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Abstract
In this work, we describe a method to001
jointly pre-train speech and text in an encoder-002
decoder modeling framework for speech trans-003
lation and recognition. The proposed method004
utilizes multi-task learning to integrate four005
self-supervised and supervised subtasks for006
cross modality learning. A self-supervised007
speech subtask, which leverages unlabelled008
speech data, and a (self-)supervised text to009
text subtask, which makes use of abundant010
text training data, take up the majority of011
the pre-training time. Two auxiliary super-012
vised speech tasks are included to unify speech013
and text modeling space. Detailed analy-014
sis reveals learning interference among sub-015
tasks. In order to alleviate the subtask in-016
terference, two pre-training configurations are017
proposed for speech translation and speech018
recognition respectively. Our experiments019
show the proposed method can effectively fuse020
speech and text information into one model. It021
achieves between 1.7 and 2.3 BLEU improve-022
ment above the state of the art on the MUST-023
C speech translation dataset and comparable024
WERs to wav2vec 2.0 on the LIBRISPEECH025
speech recognition task.026

1 Introduction027

Pre-training can learn universal feature represen-028

tations from a large training corpus and is benefi-029

cial for downstream tasks with limited amounts030

of training data (Peters et al., 2018; van den031

Oord et al., 2018; Chung et al., 2018; Zoph et al.,032

2020). With the advancement of computational033

power and self-supervised pre-training approaches,034

large volumes of unlabeled data may now be used035

in pre-training. Methods, such as BERT (Devlin036

et al., 2019), BART (Lewis et al., 2020b) and037

wav2vec2.0 (Baevski et al., 2020b), have emerged038

as the backbone of many speech and natural lan-039

guage processing tasks.040

The aforementioned pre-training methods focus041

on learning feature representation either from text042

or speech. Many speech applications combine in- 043

formation learnt from both speech and text corpora 044

to achieve state of the art results. In speech process- 045

ing, transcribed speech training data is generally 046

very scarce for many languages. It is difficult to 047

build robust linguistic knowledge representation 048

solely based on labeled speech training data. Jia 049

et al. (2019); Chen et al. (2021) propose to generate 050

synthetic data from text to augment speech training 051

corpora corpus. Li et al. (2021) demonstrate that 052

models initialized with pre-trained wav2vec2.0 and 053

mBART (Liu et al., 2020) modules are competi- 054

tive for the multilingual speech to text translation 055

task. Chuang et al. (2020) propose to concatenate 056

the acoustic model and BERT model for speech 057

Q&A. Chung et al. (2021b) align speech utterance 058

representation to the corresponding text sentence 059

representation, in which both representations are 060

generated from unsupervised pre-trained models, 061

for speech understanding. 062

In this study, we are interested in pre-training 063

for speech to text tasks based on the Encoder- 064

Attention-Decoder (EAD) framework. In partic- 065

ular, we seek to answer the question whether the 066

integration of data from different modalities is ben- 067

eficial for representation learning. To answer this 068

question, we propose Speech and Text joint Pre- 069

Training (STPT), a multi-task learning framework 070

to combine different modalities, i.e., speech and 071

text, in the pre-training stage. A self-supervised 072

speech subtask and a (self-)supervised text to text 073

subtask dominate the pre-training computation to 074

leverage large amounts of unlabelled speech data 075

and abundant text training corpus. Two auxiliary 076

supervised speech subtasks are used to unify dif- 077

ferent modalities in the same modeling space. The 078

proposed method fuses information from the text 079

and speech training corpus into a single model, and 080

it effectively improves the performance of down- 081

stream tasks, such as speech to text translation (ST) 082

and automatic speech recognition (ASR). Our con- 083
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tributions are summarized as follows:084

1. We propose a multi-task learning framework085

to jointly pre-train speech and text in one086

model.087

2. We conduct detailed analyses on the proposed088

pre-training method, which reveal the interfer-089

ence among different subtasks.090

3. Two joint pre-training configurations are pro-091

posed to alleviate learning interference for092

ASR and ST respectively.093

4. State-of-the-art results are achieved on the094

downstream tasks. We obtain at least 1.7095

BLEU improvement compared with the best096

MUST-C ST system reported and comparable097

WERs as wav2vec 2.0 in the LIBRISPEECH098

ASR task.099

2 Related work100

Pre-training: Self-supervised pre-training is usu-101

ally optimized with two different criteria: con-102

trastive loss (van den Oord et al., 2018; Chung and103

Glass, 2020; Baevski et al., 2020b) and masked104

prediction loss (Devlin et al., 2019). Contrastive105

loss focuses on distinguishing the positive samples106

from the negative ones given the reference sam-107

ple and it has achieved great success for speech108

recognition (Baevski et al., 2020b). Masked predic-109

tion loss has been first studied for natural language110

processing tasks (Devlin et al., 2019; Lewis et al.,111

2020b) with subsequent application to speech pro-112

cessing (Baevski et al., 2020a; Hsu et al., 2021).113

Chung et al. (2021a) combine contrastive loss and114

masked prediction loss, which shows good perfor-115

mance for the downstream ASR task. The opti-116

mization of our self-supervised speech task is more117

related to the masked prediction loss. Instead of118

predicting the hard discretized label for the masked119

frames, which is error prone, we use KL divergence120

to minimize the distribution difference between the121

same feature frames with and without masking.122

Please refer to subsection 3.2 for more details.123

Self-training (or iterative pseudo labelling):124

self-training is another widely used approach to125

take advantage of unlabelled speech data to im-126

prove the ASR performance (Kahn et al., 2020; Xu127

et al., 2020; Pino et al., 2020; Zhang et al., 2020;128

Wang et al., 2021a; Xiao et al., 2021; Wang et al.,129

2021b). A seed model, which usually is trained130

with a small amount of supervised speech train- 131

ing data, is employed to generate pseudo labels 132

for the unlabelled speech data. The speech data 133

with pseudo labels is augmented into the training 134

dataset to build another model, which is expected 135

to outperform the seed model due to more train- 136

ing data exposure. Similar to self-training, we also 137

use small amounts of supervised data to unify the 138

speech and text modeling space. However, the 139

self-supervised speech training in this work avoids 140

making hard predictions and uses KL divergence to 141

maximize the mutual information between masked 142

span and observed feature frames. 143

Multi-task learning: Due to data scarcity, multi- 144

task learning is widely adopted to leverage parallel 145

text training data for ST (Weiss et al., 2017; Anasta- 146

sopoulos and Chiang, 2018; Tang et al., 2021b; Ye 147

et al., 2021). Those methods primarily use super- 148

vised speech data sets during multi-task learning, 149

whereas our method can leverage large amounts of 150

unlabeled speech data during the pre-training stage, 151

which has the potential to improve performance 152

even further. 153

A concurrent work from Ao et al. (2021) also 154

proposes to jointly pre-train speech and text for 155

ASR and text to speech application, which is fully 156

unsupervised. Our method focuses on taking ad- 157

vantage of the supervised speech data, which is the 158

same data used for fine-tuning, to improve the joint 159

speech text pre-training, and the results demon- 160

strate the efficacy of supervised speech data in pre- 161

training. Another concurrent work is from Bapna 162

et al. (2021), which focuses on speech encoder 163

pre-training using both speech and text data. Our 164

method emphasizes the encoder-decoder frame- 165

work and training both encoder and decoder in the 166

pre-training stage. 167

3 Method 168

ASR and ST are the two main downstream tasks for 169

the proposed pre-training method. Figure 1 depicts 170

our joint pre-training framework, which consists of 171

four subtasks: 172

1. (Self-)supervised text to text subtask (T2T) 173

2. Self-supervised speech learning subtask 174

(SSL) 175

3. Supervised speech phoneme classification 176

subtask (S2P) 177
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(a) Fully shared encoder (FSE) for ASR pre-training. (b) Partially shared encoder (PSE) for ST pre-training.

Figure 1: Speech text joint pre-training framework. The purple, green, steelblue and blue lines depict the encoders
for the T2T, SSL, S2P and S2T subtasks respectively. The black lines show the decoder model for the T2T and
S2T subtasks. The dotted lines indicate the phoneme embedding is applied in the SSL and S2P subtasks.

4. Supervised EAD based speech to text subtask,178

which is the same as the downstream task, i.e.,179

ST or ASR (S2T)180

The choice of the T2T subtask depends on the181

downstream task. For ASR, the T2T subtask is a182

denoising autoencoder task (BART) (Lewis et al.,183

2020a) while ST utilizes a text based neural ma-184

chine translation task. The SSL subtask is a self-185

supervised speech learning task to leverage large186

amounts of unlabelled speech data optimized by187

the masked prediction loss. The last two supervised188

speech tasks (S2P and S2T) are used to unify two189

modalities, i.e., speech and text, into one modeling190

space.191

In this study, we find that the subtasks for the192

ASR pre-training are complementary, while in-193

terference is observed in subtasks of the ST pre-194

training at some encoder layers. We propose195

two different configurations: fully shared encoder196

(FSE) (Figure 1(a)) for the ASR pre-training, and197

partially shared encoder (PSE) (Figure 1(b)) for198

the ST pre-training. The FSE configuration aims199

to encourage information sharing between differ-200

ent subtasks while the PSE configuration tries to201

minimize the information sharing between encoder202

only subtasks, i.e., SSL and S2P, and sequence to203

sequence EAD tasks, i.e., subtask T2T and S2T.204

More subtask interference analysis is presented in205

subsection 5.2. We describe the details of each206

subtask in the following subsections.207

3.1 (Self-)supervised text to text subtask208

In the sequence to sequence ASR and ST tasks, the209

decoder is a text generator conditioned on the en-210

coder outputs. Large amounts of training samples 211

are required to cover different linguistic aspects of 212

the target language. The abundant text corpus is an 213

ideal supplement to the limited supervised speech 214

data corpus. Assume the target text sequence is 215

Y = (y1, y2, · · · , yN ), its corresponding corrupted 216

version, X = NOISE(Y ) = (x1, x2, · · · , xM ), 217

can be created by masking or replacing token spans 218

in Y (Lewis et al., 2020a) for the ASR pre-training. 219

If the downstream task is ST, X is the correspond- 220

ing source token sequence. The task is optimized 221

by maximizing cross entropy LT2T 222

LT2T = −
N∑
i

log p(yi|y1:i−1, X) (1) 223

In this subtask, we also convert the input text 224

into the corresponding pronunciation form, i.e., 225

phoneme sequence, as it would be easier to align 226

the encoder outputs from speech and text. The pur- 227

ple and black lines in Figure 1 describe the encoder 228

and decoder of the T2T subtask. 229

3.2 Self-supervised speech subtask 230

The SSL subtask aims to leverage vast amounts of 231

unlabelled speech data and learn general speech 232

representations. The model configuration follows 233

wav2vec2.0 (Baevski et al., 2020b) where the 234

speech model includes a feature extractor and a 235

context encoder. The context encoder corresponds 236

to the speech encoder in Figure 1(b) in the ST pre- 237

training. If ASR is the downstream task, the con- 238

text encoder includes one extra shared encoder as 239

shown in Figure 1(a). 240
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The SSL subtask is optimized via masked predic-241

tion loss and it consists of two-pass computation.242

Given the speech input S = (s1, s2, · · · , sT ), the243

feature extractor and context encoder outputs are244

Z = (z1, z2, · · · , zT ′) and O = (o1, o2, · · · , oT ′)245

respectively, where the speech input is down-246

sampled by the feature extractor and T > T ′. In247

the first pass, the output O is compared with the248

phoneme embedding E = (e1, e2, · · · , eI), which249

is from the T2T subtask described in subsection 3.1.250

I is the phoneme vocabulary size. The predicted251

phoneme distribution p(oj |ei) is defined as252

p(oj |ei) =
exp(oj

ᵀ · ei)∑
i′ exp(o

ᵀ
j · ei′)

(2)253

In the second pass, speech feature spans Ẑ ⊂ Z254

are selected and corrupted as wav2vec2.0 (Baevski255

et al., 2020b). Ô is the corresponding context en-256

coder output from Ẑ. We train the model to infer257

the corrupted p(ôj |ei) to be similar as p(oj |ei) by258

minimizing KL divergence.259

LSSL = −
∑
ôj∈Ô

∑
i

p(oj |ei) log
p(ôj |ei)
p(oj |ei)

(3)260

261

3.3 Supervised speech phoneme classification262

The S2P subtask is employed to unify the self-263

supervised trained speech and text models. It264

shares the same model as in the SSL subtask. In265

this subtask, a transcribed ASR data set is used266

and the goal of this task is to predict the frame267

level phoneme labels. A HMM-GMM model is268

trained with the same transcribed dataset using269

Kaldi (Povey et al., 2011) to generate the frame-270

level labels with forced-alignment. The phoneme271

classification task is optimized with the cross en-272

tropy loss273

LS2P = −
∑
oj∈O

log p(oj |ea(j)) (4)274

where a(j) is the phoneme label associated with275

the context encoder output oj . The S2P subtask is276

depicted with steelblue lines in Figure 1.277

3.4 Supervised EAD based speech to text278

subtask279

Besides the S2P subtask mentioned in the previous280

subsection, we include the potential downstream281

EAD based task, i.e. ASR or ST, as another aux-282

iliary subtask during the pre-training stage. In283

many speech translation datasets, such as MuST- 284

C (Gangi et al., 2019) or CoVoST (Wang et al., 285

2020), we have both speech transcription and trans- 286

lation labels. The speech transcription is used in 287

the S2P subtask while the S2T subtask can make 288

use of the corresponding translation labels. We 289

hope this auxiliary task would make the transition 290

from pre-training to fine-tuning smooth and result 291

in better performance in the downstream task. The 292

components involved during optimization include 293

feature extractor, speech encoder, shared encoder 294

(connected with blue lines in Figure 1), and de- 295

coder (black lines in Figure 1). They are trained 296

with cross entropy criterion 297

LS2T = −
∑
t

log p(yi|yi−1, O) (5) 298

where O is the input speech and Y = (y1, · · · , yN ) 299

is the target labels. 300

The overall pre-training loss is defined as the 301

combination of four losses discussed above 302

L = LT2T + αLSSL + βLS2P + γLS2T (6) 303

where α, β and γ are task weights for the SSL, S2P 304

and S2T subtasks respectively. 305

3.5 Implementation details 306

During the pre-training, the shared encoder inputs 307

come from two sources, either from speech encoder 308

outputs in the S2T subtask or phoneme embeddings 309

in the T2T subtask. The shared encoder inputs 310

might be in different numerical scales. In order to 311

stabilize the multi-task training, a LayerNorm (Ba 312

et al., 2016) is applied to the shared encoder inputs 313

and places those inputs in the same numerical scale 314

as shown in Figure 1. 315

The S2P and SSL subtasks rely on the phoneme 316

embeddings from the T2T subtask. The optimiza- 317

tion for the SSL and S2P subtasks are not stable at 318

the early pre-training stage if the phoneme embed- 319

dings are randomly initialized. In our implementa- 320

tion, we pre-train the shared encoder and decoder 321

with the T2T subtask. It helps the stabilization of 322

the training and achieve a better feature representa- 323

tion. Also, the joint pre-training is time consuming 324

since it takes care of four different subtasks. Pre- 325

training encoder and decoder via the T2T subtask 326

can make use of more text training data given the 327

same training time. 328
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4 Experimental setting329

In the pre-training, we first train modules with the330

T2T subtask until they are converged. Then the331

entire model is jointly optimized with all subtasks332

mentioned in section 3. Finally, the pre-trained333

model is fine-tuned on the downstream tasks. Two334

downstream tasks, ASR and ST, are examined in335

this study. The training data for each subtask for336

pre-training and fine-tuning is described below.337

4.1 Pre-training338

T2T: For ASR pre-training, the language339

model (LM) training dataset 1 for LIBRISPEECH340

is used to build the monolingual BART model. It341

has about 800 million words. For ST pre-training,342

we take the parallel training corpus from WMT.343

We examine our methods on two translation di-344

rections in MUST-C: English-Spanish (EN-ES),345

which uses WMT13 training corpus, and English-346

French (EN-FR), which takes the WMT14 training347

data. There are 370 million and 1 billion English348

words in the EN-ES and EN-FR parallel training349

datasets respectively.350

We use “g2p en” Python package (Lee and Kim,351

2018) to convert the training text into the corre-352

sponding phoneme representation, which is based353

on the CMU English dictionary. We further ex-354

tend the phoneme set by distinguishing the first355

phoneme in the word with an additional “ ” mark356

appended, which is similar to the notation in the357

SentencePiece process. The input phoneme vocab-358

ulary size is 134.359

SSL: For both ASR and ST pre-training, 60k360

hours of unlabelled English speech data from Libri-361

light (Kahn et al., 2020) is used to build the self-362

supervised speech task. We set the maximum ut-363

terance duration to 37.5 seconds and minimum du-364

ration to 4 seconds. We randomly sample audio365

segments with maximum duration if utterances are366

longer than the maximum duration. No voice activ-367

ity detection is applied.368

S2P: We use the transcribed LIBRISPEECH dataset369

for ASR pre-training. In ST pre-training, the370

MUST-C training dataset is used, where the corre-371

sponding English transcription is used as the train-372

ing target labels after it is converted into phoneme373

representation. The phoneme level segmentation is374

obtained via force-alignment, which is conducted375

using HMM/GMM trained from the same speech376

data with the Kaldi toolkit (Povey et al., 2011).377

1https://www.openslr.org/11/

S2T: We use the same labelled data in the S2P 378

subtask for the S2T subtask, i.e., LIBRISPEECH 379

training data for the ASR pre-training and MUST- 380

C data for the ST pre-training. Instead of using 381

phoneme representation, the target labels are en- 382

coded with SentencePiece (Kudo and Richardson, 383

2018). For both ASR and ST tasks, the vocabu- 384

lary is an Unigram model with size 10k and full 385

character coverage on the training text data. 386

4.2 Fine-tuning 387

In the fine-tuning stage, we keep optimizing the 388

model with the T2T and S2T subtasks. Two 389

encoder-only subtasks (SSL and S2P) are dropped, 390

since the model has learnt good speech represen- 391

tation from the unlabeled speech data in the pre- 392

training. The ASR system is evaluated on four 393

LIBRISPEECH testsets: dev-clean, dev-other, test- 394

clean and test-other. WER is reported in the ex- 395

periments. ST models are evaluated on the tst- 396

COMMON testset from MUST-C. Case-sensitive 397

detokenized SACREBLEU (Post, 2018) is used to 398

measure the ST performance. 399

4.3 Model configuration 400

The model takes raw speech audio as input. The 401

feature encoder contains seven blocks and the tem- 402

poral convolutions in each block have 512 chan- 403

nels with strides (5,2,2,2,2,2,2) and kernel widths 404

(10,3,3,3,3,2,2). The speech encoder, shared en- 405

coder and shared decoder are all with 6 transformer 406

layers, model dimension 768, inner dimension 407

(FFN) 3,072 and 8 attention heads. We adopt Pre- 408

LN in the transformer block as Xiong et al. (2020). 409

The total number of parameters is 169 millions. 410

The task weight for each subtask is set by the 411

number of mini-batches used during training. In 412

the pre-training, the ratio of mini-batch numbers 413

for each subtasks are 1.0, 7.0, 0.5 and 0.5 for the 414

T2T, SSL, S2P and S2T subtasks respectively. 415

We mask 30% tokens in the T2T BART subtask 416

in ASR pre-training, and no masking is applied for 417

the T2T NMT subtask in ST pre-training. 7% of 418

the feature frames in the SSL subtask and 3% of 419

the feature frames in the two supervised speech 420

subtasks are randomly selected as the mask span 421

starting time-step. The mask span length is 10. 422

The models are optimized with Adam (Kingma 423

and Ba, 2014) for both pre-training and fine-tuning. 424

The final results are evaluated using an averaged 425

model from checkpoints of the last 10 epochs. Ad- 426

ditional experimental details such as learning rate 427
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and mini-batch sizes are included in Appendix A2.428

5 Experimental results429

5.1 Main results430

We present the 960 hours LIBRISPEECH recogni-431

tion results in Table 1. We include results from432

the literature from row one to four and list both433

decoding results without and with an external LM.434

The WERs obtained with LM are displayed within435

“()”.436

The first part of the table shows results from the437

wav2vec 2.0 base model, which is a CTC based438

ASR system. Second part of the table presents re-439

sults from three ASR systems reported using the440

EAD modeling framework (row two to four). We441

mainly compare the proposed method with systems442

based on the EAD modeling framework. LAS is a443

LSTM based system trained with the LIBRISPEECH444

data only. Transformer (Tang et al., 2021b) and445

SpeechT5 (Ao et al., 2021) are based on multi-task446

learning and jointly trained with text tasks. Besides447

joint training in the fine-tuning stage, SpeechT5448

also utilizes unsupervised joint pre-training to in-449

corporate text data in the early training stage.450

The results from the proposed STPT is presented451

in the third part of the table (row five). STPT with-452

out an external LM outperforms all previous re-453

ported EAD-based systems. On average, there454

is a 17.5% relative WER reduction compared to455

SpeechT5 with LM. When LM is applied, model456

with STPT only reduces WER slightly, with an457

average WER reduction of less than 0.1. The de-458

coding LM is trained with the text training corpus459

from LIBRISPEECH, the same as the T2T subtask460

in the pre-training and fine-tuning. Other systems,461

on the other hand, show a considerable WER re-462

duction when the LM is applied during decoding.463

It indicates that our multi-task learning in the pre-464

training and fine-tuning stages can effectively fuse465

linguistic information in the text data corpus into466

the ASR model. The external LM might not be467

required if it is trained on the same text corpus.468

In Table 2, we present the speech translation re-469

sults on the MuST-C datasets. Row one to four are470

the latest results from literature. Row one shows471

the results by training a speech to text translation472

task alone. Row two and three present results from473

two multi-task systems with speech and text jointly474

trained together. Row four is the best system re-475

ported, which is initialized with the pre-trained476

2We will open-source the code after the ACL review.

wav2vec 2.0 and machine translation model, then 477

fine-tuned with joint speech and text training. Our 478

method achieves 2.3 and 1.7 more BLEU scores for 479

EN-ES and EN-FR translation directions compared 480

with the results in row four (Ye et al., 2021). 481

5.2 Impact of model structure 482

Interference among subtasks may impede the 483

progress of multi-task learning and result in inferior 484

results. In this work, we examine the task interfer- 485

ence via comparing the gradient similarity between 486

pair subtasks. We choose the pre-trained models us- 487

ing the FSE configuration and accumulate gradients 488

from one of four jointly trained subtasks discussed 489

in section 3. We prepare 20 batches of training sam- 490

ples for each subtask, and retrieve the accumulated 491

gradients by sending these batches to the models. 492

Then we calculate the pairwise cosine similarity 493

between gradients from any two subtasks. 494

The pairwise subtask gradient similarity from 495

the shared encoder are presented in Figure 2. The 496

Figure 2(a) demonstrates the gradient similarity in 497

ASR pre-training. In most layers, the gradient sim- 498

ilarities are small. No serious gradient interference 499

is observed. The Figure 2(b) depicts the gradient 500

similarity from the ST pre-training. Compared with 501

the ASR pre-training, the S2T and T2T subtasks 502

are replaced by sequence to sequence speech trans- 503

lation and text based neural machine translation 504

subtasks in the ST pre-training. The interference 505

between different subtasks is significant as large 506

positive and negative gradient similarities are ob- 507

served in the third and fifth layers, as shown in 508

Figure 2. 509

Similarly, we compare task gradients in the 510

speech encoder and no obvious task interference 511

is observed within the speech encoder for both 512

ASR and ST pre-training. Detailed analysis on 513

the speech encoder is included in the Appendix B. 514

In order to alleviate the task interference, we pro- 515

pose the PSE configuration for the ST pre-training 516

instead of the FSE configuration. Table 3 presents 517

the performance comparison between two configu- 518

rations on both ASR and ST pre-training. On the 519

left part of the table, we list the ASR results using 520

100 hours labelled speech data (train-clean-100) in 521

the pre-training and fine-tuning. While the right 522

part of the table shows the BLEU from the speech 523

translation STPT evaluated on the MUST-C dataset. 524

As we expected, the FSE configuration encourages 525

information sharing among tasks and it achieves 526
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Data set Dev Test
clean other clean other ave.

wav2vec 2.0 (Baevski et al., 2020b) 3.2 (1.8) 8.9 (4.7) 3.4 (2.1) 8.5 (4.8) 6.0 (3.4)
LAS (Park et al., 2019) - - 2.8 (2.5) 6.8 (5.8) -
Transformer (Tang et al., 2021b) 2.8 7.0 3.1 7.2 5.0
SpeechT5 (Ao et al., 2021) 2.7 (2.2) 6.9 (5.6) 2.9 (2.3) 7.1 (5.7) 4.9 (4.0)
STPT 2.0 (2.1) 4.4 (4.2) 2.1 (2.1) 4.6 (4.5) 3.3 (3.2)

Table 1: WER results on Librispeech. “()” indicates the WER is measured with an external LM.
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(a) Gradient similarity for the ASR pre-training.
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(b) Gradient similarity for the ST pre-training.

Figure 2: Gradient similarity for different subtasks on the shared text encoder.

Data corpus EN-ES EN-FR
Inaguma et al. (2020) 28.0 32.7
Tang et al. (2021a) 31.0 37.4
Zheng et al. (2021) 30.8 -
Ye et al. (2021) 30.8 38.0
STPT 33.1 39.7

Table 2: BLEU results of three language pairs on the
MuST-C tst-COMMON.

Config. Librispeech (WER ↓) MuST-C (BLEU ↑)
dev clean dev other EN-ES EN-FR

FSE 3.2 6.8 31.4 38.3
PSE 3.1 8.3 33.1 39.7

Table 3: Comparison of two pre-training configurations
for ASR and ST.

lower WER for the ASR task, which indicates sub-527

tasks in the ASR pre-training are complementary528

to each other. On the other hand, the PSE configu-529

ration minimizes the information sharing between530

EAD subtasks and encoder only subtasks, and it531

leads to higher BLEU for the ST task.532

5.3 Impact of supervised data533

The supervised speech data connects the text and534

speech modeling and unifies the representation535

from different modalities. An interesting ques-536

tion we want to investigate is how much super-537

vised data is enough to learn a good cross modality 538

representation. In this experiment, we choose dif- 539

ferent amounts of labelled speech data for ASR 540

pre-training and fine-tuning, varied from 960 hours 541

(the full dataset), 100 hours (train-clean-100) and 542

10 hours as (Kahn et al., 2020), to answer this ques- 543

tion. 544

In Table 4, the first column shows the amounts 545

of supervised speech data available during the pre- 546

training and the second column presents the amount 547

of labelled data used in the fine-tuning stage. In 548

pre-training, the same supervised speech data is 549

used in the S2P and S2T subtasks. 550

The first observation is that more supervised 551

speech data in the pre-training stage is always help- 552

ful to get smaller WER. For example, if the models 553

are fine-tuned with the full LIBRISPEECH training 554

dataset, the average WER are 3.3 (row one), 3.6 555

(row two) and 4.0 (row four) for experiments with 556

960, 100 and 10 hours labelled data in the pre- 557

training stage. The second observation is that we 558

are still able to obtain good speech presentations 559

even with small amounts of labelled data. In row 560

four, the model is pre-trained with 10 hours labelled 561

data, then fine-tuned with 960 hours supervised 562

speech data. It can achieve an average 4.0 WER, 563

which is as good as the previously reported EAD 564

systems in Table 1 if not better. However, we also 565
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PT (h) FT (h) Dev Test
clean other clean other

960 960 2.0 4.4 2.1 4.6

100 960 2.3 4.9 2.2 5.1
100 3.2 6.8 3.5 7.2

10
960 2.7 5.3 2.8 5.3
100 3.8 7.8 4.0 7.7
10 19.9 27.5 22.0 28.8

Table 4: Impact of the amounts of supervised data.
“PT” and “FT” stand for pre-training and fine-tuning
respectively.

notice the performance degrades quickly if only566

small amounts of labelled speech data are available.567

The average WER is increased to 24.6 (row six)568

when only 10 hours of supervised speech data is569

employed in both pre-training and fine-tuning.570

5.4 Ablation study571

In Table 5, we present an ablation study by remov-572

ing different steps/tasks in the pre-training stage.573

In order to make the pre-training more stable,574

the model training adopts a three-stage optimiza-575

tion strategy as discussed in subsection 3.5: 1)576

pre-training the T2T subtask to have a good ini-577

tialization on the phoneme embeddings 2) joint578

pre-training with four subtasks to leverage large579

amounts of unlabelled speech data and abundant580

text data and 3) fine-tuning the model on the down-581

stream task for best performance. In the second582

row, we skip the T2T pre-training step and initial-583

ize the model randomly for the joint pre-training.584

0.5 WER increase is observed in average on two585

LIBRISPEECH dev sets. It also has more impact on586

the EN-ES speech translation direction where 1.2587

BLEU score is lost without proper initialization.588

In the third row, we present the results without589

the S2T subtask. For both ASR and ST, signifi-590

cant performance degradation is observed, with an591

average 1.1 WER increase for two ASR tests and592

1.8 BLEU decrease for two ST directions. We also593

try removing the S2P subtask while still keeping594

the S2T subtask. The training doesn’t converge.595

The SSL subtask is with very small or zero cost596

since all predictions collapse into one or two target597

phonemes. Also, little progress has been made for598

the S2T subtask even though it is co-trained with599

the SSL and T2T subtasks.600

In the last row, the model is trained without pre-601

training, i.e., only the T2T and S2T subtasks are602

optimized. Compared with the STPT results, there603

is about 1.4 WER increase for two LIBRISPEECH604

Config. Librispeech (WER ↓) MuST-C (BLEU ↑)
dev clean dev other EN-ES EN-FR

STPT 2.0 4.4 33.1 39.7
- T2T pre-training 2.4 5.0 31.9 39.2
- EAD task 2.9 5.6 31.3 38.0
- pre-training 2.8 6.4 30.6 35.4

Table 5: Ablation study for STPT.

test sets and 3.4 BLEU decrease for the two ST 605

directions on average. 606

5.5 Discussion 607

In the ST pre-training, we use bitext data in the T2T 608

subtask while the monolingual text data is only em- 609

ployed in the ASR pre-training. It is possible to 610

include the BART task as another subtask in the 611

ST pre-training stage, since the monolingual text 612

data would be useful for the low resource speech 613

translation directions, where only limited speech 614

and bitext training data is available. In the S2T 615

subtask, we take the downstream task as the aux- 616

iliary subtask, i.e., EAD based ASR for the ASR 617

pre-training and speech to text translation for the 618

ST pre-training. It will be interesting to extend 619

this work for the multilingual scenario, where ASR 620

could be treated as an special translation direction 621

and we could have an uniformed pre-training frame- 622

work for both ASR and ST tasks. We will leave 623

these two extensions as our future work. 624

6 Conclusion 625

In this work, we present a method to jointly pre- 626

train speech and text in one model for speech trans- 627

lation and recognition under the EAD framework. 628

It includes four self-supervised and supervised sub- 629

tasks from two different input modalities, hence the 630

proposed method can leverage large amounts of un- 631

labelled speech data and abundant text data in the 632

pre-training stage. We conduct detailed analysis 633

on the interference among different subtasks and 634

propose two model configurations for the ASR and 635

ST pre-training respectively to alleviate the subtask 636

interference. Our experimental results show the 637

proposed method can effectively fuse information 638

within text and speech training data into one model. 639

We achieves between 1.7 and 2.3 BLEU improve- 640

ment over the state of the art on the MUST-C EN- 641

FR and EN-ES speech translation tasks, and com- 642

parable WERs as wav2vec 2.0 in the LIBRISPEECH 643

ASR task. 644
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Q. Xu, P. E. Mazaré, J. Karadayi, V. Liptchin- 717
sky, R. Collobert, C. Fuegen, T. Likhomanenko, 718
G. Synnaeve, A. Joulin, A. Mohamed, and 719
E. Dupoux. 2020. Libri-light: A benchmark 720
for asr with limited or no supervision. In 721
ICASSP, pages 7669–7673. https://github. 722
com/facebookresearch/libri-light. 723

Diederik P Kingma and Jimmy Ba. 2014. Adam: A 724
method for stochastic optimization. In ICLR. 725

T. Kudo and J. Richardson. 2018. Sentencepiece: 726
A simple and language independent subword tok- 727
enizer and detokenizer for neural text processing. In 728
EMNLP. 729

Y. Lee and T. Kim. 2018. Learning pronunciation from 730
a foreign language in speech synthesis networks. 731
ArXiv. 732

Mike Lewis, Yinhan Liu, Naman Goyal, Mar- 733
jan Ghazvininejad, Abdelrahman Mohamed, Omer 734
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2020a. 735
Bart: Denoising sequence-to-sequence pre-training 736
for natural language generation, translation, and 737
comprehension. In ACL. 738

Mike Lewis, Yinhan Liu, Naman Goyal, Mar- 739
jan Ghazvininejad, Abdelrahman Mohamed, Omer 740
Levy, Veselin Stoyanov, and Luke Zettlemoyer. 741
2020b. BART: Denoising sequence-to-sequence 742
pre-training for natural language generation, trans- 743
lation, and comprehension. In Proceedings of the 744
58th Annual Meeting of the Association for Compu- 745
tational Linguistics, pages 7871–7880, Online. As- 746
sociation for Computational Linguistics. 747

Xian Li, Changhan Wang, Yun Tang, C. Tran, Yuqing 748
Tang, Juan Miguel Pino, Alexei Baevski, Alexis 749
Conneau, and Michael Auli. 2021. Multilingual 750

9

https://arxiv.org/pdf/1802.06655.pdf
http://arxiv.org/abs/1910.05453
http://arxiv.org/abs/1910.05453
http://arxiv.org/abs/1910.05453
https://arxiv.org/pdf/2006.11477.pdf
https://arxiv.org/pdf/2006.11477.pdf
https://arxiv.org/pdf/2006.11477.pdf
https://arxiv.org/pdf/2006.11477.pdf
https://arxiv.org/pdf/2006.11477.pdf
http://arxiv.org/abs/1910.11559
http://arxiv.org/abs/1910.11559
http://arxiv.org/abs/1910.11559
http://arxiv.org/abs/1910.11559
http://arxiv.org/abs/1910.11559
http://arxiv.org/abs/2004.05274
http://arxiv.org/abs/2004.05274
http://arxiv.org/abs/2004.05274
http://arxiv.org/abs/2004.05274
http://arxiv.org/abs/2004.05274
https://papers.nips.cc/paper/7965-unsupervised-cross-modal-alignment-of-speech-and-text-embedding-spaces.pdf
https://papers.nips.cc/paper/7965-unsupervised-cross-modal-alignment-of-speech-and-text-embedding-spaces.pdf
https://papers.nips.cc/paper/7965-unsupervised-cross-modal-alignment-of-speech-and-text-embedding-spaces.pdf
https://arxiv.org/pdf/2010.02295.pdf
https://arxiv.org/pdf/2010.02295.pdf
https://arxiv.org/pdf/2010.02295.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1202.pdf
https://fb.workplace.com/groups/831302610278251/permalink/4545432132198595/
https://fb.workplace.com/groups/831302610278251/permalink/4545432132198595/
https://fb.workplace.com/groups/831302610278251/permalink/4545432132198595/
https://github.com/facebookresearch/libri-light
https://github.com/facebookresearch/libri-light
https://github.com/facebookresearch/libri-light
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


speech translation from efficient finetuning of pre-751
trained models. In ACL/IJCNLP.752

Yinhan Liu, Jiatao Gu, Naman Goyal, X. Li, Sergey753
Edunov, Marjan Ghazvininejad, M. Lewis, and754
L. Zettlemoyer. 2020. Multilingual denoising pre-755
training for neural machine translation. ArXiv,756
abs/2001.08210.757

D. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph,758
E. Cubuk, and Q. Le. 2019. Specaugment: A sim-759
ple data augmentation method for automatic speech760
recognition. Interspeech.761

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt762
Gardner, Christopher Clark, Kenton Lee, and Luke763
Zettlemoyer. 2018. Deep contextualized word repre-764
sentations. In NAACL-HLT.765

Juan Miguel Pino, Qiantong Xu, Xutai Ma, Moham-766
mad Javad Dousti, and Yun Tang. 2020. Self-767
training for end-to-end speech translation. In IN-768
TERSPEECH.769

Matt Post. 2018. A call for clarity in reporting BLEU770
scores. In Proceedings of the Third Conference on771
Machine Translation: Research Papers, pages 186–772
191, Brussels, Belgium. Association for Computa-773
tional Linguistics.774

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas775
Burget, Ondrej Glembek, Nagendra Goel, Mirko776
Hannemann, Petr Motlicek, Yanmin Qian, Petr777
Schwarz, Jan Silovsky, Georg Stemmer, and Karel778
Vesely. 2011. The kaldi speech recognition toolkit.779
In ASRU.780

Yun Tang, Juan Miguel Pino, Xian Li, Changhan Wang,781
and Dmitriy Genzel. 2021a. Improving speech trans-782
lation by understanding and learning from the auxil-783
iary text translation task. In ACL.784

Yun Tang, Juan Miguel Pino, Changhan Wang, Xutai785
Ma, and Dmitriy Genzel. 2021b. A general multi-786
task learning framework to leverage text data for787
speech to text tasks. ICASSP.788
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A Optimization setting 836

T2T subtask pre-training The T2T model is pre- 837

trained with learning rate 0.01 using Adam opti- 838

mization. The maximum tokens per mini-batch is 839

2048 with 8 V100 GPU cards. The model is up- 840

dated 400,000 until fully converged. 841

Pre-training with all subtasks The model then 842

keeps optimizing with all four subtasks: T2T, SSL, 843

S2P and S2T, with learning rate 0.001. The model 844

is trained using 16 A100 GPU cards with update fre- 845

quency 12. The maximum token number per batch 846

for the T2T subtask is 2048 while the maximum 847

sample number is 750,000 (46s) for the speech in- 848

put in three speech subtasks. The maximum update 849

number is 800,000 and 200,000 for the ASR pre- 850

training and the ST pre-training respectively. 851

Fine-tuning The model is fine-tuned on the down- 852

stream task with learning rate 0.0003 and 8 V100 853

GPU cards. The update frequency set to 3. The 854
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maximum update numbers are dependent on the855

amounts of supervised speech data available. We856

choose 100,000 for the ASR task with 960 hours857

training data and 20,000 for 100 or 10 hours train-858

ing data. For the ST task, the maximum update859

number is set to 50,000.860

B Gradient similarity of the speech861

encoder862

Three subtasks: SSL, S2P, and S2T, share the863

speech encoder during the joint pre-training. Sim-864

ilar pairwise gradient similarity analysis is con-865

ducted on these three subtasks at the speech en-866

coder, as shown in Figure 3. The gradient similarity867

analysis for the ASR pre-training is presented in868

the left subfigure while the ST-pretraining is listed869

in the right. In both cases, the gradient similarities870

for different subtask pairs are small, i.e., absolute871

values of the gradient similarities are all below 0.2.872

It indicates the task interference between different873

subtasks are not significant.874
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(b) Gradient similarity for the ST pre-training.

Figure 3: Gradient similarity for different subtasks on the speech encoder.

12


