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Abstract001

Test-time scaling has emerged as a promising002
paradigm in language modeling, leveraging ad-003
ditional computational resources at inference004
time to enhance model performance. In this005
work, we introduce R2-LLMs, a novel and ver-006
satile hierarchical retrieval-augmented reason-007
ing framework designed to improve test-time008
scaling in large language models (LLMs) with-009
out requiring distillation from more advanced010
models to obtain chain-of-thought (CoT) train-011
ing data. R2-LLMs enhances inference-012
time generalization by integrating dual-level013
retrieval-based in-context learning: (1) At the014
coarse-level, our approach extracts abstract015
templates from complex reasoning problems016
and retrieves similar problem-answer pairs to017
facilitate high-level in-context learning; (2) At018
the fine-level, during Monte Carlo Tree Search019
(MCTS), R2-LLMs efficiently retrieves anal-020
ogous intermediate solution steps from refer-021
ence mathematical problem datasets, refining022
step-wise reasoning with the aid of a process023
reward model (PRM) for scoring. R2-LLMs is024
a robust hierarchical reasoning-augmentation025
method that enhances in-context-level reason-026
ing while seamlessly integrating with step-level027
tree search methods. Utilizing PRM, it refines028
both candidate generation and decision-making029
for improved reasoning accuracy. Empirical030
evaluations on the MATH500, GSM8K, and031
OlympiadBench-TO datasets achieve relative032
substantial improvement with an increase up to033
16% using LLaMA-3.1-8B compared to the034
baselines, showcasing the effectiveness of our035
approach in complex mathematical reasoning036
tasks.037

1 Introduction038

Emergent abilities of Large Language Models039

(LLMs) have traditionally relied on increased040

training-time computation through large-scale gen-041

erative pretraining (Kaplan et al., 2020; Hoffmann042

et al., 2022; Wei et al., 2022a). Recently, Test- 043

Time Scaling (TTS) has emerged as a complemen- 044

tary paradigm, enhancing reasoning capabilities by 045

allocating extra computational resources at infer- 046

ence (Snell et al., 2024), as validated by DeepSeek- 047

R1 (Guo et al., 2025) and OpenAI’s O1 (OpenAI, 048

2024). 049

Existing TTS approaches are mainly: (1) Self- 050

evolution TTS, which improves reasoning by 051

generating extended Chain-of-Thought (CoT) se- 052

quences via large-scale reinforcement learning 053

(RL), exemplified by DeepSeek-R1; and (2) 054

Search-based TTS, which leverages pre-trained 055

models using inference-time search strategies like 056

Best-of-N (Brown et al., 2024), beam search (Snell 057

et al., 2024), and Monte Carlo Tree Search 058

(MCTS)(Zhang et al., 2025b; Guan et al., 2025). 059

Search-based methods have gained traction for 060

their efficiency and flexibility, often incorporating 061

Process Reward Models (PRMs) to evaluate inter- 062

mediate reasoning steps and guide the search ef- 063

fectively(Snell et al., 2024; Wu et al., 2024b; Face, 064

2024; Wang et al., 2023a). 065

Among search-based TTS methods, MCTS 066

demonstrates notable advantages, as mathemati- 067

cal multi-step reasoning tasks inherently involve 068

complex search processes that necessitate system- 069

atic exploration of diverse reasoning paths. MCTS 070

excels in managing extensive search spaces by ef- 071

fectively balancing exploration with exploitation, 072

efficiently prioritizing promising candidate paths, 073

and iteratively refining solutions towards optimal- 074

ity (Guan et al., 2025). However, conventional 075

PRM+MCTS approaches primarily rely on the in- 076

formation learned during pre-training, which can 077

lead to local optima or exploration blind spots when 078

encountering highly diverse or underrepresented 079

problem distributions (Zhang et al., 2025b). More- 080

over, these methods depend solely on the PRM to 081

evaluate steps within MCTS, which may fail to cap- 082

ture global problem-solving strategies and semantic 083
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Figure 1: Illustration of the reasoning process of R2-LLMs. R2-LLMs employ Hierarchical Augmented Reasoning MCTS to
answer the initial question, utilizing two enhancement methods: logical enhancement and fine-grained enhancement.

relationships. As a result, the reward signals guid-084

ing the search process can be sparse or suboptimal,085

reducing overall efficiency and accuracy. This lim-086

itation increases the risk of deepening the search087

along incorrect trajectories, ultimately leading to088

failure in complex reasoning tasks. These chal-089

lenges underscore the necessity for a more effective090

and generalizable inference scaling approach—one091

that enhances reasoning capabilities without requir-092

ing extensive additional training while offering a093

plug-and-play search strategy to improve robust-094

ness and adaptability across diverse problem set-095

tings.096

To enhance the precision of reasoning path explo-097

ration, we propose R2-LLMs that leverages exter-098

nal retrieval to enhance inference-time generaliza-099

tion through a dual-level retrieval-based in-context100

learning mechanism. For coarse-level, we pro-101

pose Deep Logical Retrieval in section 3.3. Our102

approach retrieves analogous problem-answer pairs103

via abstract problem templates to provide diverse104

exemplars, enabling the model to capture underly-105

ing patterns and variability in problem structures.106

This facilitates more effective in-context learning,107

enhancing the model’s adaptability to unseen prob-108

lems. For fine-level, we further introduce Hierar-109

chical Augmented Reasoning MCTS in section 3.4,110

. During MCTS, R2-LLMs dynamically retrieves111

relevant intermediate solution steps from external112

mathematical problem datasets, enriching the rea-113

soning process with similar prior knowledge. By114

incorporating these retrieved steps, PRM can pro-115

vide more informed and contextually consistent116

evaluations, reducing the risk of inefficient explo-117

ration.118

Empirical results demonstrate that the proposed119

retrieval-augmented steps enable R2-LLMs to gen- 120

eralize more effectively to complex and unseen 121

problems by leveraging diverse problem-solving 122

strategies from reference datasets. This mitigates 123

the limitations of relying solely on the immedi- 124

ate problem context and significantly enhances 125

reasoning performance. Our approach is evalu- 126

ated on policy models LLaMA 3.1-8B (Dubey 127

et al., 2024) and Qwen 2-7B (Yang et al., 2024a), 128

outperforming ICL-based and tree-based base- 129

lines on MATH500 (Hendrycks et al., 2021), 130

GSM8K (Cobbe et al., 2021), and OlympiadBench- 131

TO (He et al., 2024). 132

2 Related Works 133

Test Time Scaling for LLMs. Scaling inference- 134

time compute has emerged as a compelling 135

paradigm for enhancing the performance of LLMs 136

(OpenAI, 2024; Guo et al., 2025). Early work 137

in this area explored techniques such as major- 138

ity voting (Wang et al., 2023b) and best-of-N 139

methods (Brown et al., 2024; Li et al., 2023), 140

which generate multiple candidate solutions and 141

select the most frequent or highest-scoring out- 142

put. More advanced approaches have leveraged 143

search-based strategies, including Monte Carlo 144

Tree Search (MCTS) (Choi et al., 2023; Zhang 145

et al., 2023; Liu et al., 2024; Zhou et al., 2023), 146

to systematically explore the reasoning space and 147

improve accuracy. To further enhance search effi- 148

ciency, recent studies have integrated Process Re- 149

ward Models (PRMs) to guide the selection of high- 150

quality reasoning paths (Setlur et al., 2024; Snell 151

et al., 2024; Lightman et al., 2023; Luo et al., 2024; 152

Wang et al., 2023a). These models provide re- 153

fined, step-wise evaluations, particularly beneficial 154
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in complex reasoning tasks. Additionally, methods155

such as BoT (Yang et al., 2024b) employ histori-156

cal thought templates to steer exploration, achiev-157

ing notable improvements in inference efficiency.158

ReasonFlux (Yang et al., 2025) adaptively scales159

fundamental and essential thought templates for160

simplifying the search space of complex reasoning.161

In contrast, our proposed R2-LLMs framework em-162

ploys a hierarchical retrieval-augmented strategy163

that leverages external reference data at both coarse164

and fine levels, enriching in-context learning and165

refine intermediate solution steps during MCTS to166

enhance PRM evaluations.167

Mathematical Reasoning. Mathematical reason-168

ing has long been one of the most challenging tasks169

in artificial intelligence. Early efforts relied on rule-170

based methods (Feigenbaum et al., 1963; Fletcher,171

1985), but the advent of large language models172

has shifted the focus toward enhancing reasoning173

capabilities both during training—via fine-tuning174

with high-quality mathematical data (Shao et al.,175

2024; Yang et al., 2024a; Lewkowycz et al., 2022;176

Yue et al., 2023)—and at inference time through177

prompt engineering (Wei et al., 2022b) and self-178

refinement techniques (Madaan et al., 2024; Gou179

et al., 2023; Ke et al., 2024). More recently, re-180

searchers have advanced stepwise reasoning by181

decomposing complex problems into individual182

reasoning steps. Approaches such as Tree of183

Thoughts (Yao et al., 2023) and Monte Carlo Tree184

Search (MCTS) (Zhang et al., 2024; Chen et al.,185

2024; Feng et al., 2023; Zhu et al., 2022) explore186

multiple solution paths, with Process Reward Mod-187

els (PRMs) (Lightman et al., 2023; Luo et al., 2024)188

providing real-time verification to prune subopti-189

mal paths. While these methods improve accuracy,190

they often depend on internal model knowledge191

and struggle with diverse or unseen problems. In192

contrast, our proposed R2-LLMs framework uses a193

hierarchical retrieval-augmented approach to boost194

test-time scaling for mathematical reasoning by in-195

tegrating external reference data. Unlike previous196

methods that depend solely on internal reasoning197

and risk local optima, our approach enriches the198

process with diverse, contextually relevant exam-199

ples and intermediate steps.200

In-context learning with relevant samples In-201

context learning is a cost-effective guidance ap-202

proach that enhances model output quality by203

leveraging similar examples, eliminating the need204

for fine-tuning (Zhou et al., 2024; Dong et al.,205

2022). Specifically, CoT (Wei et al., 2022b; Ko- 206

jima et al., 2022) guides the model’s reasoning pro- 207

cess. Self-Consistency (SC) (Wang et al., 2023b) 208

enhances performance by generating multiple rea- 209

soning paths and selecting the most consistent out- 210

come. In addition, Buffer of thought (BoT) (Liu 211

et al., 2024) enhances large language model rea- 212

soning by utilizing high-level thought templates, 213

shifting the focus beyond problem-level in-context 214

learning. Different from BoT’s template match- 215

ing, R2-LLMs employs a hierarchical retrieval- 216

augmented framework to dynamically integrate 217

global strategies and local reasoning for enhanced 218

problem solving. 219

3 Method 220

Overview of R2-LLMs. In this section, we present 221

a detailed overview of R2-LLMs, with the specific 222

process illustrated in Figure 1. In Section 3.1, we 223

briefly introduce the preliminary of MCTS. When 224

solving an initial mathematical question q, we effi- 225

ciently extract the conceptual unit T (Section 3.2), 226

which captures the core information of q and serves 227

as the basis for retrieving a relevant DLR reference 228

set Qref (Section 3.3). Leveraging Qref, we employ 229

MCTS to conduct hierarchical augmented reason- 230

ing MCTS for q (Section 3.4). 231

3.1 MCTS Preliminary 232

MCTS is a heuristic search algorithm that incre- 233

mentally builds a tree using stochastic simulations. 234

Unlike Minimax, it selects actions via statistical 235

sampling and refines estimates with more simu- 236

lations. In this paper, we define the MCTS as 237

MCTS(·). The MCTS algorithm consists of four 238

main phases: 239

Selection. Starting from the root node, the algo- 240

rithm recursively selects child nodes until it reaches 241

a leaf node. A policy guides the selection pro- 242

cess, often the Upper Confidence Bound for Trees 243

(UCT), which balances exploration (trying less- 244

visited nodes) and exploitation (favoring nodes 245

with higher rewards). 246

UCT(v) =
Q(v)

N(v)
+ c

√
lnN(parent(v))

N(v)
, (1) 247

where Q(v) is the total reward of node v, N(v) 248

is the visit count of node v, and c is a constant 249

controlling the balance between exploration and 250

exploitation. 251

3



Expansion. If the selected leaf node is not terminal,252

the algorithm expands it by adding child nodes for253

possible actions, progressively exploring new parts254

of the search space.255

Simulation (Rollout). A simulation starts from256

the expanded node, taking random or policy-driven257

actions until reaching a terminal state. This Rollout258

estimates the node’s reward.259

Backpropagation. The simulation results update260

node statistics (e.g., total reward, visit count) from261

the expanded node to the root, refining node quality262

estimates iteratively.263

3.2 Conceptual Unit Extraction264

Some studies (Zhang et al., 2025a; Yang et al.,265

2024b) indicate that highly relevant questions,266

along with their reasoning steps or solution tem-267

plates related to the initial question, can enhance268

policy models’ reasoning abilities and improve269

their problem-solving accuracy. However, mathe-270

matical questions often involve various types, log-271

ical conditions, and constraints, forming intricate272

logical structures. Relying solely on surface-level273

semantic information makes it challenging to di-274

rectly determine the correlation between different275

problems. Therefore, it is essential to extract gen-276

eralization representations from these questions,277

allowing for effective categorization and the identi-278

fication of connections across different questions279

types. Doing so promotes deeper analysis and a280

more comprehensive understanding.281

Inspired from previous works (Yang et al.,282

2024b; Wu et al., 2024a), we extract the gener-283

alization features of the initial question from three284

key perspectives: problem types, key terms, and285

relevant solution strategies. We collectively refer286

to this triplet as the conceptual unit, denoted by287

T =
(
ttype, tkey, tstrategy

)
, where ttype denotes the288

problem type, tkey represents the key terms within289

the problem, and tstrategy corresponds to the associ-290

ated solution strategy. The inference factor T can291

be obtained as:292

T = LLM(β1(x)), (2)293

where β1(·) denotes the meta prompt used for ex-294

tracting the conceptual unit and x is original ques-295

tion. The detailed extraction process is provided in296

the Appendix B.2.297

3.3 Deep Logical Retrieval298

In this section, we propose deep logical retrieval299

(DLR) to assist the policy model in effective rea-300

soning. Given an initial question q and its concep- 301

tual unit T , DLR aims to retrieve several questions 302

with similar inference logic along with their cor- 303

responding reasoning steps to serve as references 304

for the policy model. These similar questions and 305

reasoning steps help the model better understand 306

the reasoning path, thereby enhancing its reasoning 307

capability and efficiency. 308

Given a set of reference questions, we use 309

DeepSeek-70B (Guo et al., 2025) to generate a 310

conceptual unit using Eq. 2 and further construct 311

the candidate set Fcand = {(qi, Ti, si)}ni=1, where 312

si represents the solution steps for the i-th ques- 313

tion. For a candidate set Fcand consisting of n 314

questions, solution steps and their corresponding 315

conceptual units Ti, we implemented a two-stage 316

selection process—Preliminary Filtering followed 317

by Refined Selection—to identify questions that 318

exhibit deep logical relevance to the initial ques- 319

tion q. We describe this two-stage retrieval process 320

as follows: 321

Preliminary Filtering. In the preliminary filter- 322

ing stage, we employ the BM25 (Robertson and 323

Jones, 1976) algorithm to retrieve the most relevant 324

questions from the candidate set Fcand, based on 325

the given query q and its corresponding problem 326

type ttype. Specifically, we construct a query pair 327

(q, ttype) of initial questions and compute its simi- 328

larity with subset of conceptual unit from the candi- 329

date set to construct {(qi, ttype)i}ni=1 using BM25. 330

The candidate questions are then ranked by their 331

BM25 scores, and the top N most relevant ones are 332

selected as the coarse-level selection set Qcoa
ref . The 333

coarse-level set is constructed by filtering candidate 334

questions based on the semantic similarity of the 335

query q and its corresponding problem type ttype. 336

The selected questions not only belong to the same 337

category as the initial question but also share a sim- 338

ilar knowledge foundation in the problem-solving 339

process, ensuring greater accuracy and relevance 340

for subsequent matching. 341

Refined Selection. After obtaining coarse-level 342

set Qcoa
ref , we further perform fine-grained selec- 343

tion among the these questions. Specifically, we 344

utilize (tkey, tstrategy) from the conceptual unit T 345

of the initial question q and compare them with 346

the set {(tkeyi , tstrategyi)}
N
i=1 ∈Qcoa

ref to compute the 347

semantic similarity score as: 348

ei = E
(
tkeyi , tstrategyi

)
, e = E (tkey, tstrategy)) (3) 349

350
Sref,i = Cosine(ei, e), (4) 351

4



Table 1: Comparative performance of reasoning methods across three benchmark datasets. The best results in each
box are highlighted in bold for clarity.

Model Method Dataset Average
MATH500 GSM8K OlympiadBench

LLaMA-3.1-8B-Instruct

Zero-shot CoT (Kojima et al., 2022) 18.0 61.5 15.4 31.6
Few-shot CoT (Wei et al., 2022b) 47.2 76.6 16.3 46.7
CoT+SC@4 (Wang et al., 2023b) 44.2 80.5 16.5 47.1

R2-LLMs 52.5 87.4 23.7 54.5

Qwen2-7B-instruct

Zero-shot CoT (Kojima et al., 2022) 36.9 76.6 21.3 44.9
Few-shot CoT (Wei et al., 2022b) 52.9 85.7 21.6 53.4
CoT+SC@4 (Wang et al., 2023b) 55.6 87.7 21.7 55.0

R2-LLMs 60.6 89.1 28.5 59.4

where E(·) is an LM encoder, specifically a pre-352

trained SentenceBERT (Reimers, 2019). Sref,i is353

used to measure the cosine similarity between the354

encoded representations of question keywords and355

question-solving strategies. By integrating the356

model’s predicted solving strategies and the key-357

words extracted from the problem, it further as-358

sesses the relationship between the initial question359

q and identifies candidate questions qi ∈ Qcoa
ref that360

share similar problem-solving knowledge and rea-361

soning approaches. Subsequently, we selected the362

M most relevant questions and compiled their cor-363

responding solution processes and strategy into the364

DLR reference set Qref = {(qi, si, tstrategyi) | i ∈365

argmaxM
i

Sref,i, i ∈ [1, N ]}.366

3.4 Hierarchical augmented reasoning MCTS367

After obtaining the DLR reference set Qref for368

the initial question q, we designed a hierar-369

chical augmented reasoning MCTS approach370

to solve the problem. This method divides371

the reasoning process into two main com-372

ponents: Logical Reasoning Enhancement and373

Fine-grained Enhancement. Logical Reasoning374

Enhancement is tasked with refining the genera-375

tion of high-quality reasoning steps, whereas Fine-376

grained Enhancement aims to deliver more accu-377

rate evaluations for every node within the MCTS,378

thereby boosting the precision and efficiency of the379

decision-making process as a whole. Next, we will380

delve into a comprehensive explanation of these381

two enhancement approaches.382

Logical Reasoning Enhancement. In Logical383

Reasoning Enhancement, we utilize a logic-driven384

guidance mechanism to enable MCTS to produce385

high-quality and coherent solution paths. Specif-386

ically, during the MCTS reasoning process, we387

utilize Qref as a reference to steer the policy model388

P (·) in producing the subsequent node vi at i-th389

state, leveraging the preceding set of node states 390

Vi−1 = {v1, . . . , vi−1} using meta prompt β2(·): 391

vi = P (β2 ((q,Qref),Vi−1)) . (5) 392

Logical Reasoning Enhancement empowers the 393

policy model to draw insights from logically anal- 394

ogous problems, thereby enhancing its ability to 395

generate high-quality candidate solutions. By lever- 396

aging established logical patterns and structures, 397

this approach guides the model in delivering more 398

precise and contextually relevant answers. 399

Fine-grained Enhancement. At the i-th state, 400

the policy model generates U candidate nodes 401

Vcand
i = {vi,j}Uj=1 based on the previous state 402

node Vi−1. Among these candidates, the node with 403

the highest Q value is selected as the final node 404

for the current state, i.e., vi = argmax
v∈V cand

i

Q(v). It en- 405

sures that at each step, the most optimal successor 406

node is chosen to efficiently construct the path. 407

Aligned with previous research (Zhang et al., 408

2025b), we use PRM to approximate each node 409

values Q(vi,j), where vi,j ∈ Vcand
i . To fur- 410

ther enhance the accuracy of PRM’s value esti- 411

mation, we propose a fine-grained (FG) enhance- 412

ment evaluation approach. We begin by using 413

V̂i,j = (q, v1, ..., vi, vi,j), where v1, ..., vi repre- 414

sent previous steps, as a query to perform BM25 415

retrieval within a fine-grained set FFG, retrieving a 416

selection enhancement set Qfini,j with size K that 417

contains questions and reasoning steps relevant to q. 418

Each reasoning step is assigned a relevance score 419

R(vi,j), which aids in evaluating the values of the 420

node vi,j : 421

R(vi,j) = RPRM

(
β3(V̂i,j , Qfini,j

)
)
, (6) 422

where RPRM(·) denotes the evaluation score gener- 423

ated by PRM, and β3(·) represents the meta prompt 424

that assists PRM in enhancing the scoring process. 425
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4 Experiment426

4.1 Experiment setting427

Policy and Reward Models. We use three LLMs428

as policy models: LLaMA 3-8B, LLaMA 3.1-8B429

(Dubey et al., 2024), and Qwen 2-7B (Yang et al.,430

2024a). For PRM, we adopt Mistral-7B (Tang et al.,431

2024), trained on PRM800K1. Notably, we use a432

logit-based PRM approach rather than step-wise433

prompting.434

Evaluation Benchmark. We test our method on435

three challenging open source mathematical bench-436

marks: MATH500 (Hendrycks et al., 2021), fo-437

cused on high school-level competition mathemat-438

ics; GSM8K (Cobbe et al., 2021), covering middle439

school to early high school level problems; and440

OlympiadBench-TO (He et al., 2024), designed for441

problems at the level of international mathematics442

olympiads.443

Candidate Set Selection. For MATH500, we444

randomly select 2,500 questions and reasoning445

steps from PRM800K due to its rich and complex446

mathematical reasoning, which aligns well with447

their characteristics. For GSM8K, we chose the448

same number of questions from MAWPS (Koncel-449

Kedziorski et al., 2016) and MATHQA (Amini450

et al., 2019), as MAWPS offers various applica-451

tion questions and AQuA includes multiple choice452

questions based on reasoning, covering GSM8K’s453

real-world math scenarios. For all tests, the candi-454

date set size is 2500. DeepSeek-70B (Guo et al.,455

2025) generated all conceptual units within this456

set, including the reasoning steps for questions457

sourced from MAWPS and MATHQA. Regarding458

OlympiadBench-TO, we choose OpenThoughts 2.459

Numbers of DLR Reference Set Qref and Selec-460

tion Enhancement Set Qfin. The DLR reference461

set maintains consistency in both question selection462

and candidate set. By default, the DLR reference463

set consists of 4 samples. Additionally, for the464

selection enhancement set, we selected samples465

from PRM800K, with a set size of 3. We show the466

sensitively analysis in Section 4.6.467

Baseline. We primarily compare our approach468

against three traditional example-based ICL meth-469

ods: zero-shot CoT (Kojima et al., 2022), few-shot470

CoT (Wei et al., 2022b), and SC+CoT (Wang et al.,471

2023b). For SC, we conduct four sampling iter-472

1The Mistral-7B PRM model is open-source:
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-
prm

2https://huggingface.co/open-thoughts/OpenThinker-7B

ations, referred to as CoT+SC@4. Additionally, 473

we compare our approach with various tree-based 474

structures, including ToT (Yao et al., 2023), RAP 475

(Hao et al., 2023), ReST-MCTS∗ (Zhang et al., 476

2025b) and LiteSearch (Wang et al., 2024). 477

Evaluation metrics. We use accuracy (%) as the 478

evaluation metric, where a solution is correct only 479

if the model’s final answer exactly matches the 480

ground truth.. A solution is deemed correct only if 481

the final reasoning process is fully aligned with the 482

ground truth. 483

In addition, the more experiment can be seen in 484

Appendix A. 485

4.2 Performance on Various Reasoning 486

Benchmarks 487

Table 1 compares the reasoning performance of 488

LLaMA-3.1-8B-Instruct and Qwen2-7B-instruct 489

across three datasets (MATH, GSM8K, Olympiad- 490

Bench) using four reasoning methods. R2-LLMs 491

achieves the highest scores, with Qwen2-7B- 492

instruct outperforming LLaMA-3.1-8B-instruct in 493

all settings. For example, on MATH, Qwen2- 494

7B-Instruct reaches 60.6% with the proposed 495

method, compared to LLaMA-3.1-8B-Instruct’s 496

52.5%. Few-shot CoT and CoT+SC@4 show no- 497

table improvements over Zero-shot CoT; for in- 498

stance, LLaMA-3.1-8B-Instruct’s GSM8K score 499

rises from 61.5% (Zero-shot CoT) to 80.5% 500

(CoT+SC@4). Meanwhile, our method also shows 501

a significant improvement on OlympiadBench. 502

4.3 Comparison with Other Tree-based 503

Methods 504

To further assess the effectiveness of R2-LLMs, we 505

conducted comparative experiments on the MATH 506

and GSM8K datasets against leading tree-based 507

approaches. Specifically, we selected ToT, RAP, 508

ReST-MCTS∗, and LiteSearch as baselines and 509

utilized the widely adopted Llama-3-8B-Instruct as 510

the backbone model for inference, ensuring fairness 511

and comparability in our evaluation. 512

Table 2 compares tree-based methods on 513

GSM8K and MATH. R2-LLMs achieve the 514

best results—84.6% on GSM8K and 34.7% on 515

MATH—outperforming all baselines. Notably, it 516

surpasses LiteSearch by 2.3% and RAP by 4.1% 517

on GSM8K, and leads ReST-MCTS by 3.3% on 518

MATH, showing strong performance on both arith- 519

metic and complex reasoning tasks. Compared 520

with other methods, R2-LLMs outperforms exist- 521

ing approaches by combining coarse-level retrieval 522
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Table 2: Comparison of tree-based methods on GSM8K
and MATH. Bold indicates the best performance.

Model Method
Dataset

GSM8K MATH500

LLaMA-3-8B-Instruct

ToT 69.0 13.6
RAP 80.5 18.8

ReST-MCTS∗ - 31.4
LiteSearch 82.3 -
R2-LLMs 84.6 34.7

for global strategy, which aids in handling rare523

problems, with fine-grained retrieval that enriches524

node evaluation using external steps, effectively525

mitigating sparse rewards in standard MCTS and526

other tree-based methods.527

4.4 Domain Impact on the DLR Reference Set528

When selecting the DLR reference set, we gener-529

ally ensure it is in-domain with the test set. To530

assess the model’s ability to generalize to out-of-531

domain scenarios, we evaluate its performance on532

datasets such as GSM8K and MATH. Furthermore,533

we apply the DLR reference set across different534

domains to test their adaptability. Table 3 presents535

the impact of the domain relationship between the536

DLR reference set and the test questions on accu-537

racy. The experiment is based on the LLaMA-3.1-538

8B-Instruct model and is conducted on two math-539

ematical problem datasets, GSM8K and MATH.540

In-domain means that the DLR reference set and541

the test questions come from the same domain,542

whereas out-of-domain indicates that they belong543

to different domains. The experimental results re-544

veal that the model achieves its best performance545

on in-domain inference sets, where the domain of546

the questions aligns closely with the DLR refer-547

ence set. For instance, on the GSM8K dataset,548

the model attains a score of 87.4%, demonstrating549

strong generalization capabilities within the same550

domain. However, when evaluated using out-of-551

domain DLR reference set, where the question do-552

main differs significantly, R2-LLMs’s performance553

declines noticeably. For example, on the MATH554

dataset, the score drops to 43.5%, indicating a sub-555

stantial performance gap compared to in-domain556

tasks. From the results mentioned above, it can557

be concluded that although the performance de-558

grades across different domains, in most cases, it559

still helps the model to enhance the overall results.560

4.5 Ablation Analysis561

To assess the impact of each component on the per-562

formance of R2-LLMs, we conducted a series of563

ablation experiments. The baseline MCTS method564

is compared against three variants: MCTSw/DLR, 565

which incorporates logical reasoning enhance- 566

ments, MCTSw/FG, which integrates fine-grained 567

enhancement, and MCTSw/DLR+FG is equal to R2- 568

LLMs, which combines both improvements. 569

Table 4 presents the results of an ablation study 570

evaluating the impact of different components in 571

R2-LLMs on the MATH and GSM8K datasets. We 572

conduct experiments using two instruction-tuned 573

language models, LLaMA-3.1-8B-Instruct and 574

Qwen2-7B-Instruct, under different approaches. 575

The results demonstrate that each individual en- 576

hancement contributes to performance gains, with 577

the combination of both (MCTSw/DLR+FG) yield- 578

ing the best results across both datasets. Specifi- 579

cally, LLaMA-3.1-8B-Instruct achieves 52.5% on 580

MATH and 87.4% on GSM8K, while Qwen2-7B- 581

Instruct reaches 60.6% and 89.1%, respectively. In 582

addition, for LLaMA-3.1-8B-Instruct, incorporat- 583

ing logical reasoning enhancements (MCTSw/DLR) 584

leads to an absolute gain of +3.7% on MATH 585

(46.6% → 50.3%) and +4.1% on GSM8K (82.5% 586

→ 86.6%), while adding fine-grained enhance- 587

ment (MCTSw/FG) provides a smaller improvement 588

of +0.9% on MATH (46.6% → 47.5%) and +0.4 589

on GSM8K (82.5% → 82.9%). When both com- 590

ponents are combined (MCTSw/DLR+FG), the per- 591

formance further increases to 52.5% (+5.9%) on 592

MATH and 87.4% (+4.9%) on GSM8K, demon- 593

strating a synergistic effect. These findings high- 594

light the effectiveness of our proposed method in 595

improving mathematical reasoning performance. 596

4.6 Sensitively Analysis 597

In this section, we examine how the sample size of 598

the candidate set Fcand, the DLR reference set Qref, 599

and the selection enhancement set Qfin affects the 600

results, using Qwen2-7B-Instruct and LLaMA-3.1- 601

8B-Instruct as policy models on the GSM8K and 602

MATH datasets. 603

Impact of Candidate Set Size. Figure 2a and Fig- 604

ure 2d illustrate the impact of candidate set size 605

on accuracy for the GSM8K and MATH datasets, 606

respectively. Both figures reveal a positive cor- 607

relation between candidate set size and accuracy. 608

Notably, accuracy increases sharply as the sample 609

size grows from 1000 to 1500, but after reaching 610

2000, the overall improvement plateaus. 611

Impact of DLR Reference Set Size. Figure 2b 612

and Figure 2e depict the effect of DLR reference 613

set size on accuracy for the GSM8K and MATH 614

datasets. Like the candidate set size, a larger DLR 615
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Table 3: Performance evaluation of the impact of DLR reference sets Qref on the reasoning capabilities of R2-LLMs,
tested on the GSM8K and MATH datasets. Bold indicates the best performance.

Model Datasets Deep Logical Retrieval (DLR) Reference Set

w/o In Domain Out of Domain

LLaMA-3.1-8B-Instruct
GSM8K - MAWPS & MATHQA PRM800K AMC 12

82.9 87.4 86.2 83.15

MATH - PRM800K MATHQA AMC12
47.5 52.5 43.5 49.9
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Figure 2: Sensitivity Analysis on GSM8K (top row) and MATH500 (bottom row).

Table 4: Ablation analysis of R2-LLMs. The best results
in each box are highlighted in bold for clarity. DLR
denotes Deep Logical Retrieval and FG denotes Fine-
grained Enhancement.

Model Method Dataset

MATH GSM8K

LLaMA-3.1-8B-Instruct

MCTS 46.6 82.5
MCTSw/DLR 50.3 86.6
MCTSw/FG 47.5 82.9

MCTSw/DLR+FG 52.5 87.4

Qwen2-7B-instruct

MCTS 53.7 85.9
MCTSw/DLR 58.2 88.7
MCTSw/FG 55.6 84.8

MCTSw/DLR+FG 60.6 89.1

reference set leads to a noticeable improvement616

in accuracy. When the size reaches 4, accuracy617

increases by 5% on MATH and 4.5% on GSM8K618

with LLaMA-3.1-8B-Instruct. This indicates that619

expanding the DLR reference set size can effec-620

tively improve the reasoning quality of MCTS,621

thereby enhancing accuracy.622

Impact of Selection Enhancement Set Size. Fig-623

ure 2c and Figure 2f present the influence of se-624

lection enhancement set size on the GSM8K and 625

MATH datasets, respectively. While there is still a 626

positive correlation between set size and accuracy, 627

its impact is less pronounced compared to the effect 628

of candidate set size. Specifically, for the MATH 629

dataset, increasing the size to 3 results in only a 630

modest 2.4% improvement in accuracy. 631

5 Conclusion 632

In this work, we presented R2-LLMs, a hierarchical 633

retrieval-augmented framework that enhances test- 634

time scaling for LLMs by leveraging both Deep 635

Logical Retrieval at the coarse level and Hierarchi- 636

cal Augmented Reasoning MCTS at the fine level. 637

Our approach integrates external reference data 638

to enrich in-context learning and employs a pro- 639

cess reward model to refine candidate generation 640

and decision-making. Empirical results, with im- 641

provements up to 16% on key benchmarks, validate 642

the effectiveness of R2-LLMs in tackling complex 643

mathematical reasoning tasks. 644
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6 Limitation645

Our current evaluations have focused primarily646

on mathematical reasoning benchmarks, leaving647

its effectiveness in other domains—such as gen-648

eral knowledge, symbolic logic, and multimodal649

tasks—less explored. Besides, most experiments650

have been conducted using relatively modest mod-651

els, and further investigation is needed to under-652

stand the performance and scalability of R2-LLMs653

on larger, potentially closed-source models.654

7 Potential Risks655

Our work makes clear contributions by enhancing656

LLMs’ reasoning abilities. It enables more accurate657

and trustworthy AI support in complex reasoning658

tasks such as education, scientific analysis, and659

decision-making. However, improved reasoning660

capabilities also pose risks—such as producing per-661

suasive yet inaccurate outputs—especially when662

reasoning chains are poorly guided. Therefore, re-663

sponsible and transparent use of such enhanced664

reasoning frameworks is essential to ensure posi-665

tive societal impact.666
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A Extra Experiments929

A.1 Comparison with other TTS baselines930

To ensure a fair comparison with other TTS-based methods, we select BoT (Liu et al., 2024) as the baseline.931

As shown in Table 5, we evaluate its performance on two popular base models (LLaMA-3.1-Instruct and932

Qwen-2.5-Instruct) across the GSM8K and MATH500 datasets, comparing it with the existing TTS-based933

method BoT. The results demonstrate that R2-LLMs consistently outperforms BoT in all settings. Notably,934

the improvement is particularly significant on the more challenging MATH500 dataset (e.g., from 25.7 to935

52.5, or from 34.5 to 60.6), indicating that our method not only generalizes well across different backbones936

but also significantly boosts the model’s performance on complex mathematical reasoning tasks.937

Table 5: Comparison with another TTS-based method (BoT). The best results in each box are highlighted in bold
for clarity.

Model Method GSM8K MATH500

BoT 62.5 25.7
LLaMA-3.1-Instruct R2-LLMs 87.4 52.5

BoT 80.4 34.5
Qwen-2.5-Instruct R2-LLMs 89.1 60.6

A.2 Time consumption analysis938

Table 6: The computational overhead incurred by R2-LLMs.

Method MATH500 GSM8k

Plain MCTS 7.00h 3.20h

R2-LLMs 7.35h 3.45h

To evaluate the computational efficiency of our method, we compare the runtime of R2-LLMs with the939

baseline Plain MCTS across two benchmark datasets, as shown in Table 6. On the MATH500 dataset,940

R2-LLMs completes the task in 7.35 hours using 4 A100 GPUs, compared to 7.00 hours required by941

the baseline. Similarly, on GSM8K, the runtime increases modestly from 3.20 to 3.45 hours. These942

results demonstrate that R2-LLMs achieves significant performance gains with only a marginal increase943

in computational overhead—approximately 5% on MATH500 and 7.8% on GSM8K—validating the944

practicality and scalability of our method for real-world deployment.945

A.3 Performance with different PRM model946

Table 7: Performance comparision with different PRM models. The best results in each box are highlighted in bold
for clarity.

Method MATH500 GSM8k

MCTS w/ Mistral-7B 46.6 82.5

R2-LLMs w/ Mistral-7B 52.5 87.4

MCTS w/Qwen2.5-7B Math PRM 47.9 84.1

R2-LLMs w/Qwen2.5-7B Math PRM 53.2 89.7
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To further validate the effectiveness of our approach, we compare R2-LLMs with different state-of- 947

the-art PRM (Policy Retrieval Module) backbones, as shown in Table 7. When using Mistral-7B as the 948

PRM, R2-LLMs achieves substantial improvements over the MCTS baseline, with scores rising from 46.6 949

to 52.5 on MATH500 and from 82.5 to 87.4 on GSM8K. Similarly, when adopting the more advanced 950

Qwen2.5-7B Math PRM, our method further boosts performance, reaching 53.2 on MATH500 and 89.7 951

on GSM8K. These results confirm that R2-LLMs consistently enhances performance across PRM choices, 952

and benefits even more from stronger PRMs, highlighting the flexibility and scalability of our framework. 953

Due to time constraints, we focus on evaluation using LLaMA 3.1 8B for fair and efficient comparison. 954

A.4 Ablation analysis on abstrct template 955

Table 8: Ablation analysis on abstract template using MATH500. The best results in each box are highlighted in
bold for clarity.

Method MATH500

Without anything 47.5

Only problem types 48.7

Only key terms 49.7

Only solution strategies 50.7

Problem types + key terms 49.7

Problem types + solution strategies 50.9

Key terms + solution strategies 52.2

Problem types + solution strategies + key terms (R2-LLMs) 52.5

To investigate the effectiveness of each component in the abstract template, we conduct an ablation 956

study on the MATH500 dataset using the LLaMA-3.1-8B Instruct model. As shown in Table 8, the 957

abstract template consists of three elements: problem types, key terms, and relevant solution strategies. 958

Removing all components results in the lowest accuracy of 47.5%. Adding only problem types slightly 959

improves performance to 48.7%, while including only key terms or only solution strategies leads to 960

further gains of 49.7% and 50.7%, respectively. Combining problem types with key terms does not yield 961

additional benefits (49.7%), but combining problem types with solution strategies improves the score 962

to 50.9%. Notably, the combination of key terms and solution strategies achieves a stronger result of 963

52.2%. The best performance of 52.5% is obtained when all three components are included, as used 964

in R2-LLMs, confirming that each part of the abstract template contributes incrementally to overall 965

reasoning performance. 966

A.5 Results on larger policy model 967

Table 9: Performance using larger policy model (Qwen-2.5 14B) with MATH500 and GSM8K.

Method MATH500 GSM8K

Plain MCTS 88.5 58.4

R2-LLMs 91.6 62.6

To address the suggestion of evaluating our method on a larger language model, we conduct additional 968

experiments using Qwen-2.5 14B as the policy model. As shown in Table 9, our method R2-LLMs 969

achieves strong performance improvements over the baseline Plain MCTS on both benchmarks. Specifi- 970

cally, on the challenging MATH500 dataset, accuracy increases from 88.5% to 91.6%, and on GSM8K, 971
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from 58.4% to 62.6%. These results confirm that R2-LLMs consistently enhance performance even with972

larger-scale models, demonstrating its robustness and scalability across model sizes.973

B Example Appendix974

B.1 Example of DLR set samples975

Initial questions: A 90◦ rotation around the origin in the counter-clockwise direction is applied to 7+ 2i.976

What is the resulting complex number?977

Sample 1978

Related question 1: Let z = 2 +
√
2− (3 + 3

√
2)i, and let c = 2− 3i. Let w be the result when z is979

rotated around c by π
4 counter-clockwise. Find w.980

Problem type: Complex number operation.981

Key words and relevant words: complex number, rotation, counter-clockwise, center of rotation,982

angle.983

Problem solving strategy: The transformation involves translating the system so that the center of984

rotation aligns with the origin, applying a complex exponential rotation to achieve the desired angular985

displacement, and then translating back to the original coordinate system. This process ensures that the986

rotated point maintains its relative position to the center while undergoing the specified rotation. The final987

result is expressed in terms of its real and imaginary components to provide a complete representation in988

the complex plane.989

Sample 2990

Related question 2:991

The function f(z) =
(−1 + i

√
3)z + (−2

√
3− 18i)

2
represents a rotation around some complex number c.992

Find c.993

Problem type: Complex number operation.994

Key words and relevant words: function, rotation, complex number, transformation.995

Problem solving strategy: The transformation follows a structured process, beginning with a translation996

to align the rotation center with the origin, followed by the application of a complex linear mapping997

that encodes both rotation and translation. The fixed point of this transformation, obtained by solving998

f(c) = c, determines the invariant center around which the system rotates. By decomposing this result999

into its real and imaginary components, a complete representation of the transformation in the complex1000

plane is achieved.1001
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B.2 Meta Prompt 1002

As an expert in solving mathematical problems, you excel at extracting key information from users' mathematical queries for analysis. 

You can skillfully transform the extracted information into a format that is suitable for handling the problem. If the problem can be 

generalized to a higher level to address multiple issues, you will provide further analysis and explanation in your next response.

Please categorize and extract the crucial information required to solve the problem from the user's input query. Combine these two 

elements to generate distilled information. Subsequently, pass this distilled information to the downstream meta planner based on the 

problem type. The problem type should belong to one of the six categories mentioned above, and the distilled information should 

include:

Extract the problem type in the given range and key words from the user's input, which will be handed over to the respective expert 

for task resolution, ensuring that all essential information required to solve the problem is provided. The objective of the problem and 

corresponding constraints. Propose a meta problem based on the issue to address the user's query, and handle more input and 

output variations. At the same time, provide similar terms based on the key words and relevant words. 

Additionally, based on the extracted information, provide a strategy or possible solution for addressing the problem. Your task is to 

extract the key information, and you do not need to provide the final result in your response.Please follow the format below for 

extraction and stop responding after outputting the distilled information.

Problem type:

Key word and relevant words:

Your relevant abstract strategy for solving the problem:

Meta Prompt �1 

Figure 3: Meta Prompt β1

Related Problem:

... 
Distilled Results for the Related Problem:
Problem type: Complex function transformation :  ….
Key word and relevant words: …
Your relevant strategy for solving the problem: … 
Existing Steps:
… 
Based on the above steps, and related problem and their relevant strategy as 
reference, the possible current step-by-step solution is:

Meta Prompt �2 

Figure 4: Meta Prompt β2

Related Problem: …
Related Problem Existing Steps and corresponding score is:…
Our existing Steps and its score:
Based on the above steps, the possible each step-by-step solution score is:

Meta Prompt �3

Figure 5: Meta Prompt β3

Figures 3, 4, and 5 illustrate three distinct meta prompts, each designed to assist the large model in a 1003

specific task: extracting conceptual units, enhancing DLR reasoning, and refining fine-grained details. 1004
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B.3 Preliminary Filtering & Refined Selection example1005

Initial Question

"A 90° rotation around the origin transforms the complex number (7+2i). What is the result?"
1006

Step 1: Preliminary Filtering (BM25)1007

• Input: Query = (problem text, type="complex number rotation").1008

• Candidate Questions Retained (Top 3 by BM25):1009

1. "Rotate (3+4i) by 180° around the origin."1010

2. "Find the result of rotating (1+i) by 45° counter-clockwise."1011

3. "Let (z=2+3i). Rotate (z) by 90° around (1+i)."1012

• Rationale: BM25 prioritizes questions with overlapping keywords (e.g., "rotate", "complex number")1013

and matching problem types.1014

Step 2: Refined Selection (SentenceBERT)1015

• Conceptual Unit of Initial Question:1016

– (Tkey): ["origin", "counter-clockwise", "complex number"]1017

– (Tstrategy): "Apply rotation matrix to complex coordinates."1018

• Scores (Sref,i):1019

– Candidate 1: 0.82 (high, shares "origin" and strategy).1020

– Candidate 2: 0.45 (low, angle differs).1021

– Candidate 3: 0.12 (discarded, rotation center mismatch).1022

• Output (DLR Reference Set): Includes Candidate 1’s solution steps (e.g., "Multiply by eiπ" for1023

180° rotation).1024
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