

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VFAITH: DO LARGE MULTIMODAL MODELS REALLY REASON ON SEEN IMAGES RATHER THAN PREVIOUS MEMORIES?

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent works demonstrated that long-chain reasoning paradigms can enhance capabilities of multimodal large language models (MLLMs) to solve complex problems. However, the precise reasons for the effectiveness of such paradigms remain unclear and difficult to probe. Specifically, it is challenging to analyze with quantitative results how much the model’s extraction of visual cues and reasoning during the long-chain inference process contribute to its performance improvements. Therefore, evaluating the faithfulness of MLLMs’ reasoning to visual information is crucial. To address this issue, we first present a cue-driven automatic and instruction-following image editing pipeline with GPT-Image-1. Furthermore, we introduce VFaith-Bench, the first benchmark to our knowledge to evaluate MLLMs’ visual faithfulness when generating long reasoning process. Using the designed pipeline, we constructed comparative question-answer pairs by editing the visual cues in images that are crucial for solving the original reasoning problem, thereby changing the question’s answer to another option. By testing similar questions with images that have different details, the average accuracy reflects the model’s visual reasoning ability, while the difference in accuracy before and after editing the test set images effectively reveals the model’s faithfulness of reasoning to visual cues. We developed a filtering mechanism based on multi-model detection to identify error reason and self-contradictory within images. This approach, combined with manual verification, effectively eliminates image quality degradation. We conducted in-depth testing and analysis of existing mainstream flagship models and prominent open-source model series/reasoning models on VFaith-Bench, further investigating the underlying factors of their reasoning capabilities. Our code and data will be open-sourced after review period.

1 INTRODUCTION

With the advancement of multimodal large language models (MLLMs) (Li et al., 2024; Team et al., 2025; Wu et al., 2024; 2025; Zhu et al., 2025; Chen et al., 2025a; Team et al., 2023; Hurst et al., 2024; Guo et al., 2025b), the concepts of reasoning and slow-thinking have gained significant attention. Following the emergence of GPT-01 (Jaech et al., 2024), numerous studies have explored the complex reasoning and extended thinking chains of MLLMs from various angles, including data synthesis and training methodologies. Approaches like InternVL MPO (Wang et al., 2024b), Llava-cot (Xu et al., 2024), which utilize structured Chain of Thought (CoT)(Lu et al., 2022; Wei et al., 2022; Yao et al., 2023) outputs, have achieved test-time scaling through structurally formed data, significantly enhancing the capability limits of MLLMs in tackling complex problems. With the growing popularity of DeepSeek R1 (Guo et al., 2025a), works such as Visual-RFT (Liu et al., 2025), VLAA-Thinking (Chen et al., 2025b), and Kimi k1.5 (Team et al., 2025) have integrated reinforcement learning algorithms like GRPO and DAPO (Yu et al., 2025) into MLLM training, further explored the capability limits of MLLMs in fields such as mathematics and coding. The combination of formalized rewards and reinforcement learning has become a common approach to train reasoning MLLMs.

Despite the establishment of reasoning patterns through structured data formatting and reinforcement learning, the precise mechanisms by which visual input and reasoning interact to augment large

054 model capabilities are still poorly defined or understood. Research on hallucinations (Li et al., 2023;
 055 Guan et al., 2024; Bai et al., 2024) in many MLLMs highlights a gap between the visual input and
 056 the reasoning process outputs in certain scenarios, indicating that the reasoning process of MLLMs
 057 may not always strictly adhere to the provided visual information.

058 But the frustrating reality is that analysis with quantitative results and comprehensive evaluations
 059 for assessing the visual fidelity of mainstream multimodal large reasoning models to their input are
 060 currently lacking. Furthermore, research on inconsistencies between reasoning and visual information
 061 in multimodal reasoning has been limited to manual case collection, lacking an efficient, large-scale
 062 pipeline for synthesizing erroneous reasoning data by attacking the reasoning process from a visual
 063 input perspective. This inefficiency hinders the progress of related research.

064 In response to this challenge, we propose VFaith-Bench, a benchmark built upon a cue-driven
 065 automatic and controllable editing pipeline that generates carefully constructed isomorphic problem
 066 pairs. These pairs feature visually similar inputs where subtle yet critical alterations to visual cues
 067 lead to different correct outcomes for the same query, thereby strictly probing models' reliance on
 068 visual evidence in their reasoning. This design is motivated and validated by the observation that
 069 humans, having understood the reasoning process and answer for a complex multimodal problem,
 070 can reliably solve these variants with near-perfect accuracy after only core visual modifications.
 071 Conversely, a significant performance drop in models on such pairs implies that their success on
 072 the original problems may not necessarily stem from true visual observation coupled with robust
 073 reasoning, but potentially from brittle patterns. Utilizing this benchmark, we conducted extensive
 074 evaluations to assess the visual fidelity and adherence capabilities of mainstream multimodal large
 075 reasoning models.

076 We applied our systematically designed cue-driven image editing pipeline to M3CoT (Chen et al.,
 077 2024b) and MegaBench (Chen et al., 2024a), two of the most recent comprehensive multimodal
 078 datasets, extracting questions from different distributions to construct a dataset consisting of 755
 079 entries across six subsets. Through secondary manual verification, we ensured that the newly
 080 generated images are visually coherent and result in inconsistent standard answers with the original
 081 questions. This allows us to assess whether the models truly observe image-related cues and reason
 082 according to these cues. Using our constructed VFaith-Bench, we evaluated a range of prominent
 083 MLLMs, encompassing leading closed-source SOTA interfaces and popular open-source models with
 084 their reasoning variants. We found that:

- 085 • **Performance Degradation:** All models exhibited a significant average performance drop on
 086 questions featuring modified visual cues, indicating a high propensity for hallucination despite
 087 potentially coherent reasoning.
- 088 • **Perception Discrepancy:** Models exhibited significant hallucination in visual cue perception; a
 089 dedicated subset testing this yielded consistently low accuracy.
- 090 • **Pattern Adherence:** Hallucinations occurred even with modified benchmark data, where models
 091 often selected original, incorrect options, suggesting data leakage or over-reliance on training
 092 patterns instead of current visual information.

093 In summary, our work makes the following contributions:

- 095 • We developed VFaith-Bench (Figure 1), a benchmark to evaluate MLLMs' visual reasoning
 096 ability with an emphasis on the visual faithfulness, and conducted extensive evaluations of
 097 mainstream models.
- 098 • We introduce a cue-driven automatic and controllable editing pipeline (Figure 2), which is
 099 the first to leverage instruction-following image editing models for generating multimodal
 100 benchmark data specifically designed to probe model reasoning chains and induce hallucinations,
 101 and applied in our evaluations.
- 102 • Our evaluations of mainstream closed-source models, open-source models, and their reasoning
 103 variants revealed deficiencies in visual cue perception and adherence abilities, as well as potential
 104 data leakage and memory issues in existing benchmarks. These findings provide guidance for
 105 training more reliable multimodal large reasoning models in the future.

106 We believe this method, enabling the systematic creation of challenging test cases, holds significant
 107 potential as a key means for both diagnosing and advancing model capabilities in the long term.

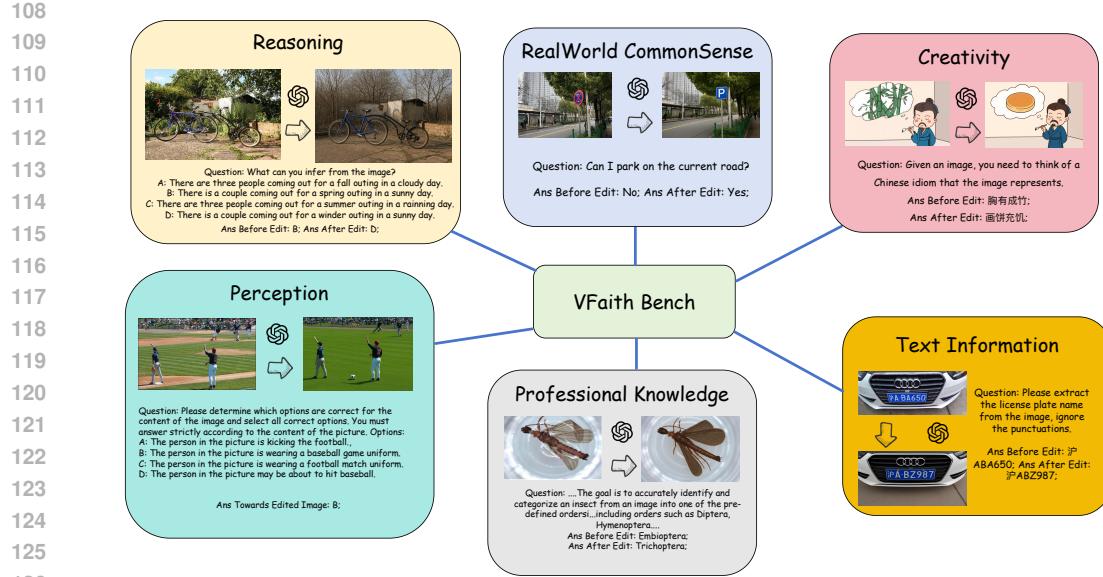


Figure 1: Overall view of VFaith-Bench. VFaith-Bench includes six subsets, 755 inputs. These are categorized into five subsets based on the content of the questions, along with a perception subset that directly queries the visual cues in the images. The image on the left side of each box is the original benchmark image, while the right is image edited by GPT-image-1.

2 RELATED WORK

Multimodal Reasoning Benchmarks. Advancements in Multimodal Large Models (MLLMs) have intensified focus on visual reasoning, spurring the development of cutting-edge multimodal reasoning benchmarks. These typically span diverse domains for comprehensive or domain-specific assessments. For instance, M3CoT comprehensively evaluates multimodal reasoning in science, common sense, and mathematics; MegaBench emphasizes real-world scenarios with 500 tasks; and benchmarks like MathVision (Wang et al., 2024a), WeMath (Qiao et al., 2024), and OlympiadBench (He et al., 2024) concentrate on detailed math and science reasoning. While these benchmarks have validated MLLM visual reasoning progress, they primarily explore existing capability boundaries. VFaith Bench differs by first evaluating visual reasoning across domains, then perturbing key visual cues via image editing. By analyzing changes in model responses pre- and post-perturbation, it aims to uncover the sources of MLLM visual reasoning improvements. Although some visual hallucination benchmarks assess visual understanding by altering visual information, their evaluations are often limited to simple comprehension judgments. They may not ascertain whether a model, within a reasoning context, accurately perceives visual cues rather than relying on data biases, which VFaith well addresses. We discuss more related multimodal reasoning methods and hallucination benchmarks in the appendix section A.2.

3 METHODOLOGY

3.1 CUE-DRIVEN AUTOMATIC AND CONTROLLABLE EDITING PIPELINE

Our process of synthesizing dual problems, illustrated in Figure 2, can be divided into the following three steps:

- **Step 1:** Extract visual cues towards origin question which relate to the groundtruth answer.
- **Step 2:** Generate rational modification suggestions to make original question have a new answer. Then invoke GPT-image-1 to complete image editing using the original image and the suggestions generated.

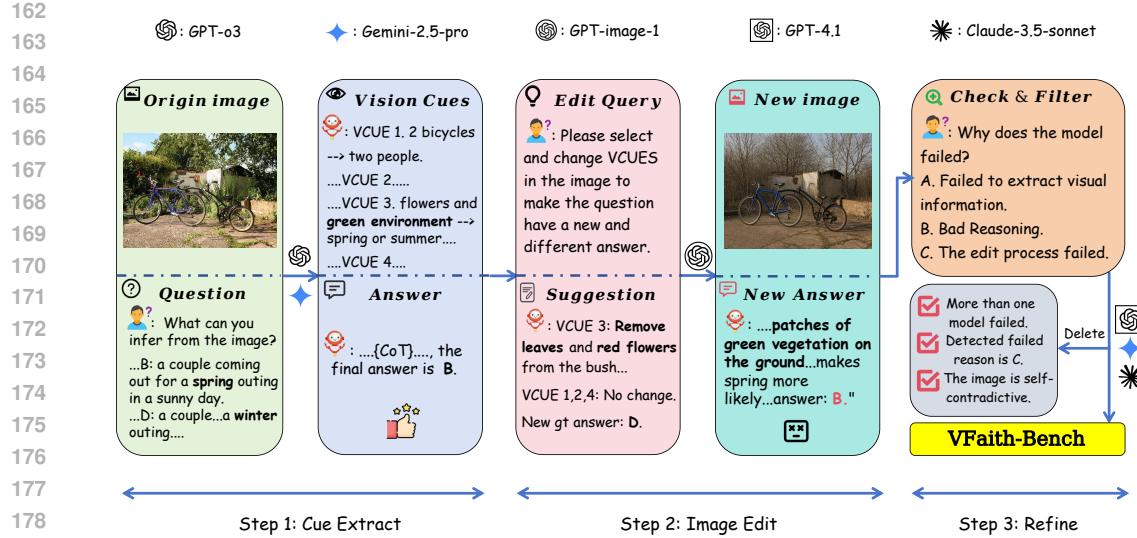


Figure 2: Our dual cue-driven image editing pipeline. First, SOTA reasoning models were employed to extract correct answers with long CoT and corresponding visual cues towards origin question. Then we used Gemini-2.5-pro to generate editing suggestions for useful visual cues, thereby guiding GPT-image-1 to perform edits on the original images, resulting in new correct answers. Finally, the newly generated image-question-answer triplets were used to evaluate models.

- **Step 3:** Refine the bench by deleting cases that fail to edit correctly to the suggestions and those have internal inconsistencies in edited images.

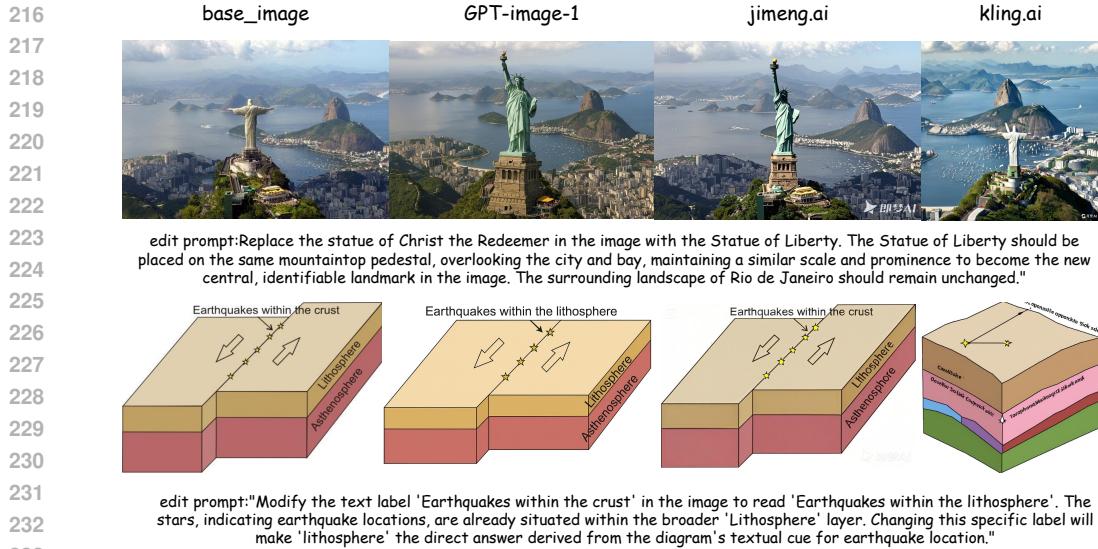
3.1.1 VISION REASONING WITH CUE

A critical aspect addressed early in this paper is how to get vision cues. We introduce a multimodal reasoning output style that differs from previous multimodal reasoning works (such as llava-cot (Xu et al., 2024), mulberry (Yao et al., 2024), vlm-r1 (Shen et al., 2025)). Previous works complete test-time scaling in different ways, like requiring models to output in a formalized, phased manner with observation, analysis or summarization (as seen in llava-cot), or like deepseek-r1 (Guo et al., 2025a), letting models concentrate the observation and reasoning process entirely within the tags before outputting a conclusion, without any guidance for the thinking process.

The former approach, relying on a formalized CoT, often restricts output diversity and yields an unclear connection between visual content and the generated summary. Conversely, the latter approach, lacking any guidance or restrictions, tends to produce CoT outputs with reduced readability, complicating the extraction of crucial visual cues.

To effectively address these issues, we propose a MLLM reasoning output paradigm similar to the vision clues style depicted in Figure 3. Integrating the two aforementioned methods, we minimize the formalization requirements for models during test-time scaling, allowing them to reason based on the question and image content itself in any format, free from structural constraints. Models simply need to mark any referenced visual cues using the format `<vcues_*></vcues_*>`, with `*` representing a number. These cues are then used for visual cue extraction and edit. The `<vcues_>` markers for visual cues effectively help us quickly extract cues that are crucial for reasoning, greatly improving the success rate of generating editing suggestions in the subsequent steps.

To obtain an effective and reasonable reasoning process and vision cues for all the data in our benchmark, we tested several open-source and closed-source models in practice, including GPT-03 and Gemini-2.5-pro. Ultimately, by synthesizing results from multiple models, we acquired candidate visual cues and reasoning outcomes for the images. An example is shown in the figure on the right. For specific prompts and more examples, please refer to the appendix section A.3.



270 In previous section, we thoroughly presented the
 271 outcomes of various SOTA image editing mod-
 272 els and interfaces on our selected data. However,
 273 reliable image editing still remains a challenge.
 274 For example, original answer may be linked to
 275 multiple visual cues, and partial editing of these
 276 cues results in ambiguous new image-text ques-
 277 tion pairs. This necessitates a manual review
 278 of the batch-generated cases. We developed an
 279 image quality checking pipeline to facilitate the
 280 rapid construction of the entire benchmark in
 281 Table 1.

282 Based on the established suitability of M3CoT
 283 and MegaBench for challenging multimodal rea-
 284 soning, we selected 664 entries to serve as the
 285 foundation for our dual problem pairs. The se-
 286 lection process intentionally excluded question types less amenable to visual modification, such as
 287 those requiring highly creative interpretation. The remaining 91 tasks in the benchmark are designed
 288 to assess the model’s direct perceptual ability regarding the internal information of edited images. A
 289 detailed discussion of this will be presented in Section 3.2.2.

290 Using the methods introduced above, we generated corresponding dual images for all entries and
 291 manually verified that the same question towards edited image also has a correct results within the
 292 original options, and the original answer in non-edit dataset is no longer correct. We categorized these
 293 664 entries into five categories based on content, as shown in Figure 1, with 235 Real World Common
 294 Sense(RWS), 132 Reasoning(REA), 169 Professional Knowledge(PFK), 57 Creativity(CRE) and 71
 295 Text Information(TIF). The remaining perception task will be introduced in next section.

296 3.2.2 PERCEPTION TASK AND REPEAT RATIO METRIC

297 During evaluations, we observed a significant performance decline in current MLLMs on modified
 298 dual questions. Understanding the precise reasons for this decline is crucial, so we designed an
 299 additional **Perception Task** and a key metric **Repeat Ratio** to analyze these issues.

300 **Perception Task:** We selected 91 edited images and constructed questions focused on perceptual
 301 judgment by integrating original and modified visual cues. This type of question aims to directly
 302 assess the model’s ability to get visual cues. We manually created multiple-choice options towards
 303 vision cues before and after edit to challenge the model to identify the correct descriptions of the
 304 modified visual cues.

305 **Repeat Ratio Metric:** Beyond errors caused by failing to interpret visual cues, we also seek to explore
 306 issues arising from the exact replication of the original question content and largely unchanged image
 307 content and structure. This could be due to the model’s exposure to similar data during training,
 308 preventing it from breaking away from prior knowledge to produce accurate results. Alternatively, it
 309 could indicate a bias towards certain paradigms or difficulty in following specific instructions. The
 310 repeat ratio metric is calculated as follow, where q , a_{ori} , a_{edit} means input question and the answer
 311 model generates before and after editing image, gt_{ori} and gt_{edit} means groundtruth answer to the
 312 question before and after edit. $|\cdot|$ means the number of elements in a set. We hope this metric can
 313 indicate the proportion of hallucinations generated by the model’s “memory”.

$$315 \text{Repeat Ratio} = \frac{|\{(q, a_{ori}, a_{edit}) \mid a_{edit} = a_{ori} = gt_{ori}\}|}{|\{(q, a_{ori}, a_{edit}) \mid a_{edit} \neq gt_{edit}, a_{ori} = gt_{ori}\}|}$$

319 4 EXPERIMENTS

320 4.1 SETTINGS

321 **Evaluated Models:** For testing, models were categorized into closed-source APIs, including Gemini-
 322 2.5-pro, GPT-4o, Claude-3.7-Sonnet, and SEED1.5-VL, and open-source models divided into three

Table 1: Dummy code of image quality checking

Image Quality Checking Pipeline

```
maxtry = 5, try = 0, model = "Gemini-2.5-pro";
editor = "GPT-image-1", judge = "Claude-3.5";
input pic, q, vcue;
while try < maxtry:
    try++;
    edit_idea = model(vcue);
    if judge(edit_idea, q, pic) == "pass":
        pic_new = editor(pic, edit_idea);
        if human(edit_idea, pic_new) == "pass":
            return pic_new, edit_idea, model_ans;
```

324
 325
 326
 327
 328
 329 Table 2: Results of closed-source and large open-source Models. The relationship between abbreviations
 330 and category can be found in section 3.2.1. **Raw** and **Edit** means model’s accuracy on dataset
 331 before and after editing, while Δ , the key metric in our evaluation, is the change in the model’s
 332 accuracy after editing images.
 333

330 Model	331 Metric	332 Type						333 Repeat	334 Perception
		335 RWS	336 REA	337 PFK	338 CRE	339 TIF	340 Overall		
331 Gemini-2.5-pro	Edit	76.89	78.79	87.57	85.96	97.01	82.81	84.78 (± 0.98)	336 86.36 41.76
	Raw	89.92	86.36	88.76	85.96	94.12	89.01	89.20 (± 1.16)	
	Δ	-13.03	-7.57	-1.19	+0.00	+2.89	-6.20	-4.50	
333 GPT-4o	Edit	71.01	67.42	81.07	73.68	95.59	75.60	76.64(± 1.25)	334 86.96 36.26
	Raw	81.09	74.24	84.02	77.19	94.12	81.48	81.28(± 1.35)	
	Δ	-10.08	-6.82	-2.95	-3.51	+1.47	-5.88	-4.64	
336 Seed1.5-VL	Edit	74.37	71.97	84.02	71.93	97.06	78.46	80.96(± 1.14)	337 87.50 50.50
	Raw	88.24	84.09	86.98	61.40	94.12	85.39	85.60 (± 1.25)	
	Δ	-13.87	-12.12	-2.96	+10.53	+2.94	-6.93	-4.64	
338 Claude-3.7	Edit	66.81	67.42	81.66	64.91	89.71	72.89	74.88(± 1.31)	339 72.92 37.36
	Raw	76.73	75.00	79.29	50.88	80.88	75.60	75.68(± 1.39)	
	Δ	-9.92	-7.58	+2.37	+14.03	+8.83	-2.71	-0.80	
341 Qwen2.5-72B	Edit	67.65	65.91	74.56	49.12	91.18	69.88	70.72(± 1.29)	342 79.32 25.27
	Raw	78.15	78.79	72.19	71.93	85.29	76.96	77.44(± 1.38)	
	Δ	-10.50	-12.88	+2.37	-22.81	+5.89	-7.08	-6.72	
343 Qwen2.5-32B	Edit	66.39	60.61	76.33	54.39	91.18	69.28	70.35(± 1.39)	344 85.71 28.57
	Raw	78.57	75.00	76.33	59.65	77.94	75.60	75.80(± 1.47)	
	Δ	-12.18	-14.39	+0.00	-5.24	+13.24	-6.32	-5.45	
346 InternVL3-78B	Edit	60.92	55.30	58.58	45.61	85.29	60.39	61.12(± 1.27)	347 80.52 46.15
	Raw	83.19	67.42	79.29	70.18	86.76	78.31	78.08(± 1.54)	
	Δ	-22.27	-12.12	-20.71	-24.57	-1.47	-17.92	-16.96	
348 InternVL3-38B	Edit	61.34	58.33	61.54	57.89	82.35	62.65	63.68(± 1.41)	349 73.13 40.66
	Raw	78.57	72.73	81.66	49.12	85.29	76.36	76.48(± 1.54)	
	Δ	-17.17	-14.40	-20.08	+12.87	-2.96	-13.71	-12.80	
351 Ovis2-34B	Edit	68.07	63.64	66.27	62.07	89.71	68.42	69.33(± 1.31)	352 74.55 37.36
	Raw	81.51	78.03	66.27	64.91	91.18	76.51	76.96(± 1.45)	
	Δ	-13.44	-14.39	+0.00	-2.84	-1.47	-8.09	-7.63	

353
 354 Table 3: Results of all open-source models and smaller reasoning models
 355

356 Model on Overall	357 Raw	358 Edit	359 Δ	360 Refined	361 Δ	362 Repeat	363 Perception
357 InternVL3-78B	78.31	60.39	-17.92	-16.96	80.52	46.15	
358 InternVL3-38B	76.36	62.65	-13.71	-12.80	73.17	40.66	
359 Ovis2-34B	76.51	68.42	-8.09	-7.63	74.55	37.36	
360 Qwen2.5-VL-72B	76.96	69.88	-7.08	-6.72	79.32	25.27	
361 Qwen2.5-VL-32B	75.60	69.28	-6.32	-5.45	85.71	28.57	
362 InternVL3-8B	69.28	57.23	-12.05	-11.47	81.16	30.77	
363 InternVL2.5-8B-MPO	64.91	57.08	-7.83	-7.04	80.60	34.07	
364 Qwen2.5-VL-7B	67.62	60.24	-7.38	-6.08	68.85	16.48	
365 Ovis2-8B	68.98	64.46	-4.52	-3.10	75.47	29.67	
366 Valley2-7B-DPO	68.07	65.61	-2.46	-1.65	80.36	20.90	
367 VLAA-Thinker-Qwen2.5VL-7B	71.99	65.66	-6.33	-6.42	84.48	31.87	
368 Llama-3.2V-11B-cot	58.73	56.24	-2.49	-1.90	76.79	20.88	
369 Kimi-VL-A3B-Thinking	67.32	66.57	-0.77	+0.96	76.79	37.36	

370 categories: model series with varying scales (e.g., Qwen2.5-VL, InternVL3) to observe performance
 371 changes with size; lightweight models (e.g., InternVL2.5-8B-MPO, Valley2-DPO) added to the
 372 smallest versions to establish a baseline for slow-thinking models; and SOTA reasoning/slow-thinking
 373 models (e.g., Kimi-VL-A3B-Thinking) to evaluate their claimed robust reasoning performance.
 374

375 **Evaluation Pipeline:** VFaith consists six categories, mainly divided into VQA and single-choice
 376 questions. We directly queried the models without providing any shots. All thinking models were
 377 set to thinking mode. When evaluating responses, we first specify `\boxed{}` as the output format,
 extract answers from it, and directly compare them with the standard answers. However, non-

378 multiple-choice questions are not suitable for direct matching. Therefore, for cases where direct
 379 answer extraction and comparison fail, we use Claude-3.5-Sonnet for further accuracy assessment.
 380

381 **4.2 MAIN RESULTS**
 382

383 **4.2.1 CLOSED-SOURCE AND LARGE OPEN-SOURCE MODELS**
 384

385 Our evaluation results for closed-source and large open-source Models are presented in Table 2.
 386 Based on the analysis of these results, we draw the following conclusions:

387 **Closed-source models still lead multimodal reasoning:** Flagship closed-source models lead significantly
 388 in original results, robustness against reasoning cue attacks, and visual perception. Gemini-2.5-
 389 Pro performed the best, achieving an original accuracy of 89, with only a 6.2-point (4.5 after refining)
 390 drop after image editing. It also perform well in perception metrics. Additionally, Doubao’s latest
 391 model surpasses both GPT-4o and Claude-3.7-sonnet.

392 **Closed-source models are more likely to be trapped in fixed thinking mode:** Closed-source models
 393 are more likely to rely on memorized knowledge when responding, as evidenced by a statistically
 394 higher repeat ratio. This phenomenon may be caused by larger parameters and more textual data
 395 during training, which results in lower attention to visual information.

396 **4.2.2 ALL OPEN-SOURCE MODELS AND SMALLER REASONING MODELS**
 397

398 Our evaluation results for all open-source models and smaller reasoning models are presented in
 399 Table 3. Based on the analysis of these results, we draw the following conclusions:

400 **Series Model Analysis:**
 401

402 • **Scaling law is still well indicated by VFaith.** Across models of varying scales, we can clearly
 403 observe the scaling law in the **Raw** and **Edit** metrics. However, the differences between the 72B
 404 and 32B models are not pronounced, which may relate to the complexity of the problems. Qwen
 405 series models perform well across all sizes in terms of both original results and resistance to
 406 attacks, but their perception is noticeably lower compared to models of the same size.

407 • **Memorization of existing test cases may appear in some finetuned models.** Comparing the
 408 performance of the Qwen2.5-VL-7B baseline and models tuned from Qwen2.5-VL-7B shows
 409 a significant increase in the repeat ratio, indicating that the current performance improvement
 410 may largely stem from memorizing these reasoning data and patterns, rather than internalizing
 411 perceptual enhancements into its reasoning.

412 • **Perception structure matters, but requires more reliable alignment to advance the reasoning.**
 413 InternVL with the biggest vision encoders of all open-source models shows clear
 414 perception dominance, with models detecting modified cues more effectively; however, the
 415 overall results tend to decline. This suggests a possible misalignment between modalities or
 416 perhaps insufficient reasoning capabilities within the Intern series.

417 **Small-sized Model Analysis:** Among open-source MLLMs, those ranked highly perform similarly
 418 across the benchmark. However, Ovis series stands out in tasks after edited, being the closest to
 419 reasoning models. Its repeat ratio is also relatively low. When considering reasoning models, Kimi-
 420 A3B excels in results, reasoning fidelity, and visual perception. It demonstrates the best performance
 421 against adversarial cue modifications.

423 **4.3 ERROR REASON ANALYSIS**
 424

425 In this section, we designed an experiment to analyze reasons behind the model’s failures. We selected
 426 several representative models and used Gemini-2.5-pro to perform automated analysis of the mistake
 427 causes in all error cases. To avoid bias, we use Claude-3.5-Sonnet to assess the Gemini-2.5-pro’s
 428 reasons for errors. We defined the following three types of error reasons:

429 • **Reason 1.** The predicted answer misunderstood the visual information in the image.
 430 • **Reason 2.** The predicted answer has an error in the reasoning process, which is not about visual
 431 information in the image.

432 Table 4: Distribution of 3 kinds of error reasons
433

434 Model	435 Total Error	436 Reason 1	437 Reason 2	438 Reason 3	439 Perception Score
435 Qwen2.5-VL-7B	436 264	437 133 (50.4%)	438 104 (39.4%)	439 27 (10.2%)	440 16.48
436 Qwen2.5-VL-32B	437 203	438 120 (59.1%)	439 66 (32.5%)	440 17 (8.4%)	441 28.57
437 GPT-4o	438 162	439 85 (<u>52.5%</u>)	440 62 (38.3%)	441 15 (9.3%)	442 36.26
438 Claude-3.7	439 180	440 57 (31.7%)	441 100 (55.6%)	442 23 (12.8%)	443 <u>37.36</u>
439 Gemini-2.5-pro	440 114	441 44 (38.6%)	442 56 (<u>49.1%</u>)	443 14 (12.3%)	444 41.76

- 440 • **Reason 3.** The change from original image to edited image doesn't match the edit suggestion,
441 meaning there is a problem in the image editing process. Or the new ground truth answer is
442 wrong.

444 Table 4 shows the distribution of the three error reasons of different models based on our statistics.
445 The results show several points worth noting:

- 446 • The proportion of errors answers attributable to issues arising from image editing is relatively
447 small (~10%). This indicates that our image editing pipeline has a high level of reliability.
- 448 • Models with relatively lower basic capabilities have a higher error rate caused by insufficient
449 visual cue perception. This is consistent with the **perception** metric we set. Models with lower
450 perception scores have poorer visual information extraction capabilities, and consequently make
451 more errors in answering questions due to mistakes in visual information extraction (Reason 1).
- 452 • Models with higher perception scores have strong visual capabilities, and their errors mainly
453 stem from Reason 2, reasoning process. This means that these models' reasoning chains may
454 lack robustness when facing varying visual inputs or not strictly follow visual information.

456 4.4 IMAGE EDITING QUALITY CONTROL AND REFINE

458 During editing images, the decline in image quality is worth noting. Low-quality edited images can
459 result in ambiguity, which affects the validity of the evaluation. Besides manual check in Table 1, we
460 also selected all **Reason 3** examples from Table 4. If an example appears at least twice under Reason
461 3, it indicates a high probability that it's a low-quality case caused by errors during the image editing
462 process. After this round of filtering, we identified 21 low-quality samples.

463 Another potential cause of data quality degradation is partial editing of images that leads to self-
464 contradictory content within the images. To address this issue, we employed Gemini-2.5-pro,
465 Claude-3.5-sonnet, and GPT-4.1 to jointly evaluate the degree of self-contradiction of all edited
466 images. The scoring scale ranged from 0 to 10, where 0 indicates severe self-contradiction and 10
467 signifies complete consistency. 18 cases with an average score below 3 were removed.

468 The results after refine can be found in the **refined** columns of Tables 2 and 3. After refining, the
469 average value of Δ decreased by about 1%, while the relative magnitudes of Δ among different
470 models remained almost unchanged, demonstrating the robustness of our evaluation. We also
471 estimated the standard deviation of each model's accuracy on the refined dataset of 716 cases by
472 performing 1,000 bootstrap iterations with a size of 1,000, enhancing the statistical significance of
473 the results. The prompt used for checking image quality is provided in appendix A.3.

475 5 CONCLUSION

477 To evaluate the faithfulness of MLLMs' reasoning to visual information, we introduced VFaith-
478 Bench, a benchmark designed to probe visual reasoning via image editing. By extracting visual cues
479 within VQA questions and use GPT-image-1 to edit images, we constructed dual problem pairs that
480 are subtle different. VFaith contains six subsets including an additional perception task, utilizes
481 metrics to assess hallucination, visual cue perception accuracy, and reasoning performance on these
482 edited inputs. Our evaluation revealed that this approach effectively challenges current model CoTs.
483 The findings show importance of making MLLMs accurately perceive visual information during
484 reasoning, while also suggesting potential issues of data leakage and memorization in existing bench.
485 Limitations like high editing time cost and insufficient fidelity in detail modifications on some tasks
are discussed in Appendix A.5.

486 6 ETHICS STATEMENT
487488 We hereby affirm that our dataset does not contain any content that may contravene ethical standards.
489 In the manual verification phase, we ensured the ethical integrity of the dataset.
490491 7 REPRODUCIBILITY STATEMENT
492493 We affirm that the data synthesis, image editing, and quality control components employed in our
494 study can be reproduced using the prompts provided in the appendix A.3 and the language models
495 referenced in the main text. The foundational dataset of VFaith-Bench is derived from publicly
496 available benchmarks mentioned in section 3.2.1, ensuring full reproducibility.
497498 REFERENCES
499500 Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
501 Hallucination of multimodal large language models: A survey. *arXiv preprint arXiv:2404.18930*,
502 2024.503 Guo Chen, Zhiqi Li, Shihao Wang, Jindong Jiang, Yicheng Liu, Lidong Lu, De-An Huang, Wonmin
504 Byeon, Matthieu Le, Tuomas Rintamaki, et al. Eagle 2.5: Boosting long-context post-training for
505 frontier vision-language models. *arXiv preprint arXiv:2504.15271*, 2025a.506 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
507 Xie. Sft or rl? an early investigation into training r1-like reasoning large vision-language models.
508 *arXiv preprint arXiv:2504.11468*, 2025b.509 Jiacheng Chen, Tianhao Liang, Sherman Siu, Zhengqing Wang, Kai Wang, Yubo Wang, Yuansheng
510 Ni, Wang Zhu, Ziyan Jiang, Bohan Lyu, et al. Mega-bench: Scaling multimodal evaluation to over
511 500 real-world tasks. *arXiv preprint arXiv:2410.10563*, 2024a.512 Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. M 3 cot: A novel bench-
513 mark for multi-domain multi-step multi-modal chain-of-thought. *arXiv preprint arXiv:2405.16473*,
514 2024b.515 Zhenfang Chen, Qinhong Zhou, Yikang Shen, Yining Hong, Hao Zhang, and Chuang Gan. See,
516 think, confirm: Interactive prompting between vision and language models for knowledge-based
517 visual reasoning. *arXiv preprint arXiv:2301.05226*, 2023.518 Chenhang Cui, Yiyang Zhou, Xinyu Yang, Shirley Wu, Linjun Zhang, James Zou, and Huaxiu Yao.
519 Holistic analysis of hallucination in gpt-4v (ision): Bias and interference challenges. *arXiv preprint
520 arXiv:2311.03287*, 2023.521 Hao Fei, Shengqiong Wu, Wei Ji, Hanwang Zhang, Meishan Zhang, Mong-Li Lee, and Wynne Hsu.
522 Video-of-thought: Step-by-step video reasoning from perception to cognition. *arXiv preprint
523 arXiv:2501.03230*, 2024.524 Chaoyou Fu, Yi-Fan Zhang, Shukang Yin, Bo Li, Xinyu Fang, Sirui Zhao, Haodong Duan, Xing Sun,
525 Ziwei Liu, Liang Wang, et al. Mme-survey: A comprehensive survey on evaluation of multimodal
526 llms. *arXiv preprint arXiv:2411.15296*, 2024.527 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
528 Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for entan-
529 gled language hallucination and visual illusion in large vision-language models. In *Proceedings of
530 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14375–14385, 2024.531 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
532 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
533 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.534 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
535 Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. *arXiv preprint arXiv:2505.07062*,
536 2025b.

540 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 541 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 542 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
 543 *arXiv:2402.14008*, 2024.

544 Hongyu Hu, Jiyuan Zhang, Minyi Zhao, and Zhenbang Sun. Ciem: Contrastive instruction evaluation
 545 method for better instruction tuning. *arXiv preprint arXiv:2309.02301*, 2023.

547 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 548 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 549 *arXiv:2410.21276*, 2024.

550 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 551 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 552 *arXiv:2412.16720*, 2024.

554 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 555 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 556 *arXiv:2408.03326*, 2024.

557 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
 558 hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023.

560 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 561 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025.

563 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 564 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 565 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 566 2022.

567 Minheng Ni, Yutao Fan, Lei Zhang, and Wangmeng Zuo. Visual-o1: Understanding am-
 568 biguous instructions via multi-modal multi-turn chain-of-thoughts reasoning. *arXiv preprint*
 569 *arXiv:2410.03321*, 2024.

571 Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma GongQue,
 572 Shanglin Lei, Zhe Wei, MiaoXuan Zhang, et al. We-math: Does your large multimodal model
 573 achieve human-like mathematical reasoning? *arXiv preprint arXiv:2407.01284*, 2024.

574 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 575 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 576 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

578 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 579 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 580 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

582 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 583 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
 584 llms. *arXiv preprint arXiv:2501.12599*, 2025.

585 Andrés Villa, Juan Carlos León Alcázar, Alvaro Soto, and Bernard Ghanem. Behind the magic,
 586 merlim: Multi-modal evaluation benchmark for large image-language models. *arXiv preprint*
 587 *arXiv:2312.02219*, 2023.

588 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
 589 Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. *Advances*
 590 *in Neural Information Processing Systems*, 37:95095–95169, 2024a.

592 Weiyun Wang, Zhe Chen, Wenhui Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu,
 593 Xizhou Zhu, Lewei Lu, Yu Qiao, et al. Enhancing the reasoning ability of multimodal large
 594 language models via mixed preference optimization. *arXiv preprint arXiv:2411.10442*, 2024b.

594 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 595 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 596 *neural information processing systems*, 35:24824–24837, 2022.

597
 598 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 599 Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
 600 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024.

601 Ziheng Wu, Zhenghao Chen, Ruipu Luo, Can Zhang, Yuan Gao, Zhentao He, Xian Wang, Haoran
 602 Lin, and Minghui Qiu. Valley2: Exploring multimodal models with scalable vision-language
 603 design. *arXiv preprint arXiv:2501.05901*, 2025.

604
 605 Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language
 606 models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024.

607 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 608 Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal reasoning
 609 through cross-modal formalization. *arXiv preprint arXiv:2503.10615*, 2025.

610 Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie Wang,
 611 Yuxin Song, Haocheng Feng, Li Shen, et al. Mulberry: Empowering mllm with o1-like reasoning
 612 and reflection via collective monte carlo tree search. *arXiv preprint arXiv:2412.18319*, 2024.

613
 614 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
 615 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
 616 *URL* <https://arxiv.org/abs/2305.10601>, 3, 2023.

617
 618 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 619 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
 620 *arXiv preprint arXiv:2503.14476*, 2025.

621 Yufei Zhan, Ziheng Wu, Yousong Zhu, Rongkun Xue, Ruipu Luo, Zhenghao Chen, Can Zhang, Yifan
 622 Li, Zhentao He, Zheming Yang, Ming Tang, Minghui Qiu, and Jinqiao Wang. Gthinker: Towards
 623 general multimodal reasoning via cue-guided rethinking, 2025. *URL* <https://arxiv.org/abs/2506.01078>.

625 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
 626 Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 627 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

629 A APPENDIX

632 A.1 THE USE OF LARGE LANGUAGE MODELS

633 In this research, LLMs were used for polishing the written drafts of this article, generating clues, edit
 634 suggestion and edited images in our main method. We guarantee that LLMs were not used for idea
 635 generation, experiment design, reference generation or any other purposes.

637 A.2 RELATED WORKS

639
 640 **Multimodal reasoning methods.** With the advancement of text-based reasoning models, multimodal
 641 reasoning models have also seen parallel development. The implementation of multimodal large
 642 reasoning models primarily involves methods such as Rationale Construction (e.g., Video-of-thought
 643 (Fei et al., 2024) and IPVR (Chen et al., 2023)), extensive CoT data training (e.g., Visual-o1 (Ni
 644 et al., 2024) and Llava-CoT (Xu et al., 2024)), and reinforcement learning (e.g., R1-OneVision (Yang
 645 et al., 2025), G-Thinker (Zhan et al., 2025) and VLM-R1 (Shen et al., 2025)). These approaches have
 646 enabled multimodal large reasoning models to achieve step-by-step reasoning for complex problems
 647 and improvements in model performance metrics. However, there is still a lack of in-depth mechanistic
 research into the reasons behind these performance enhancements. The aim of VFaith-Bench is to
 determine whether the model’s reasoning process genuinely reflects the input visual information or

648 if the responses are influenced by memorized patterns of specific image structures during training.
 649 This study is beneficial for assessing the faithfulness of MLLM reasoning to visual information,
 650 contributing to the development of more reliable and powerful multimodal large reasoning models.
 651

652 **Hallucination Benchmarks.** In MLLMs, hallucinations typically refer to text responses generated
 653 by the model that are inconsistent with the image information. Previous reviews have categorized
 654 multimodal model hallucinations into three types: object category, object attribute, and object relation
 655 (Bai et al., 2024), with our work primarily focusing on the latter two categories. Some evaluations
 656 of hallucinations in MLLMs already exist. Early benchmarks such as POPE (Li et al., 2023) and
 657 MME (Fu et al., 2024) primarily consist of simple Yes-or-No tasks, which are insufficient for testing
 658 the performance of more advanced MLLMs. While CIEM (Hu et al., 2023) automates hallucination
 659 evaluation using large language models, its automation is limited to question generation. Bingo (Cui
 660 et al., 2023) examines hallucinations caused by perturbations in input information but relies entirely
 661 on manual annotation for dual image generation rather than automation. MERLIM (Villa et al., 2023)
 662 employs edited images for more targeted evaluations, but its image edits are limited to object instance
 663 removal, lacking diversity. VFaith-Bench has established an automated dual data synthesis pipeline
 664 for cue extraction and targeted editing of the reasoning chain, achieving more diverse image edits.
 665 This allows for more precise attacks on the reasoning processes of inference models, significantly
 666 enhancing data diversity, attack specificity, and automation.
 667

668 A.3 PROMPTS

669 In this section, we present the prompts used in the cue-driven automatic and controllable editing
 670 pipeline, as well as those employed in the evaluation process. Figure 4 illustrates the prompt utilized
 671 during the generation of visual cues. Within this prompt, we instruct the model to format the reasoning
 672 process using `<think></think>` tags, and to annotate extracted visual cues with `<vcues_i></vcues_i>`
 673 tags. This facilitates subsequent modifications of visual cues during image editing. We provide
 674 the model with few-shot examples within the prompt to enhance its understanding of visual cue
 675 extraction.

676 Figure 5 displays the prompt used to instruct the model to provide suggestions for editing visual cues
 677 based on the input question, image, and origin visual cues. In this prompt, we require the model
 678 to propose modifications to the cues without excessively altering the image. Another restriction is
 679 that the original answer should become incorrect after editing and that there should be a unique new
 680 correct answer. At this stage, we also provide the model with few-shot prompts to assist in generating
 681 suggestions for editing the visual cues. During the generation process, the model first generates the
 682 new answer, then formulates suggestions for editing the image based on this answer. Finally, the
 683 output is formatted in JSON to facilitate the extraction of the new answer and editing suggestions for
 684 subsequent processes.

685 Figure 6 illustrates the prompt used during the evaluation part. This prompt requires the model to first
 686 generate a CoT based on the analysis of the question and the content of the input image, followed by
 687 providing an answer. Within the prompt, we constrain the model to respond strictly according to the
 688 content of the image, thereby minimizing potential hallucinations from the aspect of prompts. At this
 689 stage, we conduct zero-shot testing instead of providing few-shot examples to accurately assess the
 690 model’s faithfulness to the visual cues. The final output of the model is formatted using `\boxed{}` to
 691 facilitate the extraction of answers for evaluation purposes.

692 Figures 7 and 8 present the prompts employed during the refinement process. The prompt illustrated
 693 in Figure 7 provides the original image, the edited image, editing suggestions, question, and the
 694 ground truth answers before and after editing, enabling the model to determine the specific reason for
 695 errors made by the answering model. In contrast, the prompt in Figure 8 directs the model to assign a
 696 score based solely on the degree of self-contradiction present in the edited image. Utilizing these two
 697 prompts, we successfully implemented an effective automated filtering procedure.

698 A.4 CASE ANALYSIS

699 We have provided an anonymous GitHub repository containing the full benchmark, available at
 700 <https://anonymous.4open.science/r/VFaith-Anonymous-C891>. In this section, we present example
 701 data from VFaith-Bench, including examples from both a non-perception subset (Figure 9, Figure
 10) and a perception subset (Figure 11, Figure 12). In our publicly available complete benchmark, a

sample from the non-perception subset includes a pair of original and edited images along with a single question. This question yields different answers when given the edited and unedited images as input. We evaluate various models' accuracy in answering this question before and after image editing on each non-perception subset. Conversely, in the perception subset, we include only the edited image and a corresponding question manually constructed by the authors. This question poses four options based on visual cues from the original image, and the model is directly queried. After editing, some options reflect changes in visual cues compared to the original image. We assess the models' accuracy in answering the manually constructed questions within the perception subset.

A.5 LIMITATION

In this paper, we have developed an efficient dual data synthesis pipeline to assess the model's ability to adhere to visual information. However, our practical implementation has encountered several limitations. Most image editing models, such as GPT-image-1, are closed-source and impose a query per minute (QPM) restriction, which limits the speed of our data synthesis. The release of advanced open-source image editing models in the future could potentially help expand our dataset. Furthermore, the end-to-end process of generating and editing opinions through models faces security constraints that affect the quality and efficiency of data synthesis. For instance, to ensure security, models often generate standard placeholders like '123456' when editing strings such as phone numbers. Additionally, editing requests involving facial information may be rejected by image editing model APIs due to security restrictions. To ensure that our published dataset is responsible and free from harmful content, we have conducted a manual review of the benchmark data released.

A.6 BROADER IMPACT

Our work provides a crucial tool for researchers and developers to analyze the faithfulness of visual information processing in these models. This has significant implications for the development of AI systems that require reliable integration of visual and textual data, such as in autonomous vehicles, medical diagnostics, and assistive technologies. Our cue-driven editing pipeline, leveraging advanced image editing techniques, not only aids in evaluating existing models but also sets a foundation for improving model training methodologies and synthesizing training data. Furthermore, by highlighting discrepancies in model reasoning and visual perception, our research encourages transparency and accountability in AI development, fostering trust and ethical standards in deploying AI solutions across various industries.

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Prompt Used During Generate Visual Cues Towards Origin Question.

You are a Visual Reasoning Corrector and Annotator. Process input data with these rules:

1. **Format Extraction**:

- Always wrap reasoning in `<think></think>`
- Extract answer to `<answer></answer>` without prefixes and postfixes.

2. **Validate and correct visual cue**:

- Cross-check visual cues between:
 - a) Model's `<think>` content
 - b) Image context
- If visual cues mismatch:
 - Correct the model's answer based on the following rules:
 - Prioritize corrections in this order:
 - 1) Image
 - Update subsequent reasoning accordingly and ensure logical consistency

3. Annotate visual cues:

- Wrap each distinct visual cue in `<vcues_*></vcues_*>`
- Start numbering from 1 ($*$ = 1, 2, ...)
- Tag specific phrases, not entire paragraphs

4. **Output Constraints**:

- Maintain original reasoning contents and flow structure as possible as you can
- Ensure that all annotations (`<think>`, `<answer>`, `<vcues_*>`, `<aha>`) are properly formatted and inserted in the correct locations.
- Corrected reasoning in `<think>` tags
- Answer in `<answer>` tags
- Visual cues properly annotated
- Maintain original correct answer

Example 1: Input data:

`<question> What feature does the flip phone shown in the image have?`

- A. It has a large touch screen display
- B. It cannot be used in low light conditions
- C. It is able to take pictures
- D. It has facial recognition technology

`</question>`

`<correct answer> C </correct answer>`

`<Model_Infer>` To determine the correct answer, let's analyze the image and the options provided:

1. **Option A: It has a large touch screen display** - The image shows a flip phone, which typically has a small screen. The screen visible in the image is small and not a touch screen. Therefore, this option is incorrect.

2. **Option B: It cannot be used in low light conditions** - The image does not provide any information about the phone's camera or its performance in low light. This option is speculative and cannot be confirmed from the image alone.

3. **Option C: It is able to take pictures** - The image shows a camera lens on the flip phone, which suggests that the phone is capable of taking pictures. This option is likely correct.

4. **Option D: It has facial recognition technology** - Facial recognition technology is a modern feature not typically found in flip phones. The image does not show any indication of this technology. Therefore, this option is incorrect.

Given the analysis, the most reasonable conclusion is that the flip phone shown in the image is able to take pictures. Answer: C `</Model_Infer>`

Output 1:

`<think>` To determine the correct answer, let's analyze the image and the options provided:

1. **Option A: It has a large touch screen display** - `<vcues_1>`The image shows a flip phone`</vcues_1>`, which typically has a small screen. `<vcues_2>`The screen visible in the image is small and not a touch screen`</vcues_2>`. Therefore, this option is incorrect.

2. **Option B: It cannot be used in low light conditions** - `<vcues_3>`The illuminated keys imply that it can be used in low light conditions. `</vcues_3>`. Therefore, this option is incorrect.

3. **Option C: It is able to take pictures** - `<vcues_4>`The image shows a camera lens on the flip phone`</vcues_4>`, which suggests that the phone is capable of taking pictures. This option is likely correct.

4. **Option D: It has facial recognition technology** - Facial recognition technology is a modern feature not typically found in flip phones. `<vcues_5>`The image does not show any indication of this technology`</vcues_5>`. Therefore, this option is incorrect.

Given the analysis, the most reasonable conclusion is that the flip phone shown in the image is able to take pictures.`</think>`

`<answer>C</answer>`

Figure 4: Few-shot prompt we used during generate visual cues towards origin question and answer.

810 **Prompt Used During Generate Visual Cues Towards Origin Question.**

811 Now I will give you a multiple-choice question and 2-4 options to choose from. The model should analyze
 812 the question based on the input image and select the most suitable option to answer the question. I will
 813 provide you with the thinking process of the model. Please observe which visual cues VCUE are used
 814 during the thinking process and try to modify the images to change the visual cues and thus alter the
 815 answer to the problem.

816 You need to pay extra attention to which objects are included in the visual cues mentioned during
 817 the reasoning process, and provide strategies such as deletion/modification to guide subsequent image
 818 modifications. You need to choose the most suitable option that differs from the original correct answer
 819 and output a modified image strategy. After applying this modification strategy, the correct answer to
 820 the problem should be changed to the most appropriate option you have chosen that is different from
 821 the original correct answer, and the original correct answer no longer holds true. Please note that your
 822 modifications to the image should not result in significant changes to the original image. If you are unable
 823 to make minor modifications, please choose other possible candidate options.

824 Here is an example you can refer to:
 825 Original image:
 826 <example image>
 827 Original question:
 828 ——Start Question——
 829 Question: What feature does the flip phone shown in the image have?
 830 A: It has a large touch screen display, B: It cannot be used in low light conditions, C: It is able to take
 831 pictures, D: It has facial recognition technology ——End Question——
 832 Original answer:
 833 ——Start Answer——
 834 C
 835 ——End Answer——
 836 Original reasoning process:
 837 ——Start reasoning process——
 838 <think>To determine the correct answer, let's analyze the image and the options provided:
 839 1. Option A: It has a large touch screen display
 840 - <vcues_1>The image shows a flip phone</vcues_1>, which typically has a small screen. <vcues_2>The
 841 screen visible in the image is very small and not a touch screen</vcues_2>. Therefore, this option is
 842 incorrect.
 843 2. Option B: It cannot be used in low light conditions
 844 - <vcues_3>The illuminated keys visible in the image imply that the phone can be used in low light
 845 conditions</vcues_3>. Therefore, this option is incorrect.
 846 3. Option C: It is able to take pictures
 847 - <vcues_4>The image shows a camera lens on the flip phone</vcues_4>, which indicates that the phone
 848 is capable of taking pictures. This option is correct.
 849 4. Option D: It has facial recognition technology
 850 - Facial recognition technology is a modern feature not typically found in flip phones. <vcues_5>The
 851 image does not show any indication of facial recognition technology</vcues_5>. Therefore, this option is
 852 incorrect.
 853 Given the analysis, the most reasonable conclusion is that the flip phone shown in the image is able to take
 854 pictures.
 855 By the way, check that no deduction strays from a real image clue.
 856 The conclusion fits with what's visible in the scene.</think>
 857 <answer>C</answer>
 858 ——End reasoning process——

859 Output content:
 860 ``` json
 861 {
 862 "new_option": "B",
 863 "suggestion": "Change the phone screen buttons in this picture to non luminous and remove the camera
 864 part from the image."
 865 }
 866 Below, please output image editing strategies and new candidate answers based on the input content I
 867 provided. The input content is as follows:
 868 Original image:
 869 <input image>
 870 Original question and candidate options:
 871 ——Start Question——
 872 <options>
 873 ——End Question——
 874 Original answer:
 875 <original answer>
 876 ——Start Answer——
 877 Original reasoning process:
 878 ——Start reasoning process——
 879 <cot>
 880 ——End reasoning process——
 881 Please analyze the content of the image, the questions and candidates, and the original reasoning process
 882 I provided to you step by step. Finally, output your answer in the following output format:
 883 ``` json
 884 {
 885 "new_option": "The new candidate option you have chosen",
 886 "suggestion": "The modification strategy you described in language for the original image resulted in the
 887 correct answer to the original question being changed to the new candidate selected above"
 888 }

Figure 5: Few-shot prompt we used during generate edit suggestions towards visual cues.

Figure 6: Zero-shot prompt we used during evaluate models on VFaith-Bench.

Prompt to check the fail reason of models.

You are an AI evaluation expert. Please analyze the following information:

1. Question:
<question>
2. Original image:
<ori_image>
3. Edit suggestion (description of the image modification):
<edit_suggestion>
4. Edited image:
<image>
5. Expected standard answer:
<new_gt_ans>
6. Model's predicted answer:
<predicted_answer>

Please analyze why the model's predicted answer is inconsistent with the expected standard answer.

Your attribution must be strictly limited to one of the following three categories:

1. The predicted_answer misunderstood the visual information in the image.
2. The predicted_answer has an error in the reasoning process, which is not about visual information in the image.
3. The change from "ori_image" to "edited_image" does not match the description in "edit_suggestion", meaning there is a problem in the image editing process. Or the new_gt_answer is wrong.

Please output your reasoning process first, then output the final attribution result enclosed exactly between the tags <answer> and </answer>.

Example format:

[Your detailed reasoning...]

<answer>

Only output attribution result ID(one of the three categories above)

</answer>

Figure 7: Prompt to check the fail reason of models.

918
919
920
921
922
923
924

925 Prompt to check the self-contradictory in edited images.

926 You are an AI evaluation expert. Please analyze the following information:

927 1. Question:

928 <question>

929 2. Original image:

930 <image>

931 3. Edit suggestion (description of the image modification):

932 <edit_suggestion>

933 4. Edited image:

934 <edited_image>

935 5. Expected standard answer:

936 <new_gt_ans>

937 6. Model's predicted answer:

938 <predicted_answer>

939 Please carefully analyze the content of the image before and after editing, determine whether
940 there are any self-contradictions within the image after editing, and assign a severity score
941 for these issues.

942 The score ranges from 0 to 10, where 10 means the edited image has no contradictory
943 content, and 0 means the edited image has severe contradictions.

944 Please output your reasoning process first, then output the final score (0-10 integers)
945 enclosed exactly between the tags <answer> and </answer>.

946 Example format:

947 [Your detailed reasoning...]

948 <answer>

949 Only output final conflict score (0-10), for example, <answer>2</answer>

950 </answer>

951
952
953
954
955
956
957
958
959
960
961
962
963

964 Figure 8: Prompt to check the self-contradictory in edited images.

965
966
967
968
969
970
971

972

973

974

975

An example in non-perception subset.

976

Question: Why does the front of the train appear dirty?

977

A: The train was caught in a rainstorm.

978

B: The train has not been washed in some time.

979

C: All options are possible.

980

D: The train was involved in a collision with another train. **Original answer:** B.

981

Reasoning with visual cues: <think>To determine why the front of the train appears dirty, let's analyze the image step by step:

982

1. Condition of the Train: <vcues_1>The front of the train has visible dirt and grime</vcues_1>, which suggests it has been in use for a while and has traveled through various conditions.

983

2. Environment: <vcues_2>The train is on a railway track with overhead electric lines</vcues_2>, indicating it's in a operational setting. The presence of dirt could be from the environment it has traveled through, such as dust, debris, or even road salt in some areas.

984

3. Maintenance: <vcues_3>The train appears to be in service</vcues_3>, and trains often accumulate dirt and grime over time, especially if they are not cleaned regularly.

985

4. Options Analysis:

986

- A. The train was caught in a rainstorm: While rain can cause dirt to accumulate, the image does not show signs of recent rain, such as wet surfaces or water streaks.

987

- B. The train has not been washed in some time: This is a plausible reason for the dirt on the train. Trains in service often accumulate dirt over time if not cleaned regularly.

988

- C. All options are possible.

989

- D. The train was involved in a collision with another train**: There is no visible damage or signs of a collision in the image.

990

Given these observations, the most likely reason for the dirt on the train is that it has not been washed in some time. Ensure all visual details are correctly recognized and that all reasoning steps are sound. Visual cues line up nicely with the reasoning steps.</think>

991

<answer>B</answer>

992

Edit image suggestion: Add vertical water streaks running down the dirty front surface of the train (<vcues_1>) and darken some patches of the gravel ballast near the tracks (<vcues_2>) to suggest dampness, implying the dirt is due to a recent rainstorm."

993

New answer: A.

994

995

996

997

998

999

Figure 9: An example in non-perception subset.

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Figure 10: The corresponding example image in Figure 9. The left side is the original image, and the right side is the edited image.

1026

1027

An example in perception subset.

1028

1029

Analysis with visual cues: <think>To determine the setting of the scene, let's analyze the details in the image:

1030

1031

1. <vcues_1>The room has a bed with a cat lying on it, which suggests a personal living space</vcues_1>.

1032

2. <vcues_2>There is a television on a stand with two lamps on either side, indicating a setup for watching TV</vcues_2>.

1033

3. <vcues_3>The blinds on the windows are closed, and the room is lit by the lamps</vcues_3>, which suggests it might be nighttime or the room is meant to be cozy and dimly lit.

1034

4. <vcues_4>The presence of personal items like a cat, a bed, and a TV setup indicates a residential setting, not a hotel room</vcues_4>.

1035

5. <vcues_5>The room appears to be small and compact, which is more indicative of an apartment or a small house rather than a big house</vcues_5>.

1036

Given these observations, the most reasonable inference is that the setting is a small residential room, likely a bedroom in an apartment or a small house.

1037

Ensure all visual details are correctly recognized and that all deductions are sound. Visual cues line up nicely with the reasoning steps.</think>

1038

Edit image suggestion: Modify the image to show the blinds on the window/door are open or partially open, revealing bright daylight outside. Also, edit the two lamps on the TV stand so they appear to be turned off (remove the glow)."

1039

Perception question: Below, I will provide you with an image and four options. Please determine which options are correct for the content of the image and select all correct options. You must answer strictly according to the content of the picture. There may be any number of correct options, please put your answer in \boxed. If you have selected multiple options, directly output all correct option numbers in \boxed, such as AB, BCD, without adding spaces or any other content other than the letters ABCD.

Options:

A: The room has a bed with a cat lying on it, and a sofa on the right side.

B: The blinds on the windows are closed.

C: There is a television on a stand with two lamps opening on either side, indicating a setup for watching TV.

D: The room looks big and luxurious.

Groundtruth answer: A.

1058

1059

Figure 11: An example in perception subset. Note that the perception subset used in actual testing only includes the edited image and a question about the details of that image. In this example, options A, B, C, and D are asked for visual cues 1, 3, 2, and 5 respectively, where the visual cues corresponding to B and C have been edited.

1077

1078

1079

Figure 12: The corresponding example image in Figure 11. The left side is the original image, and the right side is the edited image.