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Abstract

Test-time scaling has emerged as a promising
paradigm in language modeling, leveraging ad-
ditional computational resources at inference
time to enhance model performance. In this
work, we introduce R?-LLMs, a novel and ver-
satile hierarchical retrieval-augmented reason-
ing framework designed to improve test-time
scaling in large language models (LLMs) with-
out requiring distillation from more advanced
models to obtain chain-of-thought (CoT) train-
ing data. R2-LLMs enhances inference-
time generalization by integrating dual-level
retrieval-based in-context learning: (1) At the
coarse-level, our approach extracts abstract
templates from complex reasoning problems
and retrieves similar problem-answer pairs to
facilitate high-level in-context learning; (2) At
the fine-level, during Monte Carlo Tree Search
(MCTS), R2-LLMs efficiently retrieves anal-
ogous intermediate solution steps from refer-
ence mathematical problem datasets, refining
step-wise reasoning with the aid of a process
reward model (PRM) for scoring. R?-LLM:s is
a robust hierarchical reasoning-augmentation
method that enhances in-context-level reason-
ing while seamlessly integrating with step-level
tree search methods. Utilizing PRM, it refines
both candidate generation and decision-making
for improved reasoning accuracy. Empirical
evaluations on the MATHS500, GSMS8K, and
OlympiadBench-TO datasets achieve relative
substantial improvement with an increase up to
16% using LLaMA-3.1-8B compared to the
baselines, showcasing the effectiveness of our
approach in complex mathematical reasoning
tasks.

1 Introduction

Emergent abilities of Large Language Models
(LLMs) have traditionally relied on increased
training-time computation through large-scale gen-
erative pretraining (Kaplan et al., 2020; Hoffmann

et al., 2022; Wei et al., 2022a). Recently, Test-
Time Scaling (TTS) has emerged as a complemen-
tary paradigm, enhancing reasoning capabilities by
allocating extra computational resources at infer-
ence (Snell et al., 2024), as validated by DeepSeek-
R1 (Guo et al., 2025) and OpenAl’s O1 (OpenAl,
2024).

Existing TTS approaches are mainly: (1) Self-
evolution TTS, which improves reasoning by
generating extended Chain-of-Thought (CoT) se-
quences via large-scale reinforcement learning
(RL), exemplified by DeepSeek-R1; and (2)
Search-based TTS, which leverages pre-trained
models using inference-time search strategies like
Best-of-N (Brown et al., 2024), beam search (Snell
et al., 2024), and Monte Carlo Tree Search
(MCTS)(Zhang et al., 2025b; Guan et al., 2025).
Search-based methods have gained traction for
their efficiency and flexibility, often incorporating
Process Reward Models (PRMs) to evaluate inter-
mediate reasoning steps and guide the search ef-
fectively(Snell et al., 2024; Wu et al., 2024b; Face,
2024; Wang et al., 2023a).

Among search-based TTS methods, MCTS
demonstrates notable advantages, as mathemati-
cal multi-step reasoning tasks inherently involve
complex search processes that necessitate system-
atic exploration of diverse reasoning paths. MCTS
excels in managing extensive search spaces by ef-
fectively balancing exploration with exploitation,
efficiently prioritizing promising candidate paths,
and iteratively refining solutions towards optimal-
ity (Guan et al., 2025). However, conventional
PRM+MCTS approaches primarily rely on the in-
formation learned during pre-training, which can
lead to local optima or exploration blind spots when
encountering highly diverse or underrepresented
problem distributions (Zhang et al., 2025b). More-
over, these methods depend solely on the PRM to
evaluate steps within MCTS, which may fail to cap-
ture global problem-solving strategies and semantic
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Figure 1: Illustration of the reasoning process of R?-LLMs. R?-LLMs employ Hierarchical Augmented Reasoning MCTS to
answer the initial question, utilizing two enhancement methods: logical enhancement and fine-grained enhancement.

relationships. As a result, the reward signals guid-
ing the search process can be sparse or suboptimal,
reducing overall efficiency and accuracy. This lim-
itation increases the risk of deepening the search
along incorrect trajectories, ultimately leading to
failure in complex reasoning tasks. These chal-
lenges underscore the necessity for a more effective
and generalizable inference scaling approach—one
that enhances reasoning capabilities without requir-
ing extensive additional training while offering a
plug-and-play search strategy to improve robust-
ness and adaptability across diverse problem set-
tings.

To enhance the precision of reasoning path explo-
ration, we propose R2-LLMs that leverages exter-
nal retrieval to enhance inference-time generaliza-
tion through a dual-level retrieval-based in-context
learning mechanism. For coarse-level, we pro-
pose Deep Logical Retrieval in section 3.3. Our
approach retrieves analogous problem-answer pairs
via abstract problem templates to provide diverse
exemplars, enabling the model to capture underly-
ing patterns and variability in problem structures.
This facilitates more effective in-context learning,
enhancing the model’s adaptability to unseen prob-
lems. For fine-level, we further introduce Hierar-
chical Augmented Reasoning MCTS in section 3.4,
. During MCTS, R%2-LLMs dynamically retrieves
relevant intermediate solution steps from external
mathematical problem datasets, enriching the rea-
soning process with similar prior knowledge. By
incorporating these retrieved steps, PRM can pro-
vide more informed and contextually consistent
evaluations, reducing the risk of inefficient explo-
ration.

Empirical results demonstrate that the proposed

retrieval-augmented steps enable R2-LLM:s to gen-
eralize more effectively to complex and unseen
problems by leveraging diverse problem-solving
strategies from reference datasets. This mitigates
the limitations of relying solely on the immedi-
ate problem context and significantly enhances
reasoning performance. Our approach is evalu-
ated on policy models LLaMA 3.1-8B (Dubey
et al., 2024) and Qwen 2-7B (Yang et al., 2024a),
outperforming ICL-based and tree-based base-
lines on MATHS500 (Hendrycks et al., 2021),
GSMSK (Cobbe et al., 2021), and OlympiadBench-
TO (He et al., 2024).

2 Related Works

Test Time Scaling for LLMs. Scaling inference-
time compute has emerged as a compelling
paradigm for enhancing the performance of LLMs
(OpenAl, 2024; Guo et al., 2025). Early work
in this area explored techniques such as major-
ity voting (Wang et al., 2023b) and best-of-N
methods (Brown et al., 2024; Li et al., 2023),
which generate multiple candidate solutions and
select the most frequent or highest-scoring out-
put. More advanced approaches have leveraged
search-based strategies, including Monte Carlo
Tree Search (MCTS) (Choi et al., 2023; Zhang
et al., 2023; Liu et al., 2024; Zhou et al., 2023),
to systematically explore the reasoning space and
improve accuracy. To further enhance search effi-
ciency, recent studies have integrated Process Re-
ward Models (PRMs) to guide the selection of high-
quality reasoning paths (Setlur et al., 2024; Snell
et al., 2024; Lightman et al., 2023; Luo et al., 2024;
Wang et al., 2023a). These models provide re-
fined, step-wise evaluations, particularly beneficial



in complex reasoning tasks. Additionally, methods
such as BoT (Yang et al., 2024b) employ histori-
cal thought templates to steer exploration, achiev-
ing notable improvements in inference efficiency.
ReasonFlux (Yang et al., 2025) adaptively scales
fundamental and essential thought templates for
simplifying the search space of complex reasoning.
In contrast, our proposed R2-LLMs framework em-
ploys a hierarchical retrieval-augmented strategy
that leverages external reference data at both coarse
and fine levels, enriching in-context learning and
refine intermediate solution steps during MCTS to
enhance PRM evaluations.

Mathematical Reasoning. Mathematical reason-
ing has long been one of the most challenging tasks
in artificial intelligence. Early efforts relied on rule-
based methods (Feigenbaum et al., 1963; Fletcher,
1985), but the advent of large language models
has shifted the focus toward enhancing reasoning
capabilities both during training—via fine-tuning
with high-quality mathematical data (Shao et al.,
2024; Yang et al., 2024a; Lewkowycz et al., 2022;
Yue et al., 2023)—and at inference time through
prompt engineering (Wei et al., 2022b) and self-
refinement techniques (Madaan et al., 2024; Gou
et al., 2023; Ke et al., 2024). More recently, re-
searchers have advanced stepwise reasoning by
decomposing complex problems into individual
reasoning steps. Approaches such as Tree of
Thoughts (Yao et al., 2023) and Monte Carlo Tree
Search (MCTS) (Zhang et al., 2024; Chen et al.,
2024; Feng et al., 2023; Zhu et al., 2022) explore
multiple solution paths, with Process Reward Mod-
els (PRMs) (Lightman et al., 2023; Luo et al., 2024)
providing real-time verification to prune subopti-
mal paths. While these methods improve accuracy,
they often depend on internal model knowledge
and struggle with diverse or unseen problems. In
contrast, our proposed R?-LLMs framework uses a
hierarchical retrieval-augmented approach to boost
test-time scaling for mathematical reasoning by in-
tegrating external reference data. Unlike previous
methods that depend solely on internal reasoning
and risk local optima, our approach enriches the
process with diverse, contextually relevant exam-
ples and intermediate steps.

In-context learning with relevant samples In-
context learning is a cost-effective guidance ap-
proach that enhances model output quality by
leveraging similar examples, eliminating the need
for fine-tuning (Zhou et al., 2024; Dong et al.,

2022). Specifically, CoT (Wei et al., 2022b; Ko-
jima et al., 2022) guides the model’s reasoning pro-
cess. Self-Consistency (SC) (Wang et al., 2023b)
enhances performance by generating multiple rea-
soning paths and selecting the most consistent out-
come. In addition, Buffer of thought (BoT) (Liu
et al., 2024) enhances large language model rea-
soning by utilizing high-level thought templates,
shifting the focus beyond problem-level in-context
learning. Different from BoT’s template match-
ing, R>-LLMs employs a hierarchical retrieval-
augmented framework to dynamically integrate
global strategies and local reasoning for enhanced
problem solving.

3 Method

Overview of R?-LLMs. In this section, we present
a detailed overview of R?-LLMs, with the specific
process illustrated in Figure 1. In Section 3.1, we
briefly introduce the preliminary of MCTS. When
solving an initial mathematical question ¢, we effi-
ciently extract the conceptual unit 7" (Section 3.2),
which captures the core information of ¢ and serves
as the basis for retrieving a relevant DLR reference
set Qrer (Section 3.3). Leveraging Qr.s, we employ
MCTS to conduct hierarchical augmented reason-
ing MCTS for ¢ (Section 3.4).

3.1 MCTS Preliminary

MCTS is a heuristic search algorithm that incre-
mentally builds a tree using stochastic simulations.
Unlike Minimax, it selects actions via statistical
sampling and refines estimates with more simu-
lations. In this paper, we define the MCTS as
MCTS(-). The MCTS algorithm consists of four
main phases:

Selection. Starting from the root node, the algo-
rithm recursively selects child nodes until it reaches
a leaf node. A policy guides the selection pro-
cess, often the Upper Confidence Bound for Trees
(UCT), which balances exploration (trying less-
visited nodes) and exploitation (favoring nodes
with higher rewards).

UCT(v) = ]%Ez)) e 1HN(]1z[a(rz;1t(v))’

ey

where Q(v) is the total reward of node v, N(v)
is the visit count of node v, and c is a constant
controlling the balance between exploration and
exploitation.



Expansion. If the selected leaf node is not terminal,
the algorithm expands it by adding child nodes for
possible actions, progressively exploring new parts
of the search space.

Simulation (Rollout). A simulation starts from
the expanded node, taking random or policy-driven
actions until reaching a terminal state. This Rollout
estimates the node’s reward.

Backpropagation. The simulation results update
node statistics (e.g., total reward, visit count) from
the expanded node to the root, refining node quality
estimates iteratively.

3.2 Conceptual Unit Extraction

Some studies (Zhang et al., 2025a; Yang et al.,
2024b) indicate that highly relevant questions,
along with their reasoning steps or solution tem-
plates related to the initial question, can enhance
policy models’ reasoning abilities and improve
their problem-solving accuracy. However, mathe-
matical questions often involve various types, log-
ical conditions, and constraints, forming intricate
logical structures. Relying solely on surface-level
semantic information makes it challenging to di-
rectly determine the correlation between different
problems. Therefore, it is essential to extract gen-
eralization representations from these questions,
allowing for effective categorization and the identi-
fication of connections across different questions
types. Doing so promotes deeper analysis and a
more comprehensive understanding.

Inspired from previous works (Yang et al.,
2024b; Wu et al., 2024a), we extract the gener-
alization features of the initial question from three
key perspectives: problem types, key terms, and
relevant solution strategies. We collectively refer
to this triplet as the conceptual unit, denoted by
T = (ttype, tkey, tstrategy) , where fiype denotes the
problem type, txey represents the key terms within
the problem, and Zgyategy corresponds to the associ-
ated solution strategy. The inference factor T can
be obtained as:

T = LLM (B1(z)), 2

where (31 (-) denotes the meta prompt used for ex-
tracting the conceptual unit and z is original ques-
tion. The detailed extraction process is provided in
the Appendix B.2.

3.3 Deep Logical Retrieval

In this section, we propose deep logical retrieval
(DLR) to assist the policy model in effective rea-

soning. Given an initial question ¢ and its concep-
tual unit 7', DLR aims to retrieve several questions
with similar inference logic along with their cor-
responding reasoning steps to serve as references
for the policy model. These similar questions and
reasoning steps help the model better understand
the reasoning path, thereby enhancing its reasoning
capability and efficiency.

Given a set of reference questions, we use
DeepSeek-70B (Guo et al., 2025) to generate a
conceptual unit using Eq. 2 and further construct
the candidate set Frong = {(¢i, Ti, si) }}—,, where
s; represents the solution steps for the ¢-th ques-
tion. For a candidate set F,,q consisting of n
questions, solution steps and their corresponding
conceptual units T;, we implemented a two-stage
selection process—Preliminary Filtering followed
by Refined Selection—to identify questions that
exhibit deep logical relevance to the initial ques-
tion q. We describe this two-stage retrieval process
as follows:

Preliminary Filtering. In the preliminary filter-
ing stage, we employ the BM25 (Robertson and
Jones, 1976) algorithm to retrieve the most relevant
questions from the candidate set F,,4, based on
the given query ¢ and its corresponding problem
type tiype. Specifically, we construct a query pair
(g, teype) of initial questions and compute its simi-
larity with subset of conceptual unit from the candi-
date set to construct {(g;, tiype)i }1—; using BM25.
The candidate questions are then ranked by their
BM2S5 scores, and the top N most relevant ones are
selected as the coarse-level selection set Q" The
coarse-level set is constructed by filtering candidate
questions based on the semantic similarity of the
query ¢ and its corresponding problem type Ziype.
The selected questions not only belong to the same
category as the initial question but also share a sim-
ilar knowledge foundation in the problem-solving
process, ensuring greater accuracy and relevance
for subsequent matching.

Refined Selection. After obtaining coarse-level
set Qr', we further perform fine-grained selec-
tion among the these questions. Specifically, we
utilize (tyey, tsiraegy) from the conceptual unit 7’
of the initial question ¢ and compare them with
the set { (txey, , tstrmegyi)}ﬁil € Q% to compute the

ref
semantic similarity score as:

ei=F (tkeyi 5 tslrategyi) , €= E (tkey7 tstralegy)) (3)

Sref,i = COSine(eiz 6)7 (4)



Table 1: Comparative performance of reasoning methods across three benchmark datasets. The best results in each

box are highlighted in bold for clarity.

Model ‘ Method ‘ Dataset ‘ Average
\ \ MATHS00 GSMSK OlympiadBench \
Zero-shot CoT (Kojima et al., 2022) 18.0 61.5 154 31.6
Few-shot CoT (Wei et al., 2022b) 47.2 76.6 16.3 46.7
LLaMA-3.1-8B-Instruct | o1 g0 @4 (Wang et al., 2023b) 442 80.5 16.5 47.1
R?-LLMs 52.5 87.4 23.7 54.5
Zero-shot CoT (Kojima et al., 2022) 36.9 76.6 21.3 44.9
Qwen2-7B-instruct Few-shot CoT (Wei et al., 2022b) 52.9 85.7 21.6 53.4
CoT+SC@4 (Wang et al., 2023b) 55.6 87.7 21.7 55.0
R?-LLMs 60.6 89.1 28.5 59.4

where E(-) is an LM encoder, specifically a pre-
trained SentenceBERT (Reimers, 2019). Siet; is
used to measure the cosine similarity between the
encoded representations of question keywords and
question-solving strategies. By integrating the
model’s predicted solving strategies and the key-
words extracted from the problem, it further as-
sesses the relationship between the initial question
q and identifies candidate questions ¢; € Q" that
share similar problem-solving knowledge and rea-
soning approaches. Subsequently, we selected the
M most relevant questions and compiled their cor-
responding solution processes and strategy into the
DLR reference set Qrer = {(¢i, Si, tstrategy;) | ¢ €
arg maxs Sref,i, i € [1, N]}.
(2

3.4 Hierarchical augmented reasoning MCTS

After obtaining the DLR reference set Qs for
the initial question g, we designed a hierar-
chical augmented reasoning MCTS approach
to solve the problem. This method divides
the reasoning process into two main com-
ponents: Logical Reasoning Enhancement and
Fine-grained Enhancement. Logical Reasoning
Enhancement is tasked with refining the genera-
tion of high-quality reasoning steps, whereas Fine-
grained Enhancement aims to deliver more accu-
rate evaluations for every node within the MCTS,
thereby boosting the precision and efficiency of the
decision-making process as a whole. Next, we will
delve into a comprehensive explanation of these
two enhancement approaches.

Logical Reasoning Enhancement. In Logical
Reasoning Enhancement, we utilize a logic-driven
guidance mechanism to enable MCTS to produce
high-quality and coherent solution paths. Specif-
ically, during the MCTS reasoning process, we
utilize Qr.r as a reference to steer the policy model
P(-) in producing the subsequent node v; at i-th

state, leveraging the preceding set of node states
Vi—1 = {v1,...,v;_1} using meta prompt Sa(-):

vi = P (B2 ((¢, Qref), Vi-1)) - &)

Logical Reasoning Enhancement empowers the
policy model to draw insights from logically anal-
ogous problems, thereby enhancing its ability to
generate high-quality candidate solutions. By lever-
aging established logical patterns and structures,
this approach guides the model in delivering more
precise and contextually relevant answers.

Fine-grained Enhancement. At the i-th state,
the policy model generates U candidate nodes
veand — {vm}gjzl based on the previous state
node V;_1. Among these candidates, the node with
the highest () value is selected as the final node

for the current state, i.e., v; = arg maxQ(v). It en-
UE‘/icand
sures that at each step, the most optimal successor
node is chosen to efficiently construct the path.
Aligned with previous research (Zhang et al.,
2025b), we use PRM to approximate each node
values Q(v; ), where v;; € Vénd  To fur-
ther enhance the accuracy of PRM’s value esti-
mation, we propose a fine-grained (FG) enhance-
ment evaluation approach. We begin by using
\Afm = (q,v1,...,v;,v; ), where vy, ..., v; repre-
sent previous steps, as a query to perform BM25
retrieval within a fine-grained set F'rq, retrieving a
selection enhancement set Qﬁni’j with size K that
contains questions and reasoning steps relevant to q.
Each reasoning step is assigned a relevance score
R(v; j), which aids in evaluating the values of the
node v; ;:

R(vi,j) = Rprm (ﬁs(\A’m Qﬁn,,,j)) ; (6)

where Rpry(-) denotes the evaluation score gener-
ated by PRM, and 3 (-) represents the meta prompt
that assists PRM in enhancing the scoring process.



4 Experiment

4.1 Experiment setting

Policy and Reward Models. We use three LLMs
as policy models: LLaMA 3-8B, LLaMA 3.1-8B
(Dubey et al., 2024), and Qwen 2-7B (Yang et al.,
2024a). For PRM, we adopt Mistral-7B (Tang et al.,
2024), trained on PRM800K'. Notably, we use a
logit-based PRM approach rather than step-wise
prompting.

Evaluation Benchmark. We test our method on
three challenging open source mathematical bench-
marks: MATHS500 (Hendrycks et al., 2021), fo-
cused on high school-level competition mathemat-
ics; GSMS8K (Cobbe et al., 2021), covering middle
school to early high school level problems; and
OlympiadBench-TO (He et al., 2024), designed for
problems at the level of international mathematics
olympiads.

Candidate Set Selection. For MATHS500, we
randomly select 2,500 questions and reasoning
steps from PRM80OK due to its rich and complex
mathematical reasoning, which aligns well with
their characteristics. For GSM8K, we chose the
same number of questions from MAWPS (Koncel-
Kedziorski et al., 2016) and MATHQA (Amini
et al., 2019), as MAWPS offers various applica-
tion questions and AQuA includes multiple choice
questions based on reasoning, covering GSM8K’s
real-world math scenarios. For all tests, the candi-
date set size is 2500. DeepSeek-70B (Guo et al.,
2025) generated all conceptual units within this
set, including the reasoning steps for questions
sourced from MAWPS and MATHQA. Regarding
OlympiadBench-TO, we choose OpenThoughts 2.
Numbers of DLR Reference Set (.. and Selec-
tion Enhancement Set () 7;,,. The DLR reference
set maintains consistency in both question selection
and candidate set. By default, the DLR reference
set consists of 4 samples. Additionally, for the
selection enhancement set, we selected samples
from PRM80OK, with a set size of 3. We show the
sensitively analysis in Section 4.6.

Baseline. We primarily compare our approach
against three traditional example-based ICL meth-
ods: zero-shot CoT (Kojima et al., 2022), few-shot
CoT (Wei et al., 2022b), and SC+CoT (Wang et al.,
2023b). For SC, we conduct four sampling iter-

'The Mistral-7B. PRM  model is open-source:
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-
prm

Zhttps://huggingface.co/open-thoughts/OpenThinker-7B

ations, referred to as CoT+SC@4. Additionally,
we compare our approach with various tree-based
structures, including ToT (Yao et al., 2023), RAP
(Hao et al., 2023), ReST-MCTS* (Zhang et al.,
2025b) and LiteSearch (Wang et al., 2024).
Evaluation metrics. We use accuracy (%) as the
evaluation metric, where a solution is correct only
if the model’s final answer exactly matches the
ground truth.. A solution is deemed correct only if
the final reasoning process is fully aligned with the
ground truth.

In addition, the more experiment can be seen in
Appendix A.

4.2 Performance on Various Reasoning
Benchmarks

Table 1 compares the reasoning performance of
LLaMA-3.1-8B-Instruct and Qwen2-7B-instruct
across three datasets (MATH, GSM8K, Olympiad-
Bench) using four reasoning methods. R2-LLMs
achieves the highest scores, with Qwen2-7B-
instruct outperforming LLaMA-3.1-8B-instruct in
all settings. For example, on MATH, Qwen2-
7B-Instruct reaches 60.6% with the proposed
method, compared to LLaMA-3.1-8B-Instruct’s
52.5%. Few-shot CoT and CoT+SC @4 show no-
table improvements over Zero-shot CoT; for in-
stance, LLaMA-3.1-8B-Instruct’s GSM8K score
rises from 61.5% (Zero-shot CoT) to 80.5%
(CoT+SC@4). Meanwhile, our method also shows
a significant improvement on OlympiadBench.

4.3 Comparison with Other Tree-based
Methods

To further assess the effectiveness of RZ-LLMs, we
conducted comparative experiments on the MATH
and GSMSK datasets against leading tree-based
approaches. Specifically, we selected ToT, RAP,
ReST-MCTS*, and LiteSearch as baselines and
utilized the widely adopted Llama-3-8B-Instruct as
the backbone model for inference, ensuring fairness
and comparability in our evaluation.

Table 2 compares tree-based methods on
GSMS8K and MATH. R2?-LLMs achieve the
best results—84.6% on GSM8K and 34.7% on
MATH—outperforming all baselines. Notably, it
surpasses LiteSearch by 2.3% and RAP by 4.1%
on GSMB8K, and leads ReST-MCTS by 3.3% on
MATH, showing strong performance on both arith-
metic and complex reasoning tasks. Compared
with other methods, R?-LLMs outperforms exist-
ing approaches by combining coarse-level retrieval



Table 2: Comparison of tree-based methods on GSMSK
and MATH. Bold indicates the best performance.

Dataset

Model ‘ Method ‘

| | GSMSK MATH500
ToT 69.0 13.6
RAP 80.5 18.8
LLaMA-3-8B-Instruct | ReST-MCTS* - 314
LiteSearch 82.3 -
R2-LLMs 84.6 34.7

for global strategy, which aids in handling rare
problems, with fine-grained retrieval that enriches
node evaluation using external steps, effectively
mitigating sparse rewards in standard MCTS and
other tree-based methods.

4.4 Domain Impact on the DLR Reference Set

When selecting the DLR reference set, we gener-
ally ensure it is in-domain with the test set. To
assess the model’s ability to generalize to out-of-
domain scenarios, we evaluate its performance on
datasets such as GSM8K and MATH. Furthermore,
we apply the DLR reference set across different
domains to test their adaptability. Table 3 presents
the impact of the domain relationship between the
DLR reference set and the test questions on accu-
racy. The experiment is based on the LLaMA-3.1-
8B-Instruct model and is conducted on two math-
ematical problem datasets, GSM8K and MATH.
In-domain means that the DLR reference set and
the test questions come from the same domain,
whereas out-of-domain indicates that they belong
to different domains. The experimental results re-
veal that the model achieves its best performance
on in-domain inference sets, where the domain of
the questions aligns closely with the DLR refer-
ence set. For instance, on the GSM8K dataset,
the model attains a score of 87.4%, demonstrating
strong generalization capabilities within the same
domain. However, when evaluated using out-of-
domain DLR reference set, where the question do-
main differs significantly, R2-LLMs’s performance
declines noticeably. For example, on the MATH
dataset, the score drops to 43.5%, indicating a sub-
stantial performance gap compared to in-domain
tasks. From the results mentioned above, it can
be concluded that although the performance de-
grades across different domains, in most cases, it
still helps the model to enhance the overall results.

4.5 Ablation Analysis

To assess the impact of each component on the per-
formance of R2-LLMs, we conducted a series of
ablation experiments. The baseline MCTS method

is compared against three variants: MCTSy,/pLR,
which incorporates logical reasoning enhance-
ments, MCTSy,/rg, which integrates fine-grained
enhancement, and MCTSy,/pLr+FG 1S equal to R2-
LLMSs, which combines both improvements.
Table 4 presents the results of an ablation study
evaluating the impact of different components in
R2-LLMs on the MATH and GSMS8K datasets. We
conduct experiments using two instruction-tuned
language models, LLaMA-3.1-8B-Instruct and
Qwen2-7B-Instruct, under different approaches.
The results demonstrate that each individual en-
hancement contributes to performance gains, with
the combination of both (MCTSy,/pLr+Fg) yield-
ing the best results across both datasets. Specifi-
cally, LLaMA-3.1-8B-Instruct achieves 52.5% on
MATH and 87.4% on GSMS8K, while Qwen2-7B-
Instruct reaches 60.6% and 89.1%, respectively. In
addition, for LLaMA-3.1-8B-Instruct, incorporat-
ing logical reasoning enhancements (MCTSy,/pLRr)
leads to an absolute gain of +3.7% on MATH
(46.6% — 50.3%) and +4.1% on GSMS8K (82.5%
— 86.6%), while adding fine-grained enhance-
ment (MCTSy,/rg) provides a smaller improvement
of +0.9% on MATH (46.6% — 47.5%) and +0.4
on GSMSK (82.5% — 82.9%). When both com-
ponents are combined (MCTSy,pLr+FG), the per-
formance further increases to 52.5% (+5.9%) on
MATH and 87.4% (+4.9%) on GSM8K, demon-
strating a synergistic effect. These findings high-
light the effectiveness of our proposed method in
improving mathematical reasoning performance.

4.6 Sensitively Analysis

In this section, we examine how the sample size of
the candidate set F.,,4, the DLR reference set Qyer,
and the selection enhancement set () r;,, affects the
results, using Qwen2-7B-Instruct and LLaMA-3.1-
8B-Instruct as policy models on the GSM8K and
MATH datasets.

Impact of Candidate Set Size. Figure 2a and Fig-
ure 2d illustrate the impact of candidate set size
on accuracy for the GSM8K and MATH datasets,
respectively. Both figures reveal a positive cor-
relation between candidate set size and accuracy.
Notably, accuracy increases sharply as the sample
size grows from 1000 to 1500, but after reaching
2000, the overall improvement plateaus.

Impact of DLR Reference Set Size. Figure 2b
and Figure 2e depict the effect of DLR reference
set size on accuracy for the GSM8K and MATH
datasets. Like the candidate set size, a larger DLR



Table 3: Performance evaluation of the impact of DLR reference sets ). ¢ on the reasoning capabilities of R?-LLMs,
tested on the GSM8K and MATH datasets. Bold indicates the best performance.
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Figure 2: Sensitivity Analysis on GSMS8K (top row) and MATHS500 (bottom row).

Table 4: Ablation analysis of R2-LLMs. The best results
in each box are highlighted in bold for clarity. DLR
denotes Deep Logical Retrieval and FG denotes Fine-
grained Enhancement.

Model ‘ ‘ Dataset

Method - -

\ MATH GSMSK
MCTS 46.6 82.5
MCTSw/pLr 50.3 86.6
LLaMA-3.1-8B-Instruct MCTS g 475 829
MCTSy/pLR+FG 52.5 87.4
MCTS 53.7 85.9
. MCTSw/pLr 58.2 88.7
Qwen2-7B-instruct MCTSuwrG 556 34.8
MCTSw/pLR+FG 60.6 89.1

reference set leads to a noticeable improvement
in accuracy. When the size reaches 4, accuracy
increases by 5% on MATH and 4.5% on GSM8K
with LLaMA-3.1-8B-Instruct. This indicates that
expanding the DLR reference set size can effec-
tively improve the reasoning quality of MCTS,
thereby enhancing accuracy.

Impact of Selection Enhancement Set Size. Fig-
ure 2¢ and Figure 2f present the influence of se-

lection enhancement set size on the GSM8K and
MATH datasets, respectively. While there is still a
positive correlation between set size and accuracy,
its impact is less pronounced compared to the effect
of candidate set size. Specifically, for the MATH
dataset, increasing the size to 3 results in only a
modest 2.4% improvement in accuracy.

5 Conclusion

In this work, we presented R?-LLMs, a hierarchical
retrieval-augmented framework that enhances test-
time scaling for LLMs by leveraging both Deep
Logical Retrieval at the coarse level and Hierarchi-
cal Augmented Reasoning MCTS at the fine level.
Our approach integrates external reference data
to enrich in-context learning and employs a pro-
cess reward model to refine candidate generation
and decision-making. Empirical results, with im-
provements up to 16% on key benchmarks, validate
the effectiveness of R2-LLMs in tackling complex
mathematical reasoning tasks.



6 Limitation

Our current evaluations have focused primarily
on mathematical reasoning benchmarks, leaving
its effectiveness in other domains—such as gen-
eral knowledge, symbolic logic, and multimodal
tasks—Iless explored. Besides, most experiments
have been conducted using relatively modest mod-
els, and further investigation is needed to under-
stand the performance and scalability of R?-LLMs
on larger, potentially closed-source models.

7 Potential Risks

Our work makes clear contributions by enhancing
LLMs’ reasoning abilities. It enables more accurate
and trustworthy Al support in complex reasoning
tasks such as education, scientific analysis, and
decision-making. However, improved reasoning
capabilities also pose risks—such as producing per-
suasive yet inaccurate outputs—especially when
reasoning chains are poorly guided. Therefore, re-
sponsible and transparent use of such enhanced
reasoning frameworks is essential to ensure posi-
tive societal impact.
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A Extra Experiments

A.1 Comparison with other TTS baselines

To ensure a fair comparison with other TTS-based methods, we select BoT (Liu et al., 2024) as the baseline.
As shown in Table 5, we evaluate its performance on two popular base models (LLaMA-3.1-Instruct and
Qwen-2.5-Instruct) across the GSM8K and MATHS500 datasets, comparing it with the existing TTS-based
method BoT. The results demonstrate that R2-LLMs consistently outperforms BoT in all settings. Notably,
the improvement is particularly significant on the more challenging MATHS500 dataset (e.g., from 25.7 to
52.5, or from 34.5 to 60.6), indicating that our method not only generalizes well across different backbones
but also significantly boosts the model’s performance on complex mathematical reasoning tasks.

Table 5: Comparison with another TTS-based method (BoT). The best results in each box are highlighted in bold
for clarity.

Model | Method | GSM8K MATHS500
BoT 62.5 25.7
LLaMA-3.1-Instruct R2-LLMs 87 4 52.5
BoT 80.4 34.5
Qwen-2.5-Instruct R2-LLMs 89 1 60.6

A.2 Time consumption analysis

Table 6: The computational overhead incurred by R2-LLMs.

Method | MATH500 GSM8k
Plain MCTS | 7.00h 3.20h
R*LLMs | 7.35h 3.45h

To evaluate the computational efficiency of our method, we compare the runtime of R?-LLMs with the
baseline Plain MCTS across two benchmark datasets, as shown in Table 6. On the MATHS500 dataset,
R2-LLMs completes the task in 7.35 hours using 4 A100 GPUs, compared to 7.00 hours required by
the baseline. Similarly, on GSMS8K, the runtime increases modestly from 3.20 to 3.45 hours. These
results demonstrate that R2-LLMs achieves significant performance gains with only a marginal increase
in computational overhead—approximately 5% on MATHS500 and 7.8% on GSM8K—validating the
practicality and scalability of our method for real-world deployment.

A.3 Performance with different PRM model

Table 7: Performance comparision with different PRM models. The best results in each box are highlighted in bold
for clarity.

Method | MATH500 GSM8k
MCTS w/ Mistral-7B | 466 82.5
R?-LLMs w/ Mistral-7B | 525 87.4
MCTS w/Qwen2.5-7B Math PRM | 47.9 84.1
RZ-LLMs w/Qwen2.5-7B Math PRM | ~ 53.2 89.7
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To further validate the effectiveness of our approach, we compare R?-LLMs with different state-of-
the-art PRM (Policy Retrieval Module) backbones, as shown in Table 7. When using Mistral-7B as the
PRM, R2-LLM:s achieves substantial improvements over the MCTS baseline, with scores rising from 46.6
to 52.5 on MATHS500 and from 82.5 to 87.4 on GSM8K. Similarly, when adopting the more advanced
Qwen2.5-7B Math PRM, our method further boosts performance, reaching 53.2 on MATHS500 and 89.7
on GSMSK. These results confirm that R?-LLMs consistently enhances performance across PRM choices,
and benefits even more from stronger PRMs, highlighting the flexibility and scalability of our framework.
Due to time constraints, we focus on evaluation using LLaMA 3.1 8B for fair and efficient comparison.

A.4 Ablation analysis on abstrct template

Table 8: Ablation analysis on abstract template using MATHS500. The best results in each box are highlighted in
bold for clarity.

Method | MATH500
Without anything ‘ 47.5
Only problem types ‘ 48.7
Only key terms ‘ 49.7
Only solution strategies ‘ 50.7
Problem types + key terms ‘ 49.7
Problem types + solution strategies ‘ 50.9
Key terms + solution strategies ‘ 52.2
Problem types + solution strategies + key terms (R?-LLMs) ‘ 52.5

To investigate the effectiveness of each component in the abstract template, we conduct an ablation
study on the MATHS500 dataset using the LLaMA-3.1-8B Instruct model. As shown in Table 8, the
abstract template consists of three elements: problem types, key terms, and relevant solution strategies.
Removing all components results in the lowest accuracy of 47.5%. Adding only problem types slightly
improves performance to 48.7%, while including only key terms or only solution strategies leads to
further gains of 49.7% and 50.7%, respectively. Combining problem types with key terms does not yield
additional benefits (49.7%), but combining problem types with solution strategies improves the score
to 50.9%. Notably, the combination of key terms and solution strategies achieves a stronger result of
52.2%. The best performance of 52.5% is obtained when all three components are included, as used
in R%2-LLMs, confirming that each part of the abstract template contributes incrementally to overall
reasoning performance.

A.5 Results on larger policy model

Table 9: Performance using larger policy model (Qwen-2.5 14B) with MATH500 and GSMS8K.

Method | MATH500 GSMS8K
Plain MCTS | 885 584
R*LLMs | 916 626

To address the suggestion of evaluating our method on a larger language model, we conduct additional
experiments using Qwen-2.5 14B as the policy model. As shown in Table 9, our method R?-LLMs
achieves strong performance improvements over the baseline Plain MCTS on both benchmarks. Specifi-
cally, on the challenging MATHS500 dataset, accuracy increases from 88.5% to 91.6 %, and on GSM8K,
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from 58.4% to 62.6%. These results confirm that R?-LLM:s consistently enhance performance even with
larger-scale models, demonstrating its robustness and scalability across model sizes.

B Example Appendix

B.1 Example of DLR set samples

Initial questions: A 90° rotation around the origin in the counter-clockwise direction is applied to 7 + 2.
What is the resulting complex number?

Sample 1

Related question 1: Let z = 2 + /2 — (3 + 3/2)i, and let ¢ = 2 — 34. Let w be the result when z is
rotated around c by 7 counter-clockwise. Find w.

Problem type: Complex number operation.

Key words and relevant words: complex number, rotation, counter-clockwise, center of rotation,
angle.

Problem solving strategy: The transformation involves translating the system so that the center of
rotation aligns with the origin, applying a complex exponential rotation to achieve the desired angular
displacement, and then translating back to the original coordinate system. This process ensures that the
rotated point maintains its relative position to the center while undergoing the specified rotation. The final
result is expressed in terms of its real and imaginary components to provide a complete representation in
the complex plane.

Sample 2

Related question 2:

(=1 +iV3)z + (—2v3 — 184)

The function f(z) = 5

represents a rotation around some complex number c.

Find c.
Problem type: Complex number operation.
Key words and relevant words: function, rotation, complex number, transformation.

Problem solving strategy: The transformation follows a structured process, beginning with a translation
to align the rotation center with the origin, followed by the application of a complex linear mapping
that encodes both rotation and translation. The fixed point of this transformation, obtained by solving
f(¢) = ¢, determines the invariant center around which the system rotates. By decomposing this result
into its real and imaginary components, a complete representation of the transformation in the complex
plane is achieved.
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B.2 Meta Prompt

Meta Prompt

As an expert in solving mathematical problems, you excel at extracting key information from users' mathematical queries for analysis.
You can skillfully transform the extracted information into a format that is suitable for handling the problem. If the problem can be

generalized to a higher level to address multiple issues, you will provide further analysis and explanation in your next response.

Please categorize and extract the crucial information required to solve the problem from the user's input query. Combine these two
elements to generate distilled information. Subsequently, pass this distilled information to the downstream meta planner based on the
problem type. The problem type should belong to one of the six categories mentioned above, and the distilled information should

include:

Extract the problem type in the given range and key words from the user's input, which will be handed over to the respective expert
for task resolution, ensuring that all essential information required to solve the problem is provided. The objective of the problem and
corresponding constraints. Propose a meta problem based on the issue to address the user's query, and handle more input and

output variations. At the same time, provide similar terms based on the key words and relevant words.

Additionally, based on the extracted information, provide a strategy or possible solution for addressing the problem. Your task is to
extract the key information, and you do not need to provide the final result in your response.Please follow the format below for

extraction and stop responding after outputting the distilled information.
Problem type:
Key word and relevant words:

Your relevant abstract strategy for solving the problem:

Figure 3: Meta Prompt 31

Meta Prompt »

Related Problem:

Distilled Results for the Related Problem:
Problem type: Complex function transformation :
Key word and relevant words: -

Your relevant strategy for solving the problem: -
Existing Steps:

Based on the above steps, and related problem and their relevant strategy as
reference, the possible current step-by-step solution is:
Figure 4: Meta Prompt 32

Meta Prompt 3

Related Problem: -

Related Problem Existing Steps and corresponding score is:

Our existing Steps and its score:

Based on the above steps, the possible each step-by-step solution score is:

Figure 5: Meta Prompt (3

Figures 3, 4, and 5 illustrate three distinct meta prompts, each designed to assist the large model in a
specific task: extracting conceptual units, enhancing DLR reasoning, and refining fine-grained details.
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B.3 Preliminary Filtering & Refined Selection example

Initial Question

"A 90° rotation around the origin transforms the complex number (7+2i). What is the result?"

Step 1: Preliminary Filtering (BM25)

e Input: Query = (problem text, type="complex number rotation").

* Candidate Questions Retained (Top 3 by BM25):

1. "Rotate (3+4i) by 180° around the origin."
2. "Find the result of rotating (1+i) by 45° counter-clockwise."
3. "Let (z=2+3i). Rotate (z) by 90° around (1+i)."

» Rationale: BM?2S5 prioritizes questions with overlapping keywords (e.g., "rotate", "complex number")
and matching problem types.

Step 2: Refined Selection (SentenceBERT)

* Conceptual Unit of Initial Question:

"non

— (Tiey): ["origin", "counter-clockwise", "complex number"]
— (Tstrategy): "Apply rotation matrix to complex coordinates."

* Scores (Sref,i):

— Candidate 1: 0.82 (high, shares "origin" and strategy).
— Candidate 2: 0.45 (low, angle differs).

— Candidate 3: 0.12 (discarded, rotation center mismatch).

* Output (DLR Reference Set): Includes Candidate 1°s solution steps (e.g., "Multiply by ¢™" for
180° rotation).
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