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Abstract

State-of-the-art NLP inference uses enormous
neural architectures and models trained for
GPU-months, well beyond the reach of most
consumers of NLP. This has led to one-size-
fits-all public API-based NLP service models
by major AI companies, serving large numbers
of clients. Neither (hardware deficient) clients
nor (heavily subscribed) servers can afford tra-
ditional fine tuning. Many clients own little or
no labeled data. We initiate a study of adap-
tation of centralized NLP services to clients,
and present one practical and lightweight ap-
proach. Each client uses an unsupervised,
corpus-based sketch to register to the service.
The server uses an auxiliary network to map
the sketch to an abstract vector representation,
which then informs the main labeling network.
When a new client registers with its sketch, it
gets immediate accuracy benefits. We demon-
strate the success of the proposed architecture
using sentiment labeling, NER, and predictive
language modeling.

1 Introduction

State-of-the-art NLP uses large neural networks
with billions of parameters, enormous training data,
and intensive optimization over weeks of GPU-
time, causing more carbon emission than a car over
its lifetime (Strubell et al., 2019). Such training
prowess is (mercifully) out of reach for most users
of NLP methods. Recognizing this, large AI com-
panies have launched NLP cloud services1 and also
provided trained models for download and fine tun-
ing. But many clients have too little data or hard-
ware for fine tuning massive networks. Neither can
the service be expected to fine-tune for each client.

Distributional mismatch between the giant
general-purpose corpus used to train the central ser-
vice and the corpus from which a client’s instances

1Google NLP, Microsoft Azure, IBM Watson

arise leads to lower accuracy. A common source of
trouble is mismatch of word salience (Paik, 2013)
between client and server corpora (Ruder, 2019).
In this respect, our setting also presents a new op-
portunity. Clients are numerous and form natural
clusters, e.g., healthcare, sports, politics. We want
the service to exploit commonalities in existing
client clusters, without explicitly supervising this
space, and provide some level of generalization to
new clients without re-training or fine-tuning.

In response to the above challenges and con-
straints, we initiate an investigation of practical
protocols for lightweight client adaptation of NLP
services. We propose a system, KYC (“Know Your
Client”), in which each client registers with the
service using a simple sketch derived from its (un-
labeled) corpus. The service network takes the
sketch as additional input with each instance later
submitted by the client. The service provides accu-
racy benefits to new clients immediately.

What form can a client sketch take? How should
the service network incorporate it? While this will
depend on the task, we initiate a study of these twin
problems focused on predictive language modeling,
sentiment labeling, and named entity recognition
(NER). We show that a simple late-stage interven-
tion in the server network gives visible accuracy
benefits, and provide diagnostic analyses and in-
sights. Our code and data will be made public.

Contributions In summary, we
• introduce the on-the-fly client adaptation prob-

lem motivated by networked NLP API services;
• present KYC, that learns to compute client-

specific biases from unlabeled client sketches;
• show improved accuracy for predictive language

modeling, NER and sentiment labeling;
• diagnose why KYC’s simple client-specific la-

bel biases succeed, in terms of relations between
word salience, instance length and label distribu-

https://cloud.google.com/natural-language
https://azure.microsoft.com/en-us/services/cognitive-services/language-understanding-intelligent-service/
https://www.ibm.com/watson/natural-language-processing
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tions at diverse clients.

Related work Our method addresses the mis-
match between a client’s data distribution and the
server model. The extensive domain adaptation lit-
erature (DauméIII, 2007; Blitzer et al., 2006; Ben-
David et al., 2006) is driven by the same goal but
most of these update model parameters using la-
beled or unlabeled data from the target domain
(client). Some recent approaches attempt to make
the adaptation light-weight (Lin and Lu, 2018; Li
et al., 2020; Jia et al., 2019; Cai and Wan, 2019;
Liu et al., 2020) while others propose to use entity
description (Bapna et al., 2017; Shah et al., 2019)
for zero-shot adaptation. Domain generalization
is another relevant technique (Chen and Cardie,
2018; Guo et al., 2018; Li et al., 2018a; Wang et al.,
2019; Shankar et al., 2018; Carlucci et al., 2019;
Dou et al., 2019; Piratla et al., 2020) where mul-
tiple domains during training are used to train a
model that can generalize to new domains. Of
these, the method that seems most relevant to our
setting is the mixture of experts network of (Guo
et al., 2018), with which we present empirical com-
parison. Another option is to transform the client
data style so as to match the data distribution used
to train the server model. Existing style transfer
techniques (Yang et al., 2018; Shen et al., 2017;
Prabhumoye et al., 2018; Fu et al., 2018; Lample
et al., 2019; Li et al., 2018b; Gong et al., 2019)
require access to server data distribution.

2 Proposed service protocol

We formalize the constraints on the server and
client in the API setting. (1) The server is expected
to scale to a large number of clients making it im-
practical to adapt to individual clients. (2) After
registration, the server is expected to provide la-
beling immediately and response latency per in-
stance must be kept low implying that the server’s
inference network cannot be too compute-inten-
sive. (3) Finally, the client cannot perform complex
pre-processing of every instance before sending to
the server, and does not have any labelled data.

Server network and model These constraints
lead us to design a server model that learns to
compute client-specific model parameters from the
client sketch, and requires no client-specific fine-
tuning or parameter learning. The original server
network is written as ŷ = Yθ(Eθ(x)) where x is
the input instance, and Yθ is a softmax layer to get

the predicted label ŷ. Eθ is a representation learn-
ing layer that may take diverse forms depending on
the task; of late, BERT (Devlin et al., 2018) is used
to design Eθ for many tasks.

We augment the server network to accept, with

lossy

Yθ

+

Eθ

g

Gφ

x Sc

Figure 1: KYC
overview.

each input x, a client-specific
sketch Sc as shown in Figure 1.
We discuss possible forms of Sc
in the next subsection. (The dot-
ted arrow represents a genera-
tive influence of Sc on x.) The
server implements an auxiliary
network g = Gφ(Sc). Here g
can be regarded as a neural di-
gest of the client sketch. Mod-
ule
⊕

combines Eθ(x) and g;
concatenation was found ade-
quate on the tasks we evaluated
but we also discuss other options in Section 3.
When the

⊕
module is concatenation we are com-

puting a client-specific per-label bias, and even that
provides significant gains, as we show in Section 3.

Client sketch The design space of client sketch
Sc is infinite. We initiate a study of designing Sc
from the perspective of term weighting and salience
in Information Retrieval (Paik, 2013). Sc needs to
be computed once by each client, and thereafter
reused with every input instance x. Ideally, Sc and
Gφ should be locality preserving, in the sense that
clients with similar corpora and tasks should lead
to similar gs. Suppose the set of clients already
registered is C.

A simple client sketch is just a vector of counts
of all words in the client corpus. Suppose word w
occurs nc,w times in a client c, with

∑
w nc,w = Nc.

Before input to Gφ, the server normalizes these
counts using counts of other clients as follows:
From all of C, the server will estimate a back-
ground unigram rate of word. Let the estimated
rate for word w be pw, which is calculated as:
pw = (

∑
c∈C nc,w)

/(∑
w

∑
c∈C nc,w

)
. (1)

The input into Gφ will encode, for each word w,
how far the occurrence rate of w for client c devi-
ates from the global estimate. Assuming the multi-
nomial word event distribution, the marginal prob-
ability of having w occur nc,w times at client c is
proportional to pnc,w

w (1− pw)(Nc−nc,w). We finally
pass a vector containing the normalized negative
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OOD ID

OOD Clients Base MoE KYC Base MoE KYC

BC/CCTV+Phoenix 63.8 66.9 71.8 86.0 83.8 86.7
BN/PRI+BN/VOA 88.7 87.9 90.7 84.5 83.0 86.0
NW/WSJ+Xinhua 73.9 78.9 80.9 80.8 77.2 82.5
BC/CNN+TC/CH 78.3 75.2 78.7 85.6 82.7 87.4
WB/Eng+WB/a2e 76.2 69.9 78.4 86.4 82.6 87.3
Average 76.2 75.8 80.1 84.7 81.9 86.0

Table 1: Test F1 on Ontonotes NER. OOD numbers are
on the two listed domains whereas ID numbers are on
test data of clients seen during training.

log probabilities as input to the model:

Sc ∝
(
−nc,w log pw
− (Nc − nc,w) log(1− pw) : ∀w

)
. (2)

We call this the term-saliency sketch. We discuss
other sketches like TF-IDF and corpus-level statis-
tics like average instance length in Sec. 3.

3 Experiments

We evaluate KYC on three NLP tasks as services:
NER, sentiment classification, and auto-completion
based on predictive language modeling. We com-
pare KYC against the baseline model (without the
Gφ network in Figure 1) and the mixture of experts
(MoE) model (Guo et al., 2018) (see Appendix B).
For all three models, the Eθ network is identical
in structure. In KYC, Gφ has two linear layers
with ReLU giving a 128-dim vector g, with slight
exceptions (see Appendix A). We choose datasets
that are partitioned naturally across domains, used
to simulate clients. We evaluate in two settings: in-
distribution (ID) on test instances from clients seen
during training, and out-of-distribution (OOD) on
instances from unseen clients. For this, we perform
a leave-k-client-out evaluation where given a set
D of clients, we remove k clients as OOD test and
use remaining D − k as the training client set C.
Named Entity Recognition (NER) We use
Ontonotes (Pradhan et al., 2007) which has 18 en-
tity classes from 31 sources which forms our set D
of clients. We perform leave-2-out test five times
with 29 training clients as C. We train a cased
BERT-based NER model (Devlin et al., 2018) and
report F-scores. Table 1 shows that KYC provides
substantial gains for OOD clients. For the first two
OOD clients (BC/CCTV,Phoenix), the baseline F1
score jumps from 63.8 to 71.8. MoE performs
worse than baseline. We conjecture this is because
separate softmax parameters over the large NER
label space is not efficiently learnable.

OOD ID

OOD Clients Base MoE KYC Base MoE KYC

Electronics+Games 86.6 87.4 88.1 88.5 88.7 89.0
Industrial+Tools 87.4 88.3 87.6 88.2 88.8 88.9
Books+Kindle Store 83.5 84.6 84.1 88.0 88.8 88.9
CDs+Digital Music 82.5 83.0 83.2 89.0 88.9 89.0
Arts+Automotive 89.9 90.6 90.8 88.2 88.6 88.6
Average 86.0 86.8 86.8 88.4 88.8 88.9
Table 2: Test Accuracy on Amazon Sentiment Data.

Sentiment Classification We use the popular
Amazon dataset (Ni et al., 2019) with each product
genre simulating a client. We retain genres with
more than 1000 positive and negative reviews each
and randomly sample 1000 positive and negative
reviews from these 22 genres. We perform leave-
2-out evaluation five times and Table 2 shows the
five OOD genre pairs. We use an uncased BERT
model for classifcation (Sun et al., 2019). Table 2
shows that average OOD client accuracy increases
from 86.0 to 86.8 with KYC.
Auto-complete Task We model this task as a for-
ward language model and measure perplexity. We
used the 20 NewsGroup dataset and treat each of
the twenty topics as a client. Thus D is of size
20. We use the state-of-art Mogrifier LSTM (Melis
et al., 2020). We perform leave-1-topic-out evalua-
tion six times and OOD topics are shown in Table 3.
For MoE, the client-specific parameter is only the
bias and not the full softmax parameters which
would blow up the number of trainable parameters.
Also it did not perform well. Table 3 shows that

OOD OOD ID

Clients Base MoE KYC Base MoE KYC
sci.space 29.3 30.9 28.7 28.6 30.7 28.1
comp.hw 27.9 28.6 27.2 28.4 28.7 27.9
sci.crypt 29.6 29.8 29.3 27.6 28.1 27.5
atheism 28.5 28.1 28.1 28.6 28.2 27.9
autos 28.2 28.4 28.0 27.7 28.0 27.9
mideast 26.8 26.7 26.2 28.4 28.9 27.3
Average 28.4 28.7 27.9 28.2 28.8 27.8

Table 3: Perplexity comparison between the baseline
and KYC on 20-NewsGroup dataset.

KYC performs consistently better than the base-
line with average perplexity drop from 28.4 to 27.9.
This drop is particularly significant because the
Mogrifier LSTM is a strong baseline to start with.
MoE is worse than baseline.

Diagnostics We provide insights on why KYC’s
simple method of learning per-client label biases
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Figure 2: Proportion of true and predicted entity labels
on OOD client NW/Xinhua. Similar trends observed
on other OOD domains (Figure 4 of Appendix).

Figure 3: Fraction Positive Predicted versus average
review length by baseline and KYC. Each dot/cross is
a domain and the dotted lines indicate the best fit lines.

from client sketches is so effective. One expla-
nation is that the baseline had large discrepancy
between the true and predicted class proportions
for several OOD clients. KYC corrects this dis-
crepancy via computed per-client biases. Figure 2
shows true, baseline, and KYC predicted class pro-
portions for one OOD client on NER. Observe how
labels like date, GPE, money and org are under-
predicted by baseline and corrected by KYC. Since
KYC only corrects label biases, instances most
impacted are those close to the shared decision
boundary, and exhibiting properties correlated with
labels but diverging across clients. We uncovered
two such properties:
Ambiguous Tokens In NER the label of sev-
eral tokens changes across clients, E.g. tokens
like million, billion in finance clients like
NW/Xinhua are money 92% of the times whereas
in general only 50% of the times. Based on client
sketches, it is easy to spot finance-related topics
and increase the bias of money label. This helps
KYC correct labels of borderline tokens.
Instance Length For sentiment labeling, review
length is another such property. Figure 3 is a scat-
ter plot of the average review length of a client
versus the fraction predicted as positive by the base-
line. For most clients, review length is clustered
around the mean of 61, but four clients have length
> 90. Length of review is correlated with label: on

Salience TF Binary Sum- Architecture
Concat IDF BOW mary Deep Decomp MoE-g

OD 80.1 80.0 81.0 75.4 80.9 76.0 74.9
ID 86.0 85.9 77.8 81.8 85.9 85.0 79.8

Table 4: Comparing variant client sketches (Sc) and
network architectures (

⊕
and Yθ) of KYC in Fig 1.

average, negative reviews contain 20 words more
than positive ones. This causes baseline to under-
predict positives on the few clients with longer
reviews. The topics of the four outlying clients
(video games, CDs, Toys&Games) are related so
that the client sketch is able to shift the decision
boundary to correct for this bias. Using only nor-
malized average sentence length as the client sketch
bridges part of the improvement of KYC over the
baseline (details in Appendix C) implying that aver-
age instance length should be part of client sketch
for classification tasks.

Ablation Studies We explored a number of alter-
native client sketches and models for harnessing
them. We present a summary here; details are in the
Appendix C and D. Table 4 shows average F1 on
NER for three other sketches: TF-IDF, Binary bag
of words, and a 768-dim pooled BERT embedding
of ten summary sentences extracted from client
corpus (Barrios et al., 2016). KYC’s default term
saliency features provides best accuracy with TF-
IDF a close second, and embedding-based sketches
the worst. Next, we compare three other architec-
tures for harnessing g in Table 4: Deep, where
module

⊕
after concatenating g and E adds an ad-

ditional non-linear layer so that now the whole de-
cision boundary, and not just bias, is client-specific.
KYC’s OOD performance increases a bit over plain
concat. Decompose, which mixes two softmax ma-
trices with a client-specific weight α learned from
g. MoE-g, which is like MoE but uses the client
sketch for expert gating. We observe that the last
two options are worse than KYC.

4 Conclusion

We introduced the problem of lightweight client
adaption in NLP service settings. This is a promis-
ing area, ripe for further research on more complex
tasks like translation. We proposed client sketches
and KYC: an early prototype server network for
on-the-fly adaptation. Three NLP tasks showed
considerable benefits from simple, per-label bias
correction. Alternative architectures and ablations
provide additional insights.
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NLP Service APIs and Models for Efficient Registration of New Clients
(Appendix)

A Reproducibility/Implementation
Details

In this section we provide details about the dataset,
architecture and training procedures used for each
of the three tasks. We provide the datasets used,
code, hyperparameters for all the tasks in the code
submitted along with the submission.

A.1 NER

We use the standard splits provided in the
Ontonotes dataset (Pradhan et al., 2007). Our code-
base builds on the official PyTorch implementation
released by (Devlin et al., 2018). We finetune a
cased BERT base model with a maximum sequence
length of 128 tokens for 3 epochs which takes 3
hours on a Titan X GPU.

A.2 Sentiment Classification

As described previously, we use the Amazon
dataset (Ni et al., 2019). For each review, we use
the standard protocol to convert the rating to a bi-
nary class label by marking reviews with 4 or 5
stars as positive, reviews with 1 or 2 stars as neg-
ative and leaving out reviews with 3 stars. We
randomly sample data points from each domain
to select 1000, 200 and 500 positive and nega-
tive reviews each for the train, validation and test
splits, respectively. We leave out the domains that
have insufficient examples, leaving us with 22 do-
mains. We use the finetuning protocol provided
by the authors of (Sun et al., 2019) and use the un-
cased BERT base model with a maximum sequence
length of 256 for this task. We train for 5 epochs
(which takes 4 hours on a Titan X GPU) and use the
validation set accuracy after every epoch to select
the best model.

A.3 Auto Complete Task

We use 20NewsGraoup dataset while regarding
each content class label as a client. We remove
header, footer from the content of the documents
and truncate the size of each client to around 1MB.
We use word based tokenizer with a vocabulary
restricted to top 10,000 tokens and demarcate sen-
tence after 50 tokens. The reported numbers in
Table 3 are when using TF-IDF vector for domain
sketch. We did not evaluate other kinds of domain
sketch on this task. We train all the methods for 40

epochs with per epoch train time of 4 minutes on a
Titan X GPU.

We adopt the tuned hyperparameters correspond-
ing to PTB dataset to configure the baseline Melis
et al. (2020). Since the salience information from
the client sketch can be trivially exploited in per-
plexity reduction and thereby impede learning
desired hypothesis beyond trivially copying the
salience information, we project the sketch vector
to a very small dimension of 32 before fanning it
out to the size of vocabulary. We did not use any
non-linearity in Gφ and also employ dropout on
the sketches.

B Details of MoE method (Guo et al.,
2018)

MoE employs a shared encoder and a client spe-
cific classifier. We implemented their proposal to
work with our latest encoder networks. Our im-
plementation of their method is to the best of our
efforts faithful to their scheme. The only digres-
sion we made is in the design of discriminator: we
use a learnable discriminator module that the en-
coder fools while they adopt MMD based metric to
quantify and minimize divergence between clients.
This should, in our opinion, only work towards
their advantage since MMD is not sample efficient
especially given the small size of our clients.

OOD ID

OOD Clients Base KYC Base KYC

BC/CCTV + BC/Phoenix 63.8 70.1 86.00 86.7
BN/PRI + BN/VOA 88.7 91.6 84.5 86.2
NW/WSJ + NW/Xinhua 73.9 79.2 80.8 82.2
BC/CNN + TC/CH 78.3 80.4 85.6 87.1
WB/Eng + WB/a2e 76.2 78.9 86.4 87.5
Average 76.2 80.0 84.7 85.9

Table 5: Performance on the NER task on the
Ontonotes dataset when using TF-IDF as the client
sketch.

C Results with Different Client Sketches

In this section we provide results on every OOD
split for the different client sketches described in
Section 3 along with more details.
• TF-IDF: This is a standard vectorizer used in

Information Retrieval community for document
similarity. We regard all the data of the client as a
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Figure 4: Proportion of true and predicted entity labels for different OOD clients (left) BC/Phoenix (right)
BC/CCTV.

OOD ID

OOD Clients Base KYC Base KYC

BC/CCTV + BC/Phoenix 63.8 75.3 86.0 79.3
BN/PRI + BN/VOA 88.7 90.5 84.5 78.7
NW/WSJ + NW/Xinhua 73.9 82.7 80.8 71.4
BC/CNN + TC/CH 78.3 80.3 85.6 79.9
WB/Eng + WB/a2e 76.2 76.4 86.4 79.6
Average 76.2 81.0 84.7 77.8

Table 6: Performance on the NER task on the
Ontonotes dataset when using Binary Bag of Words as
the client sketch.

OOD ID

OOD Clients Base KYC Base KYC

BC/CCTV + BC/Phoenix 63.8 61.5 86.0 83.0
BN/PRI + BN/VOA 88.7 82.3 84.5 85.2
NW/WSJ + NW/Xinhua 73.9 82.3 80.8 75.0
BC/CNN + TC/CH 78.3 72.5 85.6 83.2
WB/Eng + WB/a2e 76.2 78.3 86.4 82.5
Average 76.2 75.4 84.7 81.8

Table 7: Performance on the NER task on the
Ontonotes dataset when using sentence embddings av-
eraged over an extracted summary.

OOD ID

OOD Clients Base Sali- Avg Base Sali- Avg

ence Len ence Len

Electronics+Games 86.4 88.1 86.9 88.5 89.0 88.6
Industrial+Tools 87.4 87.6 88.3 88.2 88.9 88.8
Books+Kindle Store 83.5 84.6 84.5 88.0 88.9 89.0
CDs+Digital Music 82.5 83.0 83.1 89.0 89.0 89.0
Arts+Automotive 89.9 90.6 90.2 88.2 88.6 88.5
Average 86.0 86.8 86.6 88.4 88.8 88.8

Table 8: Accuracy on the Sentiment Analysis task
when using average review length as the client sketch.
Columns “Saliency” and “Avg Len” refer to using KYC
with the default saliency features and normalized re-
view lengths as client sketches, respectively.

document when computing this vector. The cor-
responding numbers using this sketch are shown
in Table 5 and are only slightly worse than the
salience features.
• Binary Bag of Words (BBoW): A binary vec-

tor of the same size as vocabulary is assigned
to each client while setting the bit correspond-
ing to a word on if the word has occurred in
the client’s data. We notice an improvement on
the OOD set but a significant drop in ID num-
bers as seen in Table 6, 4. We attribute this to
the strictly low representative power of BBoW
sketches compared to the other sketches. The
available train data for NER is laced with rogue
clients which are not labeled and are instead as-
signed the default tag: “O”. Proportion of KYC’s
improvement on this task comes from the ability
to distinguish bad clients and keeping their pa-
rameters from not affecting other clients. This,
however, is not possible when the representative
capacity of the sketch is compromised. Thereby
we do worse on ID using this sketch but not on
OOD meaning the model does worse on the bad
clients (which are only part of ID, and not OOD).
• Contextualized Embedding of Summary: We

also experiment with using deep-learning based
techniques to extract the topic and style of a
client by using the “pooled” BERT embeddings
averaged over sentences from the client. Since
the large number of sentences from every client
would lead to most useful signals being killed
upon averaging, we first use a Summary Extrac-
tor (Barrios et al., 2016) to extract roughly 10
sentences per client and average the sentence em-
beddings over these sentences only. This method
turns out to be ineffective in comparison to the
other client sketches, indicating that sentence em-
beddings do not capture all the word-distribution
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information needed to extract useful correction.
• Average Instance Length: For the task of Senti-

ment Analysis, we also experiment with passing
a single scalar indicating average review length
as the client sketch in order to better understand
and quantify the importance of average review
length on the performance of KYC. We linearly
scale the average lengths so that all train clients
have values in the range [−1, 1]. As can be seen
in Table 8, this leads to a significant improve-
ment over the baseline. In particular, the OOD
splits CDs + Digital Music and Books + Kindle
Store have reviews that are longer than the av-
erage and consequently result in improvements
when augmented with average length informa-
tion. The gains from review length alone are not
higher than our default term-saliency sketch indi-
cating that term frequency captures other mean-
ingful properties as well.

D Results with Different Model
Architectures

In this section we provide results for the different
network architecture choices described in Section 3
• Deep: The architecture used is identical to that

shown in Figure 1 barring
⊕

, which now con-
sists of an additional 128-dimensional non-linear
layer before the final softmax transform Yθ.
• Decompose: The final softmax layers is decom-

posed in to two. A scalar α is predicted from the
client sketch using Gφ similar to KYC. The final
softmax layer then is obtained through convex
combination of the two softmax layers using α.
Figure 5 shows the overview of the architecture.
• MoE-g: We use the client sketch as the drop-in

replacement for encoded instance representation
employed in Guo et al. (2018). The architecture
is sketched in Figure 6. As shown in Table 11,
this method works better than the standard MoE
model, but worse than KYC.

OOD ID

OOD Clients Base KYC Base KYC

BC/CCTV + BC/Phoenix 64.8 74.5 85.6 86.8
BN/PRI + BN/VOA 89.5 90.0 84.1 85.6
NW/WSJ + NW/Xinhua 74.4 80.6 80.2 92.8
BC/CNN + TC/CH 78.0 79.6 86.1 87.5
WB/Eng + WB/a2e 75.6 79.9 85.8 87.1
Average 76.5 80.9 84.4 86.0

Table 9: Performance on the NER task on the
Ontonotes dataset using KYC-Deep.

lossy

Yθ +

Eθ

x

α

Gφ

SM1

SM2

Sc

Figure 5: Decompose overview:
⊕

indicates a
weighted linear combination. SMi, i ∈ {1, 2} repre-
sent the softmax matrices which are combined using
weights α.

OOD ID

OOD Clients Base KYC Base KYC

BC/CCTV + BC/Phoenix 64.1 56.0 85.6 86.3
BN/PRI + BN/VOA 89.6 89.9 84.6 85.5
NW/WSJ + NW/Xinhua 72.3 68.2 81.2 80.0
BC/CNN + TC/CH 78.5 77.5 85.9 86.6
WB/Eng + WB/a2e 75.5 71.0 86.1 86.7
Average 76.0 72.5 84.7 85.2

Table 10: Performance on the NER task on the
Ontonotes dataset using Decompose.

lossy

+

p1(y|x) p2(y|x) . . . pn(y|x)

Yθ1 Yθ2 Yθn

Eθ

α

Gφ

Sc
x

Figure 6: MoE-g overview:
⊕

indicates a weighted
linear combination. pi(y|x) represents the ith expert’s
predictions and α represents weights for expert gating.

OOD ID

OOD Clients Base KYC Base KYC

BC/CCTV + BC/Phoenix 64.8 74.7 85.6 84.0
BN/PRI + BN/VOA 89.5 88.3 84.1 83.6
NW/WSJ + NW/Xinhua 74.4 61.6 80.2 64.8
BC/CNN + TC/CH 78.0 73.7 86.1 82.1
WB/Eng + WB/a2e 75.6 76.3 85.8 84.4
Average 76.5 74.9 84.4 79.8

Table 11: Performance on the NER task on the
Ontonotes dataset using MoE-g.


