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Abstract

Recent work studying the generalization of diffusion models with locally linear
UNet-based denoisers reveals inductive biases that can be expressed via geometry-
adaptive harmonic bases. For such locally linear UNets, these geometry-adaptive
harmonic bases can be conveniently visualized through the eigen-decomposition of
a UNet’s Jacobian matrix. In practice, however, more recent denoising networks are
often transformer-based, e.g., the diffusion transformer (DiT). Due to the presence
of nonlinear operations, similar eigen-decomposition analyses cannot be used to
reveal the inductive biases of transformer-based denoisers. This motivates our
search for alternative ways to explain the strong generalization ability observed
in DiT models. Investigating a DiT’s pivotal attention modules, we find that
locality of attention maps in a DiT’s early layers are closely associated with
generalization. To verify this finding, we modify the generalization of a DiT by
restricting its attention windows and observe an improvement in generalization.
Furthermore, we empirically find that both the placement and the effective attention
size of these local attention windows are crucial factors. Experimental results on
the CelebA, ImageNet, MSCOCO, and LSUN data show that strengthening the
inductive bias of a DiT can improve both generalization and generation quality
when less training data is available. Source code is available at https://github.
com/DiT-Generalization/DiT-Generalization.

1 Introduction

Diffusion models have achieved remarkable success in visual content generation. Their training
involves approximating a distribution in a high-dimensional space from a limited number of training
samples—a task that is demanding due to the curse of dimensionality. Nonetheless, recent diffusion
models (Song et al., [2020; Ho et al., [2020) learn to generate high-quality images (Nichol et al.|
2021; Dhariwal & Nichol, 2021; [Saharia et al., 2022; [Rombach et al., 2022; |Chen et al.| 2023,
2024a)) and even videos/audio (Singer et al.,|[2022; Ho et al.,|2022; |Girdhar et al., 2023; Blattmann
et al., [2023; |OpenAl, 2024; |Cheng et al., 2025) using relatively few samples when compared to
the dimensionality of the underlying space. This indicates that diffusion models exhibit powerful
inductive biases (Wilson & Izmailov, 2020;|Goyal & Bengiol| 2022;|Griffiths et al.,2024) that promote
effective generalization. What exactly are these inductive biases? Answering this question is crucial
for understanding the behavior of diffusion models and their generalization.

Recent work by [Kadkhodaie et al.| (2024) on locally linear single-channel UNet-based diffusion
models reveals that the strong generalization of UNet-based denoisers is driven by inductive biases
that can be expressed via a set of geometry-adaptive harmonic bases (Mallat et al.| [2020). For a UNet
that has been modified to be locally linear, such harmonic bases can be extracted via the eigenvectors
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Figure 1: Jacobian eigenvectors of (a) a locally linear one-channel UNet, (b) the hybrid UNet
introduced in improved diffusion (Nichol & Dhariwal|[2021), and (c) a DiT (Peebles & Xie), [2023).
[Kadkhodaie et al.|(2024) find that the generalization of UNet-based diffusion models is driven by
geometry-adaptive harmonic bases (a), which exhibit oscillatory patterns whose frequency increases as
the eigenvalue \;, decreases. For hybrid UNets (Nichol & Dhariwall,[2021), due to the inclusion of non-
linear operations such as softmax in transformer blocks and normalization layers in both transformer
and convolutional layers, the harmonic bases extracted from their split-channel eigenvectors (b)
do not adapt well to the input geometry, though oscillatory patterns still persist. In contrast, the
harmonic bases completely disappear in a DiT (Peebles & Xie| [2023) as shown in (c), indicating that
the eigen-decomposition analysis is no longer valid for transformer-based DiTs. This observation
motivates us to investigate the inductive biases of a DiT that enable its generalization. The RGB
channels of the split-channel eigenvectors are outlined with , green|, and boxes, respectively.
All models operate directly in the pixel space without the patchify operation.

of the denoiser’s Jacobian matrix, as shown in Fig. [[(a). Extending the eigen-decomposition analysis
of [Kadkhodaie et al. (2024) to more complex, classic multi-channel UNets shows that geometry-
adaptive harmonic bases become harder to observe. As illustrated in Fig. [I(b), these eigenvectors
do not adapt well to the input geometry, although oscillatory patterns whose frequencies increase
as the eigenvalues )\ decrease still exist. This is because modern UNets (Nichol & Dhariwall
2021) adopt hybrid architectures that incorporate several transformer layers, where the softmax in
attention and normalization layers, present in both convolutional and transformer blocks, degrade the
network’s local linearity. For DiT, the eigenvectors of its Jacobian matrix show no geometry-adaptive
harmonic bases, as shown in Fig.[T(c). This does not necessarily imply that a DiT fails to capture
geometry-adaptive harmonic structures, but rather suggests that the eigen-decomposition analysis
of Kadkhodaie et al. (2024) isn’t applicable for probing the inductive bias of DiT models. Motivated
by this issue, we seek alternative approaches to address the question: what inductive biases enable
the strong generalization ability of DiTs?

Answering this question is particularly important because of the recent growing adoption of
DiTs (Chen et al), [2024b} [Esser et al., 2024} [Cheng et al., 2025} [Chen et all, [2025), partly for
its observed performance at scale (Peebles & Xie| [2023). In a new study in this paper, using the
PSNR gap (Kadkhodaie et al.|[2024) as a metric to evaluate the generalization of diffusion models,
we confirm that a DiT indeed exhibits better generalization than a UNet with the same FLOPs. Yet,
this observation alone doesn’t reveal the inductive biases which enable generalization.

The generalization mechanism of a DiT can be determined by inductive biases introduced by the
diffusion model theory, training objectives, target optimal score functions, and network architectures.
Prior works (Zhang et al., 2024} [Niedoba et al., 2024} [Li et al.| 2024} [Wang & Vastolal, [2024) reveal
that the inductive biases enabled by diffusion model theory, training objectives, and target optimal
score functions can be similar between a UNet and a DiT. However, the inductive bias driven by the
model architecture, differs between a UNet and a DiT, potentially due to the self-attention (Vaswani,
dynamics which are pivotal in DiT models but not in UNets. In a self-attention layer, the
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(a) PSNR Curves of Training and Testing Sets (b) PSNR Gap

Figure 2: PSNR (a) and PSNR gap (b) comparison between a UNet and a DiT with the same FLOPs
for different training image quantities (/V). All curves are averaged over three training runs using
different dataset shuffles. The standard deviations, illustrated by the curve shadows in the zoomed-in
windows, are negligible, indicating minimal variation.

attention map, derived from the multiplication of query and key matrices, determines how the value
matrix obtained from input tensors influences output tensors. To shed some light, we analyze the
attention maps of a DiT and find that locality of the attention maps is closely tied to its generalization
ability. Specifically, the attention maps of a DiT trained with insufficient images, i.e., a DiT with weak
generalization, exhibit a more position-invariant pattern, especially in early layers: the output tokens
of a self-attention layer are largely influenced by a certain combination of input tensors, irrespective
of their positions. In contrast, the attention maps of a DiT trained with sufficient images, which
demonstrates strong generalization, exhibit a sparse diagonal pattern. This indicates that each output
token is primarily influenced by its neighboring input tokens. This analysis provides insight into how
the generalization ability of DiTs can be modified, if necessary, such as when only a small number of
training images are available.

If the above finding is true, restricting the attention window in self-attention layers should permit us
to modify a DiT’s generalization. Indeed, we find that employing local attention windows (Beltagy
et al.,|2020; [Hassani et al., 2023) is effective. A local attention window restricts the dependence
of an output token on its nearby input tokens, thereby promoting the locality of attention maps. In
addition, the placement of attention window restrictions within the DiT architecture and the effective
size of attention windows are critical factors to steer a DiT’s generalization. Our experiments show
that placing attention window restrictions in the early attention layers of the DiT architecture has
most impact. Results on CelebA (Liu et al., 2015), ImageNet (Deng et al.,|2009), MSCOCO (Lin
et al., 2014), and LSUN (Yu et al.,|2015) (bedroom, church, tower, bridge) data reveal that applying
attention window restrictions modifies generalization, as reflected by a reduced PSNR gap. We
also observe improved FID (Heusel et al., [2017), Inception Score (IS) (Barratt & Sharmal 2018),
and FD-DINOv2 (Oquab et al., 2023) when training with insufficient data, confirming that a DiT’s
generalization can be successfully modified through attention window restrictions.

In summary, the contributions of this paper include the following: 1) We identify the locality
of attention maps as a key inductive bias contributing to the generalization of a DiT, and 2) we
demonstrate how to control this inductive bias by incorporating local attention windows into early
layers of a DiT. Enhancing the locality in attention computations effectively modifies a DiT’s
generalization, resulting in a lower PSNR gap and improved FID, IS, and FD-DINOvV2 scores when
insufficient training images are available for training.



2 Inductive Bias Analysis of Diffusion Models

Diffusion models are designed to map a Gaussian noise distribution to a dataset distribution. To
achieve this, diffusion models can be formulated to estimate the noise € that was used to compute the
corrupted image x; by perturbing the training sample x( following a noise schedule depending on
step t. The loss function of diffusion model training hence reads as follows:

L =Bayer [l — colze, )] (M

Here, €g4(-) represents the backbone network with trainable parameters 6, which plays a crucial role
in diffusion model generalization. In this section, we first compare the generalization ability of a
DiT (Peebles & Xie,2023) and a UNet (Nichol & Dhariwal, 2021), two of the most popular diffusion
model backbones. Subsequently, we investigate the inductive biases that drive their generalization.

2.1 Comparing DiT and UNet Generalization

We compare the generalization of pixel-space DiT and UNe using as a metric the PSNR gap
proposed by [Kadkhodaie et al.|(2024). The PSNR gap at a diffusion step ¢, denoted as Gap (), is the
zero-truncated difference between the training set PSNR and the testing set PSNR at step ¢:

Gap (t) = max (PSNRyyain (£) — PSNRyest (2),0), )

where PSNRain (t) and PSNRyest () are obtained following |[Kadkhodaie et al.[(2024). To elaborate,
given K images from either training or testing set, we first feed noisy images at step ¢ to diffusion
models and obtain the estimated noise €. Next, we compute the one-step denoising result & via

Ty = Ty — OLE, 3)

where o is defined by the diffusion model noise schedule. Finally, we derive the training and testing
PSNRs at diffusion step ¢ as follows:

PSNRt—lK 10-1 M 4
()_?Z " 10g W : “

k=1

Here, 2% denotes the estimate of image k, obtained by using Eq. (3), M denotes the intensity range
of &, which is set to 2 since images are normalized to [—1, 1]. K is set to 300 following the PSNR
gap computation of Kadkhodaie et al.|(2024).

Turning to diffusion model backbones, prior work (Peebles & Xie, [2023) has shown that a DiT
achieves better image generation quality than a UNet with equivalent FLOPs. This prompts our
curiosity to study whether a DiT can also demonstrate superiority in generalization when using the
PSNR gap as a metric. Fig. [2]compares the PSNR and PSNR gap of a UNet and a DiT. Interestingly,
when the number of training images is sufficient for the model size, e.g., N =10°, the training and
testing PSNR curves of both DiT and UNet are nearly identical, and their PSNR gaps remain small.
This indicates that DiT and UNet have no substantial performance difference in distribution mapping
given sufficient training data. Nevertheless, as shown in Fig. 2(b), when trained with less data, e.g.,
N=10? and N=10%, a DiT has a remarkably smaller PSNR gap than a UNet, suggesting that a DiT
has a better generalization ability than a UNet. This discrepancy of the PSNR gap motivates us to
explore the underlying inductive biases that contribute to this generalization difference.

2.2 Eigen-Decomposition Analysis Cannot Explain DiT Generalization

Kadkhodaie et al. (2024) reveal that the generalization of a locally linear one-channel UNet is driven
by the emergence of geometry-adaptive harmonic bases. These harmonic bases are obtained from
the eigenvectors of a locally linear UNet’s Jacobian matrix. This raises an important question: Do
classic hybrid UNets and DiTs also possess harmonic bases that can account for their generalization
difference? Unfortunately, due to the use of nonlinear operations such as softmax in transformer
blocks and normalization layers in both convolution and transformer layers, the eigen-decomposition
analysis used by [Kadkhodaie et al. (2024) fails to reveal meaningful insights about the inductive
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Figure 3: Jacobian eigenvector comparison between the hybrid UNet (Nichol & Dhariwall [2021)
and DiT (Peebles & Xie, 2023) with equivalent FLOPs. (a) The eigenvectors of a hybrid UNet form
harmonic bases that tend to memorize the training images when N=10, but do not adapt well to
the input geometry, differing from the behavior observed by |[Kadkhodaie et al. (2024). In contrast,
(b) the DiT’s eigenvectors do not form harmonic bases at either N=10 or N=10°. Overall, the
eigen-decomposition analysis for both the hybrid UNet and DiT fails to reveal sufficient insight into
the inductive biases underlying their generalization.

biases that explain the generalization difference between a UNet and a DiT. To investigate this further,
we follow [Kadkhodaie et al.|(2024) and perform an eigen-decomposition of the Jacobian matrices for
a three-channel hybrid UNet (Nichol & Dhariwal, |[2021) and a DiT. Specifically, we first feed a noisy
image x (x¢, t is omitted for readability) into a DiT and a UNet and obtain their Jacobian matrices:

98 04
0x1 drHwW
Jacobian Vey = : (&)
8€HW . 8€HW
811 axHW

Each entry of the Jacobian represents the partial derivative of an output pixel w.zt. all input pixels.
Next, we perform an eigen-decomposition of the Jacobian matrix and obtain the eigenvectors.

Fig. presents the eigenvalues and eigenvectors of a hybrid UNet and a DiT trained with 10 and 10°
images, respectively. For a UNet trained with a small dataset (e.g., N=10), the Jacobian eigenvectors
corresponding to several large eigenvalues tend to memorize the geometry of the input image. The
leading eigenvalues are significantly larger than the rest, suggesting that the UNet trained with 10
images primarily memorizes training examples (Carlini et al.| [2023; [Somepalli et al.,2023). When
the training set size increases to N=10°, the UNet’s eigenvectors exhibit oscillatory patterns whose
frequency increases as eigenvalues )\, decrease. However, these harmonic bases no longer adapt well
to the geometry of the input image.

In contrast, as shown in Fig. 3(b), the eigenvectors of a DiT display random, sparse patterns regardless
of the training dataset size. Unlike the UNet, the eigenvalue distribution of the DiT changes little
between N=10 and N=10°, and no harmonic bases emerge. Overall, the eigen-decomposition of
the Jacobian matrices for hybrid UNets and DiTs does not reveal the geometry-adaptive harmonic
bases observed by [Kadkhodaie et al.|(2024). This does not imply that hybrid UNets and DiTs aren’t
capable of forming such bases. It rather indicates that the eigen-decomposition analysis is invalid for
characterizing the inductive biases underlying DiT generalization. This observation motivates us to
seek alternatives to investigate the inductive biases that enable the generalization of DiTs.

2.3 How Does a DiT Generalize?

The generalization of a DiT may originate from the self-attention (Vaswani, [2017) dynamics because
of its pivotal role in a DiT. Could the attention maps of a DiT provide insights into its inductive
biases? To shed light, we empirically compare the attention maps of DiTs with varying levels of
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Figure 4: Attention maps of DiTs trained with 10, 103, and 10° images. The top-right insets provide a
zoomed-in view of the center patch of each attention map. As the number of training images increases,
DiT’s generalization improves, and attention maps across all layers exhibit stronger locality. The
boxes highlight the attention corresponding to a specific output token, obtained by reshaping a
single row from the layer-12 attention map (original shape: 1x (HW)) into a matrix of shape H xW.
As N increases from 10 to 10°, the token attentions progressively concentrate around the region near
the output token (highlighted with boxes).

generalization: three DiT models trained with 10, 102, and 10° images, where a DiT trained with
more images demonstrates stronger generalization. Specifically, we extract and visualize the attention
maps from the self-attention layers of these DiT models as follows,

.
Attention Map = Softmax (Qf/(g ) , 6)

where {Q, K} € REW)*d represent the query and key matrices. H and W are the height and width
of the input tensor, while d denotes the dimension of a self-attention layer. For better readability
of the attention maps, we linearly normalize each attention map to the range of [0, 1] and apply a
colormap to the interval [0, 0.1], i.e., values exceeding the upper bound are clipped at 0.1.

Fig. f]shows the attention maps of DiTs with varying levels of generalization on a randomly selected
image. Empirically, we observe that the attention maps of a DiT’s self-attention layer remain highly
consistent across different images. Further details are provided in Appendix [F] As the number of
training images increases from N=10 to N=10°, the attention maps of a DiT become increasingly
concentrated along several diagonal lines, especially in early layers. A closer inspection of the
attention values of a specific target token, i.e., a row in the attention map, shows that these diagonal
patterns highlight spatially close locations, indicating that the generalization ability of a DiT is linked
to the locality of its attention maps.

3 Verifying Attention Locality as a Bias by Restricting Attention

To verify attention locality as an inductive bias, as observed in Fig.[d we assess how much an attention
map deviates from a pure identity attention. Specifically, for the attention map Attn € R(M*N)
corresponding to a target output token at location (4, j), we compute the deviation

. 1 i ij . ;
Dev (i,j) = N Z (ngj,)n) * Attn (m, n)) , where ngi)n) = \/(m — i)+ (n—3>% ()
(m,n)

Eq. (7) measures how much the attention map Attn deviates from the target token at location (4, j)
(Wasserstein distance). We obtain the deviation for the whole attention map Attn by averaging
the deviation for all target tokens. In the first row of Tab. [I, we provide the deviation averaged
over 300 random test images using a DiT trained with 10, 104, and 10° images. When increasing
the number of training images (e.g., from 10 to 10°), the DiT tends to generalize better, which



Table 1: Deviation] comparison between DiTs with and without local attention. In this setting, local
attention with window sizes of (3,5,7,9, 11, 13) is applied to the first six layers of the DiT. 1x 1 and
5x5 denote the local kernel sizes from which the attention maps deviate.

DiT Layers | Layer 1 | Layer 5 | Layer 9
Train SetSize | 10° | 10* | 10° | 10® | 10* | 10° | 10® | 10* | 10°
DiT-XS/1 (1x1) 1.977 0.153 0.073 0.174 0.049 0.016 0.049 0.029 0.037
DiT-XS/1 (5% 5) 0.274 0.016 0.010 0.075 0.055 0.033 0.070 0.054 0.040
w/Local Ix1) | 0.002 | 0.002 | 0.002 | 0.019 | 0.005 | 0.004 | 0.111 | 0.046 | 0.052
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Figure 5: Global and local attention maps: (a) global attention captures the relationship between the
target token and any input token, whereas (b) local attention focuses only on tokens within a nearby
window around the target.

is accompanied by a reduction of the deviation, especially in early layers. A similar reduction is
observed when measuring the deviation from a 5x5 local attention kernel, as shown in the second
row of Tab.[[. Based on this observation, we hypothesize that it is possible to adjust the inductive
bias of a DiT by restricting attention windows of early layers. To test this, we set up baselines by
adopting the DiT implementations from the official repositor of Peebles & Xie|(2023)). Specifically,
we remove the auto-encoder and set the patchify size to 1x 1, transforming it into a pixel-space DiT.
This modification rules out irrelevant components and ensures more straightforward comparisons
in downstream experiments. For model training, we use images of resolution 32x32, which is
equivalent in dimensionality to 512x512 for a latent-space DiT with a patchify size of 2x2.

In the remainder of this section, we show that based on the PSNR gap, injecting local attention
in early layers can effectively modify a DiT generalization, often accompanied by an FID change
when insufficient training data is used. Furthermore, we discover that placing the attention window
restrictions at different locations in a DiT and adjusting the effective attention window sizes allows
for additional control over its generalization behavior. Details w.r.z. experimental settings, theoretical
connections to other inductive biases, more quantitative, qualitative, as well as generation results, and
limitations are deferred to the Appendices.

3.1 Attention Window Restriction

Local attention, initially proposed to enhance computational efficiency (Liu et al., 2021} |Yang et al.|
2022 Hatamizadeh et al.||2023; Hassani et al.,|2023), is a straightforward yet effective way to modify
a DiT’s generalization. Different from global attention which enables a target token to connect with
all input tokens (Fig.[5[a)), local attention only permits a target token to attend within a small nearby
window. The resulting attention map structure is depicted in Fig. [5(b). Notably, a local attention
constrains the attention map to a sparse activation pattern only along the diagonal direction, thereby
enforcing locality of the attention map. The resulting attention map patterns produced by a local
attention align well with the inductive bias that a DiT exhibits when observing a strong generalization
ability, as illustrated in Fig. E] (row N=105).

Using local attentions in early layers of a DiT can consistently improve its generalization (measured
by PSNR gap) across different datasets and model sizes. Specifically, we consider a DiT model with

*https://github.com/facebookresearch/DiT
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Table 2: PSNR gap | comparison between a DiT with and without local attention for two architectures:
DiT-XS/1 and DiT-S/1. Local denotes applying local attention with window sizes (3,5,7,9,11, 13)
to the first six layers of the DiT.

Dataset CelebA ImageNet MSCOCO  LSUN Church LSUN Bedroom LSUN Bridge LSUN Tower

Train Set Size  10* [ 10° 10* 10° 10* 10° 10* | 10° 10* 10° 104 10°  10*  10°

DiT-XS/1 0.80 0.01 1.08 0.05 0.60 0.13 0.38 0.00 0.70 0.26 0.52 0.03 0.52 0.00
0.57 0.01 0.74 0.05 0.41 0.13 0.21 0.00 0.52 0.26 0.34 0.03 0.33 0.00
w/ Local 0.29 - 0.31 - 0.19 - 0.45 - 0.26 - 0.35 - 0.37 -
DiT-S/1 2.30 0.02 0.65 0.05 0.72 0.13 0.61 0.00 0.94 0.26 1.74 0.03 1.97 0.00
1.73 0.02 0.43 0.05 0.54 0.13 0.36 0.00 0.64 0.26 1.26 0.03 1.34 0.00
w/ Local —0.25 - —0.34 - —0.18 - —0.41 - —0.32 - —0.28 - —0.32

Table 3: FID| comparison between a DiT with and without local attention. The best results are
highlighted in bold font.

Model CelebA ImageNet MSCOCO LSUN Church LSUN Bedroom LSUN Bridge LSUN Tower

Train Set Size  10* | 10° 10* = 10° 10* | 10° 10* | 10° 10* 10° 10 10°  10* 10°

DiT-XS/1 9.69 2.63 52.57 1731 28.35 1297 12.88 438 14.84 5.41 23.18 8.08 12.55 4.66
w/ Local 846 255 43.87 18.07 24.43 13.47 1048 4.47 11.96 5.35 1815 8.35 10.56 4.80
DiT-S/1 23.25 233 36.64 20.61 29.25 13.78 14.88 394 16.11 4.6l 51.57 5.80 28.97 3.19
w/ Local 20.78 233 3318 20.80 2711 1316 1175 4.41 11.68 5.05 37.65 5.88 2181 3.56

12 DiT blocks, and replace the first 6 global attention layers with local attentions, whose window
sizes range from 3x 3 to 13x 13 with a stride of 2. We train both the vanilla DiT and a DiT equipped
with local attentions with N=10%, 10 and 10° images for the same 400k training steps. Then we
calculate the PSNR gap between the training and testing images for models trained with different
amounts of images. In Tab. 2] we show the PSNR gap comparison between a DiT with and without
local attentions on CelebA, ImageNet, MSCOCO, and LSUN (Church, Bedroom, Bridge, Tower)
datasets, using baseline DiT models of two sizes (DiT-XS/1 and DiT-S/1). Notably, using local
attentions reduces a DiT’s PSNR gap with different amounts of training images. Importantly, the
advantage of local attention is robust across different training datasets and backbone sizes.

For a discriminative model, e.g., a classifier, better generalization may lead to better model perfor-
mance when the training dataset is insufficient. Is this also the case for generative models like a
DiT? To investigate, we compare the FID between the default DiT and a DiT using local attentions.
For each dataset, we compare FID values of models trained with 10% and 10° images: the former
represents the case of insufficient training images while the later case refers to use of sufficient
training data. Tab.[3 shows the FID comparison among the same seven datasets and the two DiT
backbones used when comparing PSNR gaps. Improving the generalization via local attentions
can indeed improve the FID when N=10%. When N=10, adding local attentions either results in
comparable FID values or leads to a slight compromise because a DiT trained with sufficient data can
naturally develop a local attention pattern as shown in Fig.[d So further encouraging attention locality
is expected to have limited effect. However, it offers the added benefit of reducing FLOPS with
minimal performance loss. Both observations are in line with findings from discriminative models.
Interestingly, we find that modifying the placement and effective attention window size permits to
control a DiT’s generalization and generation quality. More discussions are in Sec.[3.2]and Sec.[3.3]
below. Going back to Tab. [T, the third row shows the deviation when using local attention in early
layers of a DiT. As expected, using local attention reduced the deviation of early layers. Interestingly,
the deviation of the remaining layers without local attention increased. This shows that other factors
beyond locality of attention are at play. We leave identification and a study of those to future work.

In light of Occam’s razor, reducing the model parameter count has been shown to be yet another
possible strategy to inject an inductive bias. This differs from the attention window restrictions
considered above, as local attentions reduce the FLOPs of a DiT without changing the model
parameter count. In contrast, to inject an inductive bias by reducing the parameter count of a DiT, we
explore sharing of the parameters of a DiT’s attention blocks as well as modifying a DiT’s attention
layers to learn the coefficients of pre-computed offline PCA components. Neither of these methods
showed as compelling improvements of the generalization (measured via the PSNR gap) as using
local attention. We provide more details regarding the considered techniques in Appendix



Table 4: PSNR gap] and FID] comparison for different local attention placement patterns. The best
results are highlighted in bold font.

PSNR Gap CelebA ImageNet FID CelebA ImageNet

Train Set Size 108 10* [ 10° 10® 10* @ 10° Train Set Size 10* | 10°  10* 10°

DiT-XS/1 7.49 0.80 0.01 7.77 1.08 0.05 DiT-XS/1 9.69 2.63 52.57 17.31
w/ Local (head) 656 057 001 6.76 0.74 0.05 w/ Local (head) 8.46 2.55 43.87 18.07
w/ Local (mix) 7.66 1.05 0.01 7.27 0.58 0.05 w/ Local (mix) 11.89 2.50 37.64 18.44
w/ Local (tail) 9.05 1.83 0.02 8.83 1.46 0.05 w/ Local (tail) 18.07 2.43 59.85 17.58
w/ Local® (head) 542 036 0.01 494 0.15 0.05 w/ Local® (head) 7.23 3.10 29.25 23.79
w/ Local* (mix) 6.99 0.86 0.01 7.12 0.92 0.05 w/ Local® (mix) 10.95 2.71 51.82 18.80
w/ Local™ (tail) 8.04 1.59 0.02 8.26 1.05 0.05 w/ Local™ (tail) 17.04 3.04 49.64 22.17

Table 5: PSNR gapJ and FID| changes when the effective attention window size is kept constant,
decreased, or increased. Best results are highlighted in bold font.

PSNR Gap CelebA ImageNet FID CelebA ImageNet
Train Set Size 10 10* [ 10° 10®° 10* @ 10° Train Set Size 10* 1 10° 10* @ 10°
Local Attn (5*6) 7.19 1.05 0.02 6.55 0.69 0.05 Local Attn (5*6) 12.98 233 40.74 17.87
(3*2,5*2,7*2) 7,00 1.01 0.02 6.55 0.66 0.05 (3*2,5*2,7*2) 12,67 2.35 40.75 17.75
Local 6.56 0.57 0.01 6.76 0.74 0.05 Local 8.46 2,55 43.87 18.07
(smaller win size) 6.09 0.54 0.01 6.33 0.63 0.05 (smaller win size)  8.05 2.72 39.58 18.94
Local* 542 036 0.01 494 015 0.05 Local™ 723 3.10 29.25 23.79
(larger win size) 5.92 0.46 0.01 6.15 0.56 0.05 (larger win size) 7.88 2.86 37.87 19.36

3.2 Placement of Attention Window Restriction

For local attention, we study three placement schemes: 1) using local attention in early layers of a
DiT, 2) interleaving local attention with global attention, and 3) placing local attention on the final
layers of a DiT. In Tab. [, we compare the PSNR gap for the three schemes on the CelebA and
ImageNet data, using two distinct local attention configurations. Specifically, Local refers to a setting
with 6 attention layers, where the window sizes vary from 3x 3 to 13x 13 with a stride of 2, which is
consistent with the local attention configuration used in Tab. [2|and Tab. [3|above. Meanwhile, Local*
represents a different configuration consisting of 9 local attention layers, arranged as (3*3, 5%3, 7*3),

where i*/ indicates repeating a local attention layer with a (i x4) window j times.

The results in Tab. { indicate that applying local attention in the early layers of a DiT leads to a
smaller PSNR gap across different training data sizes, corroborating our earlier findings. Additionally,
the FID results in Tab. 4 show that the first placement scheme generally improves FID when the
training data is limited (N=10%). In contrast, interleaving local and global attention, or applying
local attention on the final layers, enhances the model’s data-fitting ability but often compromises
generalization. These two placement schemes tend to improve FID when N=10° at the cost of
reduced FID when N=10%, further supporting the generalization results measured by the PSNR gap.

3.3 Effective Attention Window Size Analysis

Adjusting the effective attention window size provides an additional mechanism to control the gener-
alization of a DiT. Specifically, our analysis reveals that smaller attention windows lead to stronger
generalization, while larger windows enhance data fitting, typically at the cost of generalization.
Furthermore, maintaining the total attention window size but altering the distribution across local
attentions generally preserves the overall behavior of a DiT. These observations are based on an
empirical study using the CelebA and ImageNet datasets, involving three paired comparisons of local
attention configurations. The PSNR gap and FID results are shown in Tab.[3]

Specifically, in the first comparison, we apply two configurations of local attentions with window
sizes (5,5,5,5,5,5) and (3, 3,5,5,7,7) to the first six layers of a DiT. We observe that altering the
attention window size distribution, while keeping the total window size fixed, has a limited impact on
a DiT’s generalization, as indicated by the similar PSNR gaps across N=10%, 10%, and 10°. This
similarity in generalization is further corroborated by their comparable FID values. In the second and
third comparisons, using the DiT-XS/1 configurations with Local and Local* attention settings, we



find that reducing the attention window size enhances generalization, while increasing the window
size diminishes it. This is evidenced by a decrease in the PSNR gap for smaller window sizes and
an increase for larger ones. Furthermore, the improved generalization is associated with better FID
values under comparably insufficient training data, and vice versa.

4 Related Work

Inductive Biases of Generative Models. Current diffusion models (Sohl-Dickstein et al., |[2015;
Song et al.,[2020; Ho et al., |2020; | Kadkhodaie & Simoncelli} [2020; Nichol & Dhariwal, 2021} [Song
et al.,[2020; |An et al., [2024) exhibit strong generalization abilities (Zhang et al.,|2021}; |Keskar et al.,
2016; |Griffiths et al.| 2024; |Wilson & Izmailov, [2020), relying on inductive biases (Mitchell, [1980;
Goyal & Bengio} 2022). Prior to the emergence of diffusion models, [Zhao et al. (2018) show that
generative models like GANs (Goodfellow et al.||2020) and VAEs (Kingma, 2013) can generalize to
novel attributes not presented in the training data. The generalization ability of generative models
is often attributed to inductive biases introduced by model architecture and training (Zhang et al.|
2021; |Keskar et al.,[2016). Kadkhodaie et al. (2024) link the generalization of diffusion models to
geometry-adaptive harmonic bases (Mallat et al., |2020), but their analysis focuses on a simplified
one-channel UNet. It remains unclear whether their findings extend to standard three-channel
UNets (Nichol & Dhariwal, 2021) or DiTs (Peebles & Xie, |2023). This work addresses this gap:
we show that UNets still exhibit harmonic bases, whereas DiTs do not. Instead, DiTs generalize
through a different inductive bias — attention locality. In contrast to[Zhang et al.|(2024), who argue
that diffusion models converge to the optimal score function largely independent of architecture, we
focus on the architectural inductive biases that influence the diffusion model generalization. Recent
works (Wang & Vastolal [2024; |Li et al., [2024) examine the linearity of score functions but do not
address architectural biases. Niedoba et al.|(2024) observe that diffusion models resemble patch-based
denoisers; our discovery of attention locality in DiTs offers an explanation for this behavior.

Attention Window Restrictions. Restricting attention windows through mechanisms such as local
attention (Beltagy et al.,[2020; |Liu et al.,2021; |Hassani et al., [2023), strided attention (Wang et al.,
2021} Xia et al.| [2022), and sliding attention (Pan et al.l 2023), among others, can significantly
improve the efficiency of attention computation (Yang et al.| [2022; Hatamizadeh et al.| [2023} Hassani
et al.| [2023; |Applel 2024). These techniques limit the attention scope, reducing computational
complexity while retaining the model’s ability to capture important contextual information. However,
our work reveals another use for controlling the locality of attention. We show that beyond efficiency
gains, local attention can be used to modulate the model’s generalization by enforcing the inductive
bias of locality within attention maps. We think this is particularly important for science domains
where data for training generative models is less abundant.

5 Conclusion

This paper investigates the inductive biases that facilitate the generalization ability of DiTs. For
insufficient training data, we observe that DiTs achieve superior generalization, as measured by the
PSNR gap, compared to UNets with equivalent FLOPs. However, the eigen-decomposition analysis
that reveals geometry-adaptive harmonic bases as the key inductive bias of diffusion models based
on locally linear UNets becomes invalid for classic hybrid UNets and DiTs due to the presence of
nonlinear operations. Therefore, we take an alternative approach to explore alternative inductive
biases and identify that a DiT’s generalization is instead influenced by the locality of its attention
maps. Consequently, we effectively modulate the generalization behavior of DiTs by incorporating
local attention layers. Specifically, we demonstrate that varying the placement of local attention
layers and adjusting the effective attention window size enables fine-grained control of a DiT’s
generalization and data-fitting capabilities. Enhancing a DiT’s generalization often leads to improved
FID scores when trained with insufficient data. One limitation of this work is that our analysis
focuses exclusively on DiTs. For future work, we consider it important and interesting to study the
generalization behavior of hybrid models and conditional transformers (e.g., MMDIiT modules), given
their growing popularity in recent generative architectures.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly convey that our work focuses on the
inductive biases underlying DiT generalization, with our key contribution, the discovery of
attention locality bias, explicitly highlighted.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have clearly discussed the limitations of this work, including the lack of a
formal theoretical proof and the limited practical impact of the discovered attention locality
bias in the large-data regime, in Appendix I}

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In Appendix [B] we show that local attention promotes a simplicity bias, which
reduces the model’s sensitivity to data perturbations. We further relate this reduced sensitivity
to flatter minima, a well-established indicator of good generalization. All assumptions are
consistent with prior work, and the proof is, to the best of our knowledge, correct.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Appendix[A] we provide all experimental settings, and our implementation
is based on a publicly available DiT codebase. As stated in the abstract, we will release our
code upon publication of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in this paper are publicly available. Our implementation
builds on the official DiT codebase, which is also publicly accessible. As stated in the
abstract, we will release our code upon publication of the paper.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have clearly presented all experimental settings in Appendix[A.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the PSNR and PSNR gap analysis in Fig.[2] we include standard deviation
ranges to demonstrate the robustness of our results. Although we do not report error bars
for other metrics such as FID, FD-DINOv2, and IS due to the high computational cost, we
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have thoroughly evaluated our model across seven diverse datasets using both pixel-space
and latent-space diffusion models. The consistency of results across these settings further
confirms the robustness of our findings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix[A, we report that all models were trained using 4 or 8 A100/H100
GPUs, and all checkpoints were taken at 400k training steps.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We use only publicly available datasets, ensure transparency by providing
detailed experimental settings, and commit to releasing our code upon publication to support
reproducibility and open science.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broader social impact of this work in Appendix [K. This
work does not introduce any new or unforeseen risks to the community.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is based entirely on existing publicly available models and datasets.
Our focus is on analyzing generalization to provide theoretical and empirical insights, rather
than introducing new models or methods that pose a risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

Answer: [Yes]

Justification: All assets are properly cited and their licenses are:

CelebA (non-commercial research license)

LSUN (non-commercial research license)

ImageNet (non-commercial research license)

MS COCO (Creative Commons CC-BY 4.0)

The official DiT codebase (Apache 2.0)

Our use is strictly non-commercial research, fully consistent with each license’s terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce any new assets. All experiments are conducted
using existing public datasets and codebases.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve human subjects or study participants, and therefore
does not require IRB approval.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only used LLMs to assist with minor writing refinements.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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