliminaries

A.1 Organisation of Appendices

The following appendices are organised thematically and are mostly independent completions of
various parts of the text. Appendix A.2 contains notations and clarifications that are shared across
them.

Appendix B provides a rigourous treatment of necessary Fourier analysis notions, which allow for a
rigourous outlining of the schema detailed in Section 4.1.

Appendices C to E contains the majority of the technical contributions of this work, including the
major lemmata used in the proofs of the main text. Appendix C is dedicated to the details of the
constructions in Section 4, while Appendix D focuses on the general regret proofs of Section 4.3,
specifically the proof of Theorem 4.1. Finally Appendix E is dedicated to the details of Section 4.4
on specific regularity dependent regret. Some miscellaneous minor results, or reproductions of results
from prior works are collected in Appendix F.

The remaining appendices contain complements to the text and discussion of topics not mentioned
therein for the sake of brevity. Appendix G contains more detailed discussions of the open problems
mentioned in Section 5. Appendix H contains bibliographical notes on statistical optimal transport
which readers unfamiliar with the field might find of interest to understand the context of the paper. It
is a complement to Section 3.

A.2 Notational precisions

Throughout the text, for a reference measure ϱ, let Lp(X ,K; ϱ), p ∈ [1,∞] and K ∈ {R,C}, denote
the space of functions f : X → K that are p-integrable. When X , K, or ϱ are clear from context we
will drop them for brevity; by default K = C. We allow complex functions (K = C) to deal with the
Fourier transforms, but this has no noticeable effect as it does not impact the Hilbertian structure of
the space L2(Rd,K; ϱ).

In the following, let ⟨·|·⟩L2(Rd,ϱ) denote the inner product on L2(Rd,K; ϱ), ⟨·|·⟩ℓ2(Rd) the one on
ℓ2(R,K) (the space of square integrable K-valued sequences) with ∥·∥ℓ2(Rd) denoting its associated
norm. On Rd, ⟨·|·⟩2 denotes the inner product, ∥·∥2 the Euclidean norm. As before, let ⟨·|·⟩ denote the
duality pairing between M (Rd) (the space of finite Radon measures) and C0(Rd) (the space functions
vanishing at infinity). The operator norm of a linear operator A (in finite or infinite dimension) is
denoted by ∥A∥op.

Throughout, all probabilistic statements are understood as holding in the filtered probability space
(Ω,F∞,F,P), in which F := (Ft)t∈N is the natural filtration of (ξt)t∈N, and F∞ = limt→∞ Ft.

For two measures (γ, ρ) ∈ M (Rd), γ ≪ ρ denotes that γ is absolutely continuous with respect to ρ,
in which case we use dγ/dρ to denote the Radon-Nikodym derivative (a.k.a. the density) of γ with
respect to ρ.

B Elements of Fourier Analysis

B.1 Formal definitions

To define the Fourier transform on L2(Rd; ϱ), we will extend it from a dense subspace (see Defini-
tion 1) of L2(Rd; ϱ) to the whole space. This technical construction arises as a consequence of the
fact that L2(Rd; ϱ) ̸⊂ L1(Rd; ϱ), meaning the right-hand side of (13) may not be defined and F is
ill-posed on L2(Rd; ϱ), despite the fact that (13) is well-posed for f ∈ L1(Rd; ϱ). The following is
summarised from (Constantin, 2016, Ch.5–6), refer therein for a more detailed treatment or, e.g., to
(Folland, 1992).
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Definition 1. The Schwartz space S(Rd) is defined as{
ϕ ∈ C∞(Rd;C) : sup

x∈Rd
|xα∂βϕ(x)| < +∞ for any α, β ∈ Nd

}
in which α, β ∈ Nd are multi-indices so that xα := (xαii )

d
i=1, and ∂β := ∂β1

x1
· · · ∂βdxd .

Note that S(Rd) is a dense subspace of L2(Rd; ϱ) and L1(Rd; ϱ) as it contains C∞
c (Rd;C) the

space of infinitely-differentiable compactly-supported (a.k.a. test) functions, which is dense in both
L2(Rd; ϱ) and L1(Rd; ϱ).
Theorem B.1 ((Constantin, 2016, Thm. 6.1)). Consider the Fourier transform operator F on the
Schwartz space, with

F : ϕ ∈ S(Rd) 7→
∫
ϕ(x)e−2πi⟨x|·⟩2dϱ(x) . (13)

This operator maps S(Rd) maps onto itself and is an isometric bijection. Moreover,

F−1 = FR , (14)

in which R : ϕ ∈ S(Rd) 7→ ϕ(−·) ∈ S(Rd) is the reflection operator.
Theorem B.2 ((Constantin, 2016, Thm. 6.4)). The fourier transform F can be extended to a unitary
operator on L2(Rd; ϱ) and (14) holds on L2(Rd; ϱ) for this extension.

The formal inversion property (14) is easily shown to recover the classical inversion formula

f(x) =

∫
Ff(ξ)e2πi⟨x|ξ⟩dϱ(ξ) for ϱ-a.e. x ∈ X (15)

as soon as f ∈ L1(Rd; ϱ) ∩ L2(Rd; ϱ). In our case ϱ is a finite measure so L2(Rd; ϱ) ⊂ L1(Rd; ϱ)
and the inversion formula always holds. If ϱ is only σ-finite (e.g. the Lebesgue measure), one must
take slightly higher care. Namely the difference between (14) and (15) is whether the integral in (15)
is well defined for f ∈ L2(Rd; ϱ), which is not guaranteed.

This technicality reflects the limits used in the definition of the extension which are hidden by the
abstract statement of Theorem B.2. Nevertheless, since the Schwartz space S(Rd) is dense in both
L1(Rd; ϱ) and L2(Rd; ϱ), we can always take an arbitrarily close function in S(Rd) and invert that,
the result will remain arbitrarily close in L2(Rd; ϱ).
The Schwartzian framework turns out to be a robust one for Fourier analysis more generally, and
we can also use to extend F beyond L2(Rd; ϱ). In particular, it can be used to unify the definitions
we gave for the Fourier transform of a function and a measure, refer to (Constantin, 2016, § 6.1.2)
for more details. Precisely, one extends to the topological dual of S(Rd) (the space of tempered
distributions S ′(Rd)), which includes M (Rd) and L2(Rd; ϱ) as sub-spaces.

A fundamental consequence of the various formulations of the Fourier transform is that measures
whose transforms are in L2(Rd; ϱ) are exactly those which have an L2(Rd; ϱ) density with respect to
ϱ. We will denote the density of a measure µ with respect to ϱ using the Radon-Nikodym notation
dµ/dϱ, even when this tempered distribution can be identified with a function.
Lemma B.3. Let γ ∈ M (X ) be a finite Radon measure, if it has density with respect to ϱ and
dγ/dϱ ∈ L2(Rd; ϱ), then

Fγ = F
dγ

dρ
∈ L2(Rd; ϱ) .

Conversely, if Fγ ∈ L2(Rd; ϱ), then γ has a density with respect to ϱ and dγ/dϱ ∈ L2(Rd; ϱ).

Proof. The first part is a direct consequence of the definitions of the Fourier transforms of a measure
and an L2(Rd; ϱ) function. For the converse, the fact that Fγ ∈ L2(Rd; ϱ) implies γ ≪ ϱ involves
some technical minutiae due to the different topologies M (X ) can be equipped with, which we
won’t reproduce for conciseness, refer to e.g. (Fournier and Printems, 2010, Lemma 1.1). That the
density is then in L2(ϱ) is a simple consequence of Plancherel’s theorem:∥∥∥∥dγdρ

∥∥∥∥
L2(Rd;ρ)

=

∫
Rd

|Fγ(ξ)|2 dρ(ξ) = ∥Fγ∥L2(Rd;ρ) .
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B.2 Technical details of Section 4.1

Let C0(Rd,K) denote the space of continuous functions from Rd to K ∈ {R;C}, M (Rd) denote the
space of finite Borel measures over Rd, and let us define the Fourier operator on this space by using
the same notation, i.e. F : γ ∈ M (Rd) 7→ Fγ ∈ C0(Rd;C) with

Fγ : ξ ∈ Rd 7→
∫
e−2πi⟨x|ξ⟩2dγ(x) . (16)

Note that we will eschew the standard notations f̂ and γ̂ in favour of Ff and Fγ to avoid confusion
with the least-squares estimator, which we will denote using its standard hat.

The Riesz-Markov theorem shows that (M ∗(Rd), ∥·∥∞), the space of finite signed Borel measures
on Rd (endowed with the total variation norm ∥·∥∞), is the topological dual of (C0(Rd), ∥·∥∞), the
space of continuous functions which vanish at infinity (endowed with the supremum norm ∥·∥∞),
refer e.g. to (Constantin, 2016, p. 242). This duality is characterised by the pairing

⟨·|·⟩ : (f, γ) ∈ C0(Rd)× M ∗(Rd) 7→
∫
fdγ ∈ R .

This pairing applies in particular to all functions f ∈ C(X ;R) if X is compact and to all positive
finite Borel measures γ ∈ M+(X ), and we will use the pairing notation in this case too. In general
we will use the notation for arbitrary functions, understood that it will be well defined, see also
Remark B.1. In particular:

Kant.(µ, ν, c) = inf
π∈Π(µ,ν)

⟨c|π⟩ .

Lemma B.4. For any finite Borel measure ρ ∈ M (Rd), any γ ∈ M (Rd) finite and with dµ/dρ ∈
L2(Rd; ρ), and any f ∈ L2(Rd; ρ) ∩ L1(Rd; ρ), we have

⟨f |γ⟩ = ⟨FRf |Fγ⟩L2(Rd;ρ)

and
|⟨f |γ⟩| ≤ ∥f∥L2(Rd;ρ)

∣∣ρ(Rd)∣∣ ∣∣γ(Rd)∣∣ .
Proof. By (15),

⟨f |γ⟩ :=
∫
fdγ =

∫ ∫
Ff(ξ)e2πi⟨x|ξ⟩dρ(ξ)dγ(x) . (17)

Let φ : (x, ξ) 7→ e2πi⟨x|ξ⟩. Using (17), since by the Cauchy-Schwartz inequality

|⟨f |γ⟩| ≤ ∥Ff∥L2(Rd×Rd;γ⊗ρ) ∥1∥L2(Rd×Rd;γ⊗ρ)

= ∥Ff∥L2(Rd;ρ) γ(R
d)

2
ρ(Rd) < +∞ , (18)

the integrand in (17) is γ ⊗ ρ-integrable, and thus we can apply the Fubini-Lebesgue theorem to
obtain

⟨f |γ⟩ =
∫

Ff(ξ)e2πi⟨x|ξ⟩d[γ ⊗ ρ](ξ, x) = ⟨Ff |φ⟩L2(Rd×Rd;γ⊗ρ) .

Furthermore,

⟨f |γ⟩ =
∫

Ff(ξ)

∫
e2πi⟨x|ξ⟩dγ(x)dρ(ξ)

= ⟨FRf |Fγ⟩L2(Rd;ρ).

By (18), we have once more:

|⟨f |γ⟩| =
∣∣⟨FRf |Fγ⟩L2(Rd;ρ)

∣∣ ≤ ∥Ff∥L2(Rd;ρ) γ(R
d)

2
ρ(Rd) .
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The benefit of Lemma B.4 may not be immediately apparent, but it is revealed when one notices
that the L2(Rd; ρ) inner products and norms considered on the right hand side depend only on the
measure ρ and not on γ. Thus, we are able to assume only integrability of c∗ only with respect to
our reference measure ϱ (recall (5)) and still manipulate the duality product ⟨c∗|γ⟩ for any γ. In
particular, by taking ϱ = µ⊗ν given marginals µ and ν and playing πt such that Ψεµ,ν(c

∗, πt) < +∞
(recall (6)) we can reduce ⟨c∗|πt⟩ to a L2(Rd; ϱ) inner product, moving our problem to a Hilbert
space.
Remark B.1. Lemma B.4 opens the subject of discussing Assumption 1. Let us remark that if
S := supp(µ⊗ ν) is compact, continuity of c∗ on the closure of S is sufficient to obtain these results.
Similarly, if c∗ is bounded. However, Assumption 1 allows for many more functions, for instance it
allows c∗ : (x, y) = ∥x− y∥22 if (µ, ν) ∈ P2(Rd), where P2(Rd) denotes measures with a finite
second moment. This is of value as it covers the Wasserstein distances which are of broad interest. In
general, one can develop finer assumptions based on (µ, ν) even if ϱ is not finite, but we do not detail
this for brevity.

C Technical contributions in Bandit Theory

C.1 Confidence sets and Regularised least-squares

Recall thatCt := ⟨c∗|πt⟩+ξi = ⟨FRc∗|Fπt⟩L2(Rd;ϱ)+ξt (by Lemma B.4), in which by Assumption 2
we have (ξi)i∈N a conditionally σ-sub-Gaussian sequence. Let at := Fπt ∈ L2(Rd; ϱ) for t ∈ N,
and a⃗t := (ai)

t
i=1 and C⃗t := (Ci)

t
i=1.

Let us begin by defining the regularised least-squares estimator of c∗. Let J·[·] : N× F → R be the
(random) functional defined by

(t, f) 7→ Jt[f ] :=

t∑
s=1

∥∥Cs − ⟨f |as⟩L2(Rd;ϱ)
∥∥2
2
.

Consider Λ : L2(Rd; ϱ) → R, a strongly convex and continuously Fréchet-differentiable functional
whose Fréchet derivative, denoted DΛ, satisfies

1

MΛ
∥f∥L2(Rd;ϱ) ≤ DΛ[f ] ≤MΛ ∥f∥L2(Rd;ϱ) for any f ∈ L2(Rd; ϱ) (19)

for some MΛ > 0, e.g. Λ = 1
2 ∥·∥

2
L2(Rd;ϱ) with MΛ = 1. Let us recall that the Fréchet derivative of a

strongly convex Fréchet-differentiable functional is a (strongly) positive-definite operator denoted
DΛ. It is clear that Jt + λΛ is a strongly convex functional for any λ > 0 and t ∈ N∗. Therefore, we
can define the Λ-regularised least-squares estimator of c∗ to be

f̂λt := argmin
f∈L2(Rd;ϱ)

Jt[f ] + λΛ[f ] .

Proposition C.1. Assume Assumption 1, then for any λ > 0, and t ∈ N∗, we have

f̂λt = (M∗
tMt + λDΛ)

−1
M∗
t C⃗t , (20)

in which, for every t ∈ N∗, Mt : L
2(Rd; ϱ) → Rt is the linear a.s. bounded operator defined by

Mt : f ∈ L2(Rd; ϱ) 7→ (⟨f |at⟩L2(Rd;ϱ))
t

i=1
∈ Rt , (21)

and M∗
t : Rt → L2(Rd; ϱ) is its adjoint, defined by

M∗
t : v ∈ Rt 7→

t∑
s=1

vsas ∈ L2(Rd; ϱ) . (22)

Proof. This proof extends the standard arguments for finite-dimensional least-squares, we include it
for completeness focusing on the differences owing to infinite dimensions, cf. e.g. (Abbasi-Yadkori,
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2012, § 3.2). One first computes the Fréchet derivative of Jt, by studying a variation δf ∈ L2(Rd; ϱ)
and

Jt[f + δf ]− Jt[f ] .

One sees that the Fréchet derivative of Jt exists for all t and is given by

f 7→
t∑

s=1

⟨f |as⟩L2(Rd;ϱ)as − Csas + λDΛf = (M∗
tMt + λDΛ)f −M∗

t C⃗t .

Note that the right-hand side is easily checked by expanding the definition of Mt and M∗
t , and in

doing so one easily checks that M∗
t is indeed the adjoint of Mt. Carrying on, by first order optimality,

the normal equation is
(M∗

tMt + λDΛ)f̂λ =M∗
t C⃗t .

Since M∗
tMt is positive semi-definite and DΛ is positive definite, (20) follows.

Let Dt :=M∗
tMt and Dλ

t := Dt + λDΛ denote the covariance and regularised covariance operators
at time t ∈ N. Let

Et(δ) :=

∥∥∥f̂λt − Fc∗
∥∥∥
Dλt

≤ σ

√
log

(
4 det(DΛ + λ−1MtM∗

t )

δ2

)
+

(
λ

∥DΛ∥op

)1
2

∥Fc∗∥L2(Rd;ϱ)

 .

(23)

for t ∈ N.
Lemma C.2 ((Abbasi-Yadkori, 2012, Cor. 3.6)). For every δ ∈ (0, 1), λ > 0, under Assumptions 1
and 2 we have

P

(
c∗ ∈

⋂
t∈N

F−1Ct(δ)

)
≥ P

(⋂
t∈N

Et(δ/2)

)
≥ 1− δ

2
.

Proof. Recall that F is an isometry on L2(Rd; ϱ), and so is F−1, so F−1Ct is a confidence set for c∗

in L2(Rd; ϱ), and it is an ellipsoid of identical radius βt(δ) centred at F−1f̂λt . A direct combination
of Assumption 2, (23), and (Abbasi-Yadkori, 2012, Cor. 3.6) yields

P

(⋂
t∈N

Et(δ/2)

)
≥ 1− δ

2
.

The second results follow by comparison of (23) and (12).

Lemma C.3. Under Assumptions 1 and 2, on the event {c∗ ∈ ∩t∈NF
−1Ct(δ)}, for any T ∈ N and

(ct)
T
t=1 with ct ∈ F−1Ct(δ) for t ∈ [T ], we have

T∑
t=1

⟨c∗ − ct|π̃t⟩ ≤ 2CβT (δ)

√
T log det

(
Id+

1

2λC
Mt(DΛ)

−1
M∗
t

)

Proof. Consider t ≥ 0, ct ∈ Ct(δ), and let φt := ⟨c∗− ct|π̃t⟩. Recall that at := Fπt. By Lemma C.2
and the Cauchy-Schwartz inequality, on the event {c∗ ∈ ∩t∈NF

−1Ct(δ)}, we have

|φt| ≤ βt(δ) ∥at∥(Dλt )−1 ,

while, by the Cauchy-Schwartz inequality, Assumption 1, and using the fact that F is an isometry on
L2(Rd; ϱ), we have

|φt| ≤ ∥FRc∗ − FRc∥L2(Rd;ϱ) ∥at∥L2(Rd;ϱ) = ∥c∗ − c∥L2(Rd;ϱ) πt(R
d) ≤ 2C .

Combining yields

|φt| ≤ βt(δ)min{∥at∥(Dλt )−1 , 2C} = 2Cβt(δ)

(
1

2C
∥at∥(Dλt )−1 ∧ 1

)
.

19



Squaring and applying the inequality u ≤ 2 log(1+ u), which holds on [0, 1], to the final term, yields

|φt|2 ≤ 8C2βt(δ)
2
log

(
1 +

1

2C
∥at∥(Dλt )−1

)
and, summing up,

T∑
t=1

φt ≤

√√√√T

T∑
t=1

|φt|2 ≤ 2Cβt(δ)

√√√√T

T∑
t=1

log

(
1 +

1

2C
∥at∥(Dλt )−1

)
. (24)

By definition of MT and Dλ
T , we have

T∑
t=1

log

(
1 +

1

2C
∥at∥(Dλt )−1

)
= log

(
T∏
t=1

(
1 +

1

2C
∥at∥(Dλt )−1

))

= log det

(
Id+

1

2λC
MT (DΛ)

−1
M∗
T

)
(25)

as wanted.

D Regret bounds

D.1 Entropic regret bounds

Let us introduce the notion of entropic regret, which is the regret relative to the entropic optimal
transport problem (6), i.e.

RH ,ε
T (π) :=

T∑
t=1

(Ct + εH (πt|ϱ))− Ent.(µ, ν, c∗, ε) for T ∈ N . (26)

To facilitate the analysis and the presentation of results, recall the entropic transport functional

Ψεµ,ν : (c, π) ∈ L2(Rd; ϱ)×Π(µ, ν) 7→ ⟨c|π⟩+ εH (π) .

Thus, Ent.(µ, ν, c, ε) = infπ∈Π(µ,ν) Ψ
ε
µ,ν(c, π) and (26) becomes

RH ,ε
T (π) :=

T∑
t=1

Ψεµ,ν(c
∗, πt) + ξt − Ent.(µ, ν, c∗, ε) .

Theorem D.1. Under Assumptions 1 and 2, for any ε > 0, δ > 0, λ > 0, and T ∈ N, the regret of
Algorithm 1 with (εt)t∈N = (ε)t∈N, denoted by A, satisfies

RH ,ε
T (A) ≤ σ

√
2T log

(
2

δ

)
+ 2CβT (δ)

√
T log det

(
Id+

1

2λC
MT (DΛ)

−1
M∗
T

)
with probability at least 1− δ. Note that MT (thus also βT (δ)) depends implicitly on ε.

Proof. Recall the we identify A with the F-adapted process π := (πt)t∈N ⊂ Π(µ, ν) of transport
plans played. The instantaneous regret of the algorithm at time t ∈ N is defined as

rt := Ψεµ,ν(c
∗, πt) + ξt − Ent.(µ, ν, c∗, ε) .

It is clear that RH
T (A) =

∑T
t=1 rt. Before pursuing further, let us apply Lemma F.1 to the sequence

(ξt)t∈N, in view of Assumption 2, to obtain that for any δ > 0 we have

P

(
T∑
i=1

ξi ≤ σ

√
2T log

(
2

δ

))
≥ 1− δ

2
. (27)
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Now, let r̄t := Ψεµ,ν(c
∗, πt)− Ent.(µ, ν, c∗, ε) as we continue the decomposition. By definition of

the algorithm, let

(π̃t, c̃t) ∈ argmin
π∈Π(µ,ν)
c∈Ct(δ)

Ψεµ,ν(c, π) ,

where Ct(δ) is the confidence set defined in (11).

Let us place ourselves on the event ∩∞
t=1

{
c∗ ∈ F−1Ct(δ)

}
, an event which happens with probability

at least 1− δ/2 by Lemma C.2. By optimism, we have

r̄t ≤ Ψεµ,ν(c
∗, πt)− Ent.(µ, ν, c̃t, ε)

The instant regret can be decomposed as

r̄t = Ψεµ,ν(c
∗, πt)−Ψεµ,ν(c̃t, πt) + Ψεµ,ν(c̃t, πt)− Ent.(µ, ν, c̃t, ε)

The first term Ψεµ,ν(c
∗, πt)−Ψεµ,ν(c̃i, πt) = ⟨c∗ − c̃t|πt⟩ can be bounded by Lemma C.3, while the

second term is 0 by definition of Algorithm 1. The proof is completed by taking a union bound over
∩∞
t=1

{
c∗ ∈ F−1Ct(δ)

}
and the event of (27).

D.2 Kantorovich regret bounds

Let us begin by giving the requisite results on approximation of the Kantorovich problem by the
entropic one. Let dH (γ) (for γ ∈ {µ, ν}) denote the upper Renyi dimension of γ, defined by

dH (γ) := lim sup
ϵ↓0

Hε(γ)

log(ε−1)

in whichHε(γ) is the infimum (over all countable partitions of supp(γ) into Borel subsets of diameter
at most ε) of the discrete entropy of γ with respect to the partition, see Carlier et al. (2023).

Lemma D.2 ((Carlier et al., 2023, Prop. 3.1)). If c∗ is L-Lipschitz on supp(µ)× supp(ν), then

Ent.(µ, ν, c∗, ε)− Kant.(µ, ν, c∗) ≤ ε
(
(dH (µ) ∧ dH (ν)) log(ε−1) + L

)
as ε ↓ 0.

Extensions of this result exist for more general absolute continuity conditions, see (Carlier et al.,
2023, Rem. 3.4). This constant is sharp, but tighter bounds may be obtained under stronger regularity
assumptions, see e.g. (Carlier et al., 2023, Prop. 3.7). In view of Lemma D.2, we can define
κ := (dH (µ) ∧ dH (ν)) + L. In spite of its apparent complexity, upper Renyi dimension is a
relatively well behaved object, and can be bounded in many common situations, see the following
remarks.
Remark D.1 ((Carlier et al., 2023, Prop. 3.2)). If γ is a measure on Rd satisfying∫

0 ∨ log(∥x∥2)dγ(x) < +∞

then dH (γ) ≤ d.
Remark D.2 ((Carlier et al., 2023, Rem. 3.5)). If γ is finitely supported, then dH (γ) = 0.

Theorem 4.1. Under Assumptions 1 and 2, if c∗ is L-Lipschitz on supp(µ)× supp(ν) ⊂ Rd, then
for any δ > 0, λ > 0, α ∈ (0, 1), and T ∈ N, the regret of Algorithm 1 with (εt)t∈N = (αt−α)t∈N,
denoted B, satisfies

RT (B) ≤ σ

√
2T log

(
2

δ

)
+ 2CβT (δ)

√
T log det

(
Id+

1

2λC
MT (DΛ)

−1
M∗
T

)
+

κα

1− α

(
T 1−α log(T ) +

α

2α
log(6)

)
with probability at least 1− δ, in which κ depends only on (C,L, µ, ν).
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Proof. The proof follows the same lines as the proof of Theorem D.1. Again, we identify B with
the transport plans π := (πt)t∈N ⊂ Π(µ, ν) it plays. The instantaneous regret is different due to the
change of objective, it is given by

rt := Ct − Kant.(µ, ν, c∗) = ⟨c∗|πt − π∗⟩+ ξt .

As before, apply Lemma F.1 to the sequence (ξi)i∈N, and pass to r̄t := ⟨c∗|πt − π∗⟩, which can be
decomposed as

r̄t = ⟨c∗|πt⟩ − ⟨c∗|π∗⟩
= ⟨c∗|πt⟩ − Ent.(µ, ν, c∗, ε) + Ent.(µ, ν, c∗, ε)− Kant.(µ, ν, c∗)

≤ ⟨c∗|πt⟩ − Ent.(µ, ν, c∗, ε) + ε(dH (µ) ∧ dH (ν)) log(ε−1) + Lε

for any ε > 0, by Lemma D.2. In particular, for ε = εt as used by Algorithm 1, we have

T∑
t=1

εt(dH (µ) ∧ dH (ν)) log(ε−1
t ) + Lεt ≤

κα

1− α

(
T 1−α log(T ) +

α

2α
log(6)

)
. (28)

by Lemma F.2. Let us recall that optimism implies that

(π̃t, c̃t) ∈ argmin
π∈Π(µ,ν)
c∈Ct(δ)

Ψεtµ,ν(c, π) ,

for εt > 0 as used by Algorithm 1, so that

Ent.(µ, ν, c̃t, εt) ≤ Ent.(µ, ν, c∗, εt) on Et(δ) .

Let us place ourselves on the event ∩∞
t=1

{
c∗ ∈ F−1Ct(δ)

}
⊃ ∩∞

t=1Et(δ), which happens with
probability at least 1− δ/2 by Lemma C.2. On this event, we thus have

⟨c∗|πt⟩ − Ent.(µ, ν, c∗, εt) ≤ ⟨c∗|πt − π̃t⟩+ ⟨c∗ − c̃t|π̃t⟩ ,

since H ≥ 0. Applying πt = π̃t we obtain the desired result, up to combining the r̄t over t ∈ N,
recalling (28), and taking a union bound over the two events.

E Controlling the infinite dimensional terms

The parametric and RKHS estimation methodologies are highly standard in bandit theory, because
they seamlessly fit into the general Hilbert Space analysis of Abbasi-Yadkori (2012) while giving a
control on the resulting regret bounds in terms of finite dimensional quantities. In Fourier analysis
and fields which rely on it, such as functional regression (Morris, 2015), it is more natural to look for
approximations by decomposing Fc∗ and at into an orthonormal basis and truncating it at some finite
order. We detail this learning methodology below.

We being in Appendix E.1 by presenting the general concept of basis decomposition as an approxi-
mation method. Then, in Appendix E.2 we truncate at a fixed order and derive the regret bounds for
this case. Before moving on to changing the truncation order with t ∈ N in Appendix E.4, we give a
brief discussion in Appendix E.3 of some examples in which a finite basis is sufficient. Finally, we
give a brief treatment of kernel methods in Appendix E.6 for completeness.

E.1 Intrinsic regularity and fourier basis decay

To simplify notation, let f∗ := Fc∗. Recall the chosen orthonormal basis (ϕi)i∈N of the space
L2(Rd; ϱ), in which (f∗, at) ∈ L2(Rd; ϱ)2, t ∈ N, admit representations

f∗ =

∞∑
i=0

γ∗i ϕi and at =

∞∑
i=0

ϑ
(t)
i ϕi , for some (γ∗, ϑ(t)) ∈ ℓ2(R)2 .

Classical choices for (ϕi)i=∈N are wavelet systems such as the Haar or Hermitian systems, and the
Fourier basis if supp(µ)× supp(ν) is bounded. The choice of a specific basis is made ad hoc from
knowledge of the structure of the problem; we present the general argument.

22



By definition of (ϕi)i∈N as an orthonormal basis, we have

⟨f |at⟩L2(Rd;ϱ) = ⟨γ∗|ϑ(t)⟩ℓ2(R) =
+∞∑
n=1

γnϑ
(t)
n .

Let f∗|n :=
∑n
i=0 γ

∗
i ϕi be the truncation of the basis expansion of f at order n ∈ N. By abuse

of notation, and only when it is clear from context, we will override notation and denote c∗|n the
result of applying the inverse fourier transform to (f∗)|n, the basis truncation of f∗ := Fc∗. A
straightforward derivation yields the approximation bound of Lemma E.1.

Lemma E.1. Let (ϕi)i∈N be an orthonormal basis of L2(Rd; ϱ), and let f ∈ L2(Rd; ϱ) with
f :=

∑∞
i=0 γiϕi. Then, we have

|⟨f − f |n|g⟩|L2(Rd;ϱ) ≤ ∥g∥L2(Rd;ϱ)

√√√√ +∞∑
i=n+1

|γi|2 for every g ∈ L2(Rd; ϱ).

For our purpose, g = at is bounded by 1 since ∥Fπt∥∞ ≤ πt(Rd) = 1 and ϱ(Rd) = 1, so that
the resulting approximation error of f∗ by (f∗|n)n∈N is controlled entirely by the decay of the
coefficients (γ∗i )i∈N. Consequently, regret analysis can leverage Lemma E.1 to move the problem
into a finite dimensional regression problem on the coefficients (γ∗i )i∈N. We begin by setting the
stage with a fixed order (i.e. n independent of t) methodology. Later, we will derive regret guarantees
when n is allowed to grow with t in order to control the approximation error.

E.2 Fixed order basis truncation

In this section, let n ∈ N be fixed. One can approximately regress C⃗t against a⃗t up to order n by
solving the n-dimensional Regularised Least-Squares (RLS) problem

γ̂n,λt := argmin
γ∈Rn

t∑
s=1

∥∥∥∥∥Cs −
n∑
i=1

γiϑ
(s)
i

∥∥∥∥∥
2

2

+ λΛn(γ) , (29)

in which Λn : Rn → [0,+∞) is a strictly convex continuously Fréchet-differentiable regulariser
such that its Fréchet derivative DΛn satisfies

1

MΛn

Id ⪯ DΛn ⪯MΛn Id .

For clarity, let ϑ(s,n) denote the truncation of ϑ(s) ∈ RN at order n, so that ϑ(s,n) ∈ Rn and
ϑ
(s,n)
i = ϑ

(s)
i for all i ∈ [n]. Following the standard arguments for online linear regression (omitted

for brevity, see e.g. Abbasi-yadkori et al. (2011); Abbasi-Yadkori (2012)), one can construct the
(valid, by Corollary E.2) confidence sets

C̃nt (δ) :=
{
γ ∈ Rn :

∥∥∥γ − γ̂n,λt

∥∥∥
D̃λ,nt

≤ β̃t,n(δ)

}
, (30)

in which D̃λ,n
t := λDΛn +

∑t
s=1 ϑ

(s,n)ϑ(s,n)
⊤

and

β̃nt (δ) := σ

√√√√√log

4 det
(
DΛn + λ−1

∑t
s=1 ϑ

(s,n)ϑ(s,n)
⊤
)

δ2

+

(
λ

∥DΛn∥op

) 1
2

C . (31)

Notice that C > ∥c∗∥L2(Rd;ϱ) implies that C ≥ ∥γ∗∥ℓ2(R) by definition of (ϕi)i∈N, so that C is a
valid upper bound on ∥γ∗∥ℓ2(R). To verify the validity of the confidence sets (see Corollary E.2), let

Ẽnt (δ) :=
{∥∥∥γ − γ̂n,λt

∥∥∥
D̃λt

≤ β̃nt (δ)

}
for (t, n) ∈ N2 . (32)
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Corollary E.2. Under Assumptions 1 and 2, for every δ > 0, λ > 0, n ∈ N,

P

( ∞⋂
t=1

Ẽnt (δ)

)
≥ 1− δ

2
.

Proof. Follow the proof method of Lemma C.2 (or apply Lemma E.6 below).

Applying this learning methodology to Algorithm 1 in place of the infinite-dimensional RLS, and
with the optimistic choice of belief-action pairs

(π̃t, γ̃
n
t ) ∈ argmin

π∈Π(µ,ν)

γ∈C̃nt (δ)

Ψεµ,ν

(
µ, ν,

n∑
i=1

γiϕi, ε

)
(33)

yields Algorithm 2 with (nt)t∈N = (n)t∈N and the regret bound of Corollary E.3.

Data: Confidence δ, regularization level λ, entropy penalisation (εt)t∈N, orders (nt)t∈N.
for t ∈ N do

Compute the RLS estimator γ̂nt,λt using (29);
Construct the confidence set C̃ntt (δ) using (30) and (31);
Optimism: pick (π̃t, γ̃

nt
t ) according to (33);

Play πt = π̃t if t > 0, else π0 = µ⊗ ν; receive feedback Rt;
end

Algorithm 2: Basis-truncation EntUCB

Corollary E.3. Under Assumptions 1 and 2, for any δ > 0, λ > 0, T ∈ N, using Algorithm 2 with
(εt)t∈N = (ε)t∈N and (nt)t∈N = (n)t∈N (denoted An) yields

RH ,ε
T (An) ≤ σ

√
2T log

(
2

δ

)
+ 2C

√
nT

(
log

(
MΛn

λ
+
tC2

n

)
+

n

2(1 ∧ λC)
logMΛn

)

+ 2T

+∞∑
k=n+1

|γ∗k | , (34)

while using (εt)t∈N = (αt−α)t∈N and (nt)t∈N = (n)t∈N (denoted Bn) yields

RT (B) ≤ σ

√
2T log

(
2

δ

)
+ 2C

√
nT

(
log

(
MΛn

λ
+
tC2

n

)
+

n

2(1 ∧ λC)
logMΛn

)

+
κα

1− α

(
T 1−α log(T ) +

α

2α
log(6)

)
+ 2T

+∞∑
k=n+1

|γ∗k | . (35)

Proof. The proof follows the usual decomposition up the following modifications which are the same
for both (34) and (35). We give the modification for Theorem D.1, the same modifications need only
be applied to Theorem 4.1 to complete the proof of the second bound.

At the second step of the proof, let π̄ϵ be an ϵ-minimiser of Ent.(µ, ν, c∗, ε), for ϵ > 0, and decompose
r̄t := Ψεµ,ν(c

∗, πt)− Ent.(µ, ν, c∗, ε) as

r̄t ≤ ϵ+Ψεµ,ν(c
∗, πt)−Ψεµ,ν(c

∗, π̄ϵ)

≤ ϵ+Ψεµ,ν(c
∗|n, πt)− Ent.(µ, ν, c∗|n, ε)

+ Ψεµ,ν(c
∗, πt)−Ψεµ,ν(c

∗|n, πt) + Ψεµ,ν(c
∗|n, π̄ϵ)−Ψεµ,ν(c

∗, π̄ϵ)

≤ ϵ+Ψεµ,ν(c
∗|n, πt)− Ent.(µ, ν, c∗|n, ε) + 2

+∞∑
k=n+1

|γ∗k | ,
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by a double application of Lemma E.1 combined with the bound ∥at∥L2(R2;ϱ) ≤ 1. Sending ϵ→ 0

allows one to then continue the proof, up to replacing the events Et(δ) by Ẽnt (δ), and Lemma C.2 by
Corollary E.2.

Finally, let us introduce c̃nt :=
∑n
i=1 γ̃

n
t,iϕi for t ∈ N, so that by Lemma C.3, we can directly derive

T∑
t=1

⟨c∗|n − c̃nt |π̃t⟩ ≤ 2Cβ̃T,n(δ)

√√√√nT log det

(
I+

1

2λC

T∑
t=1

ϑ
(t,n)
t DΛ−1

n ϑ(t,n)
⊤
)
.

To obtain the stated bounds, it remains to bound

det

(
DΛn + λ−1

T∑
t=1

ϑ(t,n)ϑ(t,n)
⊤
)

and det

(
I+

1

2λC

T∑
t=1

ϑ(t,n)DΛ−1
n ϑ(t,n)

⊤
)

using Lemma E.4.

Lemma E.4. Under Assumptions 1 and 2, for (n, t) ∈ N2, we have

log det

(
DΛn + λ−1

T∑
t=1

ϑ(t,n)ϑ(t,n)
⊤
)

≤ log

(
MΛn

λ
+
tC2

n

)
+ n logMΛn . (36)

log det

(
I+

1

2λC

T∑
t=1

ϑ
(t,n)
t DΛ−1

n ϑ(t,n)
⊤
)

≤ log

(
MΛn

λ
+
tC2

n

)
+

n

2λC
logMΛn . (37)

Proof. We take the two bounds in turn. First, apply the matrix determinant lemma to obtain

det

(
DΛn + λ−1

T∑
t=1

ϑ(t,n)ϑ(t,n)
⊤
)

≤ det(DΛn) det

(
I+λ−1

T∑
t=1

ϑ(t,n)DΛ−1
n ϑ(t,n)

⊤
)
,

which can be readily bounded as in (Abbasi-Yadkori, 2012, Lemma E.3) by noticing that ∥ϑ(t,n)∥2 ≤
∥c∗∥L2(Rd;ϱ) (with det(DΛn) ≤Mn

λn
∨ 1) to obtain (36).

For the second bound, apply (Abbasi-Yadkori, 2012, Lemma E.3) directly to obtain

det

(
I+

1

2λC

T∑
t=1

ϑ(t,n)DΛ−1
n ϑ(t,n)

⊤
)

≤
(
2λC Tr(DΛn) + tC2

n

)n
(2λC det(DΛn))

wherefrom (37) follows.

E.3 Finite order bases: matching and parametric models

At this point, let us recall Assumption 3 which provides the quantification of the regularity of c∗
which we will use to set n. We will now discuss some examples in which a finite basis is sufficient to
control the approximation error.
Assumption 3. There is a known orthonormal basis (ϕi)i∈N of L2(Rd; ϱ) in which we write Fc∗ :=∑+∞

i=1 γ
∗
i ϕi and ζ : R+ → [0, 1], a known monotonically increasing continuous function satisfying

inf
n∈N

∑n
i=1 |γ∗i |

2

ζ(n)
≥ ∥c∗∥2L2(Rd;ϱ) .

Proposition E.5. Under Assumptions 1 to 3, with ζ(n)1·≥N for some N ∈ N (i.e. if γ∗i = 0 for
every i > N ), then under the conditions of Corollary E.3 with n = N , Λn = ∥·∥L2(Rd;ϱ) /2, and
α = 1/2 the bounds of Corollary E.3 become

RH ,ε
T (An) ≤ σ

√
2T log

(
2

δ

)
+ 2C

√
NT log

(
1

λ
+
TC2

N

)
(38)

and

RT (Bn) ≤ σ

√
2T log

(
2

δ

)
+ 2C

√
NT log

(
1

λ
+
TC2

N

)
+ κ(1 +

√
T log(T )) (39)
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Naturally, the assumption that γ∗i = 0 for any i > N is not satisfactory, but it is verified for several
existing models and serves to demonstrate that some learning problems in BOT are learnable at the
rate Õ(

√
T ) given only knowledge of an upper bound on N and ∥γ∗∥ℓ2(R) and an appropriate basis

(ϕi)i∈N.

Consider a matching problem in which the measures µ and ν are supported on K and K ′ loci
respectively. Let {x1, . . . , xK} = supp(µ) and {x′1, . . . , x′K′} = supp(ν) denote these loci. We
can let c∗ assume arbitrarily values outside of X = {(xi, x′j) : (i, ) ∈ [K]× [K ′]} without loss of
generality. Let ϵ < inf{∥u− v∥ : (u, v) ∈ X 2 , u ̸= v} and define the functions

ϕi,j :=
6

πϵ3
1{B2((xi,x′

j)
⊤,ϵ/2)} for (i, j) ∈ [K]× [K ′] .

Re-indexing the functions by k ∈ [K ×K ′], and adding suitable functions for k > KK ′, we obtain
an orthonormal basis (ϕk)k∈N of L2(Rd; ϱ), in which c∗ :=

∑KK′

k=1 γ
∗
kϕk. Consequently, we can

apply Proposition E.5 with N = KK ′ to obtain a regret bound of Õ(
√
KK ′T ) for the learning

problem.

Alternatively, consider that there is a parametric model for c∗, i.e. there is θ∗ ∈ Rp such that

c∗(x, y) =

p∑
i=1

θ∗iΦi(x, y) ,

for some embedding function Φ : Rd × Rd → Rp. When the embedding function is known, one can
construct a basis through the Gram-Schmidt process. Let ϕ1 := Φ1/ ∥Φ1∥L2(Rd;ϱ), and for i ≤ p,

define Si := {ϕk : k < i}⊥ the orthogonal complement of the sequence this far. Now, repeatedly
project the feature dimensions onto Si to construct ϕi := PSiΦi/ ∥PSiΦi∥L2(Rd;ϱ), wherein PSi
denotes the projection onto Si, i ∈ N. For i > p, take any orthonormal basis of Sp to complete the
basis, it will not be used anyway. Consequently, we can also apply Proposition E.5 with N = p to
obtain a regret bound of Õ(

√
pT ) for the learning problem.

These results are summarised in Corollary 4.3, but notice that higher order polynomial models can be
readily considered as well, such as quadratic costs

c∗(x, y) = Φ(x, y)
⊤
Θ∗Φ(x, y) ,

for Θ∗ ∈ Rp×p, by simply reparametrising it as a linear model in dimension p2 and applying the
same construction. Many other models can be considered in this manner, and would benefit from
further specialised investigation.
Corollary 4.3 (Proposition E.5). Under Assumptions 1 to 3, if ζ(n) = 1{n≥N} for some N ∈ N,
then Algorithm 2 can achieve a regret of Õ(

√
NT ) with nt = N for all t ∈ N.

E.4 Increasing order basis truncation

In this section, we will extend the results of Appendix E.2 to let n change with t ∈ N along the
learning process. We will denote the corresponding sequence by (nt)t∈N ⊂ N. It is relatively simple
to see that the proofs of the key properties of online least-squares estimation will extend, but we
include the key proof sketches for completeness. We begin by diagonalising the validity of the
confidence sets in Lemma E.6.
Lemma E.6. Under Assumptions 1 and 2,

P

( ∞⋂
t=1

Ẽntt (δ)

)
≥ 1− δ

2
.

Proof. The proof only requires diagonalisation of the standard stopping time construction. For
(δ, t) ∈ (0, 1)× N, on the filtered probability space (Ω,F∞,F,P) define

Bt(δ) :=

{
ω ∈ Ω :

∥∥∥γ∗ − γ̂nt,λt

∥∥∥
D̃
λ,nt
t

≤ β̃t,nt(δ)

}
a.s.
= {ω ∈ Ω : c∗|nt ̸∈ C̃ntt (δ)} ,
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be the tth “bad event”, and let τδ : ω ∈ Ω → inf{t ∈ N : ω ∈ Bt(δ)}, which is a stopping time. We
have

{τ < +∞} =
⋃
t∈N

Bt(δ) .

By construction, in the classical manner:

P

(⋃
t∈N

Bt(δ)

)
= P(τ < +∞, Bt(δ)) ≤ P

(
Ẽntt (δ)

)
≤ δ

2
.

The confidence sets using for non-constant (nt)t∈N are simply instantiations of (30) and (31) with
nt in place of n. This change of basis with time however requires a modification of the proof of
Lemma C.3 as the steps summed up in (24) are no longer homogenous. In particular, (25) is no longer
valid.

Lemma E.7. Under Assumptions 1 and 2, if Λn := 1
2 ∥·∥

2
2 with the norm being on Rn, then

T∑
t=1

⟨c∗|nt − c̃ntt |π̃t⟩ ≤ 2Cσ


√√√√2 log

(
λ−1 + TC2

nT

δ

)
+

√
λC

√nTT log

(
1 +

T

nTC2

)
.

Proof. Recall the notation of Lemma C.3, which adapts to φt := ⟨c∗|nt − cntt |π̃t⟩ for t ∈ N and
c̃ntt :=

∑nt
i=1 γ̃

nt
t,iϕi. The proof of Lemma C.3 yields

T∑
t=1

φt ≤ 2CβT,nT (δ)

√√√√T

T∑
t=1

log

(
1 +

1

2C

∥∥ϑ(t,nt)∥∥
(D̃

λ,nt
t )

−1

)
. (40)

First, one can bound β̃T,nT (δ) by (37) in Lemma E.4.

It remains to adapt the logarithmic term into a log-determinant of the desired form by conforming the
vectors ϑ(t,nt). To do so, let us define the block matrices

Zt :=

(
(D̃λ,nt

t )
−1

0
0 0

)
for t ∈ N ,

so that we may use the rank one update formula to write

T∏
t=1

(
1 +

1

2C

∥∥∥ϑ(t,nt)∥∥∥
(D̃

λ,nt
t )

−1

)
=

det
(
DΛn +

∑T
t=1 ϑ

(t,nt)Ztϑ
(t,nt)

⊤)
det(DΛn)

.

Taking Λn = 1
2 ∥·∥

2
2 as given, we can bound the determinant of the numerator by

det

(
DΛn +

T∑
t=1

ϑ(t,nt)Ztϑ
(t,nt)

⊤
)

≤
(
1 +

T

nTC2

)nT
as in (Abbasi-Yadkori, 2012, Lemma E.3). Combining with the bound on β̃T,nT (δ) completes the
proof.

Having established the technical lemmata, we now turn to the regret guarantees of the varying order
basis truncation version of Algorithm 2. In particular, recall Assumption 3 to give a quantification
of the regularity of c∗, which in turn will allow us to tune (nt)t∈N to obtain the best possible regret
bounds in Theorem E.8.

Theorem E.8. Assume Assumptions 1 to 3 and ζ(n) = 1− n−q for some q > 0. For any δ ∈ (0, 1),
λ > 0, ε > 0, let Ã (resp. B̃) denote Algorithm 2 with (nt)t∈N = (⌈t

1
q+1 ⌉)t∈N, Λn = 1

2 ∥·∥
2
2, for all
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n ∈ N, and (εt)t∈N = (ε)t∈N (resp. (εt)t∈N = (αt−α)t∈N). For any T ∈ N, the following regret
bounds hold:

RH ,ε
T (Ã) ≤ σ

√
2T log

(
2

δ

)
+ C

(
1 +

2qT
q+2
2q+2

q + 1

)

+ 2CσT
q+2
2q+2

(√
2 log

(
λ−1 + 2T q+2C2

δ

)
+
√
λC

)√
log

(
1 +

2T q+2

C2

)
,

with probability at least 1− δ, and

RT (B̃) ≤ σ

√
2T log

(
2

δ

)
+ C

(
1 +

2qT
q+2
2q+2

q + 1

)
+ κ(1 +

√
T log(T ))

+ 2CσT
q+2
2q+2

(√
2 log

(
λ−1 + 2T q+2C2

δ

)
+
√
λC

)√
log

(
1 +

2T q+2

C2

)
,

with probability at least 1− δ, in which κ depends only on (C,L, µ, ν).

Proof. The proof requires only two steps from the one of Corollary E.3. First, we bound the
approximation error term. Lemma E.1 readily implies that

|⟨c∗ − c∗|nt |πt⟩| ≤

√√√√ +∞∑
k=nt+1

|γ∗i |
2
.

Summing over t ∈ N, one obtains

T∑
t=1

|⟨c∗ − c∗|nt |πt⟩| ≤
T∑
t=1

√√√√ +∞∑
i=nt+1

|γ∗i |
2
. (41)

By Assumption 3, for any n ∈ N, we have
∞∑

i=nt+1

|γ∗i |
2
= ∥c∗∥2L2(Rd;ϱ) −

nt∑
i=1

|γ∗i |
2 ≤ ∥c∗∥2L2(Rd;ϱ) (1− ζ(nt))

so that for any u > 0, the choice nt := ⌈ζ−1((1− t−u))⌉ = ⌈t
u
q ⌉ (q > 0) yields√√√√ ∞∑

i=nt+1

|γ∗i |
2 ≤ ∥c∗∥L2(Rd;ϱ) t

−u
2 . (42)

This follows from the fact that ζ can be made a bijection of R+ → (0, 1], and that ζ is increasing.
Injecting (42) into (41) yields

T∑
t=1

∣∣⟨c∗ − c∗|n(t)|πt⟩
∣∣ ≤ ∥c∗∥L2(Rd;ϱ)

(
1 + 2

T 1−u
2

u

)
.

The second step simply involves applying Lemma E.7 for nT := ⌈T
u
q ⌉ ≤ 2Tu/q to obtain a bound

of order O(T
1
2+

u
2q ). Setting u = q

q+1 yields the stated bounds.

E.5 On the choice of the basis

While Assumption 3 is natural from the theoretical perspective of functional regression, in practice
one needs access to the basis (ϕi)i∈N to perform the regression. The ability to choose a specific basis
in which the coefficients decay may also appear like a questionable characterisation of regularity. In
this section, we will briefly discuss existing results related to the choice of basis.
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It is intuitively obvious that judiciously choosing a specific basis is only possible if c∗ has some
additional regularity properties one can leverage. Thus, let us begin by assuming that c∗ ∈ F−1A for
some known but generic set A ⊂ L2(R; ϱ). Approximation theory has studied and characterised the
optimal choice of a basis to approximate elements of A, and thus the coefficient decay conditions
needed in Assumption 3. We give a brief summary below, but refer to (Lorentz, 2005; Pinkus, 1985)
for a more thorough introduction to this area of research.

The Kolmogorov n-width (Kolmogorov, 1991) of A in L2(Rd; ϱ), is defined as

dn(A) := inf
Vn⊂L2(Rd;ϱ)
dim(Vn)≤n

sup
f∈A

inf
v∈Vn

∥f − v∥L2(Rd;ϱ) . (43)

The sequence (dn(A))n∈N of Kolmogorov n-width captures the best possible approximations in
L2(Rd; ϱ) of A by subspaces of dimension n, for every n ∈ N. The study of extremal subspaces,
i.e. of the minimisers in (43) for any value of n ∈ N, thus typically yields a basis for A which is
optimal in the sense that it minimises the approximation error. Indeed, by definition, if (ϕi)i∈N is a
sequence of minimisers of (dn(A))n∈N corresponding to a nested sequence of subspaces (Vn)n∈N,
then it ought to form a basis of A. Thus, expressing in the basis (ϕi)i∈N and by the isometry of ℓ2(R)
and L2(Rd; ϱ), we have

sup
f∈A

inf
v∈Vn

∥f − v∥L2(Rd;ϱ) =

(
+∞∑
i=n

|γ∗i |
2

) 1
2

so that characterising the decay of the n-width and identifying extremal subspaces is sufficient to
specialise Assumption 3 to a specific choice of F−1A.

In general, finding the extremal functions of the Kolmogorov n-withs is difficult, but many cases are
well known. In the following, we will briefly discuss one case which concerns a well known family
of regularity classes of L2(Rd; ϱ): the Sobolev spaces.

To recall essential definitions (see e.g. Brézis (2011) for a comprehensive treatment), let us introduce
some standard notation. Let d ∈ N, any multi-index α ∈ Nd defines the differential operator Dα
as ∂α1

x1
· · · ∂αdxd . Let |α| := ∥α∥2 denote the order of the multi-index. For a domain Ω ⊂ Rd, we

will denote by Hm(Ω) for m ∈ N the Sobolev space containing all L2(Ω; ϱ) functions5 which are
m-times weakly differentiable and whose derivatives of order n are also in L2(Ω; ϱ). This space can
be rewritten in several different ways, and in particular:

Hm(Ω) :=
{
f ∈ L2(Ω; ϱ) : ∥Dαf∥L2(Ω;ϱ) < +∞ if |α| ≤ m

}
. (44)

=
{
f ∈ L2(Ω; ϱ) : ∥f∥Hm(Ω) < +∞

}
(45)

(46)

wherein

∥f∥Hm(Ω) :=

√ ∑
|α|≤m

∥Dαf∥2L2(Ω;ϱ) ,

with the sum being over all multi-indices α of order at most m. In particular, one can show from (45)
that (Hm(Ω), ∥·∥Hm(Ω)) is a Hilbert space.

It is known from the work of Kolmogorov (1991) that the Kolmogorov n-width of Hm([0, 1]) in
L2([0, 1]) is of order O(n−m) asymptotically. Furthermore, he provided a characterisation of the
extremal functions (and thus of the optimal basis) as the eigenfunctions of the differential operator
(−1)mD2m, or equivalently to the solutions to an ordinary differential equation of order 2m. This
formation could be extended to the multi-dimensional case, but it would require more care to set up
the differential operator. This connection to the spectrum of specific operators is reflected, e.g., in
(Hu et al., 2025).

Instead, we will turn to characterising under what assumptions A is a Sobolev space, and more
precisely, a Sobolev class. The Sobolev classes are defined as

{W (m,L) : (m,L) ∈ N× [0,+∞)}
5For ease of exposition, we gloss over the distinction between functions and equivalence classes here.
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in which each class W (m,L) is defined as the ball of radius L centred at 0 in Hm(Ω). These spaces
are a standard tool for characterising the difficulty of estimation in non-parametric statistics, see e.g.
(Tsybakov, 2008; Wasserman, 2006). Let us finally introduce a regularity assumption on c∗ with
Assumption 4.

Assumption 4. Assume that c∗ ∈ L2(Rd; ϱ) satisfies the integrability (growth) condition:∫
[(1 + ∥z∥)mc∗(z)]2dϱ(z) < M2 ,

for some M > 0 and that supp(µ⊗ ν) ⊂ Ω for some bounded open domain Ω ⊂ Rd.

Under Assumption 4, we can use the Fourier transform’s effect on differentials to write

∥DαFc∗∥2L2(Rd;ϱ) ≤ C2

∫
[(1 + ∥z∥)m

∣∣F−1Fc∗(z)
∣∣]2dϱ(z) < C2M2 ,

for some constant C > 0 and for every multi-index α. Consequently, Fc∗ ∈W (m,CM) ⊂ Hm(Ω),
as wanted. In other words, higher order integrability of the cost function c∗ directly translates to
membership in a Sobolev class, and thus a Sobolev space, for its Fourier transform. This establishes
Corollary E.9.

Corollary E.9. Under Assumptions 1 to 3 and 4, the regret bounds of Theorem E.8 hold q = m.

In contrast, one can also derive bases specialised to regularity conditions of the marginals rather
than the cost function. Suppose that the reference measure is taken as ϱ = µ⊗ ν and that this is a
Gaussian measure (the standard one, for the sake of simplicity), then one might naturally consider
the Hermite Polynomials as basis for L2(Rd; ϱ). For a multi-index α ∈ Nd, the Hermite function of
order α is defined as the product

Hα :=

d∏
i=1

hαi ,

of the one-dimensional Hermite functions

hk : x ∈ R 7→
⌊k/2⌋∑
j=0

(−1)j

2jj!(k − 2j)!
xk−2j for any k ∈ N .

It is easily shown that this is an orthonormal basis of L2(Rd; ϱ). The decay of coefficients in this basis
remains an a priori nebulous question but it can be related to similar arguments about cylindrical
ellipsoids in L2(Rd; ϱ) as in Kolmogorov (1991). This time, the decay rate will depend on the
eigenvalues of the Ornstein-Uhlenbeck operator L, whose action is

Lf = ∆f − Id ·∇f ,

on smooth functions, for whom Hermite polynomials are eigenfunctions.

E.6 Tikhonov regularisation and RKHS theory

In this section, we will assume that Λ = 1
2 ∥·∥

2
2 for simplicity. In general any increasing posi-

tive function of ∥·∥2 will suffice to use the representer theorem as per our argument. Suppose
we are given (H,K) a Reproducing Kernel Hilbert Space6 (RKHS) such that H ⊂ L2(Rd; ϱ).
We may specialise the RLS estimator (see Proposition C.1) to this case by noting that Mt :=

(K(a0, ·), . . . ,K(at−1, ·))⊤.

By the representer theorem, at any step t ∈ N,the solution to the regularised least squares problem in
H is given by

f̂λt =

t−1∑
i=0

υiK(ai, ·) ,

6Understood, of course, up to the identifications necessary for the RKHS to be a space of functions. Recall
that L2(Rd; ϱ) is not an RKHS due to a subtlety of this nature.
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for some (υi)
t−1
i=0 ∈ Rt. The problem can therefore be reduced to the finite dimensional optimisation

problem

min
υ∈Rt

∥∥∥C⃗t −Ktυ
∥∥∥2
2
+ λυ⊤Ktυ ,

in which Kt := [K(ai, aj)]i,j ∈ Rt×t is the kernel (Grammian) matrix. The rest of the standard
developments follow, and one arrives at the approximation bound

T∑
t=1

⟨c∗ − c̃t|π̃t⟩ ≤ 2CβT (δ)

√
2T log det

(
I + (λC)

−1
KT

)
by Lemma C.3, and corresponding regret bounds easily follows via Theorems 4.1 and D.1. From here,
one can easily recover bounds ad hoc or by following the general methodology of Appendix E.1.

One of the main benefits of kernel methods is that they can be used to learn in infinite-dimensional
spaces efficiently. While they are inherently efficient thanks to the kernel trick, works in this field have
suggested further efficiency refinements such as Takemori and Sato (2021) which uses approximation
theory to reduce learning in an RKHS to a finite-dimensional approximation on a well chosen
basis. This resembles the methodology used above, further developments in this direction appear an
interesting avenue for research.

F Miscellaneous lemmas and proofs

F.1 Sub-Gaussian Analysis

Definition 2. A random variable ξ : Ω → R is σ2-sub-Gaussian if

E [exp (tξ)] ≤ exp

(
σ2t2

2

)
for any t ∈ R .

A stochastic process (ξi)i∈N : Ω → RN is σ2-conditionally sub-Gaussian if

E
[
exp (tξi)

∣∣∣σ((ξj)j<i)] ≤ exp

(
σ2t2

2

)
for all i ∈ N and any t ∈ R .

Lemma F.1. Let (ξi)i∈N be a σ2-conditionally sub-Gaussian process,

P

(
n∑
i=1

ξi ≥ σ

√
2n log

(
1

δ

))
≤ δ for any (n, δ) ∈ N× (0, 1).

Proof. The proof follows Chernoff’s method, by exponentiating
∑n
i=1 ξi using x 7→ etx, apply-

ing Markov’s inequality, the tower rule accompanied by conditional sub-Gaussianity, and finally
optimising the bound over the parameter t > 0.

F.2 A common summation identity

Lemma F.2. For α ∈ (0, 1), let ϕ : u ∈ (0,+∞) → αu−α log(u) ∈ R∗
+, then for any N ∈ N,

N∑
u=1

ϕ(u) ≤ α

1− α
N1−α log(N) +

α

2α
log(6) .

In particular, if α = 1/2, then
N∑
u=1

ϕ(u) ≤
√
N log(N) +

1

2
√
2
log(6) .

Proof. Notice that ϕ is differentiable, with ϕ′(u) = αu−(1+α)(1− α log(u)), so that it is decreasing
on (e1/α,+∞). Since supα>1 e

1/α = e < 3, comparison between the sum and the integral of ϕ
yields

N∑
u=1

ϕ(u) ≤ ϕ(1) + ϕ(2) + ϕ(3) +

∫ N

3

ϕ(u)du .
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The remaining integral can be computed by parts, for (a, b) ∈ R2
+, a < b,∫ b

a

ϕ(u)du =
α

1− α

([
u1−α log(u)

]b
a
−
∫ b

a

u−αdu

)

=
α

1− α

([
u1−α

(
log(u)− 1

α− 1

)]b
a

)
≤ α

1− α
b1−α log(b)

for every α ∈ (0, 1). Computing yields ϕ(1) = 0, ϕ(2) = α2−α log(2), and ϕ(3) = α3−α log(3),
so that ϕ(1) + ϕ(2) + ϕ(3) ≤ α2−α log(6). Combining the results yields the desired inequality.

G Discussion of some open problems

G.1 Practical computation of actions and action-set violations

In Algorithms 1 and 2 we used a black-box solver for an entropic optimal transport problem. This
is a computational abstraction and not implementable in practice. Implementing a computationally
feasible resolution raises several questions.

G.1.1 Numerical resolution of the Kantorovich problem

Sinkhorn’s algorithm is the standard method for solving entropic optimal transport problems. It relies
on the dual formulation of the entropic problem, that is

Ent.(µ, ν, c, ε) = sup
φ∈L1(µ)

ψ∈L1(ν)
φ⊕ψ≤c

{∫
φdµ+

∫
ψdν − ε

∫
eε

−1(φ+ψ−c)d(µ⊗ ν) + ε

}

in the case c ∈ L1(µ⊗ ν), see e.g. (Nutz, 2022, Thm. 4.7). The solution of the dual problem is given
by the pair (φ∗, ψ∗) which satisfies the Schrödinger system

φ∗ = −ε log
(∫

e
ψ∗(y)−c(·,y)

ε dν(y)

)
µ-a.s.

ψ∗ = −ε log
(∫

e
φ∗(x)−c(x,·)

ε dµ(x)

)
ν-a.s. .

Sinkhorn’s algorithm (Sinkhorn and Knopp, 1967), in its application to this problem (Cuturi, 2013), is
a fixed-point iteration which improves one potential at a time. In other words, for n ∈ N, it computes

φ2n+1 = −ε log
(∫

e
ψ2n(y)−c(·,y)

ε dν(y)

)
and

ψ2n = −ε log
(∫

e
φ2n−1(x)−c(x,·)

ε dµ(x)

)
.

A primal solution to Ent.(µ, ν, c, ε) can be recovered from the optimal dual potentials (φ∗, ψ∗) via

dπ∗ = e
φ∗⊕ψ∗−c

ε d[µ⊗ ν] ,

in which φ∗ ⊕ ψ∗ : (x, y) 7→ φ∗(x) + ψ∗(y). Through an analogue for (φ2n+1, ψ2n)n∈N, we can
obtain iterates (ϖn)n∈N.

Lemma G.1 ((Eckstein and Nutz, 2022, Thm. 3.15)). If c is Lipschitz on supp(µ)× supp(ν), and
µ, ν are sub-Gaussian measures, then the iterates {ϖn(c)}n∈N of Sinkhorn’s algorithm satisfy

Ψεµ,ν(c
∗, ϖn(c))− Ent.(µ, ν, c, ε) ≤ C0εn

− 1
4 ,

for every ε > 0, in which C0 is a numerical constant independent of n.
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We omit the explicit dependencies in the constant C0 as they are quite technical and require parsing a
large part of Eckstein and Nutz (2022), which proceeds from within a highly general framework. We
should note, however, that consequently their bound is valid under much weaker assumptions than
the ones stated here, and that the rate can, in fact, be improved if c has sub-linear growth.

Unfortunately for regret minimisation, ϖn need not be a transport plan in Π(µ, ν), meaning it is
not a valid action. Removing the requirement that πt ∈ Π(µ, ν) entirely would render the problem
meaningless, as the regret can be made negative by finding a single point such that c(x, y) <
Kant.(µ, ν, c), and playing δ(x,y).

As an auxiliary remark, this problem is one of the main hurdle to adapting Algorithm 1 to unknown
marginals, as there would be no conceivable way to pick valid transport plans, which renders the
analysis a non-starter.

G.1.2 On action violations

Two possible directions appear to resolve this issue: one at the level of bandit design, and one at the
level of numerical optimal transport. The former revolves around the idea of incorporating action-set
violations to regret analysis, the latter around the idea of modifying Sinkhorn’s algorithm to produce
valid primal iterates at each step, e.g. by projecting onto Π(µ, ν).

The question of violating action sets has been posed before in Bandit Theory and has also arisen in
practical use-cases in Reinforcement Learning, see (Seurin et al., 2020). It is a staple topic in the
context of fairness, see e.g. (Joseph et al., 2016) and of contextual bandits (including linear stochastic
bandits) in which various other types constraint have also been considered, see e.g. (Liu et al., 2024).
These types of constraints typically, in effect, disable certain arms at certain times, a generic setting
which has been considered as well, e.g. by Kleinberg et al. (2010); Abensur et al. (2019).

These works adopt a range of strategies to formulate the problem in a meaningful way, but their
perspectives don’t really fit with the real challenge we have with the OT problem. The problem
isn’t so much that the constraints placed on the action set are complicated: Π(µ, ν) is a convex,
compact set defined by linear inequalities. The problem arises entirely from the facts that Π(µ, ν) is
infinite-dimensional, and that it is a subspace of P(X ), whose geometry is far from straightforward.

A preliminary exploration of this topic would likely require a taxonomy of the different possible
violations of Π(µ, ν). Indeed, πt could violate one or both marginal constraints, or it could even
fail to be a probability measure through the total mass or positivity conditions. It appears likely that
these will have quite different impacts both on the problem’s geometry and on practical usefulness.
Thereafter, one might consider whether guaranteeing finitely many violations, as Liu et al. (2024) do,
or developing a penalised regret is more appropriate.

The alternative would be to design an algorithm which optimises the entropic or Kantorovich problems
through while staying within the constraint set Π(µ, ν) (either for all time, or once it reaches a desired
precision). On the one hand, there are finite-dimensional intuitions for this to work as Sinkhorn’s
algorithm can be viewed as a form of gradient descent (Léger, 2021), which could be projected onto
Π(µ, ν) (which is convex and compact). On the other hand, the geometry of Π(µ, ν) as an infinite-
dimensional probability space is likely to make rigourously doing so (and deriving convergence rates)
quite arduous work.

G.2 Extensions to the Monge problem

The Monge optimal transport problem associated to (µ, ν, c) is

Monge(µ, ν, c) := inf
T∈T

∫
c(x, T (x))dµ(x) , (47)

in which T is the set of all µ-measurable maps T : Mµ → Mν such that µ(T−1(·)) = ν.
Chronologically, this is in fact the original formulation of the OT problem (Monge, 1781).

The Monge problem is best approached through finite-dimensional practical applications such as
matchings of students to universities, employees to employers, etc. The requirement that the map
T be a function imposes an indivisibility of the mass T moves from µ to ν (i.e. one university per
student). This makes the resolution of the problem much more difficult. For example, if µ and ν
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each have two atoms with weights (1/2, 1/2) and (1/3, 2/3) respectively, then T = ∅, meaning
Monge(µ, ν, ·) ≡ +∞, and the problem is never solvable.

If µ, ν are non-atomic, Monge(µ, ν, c) can be interpreted as the cheapest way (w.r.t. c) to transport a µ-
shaped pile of infinitesimally small things into a ν-shaped one, but its geometry remains complicated.
The Kantorovich relaxation drastically simplified the geometry of the problem and remains one of
the most effective tools to approach the Monge problem, which is why it is accepted as the standard
in modern OT theory.

Note that the relaxation from Monge(µ, ν, c) to Kant.(µ, ν, c) is known to be exact in some cases,
such as c = ∥· − ·∥2 /2 with Mµ = Mν = Rd, (µ, ν) having second-order moments and µ being
absolutely continuous w.r.t. the Lebesgue measure (Ambrosio et al., 2021, Thm. 5.2). See also
(Villani, 2009, Thm. 5.30) for weaker conditions. But it is also known (e.g. via the above example)
that this relaxation is not without loss.

If we want to learn a Monge problem, we must, of course, make sufficient assumptions for it to be
solvable, but more importantly we must face the issue that (47) is now a non-linear functional and that
T is not as docile a set as Π(µ, ν). Here, the recent work in statistical optimal transport on learning
Monge maps (i.e. the solutions to (47)) is highly relevant, see e.g. (Chewi et al., 2024, Ch. 3) or the
paragraph in Appendix H below. Though once again most work focuses on the batch sampling of
marginals, not on online learning. This line of work would appear to also require more general results
about the learning of minima of non-linear functionals, which are not yet available in the literature.
Overall, it remains unclear if the Monge problem is on a similar or different level of difficulty to the
Kantorovich problem as it is not clear that the techniques to reduce to online least-squares we used
will transfer.

Beyond these statistical issues, one should also expect the problems of effective optimisation from
Appendix G.1 to return with a vengeance as the Monge problem is a fully non-linear problem unlike
the Kantorovich problem which is an (infinite-dimensional) linear program.

H Bibliographical complements on statistical optimal transport

An excellent detailed history of the development of OT as a mathematical theory, replete with
bibliographical notes, can be found in (Villani, 2003, Ch. 3). Summarising this field’s venerable
history further would be of little value. Instead, we will expand on relevant research specifically
about learning optimal transport problems. We touch on key aspects of the literature below, and refer
to the forthcoming book Chewi et al. (2024), for a deeper longitudinal overview.

Estimation of OT functionals Much of the early work in statistical OT focused on estimating the
value of the functional Kant.(µ, ν, c) when (µ, ν) are unknown, but c is known and highly regular, e.g.
(Horowitz and Karandikar, 1994; Weed and Bach, 2019). These regularity assumptions are motivated
by the study of Wasserstein distances between probability measures (i.e. c = ∥· − ·∥p, p ≥ 1) via
sampling. With the increased interest in the entropic OT problem, many works have asked the same
questions about Ent.(µ, ν, c, ε), e.g. (Rigollet and Stromme, 2022; Stromme, 2024).

This line of work is orthogonal to our investigation, as we know (µ, ν) but not c∗. The critical object
in this line of work is the regularity structure of Kant.(µ, ·, c), when c is strongly regular. For our
problem, the relevant geometry is that of the transport functional π ∈ Π(µ, ν) 7→ ⟨c∗|π⟩.

Online matchings Concurrently, Matching (discrete marginal OT), has been actively studied by
computer scientists and economists. These works, such as (Perrot et al., 2016), are often directly
inspired by applications, and have yielded many creative extensions to the OT problem: Alon et al.
(2004) aims to learn an optimal matching using queries to an oracle; Johari et al. (2021) to identify
types of nodes; Min et al. (2022) to design a welfare-maximising social planner; etc.

The common thread amongst these works is the nature of the market on which they work: at each
time t, a new supply becomes available to match (i.e. transport from), and the agent must decide
to which of its available demands to transport it. This decision problem is fundamentally different
from our repeated OT problem as mistakes in the matching are permanent, while we replay a whole
matching at each step. Furthermore, the information structure is different. Jagadeesan et al. (2021);
Sentenac et al. (2021); Sentenac (2023) (amongst others) have highlighted that this problem is a
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combinatorial semi-bandit problem, in which there is feedback about each connection made. In our
problem the agent receives feedback only about the matching as a whole (full bandit). These two
differences make the problems seem superficially similar, but they are fundamentally different.

Estimation of Wasserstein distances One of the most important contributions of optimal transport
is a family of useful distances between probability measures: the Wasserstein metrics. The study of
these distances has allowed major progress on the geometry of spaces of probability measures, and
has been used in many applications. It is therefore natural that the estimation of these distances has
been a major topic of interest in the learning of optimal transport.

The key question here is the convergence in Wasserstein distance of an empirical distribution to the
true distribution. Pioneering work on this topic began in the 80s and 90s, see (Ajtai et al., 1984;
Talagrand, 1994), with the study of Matching (i.e. discrete optimal transport). Key statistical analysis
of this problem includes finite sample bounds, see (Horowitz and Karandikar, 1994) and more recently
(Fournier and Guillin, 2015; Weed and Bach, 2019) among others, as well as distributional limits, see
e.g. (Tameling et al., 2019) and references therein.

Sadly, most work has remained limited to Wasserstein distances rather than generic cost functions,
owing to a reliance on the pleasant geometric properties that they enjoy.

Estimation of Entropic OT Motivated by the success of Entropic OT in designing numerical
solution to OT problems, see (Cuturi, 2013), work on the Entropic problem has focused on estimating
Ent.(µ, ν, c, ε) using Ent.(µ̂n, ν̂n, c, ε), for empirical measures (µ̂n, ν̂n). This has often gone together
with estimation for the Schrödinger potentials (φ,ψ) of (7).

While this is very much the same type of study as for the Kantorovich problem in Wasserstein metrics,
it should be noted that the entropic problem exhibits qualitatively different behaviour. While learning
the Kantorovich problem exhibits a curse of dimensionality, the entropic problem exhibits parametric-
rate (dimension-free) convergence, as shown by Genevay et al. (2019); Rigollet and Stromme (2022).
This was tempered by large dependencies in other problem quantities, which were reduced over time
(Stromme, 2024) and were complemented by distributional limits, see e.g. (Gonzalez-Sanz et al.,
2024).

Estimation of Monge maps While the estimation of Wasserstein distances is mostly motivated
by statistical applications, the estimation of Monge maps is motived by effectively solving transport
problems in an applied context. Here, one sees samples from two marginals µ and ν, and attempts to
estimate T ∗ the minimiser of (47).

There has been a significant amount of machine learning and statistics literature on this topic,
following on from (Hütter and Rigollet, 2021; Gunsilius, 2022). Various types of estimators have
been constructed, either derived from optimal transport theory (Hütter and Rigollet, 2021), or from
plug-in estimates using classical machine learning methods such as k-NN (Manole et al., 2024; Deb
et al., 2021).

Optimal transport applied to learning While these bibliographical notes concern learning in
optimal transport let us conclude by underline that the machine learning community has used optimal
transport to impressive success in applications. One could highlight in particular Wassertein GANs
(Arjovsky et al., 2017) and subsequent works, e.g. (Salimans et al., 2018) as well as the field of
domain adaptation (Courty et al., 2017; Torres et al., 2021)
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