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ABSTRACT

Integrated circuit (IC) designs require transforming high-level specifications into
physical layouts, demanding extensive expertise and specialized tools, as well
as months of time and numerous iterations. While Machine Learning (ML) has
shown promise in various research domains, the lack of large-scale, open datasets
limits its application in chip design. To address this limitation, we introduce Cir-
cuitNet 3.0, a large-scale, comprehensive, and open-source dataset curated to fa-
cilitate the evaluation of ML models on challenging timing and power prediction
tasks. Starting with a diverse set of 8,659 validated open-source designs, we em-
ploy a systematic framework to generate over 15,000 instances. Through special-
ized syntax-tree mutation strategies and principled, task-oriented filtering method-
ology, we enrich each design with multi-modal information spanning multiple de-
sign stages, including complete design flow documentation, register-transfer-level
(RTL) designs and corresponding netlists, detailed physical layouts, and compre-
hensive performance metrics. The experimental results convincingly demonstrate
that ML models leveraging multi-stage, multi-modal circuit representations sig-
nificantly improve performance over existing open-source datasets in electronic
design automation (EDA) tasks, paving the way for efficient and accessible cir-
cuit representation learning. The dataset and codes are available in https:
//anonymous.4open.science/r/ICLR26-CircuitNet3-272B.

1 INTRODUCTION

Digital circuits constitute the cornerstone of contemporary computing infrastructure, enabling the
advancement of modern technology (Agarwal & Lang, 2005). The intricate process of IC design en-
compasses the systematic transformation of abstract functional specifications into manufactured sil-
icon implementations while adhering to increasingly demanding performance requirements (Lienig
& Scheible, 2020; Calhoun et al., 2008). A fundamental challenge lies in maintaining functional
correctness and achieving performance objectives, particularly as design complexity continues to
scale (Bryant et al., 2001).

As illustrated in Figure 1(a), IC design traditionally follows a waterfall methodology comprising
three sequential stages: (1) Register-Transfer Level Design, where designers create and validate
functional specifications (Chu, 2006); (2) Logic Synthesis, which converts these specifications into
optimized gate-level netlists (Kaeslin, 2014); and (3) Physical Design, which implements these
netlists as manufacturable silicon layouts (Kulkarni & Chopde, 2024). While this hierarchical ap-
proach facilitates focused optimization at each stage, it introduces substantial design inefficiencies.
The conventional flow requires complete layout implementation before performance validation, re-
sulting in verification cycles that can span weeks (Kahng, 2018). When designs fail to meet specifi-
cations, Engineering Change Orders (ECOs) trigger cascading modifications across multiple stages,
often necessitating fundamental RTL redesign (Huang et al., 2013). This linear progression signifi-
cantly hampers design convergence and extends development timelines.

Nowadays, advanced EDA tools have embraced ML-driven approaches (Xing, 2024). The shift-left
methodology, depicted in Figure 1(b), introduces predictive violation detection and ECO mecha-
nisms at earlier design stages, enabling proactive optimization of power, performance, and area
(PPA) metrics (Zeng, 2024). However, the widespread adoption of ML-driven EDA faces several
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(b) The modern shift-left model.

Figure 1: Comparison of IC design workflows. The shift-left model (b) accelerates the design cycle
by incorporating early, predictive feedback loops, avoiding the lengthy, iterative ECOs inherent in
the traditional waterfall model (a).

fundamental challenges. The first is for data scarcity. EDA domains lack comprehensive design
datasets due to intellectual property restrictions, unlike established ML fields such as computer vi-
sion and natural language processing (Srivastava et al., 2024). Another challenge is the complexity
of data generation. Developing realistic EDA datasets requires sophisticated commercial tools, ex-
tensive domain expertise, and considerable computational infrastructure (Kamat et al., 2011), as
well as months of numerous iterations. Finally, achieving high prediction accuracy for various tasks
in EDA is challenging. In industrial practice, the value of a predictive model is determined not by its
average-case performance, but by its accuracy on designs that push the limits of timing and power
budgets Lavagno et al. (2018). Current early-stage estimation techniques fail to achieve commercial-
grade accuracy and lack integration with realistic layout representations, limiting the effectiveness
of multi-modal analysis approaches (Chai et al., 2023).

To address these fundamental challenges in ML-driven EDA, we propose CircuitNet 3.0, a compre-
hensive multi-stage and multi-modal dataset that enables advanced AI-driven circuit design through
innovative cross-stage data augmentation and filtering. Our contributions are as follows:

• A large-scale, multi-modal, and multi-stage digital circuit dataset with full RTL-to-layout
traceability. CircuitNet 3.0 contains 8,659 unique and validated source RTL designs and over
15,000 total augmented designs, each with corresponding netlist and layout representations.
Through an industrial EDA workflow, we extract rich cross-modal features at each design stage,
providing a valuable resource for research in multi-stage multi-modal representation learning.

• A principled framework for data augmentation. For the critical scarcity of open-source RTL
designs, we develop a novel data augmentation framework based on Verilog syntax trees. This
framework systematically enhances dataset diversity through stage-aware transformations and
task-specific filtering mechanisms, focusing on industrially valuable cases (e.g., designs contain-
ing critical timing paths or high dynamic power). This enables robust learning for ML models,
providing simultaneous cross-stage analysis and early-stage prediction capabilities.

• A comprehensive set of new baselines and rigorous experimental protocols. Through com-
prehensive evaluation with state-of-the-art ML models, we demonstrate significant prediction
accuracy improvements over single-modal datasets, with approximately 36.0% and 12.9% error
reductions for timing and power tasks, respectively, compared to the existing dataset. Models
trained on CircuitNet 3.0 consistently outperform single-modal approaches, establishing new
performance benchmarks for ML-driven EDA tasks.

2 PRELIMINARIES

Representations of Designs. IC designs are represented in multiple forms throughout the chip
development process, each serving specific purposes and containing different levels of design in-
formation (Wolf, 2002). These representations evolve through the EDA flow, ensuring functional
correctness and manufacture (Wang et al., 2009). As illustrated in Figure 2, these representations
can be categorized into three distinct stages and modalities.

The design flow progresses through three key representations (Lienig et al., 2020b). The RTL repre-
sentation serves as the primary entry for digital circuit design, providing an abstract behavioral de-
scription that enables designers to focus on functionality while abstracting lower-level details (Vahid,
2010; Churiwala & Garg, 2011). The following netlist representation implements logical circuits
through the synthesis of RTL, comprising standard cells and their connectivity, while bridging be-
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module half_adder  (
        input A,
        input B,
        output Sum,
        output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

module half_adder  (
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);
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endmodule
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Figure 2: Design representations from different stages in the EDA workflow.
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Figure 3: (a) Timing analysis of designs; (b) Power estimation of designs.

havioral and physical implementations (Gayathri & Taranath, 2017; Skouson et al., 2020; Lienig
et al., 2020a). The last representation of layouts defines physical implementations through geomet-
ric patterns on silicon (Lienig & Scheible, 2020), including precise cell placement and metal inter-
connect routing (Cong et al., 2005), which ultimately determine the timing, power, and area metrics
of circuits (Baker, 2019). Each representation plays a crucial role in the whole design flow, with an
increasing level of detail and complexity aligning with design progress from RTLs to layouts.

Closure Objectives of Design. The primary goal of digital circuit design is to meet key performance
objectives—principally timing and power closure—across all stages of EDA workflow (Huang et al.,
2021). Accurately predicting these metrics at early stages is a critical application for ML models.

Timing Closure is essential for ensuring a circuit operates correctly at its target frequency (Golshan,
2020). As shown in Figure 3 (a), this is governed by setup and hold time constraints on all signal
paths between sequential elements. To quantify timing performance, three key metrics are used (Guo
& Lin, 2022): Arrival Time (AT), the signal propagation delay along a path; Worst Negative Slack
(WNS), the timing violation of the single most critical path in the design; and Total Negative Slack
(TNS), the sum of violations across all failing paths. A non-negative WNS indicates all timing
constraints are met, making it a primary objective for design closure (Kahng et al., 2011).

Power Closure primarily targets the management of dynamic power consumption, which arises from
the switching activity of transistors (Benini & DeMicheli, 1997). As illustrated in Figure 3(b), this
power (PSwitching) is mathematically expressed as α×f×CL×V 2

DD , where α represents switching
activity, f is clock frequency, CL is load capacitance, and VDD is the supply voltage. Accurate early
estimation is crucial for meeting power budgets and managing thermal constraints (Kawa, 2007).

Predicting these closure metrics early in the design flow, such as at the RTL stage, is highly valuable
for reducing design iterations and time-to-market. However, early-stage predictions are challeng-
ing because key physical information (e.g., parasitic resistance and capacitance from the layout) is
not yet available. This creates a critical need for ML models that can effectively leverage multi-
modal representations (RTL, netlist, layout) to learn the complex relationships between early design
choices and final physical outcomes.

Datasets of Designs. Datasets are essential for advancing ML methodologies in EDA tasks. Cir-
cuitNet 1.0and 2.0 (Chai et al., 2023; Jiang et al., 2024) datasets target logical and physical design
stages, providing extensive layout data for functions as routability prediction. However, they lack
sufficient RTL designs, limiting their applicability in early-stage modeling. RTL-focused datasets

3
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Table 1: Comparison of Open-Source EDA Datasets for Circuit Design
Dataset Features VerilogEval V2 RTLLM 2.0 CircuitNet 2.0 RTLCoder CircuitNet 3.0

(Pinckney et al., 2024) (Lu et al., 2024) (Jiang et al., 2024) (Liu et al., 2024b) (Ours)

Open Source ✓ ✓ ✓ ✓ ✓
Data Augmentation × × ✓ ✓ ✓
Design Validation

Pass-Synthesis × × ✓ × ✓
Pass-Simulation ✓ ✓ × × ✓

Stage Coverage
Front-End (RTL) ✓ ✓ ✓ ✓ ✓
Back-End (Layout) × × ✓ × ✓

Data Modalities Text Only Text Only Text/Graph/Image Text Only Text/Graph/Image
# of RTL Designs 156 50 8 26,532 8,659 (w/o Augment)
# of Layout Designs N/A N/A 10,791 N/A 15,863

Target Tasks Evaluating LLM
on RTL generation

Evaluating LLM
on RTL generation

Routability/
IR-Drop/

Timing Analysis

Training LLM on
RTL generation

Early-Stage
Timing/Power

Prediction

Slack
AT

Power
Map
......

EDA Flow Feature Extract

RTL

Netlist

Layout
P & R

SynthesisEDA-Task-
Oriented

Refinement

Expansion Refinement

 Data Generation and
Task-Oriented Augmentation

RTL 
AST-Based

Rewrite

Multi-Stage Data Gene-
ration and Feature Extract

module half_adder  (
        input A,
        input B,
        output Sum,
        output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

SimulateCompile
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......

RTL Data Collection 
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Figure 4: CircuitNet 3.0 workflow framework of multi-stage and multi-modality dataset.

like RTLLM (Lu et al., 2024) and Verilog-Eval (Liu et al., 2023) concentrate on RTL generation from
specifications but lack corresponding netlist, layout, and performance metrics. While recent works
have focused on EDA representation benchmarks, they exhibit key limitations. Although ForgeEDA
provides diverse circuit representations for benchmarking logic synthesis tasks (Shi et al., 2025), it
lacks the final physical implementation stage and is not open-source. EDALearn (Pan et al., 2024),
which presents an end-to-end flow to study the impact of varying open-source EDA tool parameters,
is limited in scale to only a few designs, lacking sufficient diversity. Consequently, these contri-
butions do not offer the complete, industry-standard RTL-to-Layout workflow and design variety
necessary to train robust and generalizable ML models. Furthermore, most open-source datasets are
primarily for single-stage tasks, with few containing comprehensive, synthesizable RTL implemen-
tations of designs and complete multi-stage data extending to the physical level. To bridge this gap,
we present CircuitNet 3.0, an advanced large-scale dataset that provides multi-modal multi-stage cir-
cuit representations, spanning from RTLs to layouts, along with corresponding performance metrics.
This enables ML models to explore the complete design flow and achieve inter-stage collaboration.

3 OVERVIEW OF CIRCUITNET 3.0

CircuitNet 3.0 is an open-source dataset containing 15, 863 design schemes, each of which encom-
passes data with RTL, netlist, and layout representations from all stages of the entire IC design
workflow for EDA tasks. Among the data, 8, 659 samples are original circuits collected directly,
while the rest of the designs were optimized and rewritten for timing and power prediction tasks
to generate new designs. We design a large-scale, diverse, and comprehensive dataset to meet the
needs of machine learning-driven circuit modeling.

Table 1 provides a summary of CircuitNet 3.0 compared with other existing datasets for EDA tasks.
CircuitNet 3.0 includes multi-stage RTL, netlist, and layout descriptions, covering all three circuit
representation stages and verified using synthesis and simulation tools. In contrast, other datasets
lack both the richness of circuit representations and the diversity of designs. For instance, although
CircuitNet 2.0 includes complete multi-stage data, it contains insufficient RTL entries. Conversely,
RTLcoder offers more RTL designs but does not provide data for the netlist and layout stages. More
importantly, CircuitNet 3.0 introduces a task-driven EDA data augmentation strategy, improving the
representativeness and utility of the dataset.

4
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Table 2: LLM & expert-based categories of the original RTL dataset. The dataset comprises 16
subcategories across four main functional categories.

Main Category Subcategory Count Main Category Subcategory Count
Arithmetic & Logic Units (23.6%) Data Processing Units (29.9%)

Adder/Subtractor 645 Comparator/Selector 1,453
Multiplier/Divider 774 Encoder/Decoder 431
ALU/Accumulator 519 FIFO/Buffer 407
Others 114 Others 292

Control & Sequential Circuits (17.9%) Communication & Memory (28.6%)
Counter/Timer 906 Memory/Register 1,061
FSM/Sequencer 392 Bus Interface 943
Control Logic 242 Serial Interface 445
Others 8 Others 27

Total RTL Designs: 8,659

4 DATA GENERATION AND AUGMENTATION

4.1 OVERVIEW OF CHALLENGES AND METHODOLOGIES

Constructing effective datasets for complex circuit design tasks presents fundamental challenges.
Simply collecting internet-sourced data proves insufficient due to its limited availability and incon-
sistent quality. Random circuit generation typically yields low-quality designs that fail synthesis
validation or contribute minimal value to predictive modeling. To address these limitations, we pro-
pose a systematic multi-stage data augmentation framework that leverages circuit representations
at different abstraction levels. This combines efficient RTL-level generation with task-oriented re-
finement at netlist and layout stages, ensuring scalability and task-specific representativeness while
maintaining design validity through rigorous EDA tool validation.

Figure 4 illustrates the completed data construction and augmentation procedures for the dataset.
First, we collected more than 100, 000 RTL code lines from open-source websites, cleaned up illegal
samples, resulting 8, 659 high-quality RTL implementations as the original dataset. Then, using
the coarse-grained characteristics of the RTL, we efficiently generate a large number of various
circuits based on the cleaned dataset through the Verilog syntax tree rewriting method. Finally, at the
netlist and layout level (i.e., the stage where circuit structures are implemented at a finer resolution),
we perform task-oriented data augmentation to generate more representative and instructive circuit
data. In the following sections, we will first describe our data collection and cleaning process, then
introduce our fast RTL source data rewriting generation scheme, and present our EDA task-oriented
multi-stage data augmentation method of IC designs.

4.2 RTL DATA COLLECTION AND CLEANING

We systematically collected RTL designs from established platforms, including GitHub, Hugging
Face, OpenCore, and RISC-V projects, ensuring compliance with open-source licensing require-
ments. All designs underwent rigorous validation using commercial synthesis and simulation tools
to guarantee functional correctness and eliminate circuits with errors or combinational loops.

Our final curated dataset, classified using Claude Opus 4 with expert validation, comprises 8, 659
high-quality RTL designs spanning four primary categories of arithmetic and logic units (23.6%),
control and sequential circuits (17.9%), data processing units (29.9%), and communication and
memory (28.6%). The category ensures comprehensive coverage of fundamental circuit building
blocks while maintaining design diversity essential for robust ML model training.

Notably, our approach prioritizes modular and well-characterized designs over large-scale CPU im-
plementations that often contain repetitive structures. This strategy enhances dataset uniformity and
enables precise performance analysis across different circuit categories, facilitating targeted model
optimization and systematic comparison of ML-driven EDA methodologies.

4.3 RAPID AND EFFICIENT DATA GENERATION

Leveraging a higher abstraction level of RTL implementations compared to netlists, we implement
systematic circuit generation through Verilog abstract syntax tree (AST) rewriting. Rather than
generating random RTL code, we apply sophisticated transformation rules to validated designs, as
illustrated in Figure 5 (a) and detailed in Table 3, which ensures that our rewriting results are more
reliable and trustworthy.
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Figure 5: Data Augmentation Process for Enhancing Diversity and EDA Task Representativeness

Table 3: Examples of AST-based Mutation Operators for RTL Data Augmentation
Mutation Type Operators Transformation Constraints
Arithmetic +, −, ×, ÷, etc. Bidirectional substitution Type preservation
Logical &&, ||, &, |, ˆ, etc. Cross-operator replacement Context-aware
Relational ==, ! =, >, <, ≥, ≤, etc. Comparison inversion Type-safe
Temporal posedge ↔ negedge Edge polarity toggle Sequential blocks
Assignment <=↔ = Blocking type conversion Always-block consistency
Constant Integer values ±1 modification Bit-width preservation

This methodology offers two key benefits, which are minimal code modifications to RTLs and gen-
eration with validated models. The coarse granularity of RTLs enables a few code modifications to
produce significant structural variations, efficiently generating diverse circuit instances. Moreover,
focusing on localized modifications of cleaned validated designs rather than randomly generated
RTLs, we substantially improve synthesis success rates and design quality.

The AST-based rewriting employs context-aware mutation operators including arithmetic substitu-
tions, logical transformations, and temporal edge modifications, all constrained by type preservation
and synthesis validity requirements. This approach ensures generated circuits maintain functional
correctness while achieving substantial structural diversity.

4.4 TASK-ORIENTED DATA AUGMENTATION

A primary goal of CircuitNet 3.0 is to create a dataset that effectively focuses on challenging,
performance-critical designs. In industrial practice, the value of a predictive model is determined not
by its average-case performance, but by its accuracy on cases that push the limits of timing and power
budgets. During logic and physical design stages, we leverage fine-grained circuit representations
for task-specific augmentation through two complementary strategies: multi-stage generation and
intelligent selection tailored to timing and power requirements. Through the systematic approaches,
we generate high-quality, task-specific datasets that effectively capture the structural and behavioral
characteristics essential for accurate timing and power prediction in industrial EDA workflows. By
leveraging commercial EDA tools such as Synopsys Design Compiler (Synopsys, 2025a) and Ca-
dence Innovus (Cadence, 2025a), this workflow generates three distinct data modalities: text (from
specifications and RTL codes), graph (from RTL and netlist stages), and image (from layout stage).

Data Augmentation for Timing Prediction Task. (1) Multi-stage data generation. Timing predic-
tion fundamentally requires accurate estimation of signal propagation delays across logic elements
and interconnects. For each RTL design, we perform comprehensive logic and physical optimiza-
tion to generate timing-optimal netlists and layouts, as shown in Figure 5 (b), providing high-quality
training labels. (2) Data selection. Timing closure is often dictated by a circuit’s longest paths.
Models trained only on designs with ample timing slack may fail to generalize to the timing-critical
scenarios that engineers focus on. We prioritize circuits with substantial path lengths, as longer
paths present the most critical challenges for timing closure and represent worst-case scenarios es-
sential for model robustness. The filtering excludes trivial short-path circuits, concentrating training
resources on challenging, industrial cases for training efficiency.
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Data Augmentation for Power-Prediction Task. (1) Multi-stage data generation. Power predic-
tion requires accurate modeling of switching activity across diverse logic topologies. Since RTL-
level granularity may be insufficient—single RTL statements can map to vastly different gate-level
implementations—we focus on netlist-level analysis. As illustrated in Figure 5(c), for the same RTL
code, we generate multiple netlist variants using different synthesis constraints, capturing the im-
pact of logic topology on power while maintaining functional equivalence. (2) Data selection. For
power-prediction model training, circuits with meaningful variations in switching activity under dif-
ferent inputs are most valuable. Suppose a module’s logic is unreachable or never toggles under any
input (possibly due to logic unreachability introduced by rewriting). In that case, it contributes little
to the training and may even reduce efficiency. Therefore, we further use the EDA tool Cadence
Voltus (Cadence, 2025b) to perform a vectorless dynamic power analysis and select circuit designs
where the fraction of inactive logic is low, excluding circuits with large amounts of ineffective logic.
The result is a curated dataset that improves training efficiency for power prediction.

5 EVALUATIONS ON CIRCUITNET 3.0

5.1 EXPERIMENTAL SETUP

We conduct comprehensive experiments on CircuitNet 3.0, comprising 15, 863 unique circuit de-
signs with complete representations across RTL, netlist, and layout stages. Each design instance
encompasses Verilog code with functional specifications at the RTL stage, gate-level representa-
tions with connectivity graphs at the netlist stage, and physical implementation data with parasitic
parameters at the layout stage. Ground-truth performance metrics, including arrival time (AT), the
worst negative slack (WNS), the total negative slack (TNS), and power, are generated using Syn-
opsys Design Compiler (Synopsys, 2025a) with compile ultra optimization for synthesis, Ca-
dence Innovus (Cadence, 2025a) with multi-corner multi-mode (MCMM) optimization for physical
design, and Synopsys PrimePower (Synopsys, 2025b) for power analysis.

All experiments utilize 8 NVIDIA A100 GPUs with PyTorch 2.0.1 and PyTorch Geometric 2.3.1.
Training employs AdamW optimization with learning rate 2 × 10−4 and cosine annealing. Models
are trained for 50 epochs with early stopping based on the validation loss. The dataset is partitioned
at the source design level into training (80%), validation (10%), and test (10%) sets. To create
a stringent test of generalization, the test set is composed exclusively of original, un-augmented
designs. Crucially, suppose a source design is allocated to the test set. In that case, all of its
augmented variants are entirely excluded from the training and validation pools, preventing any
leakage of structural information. To further bolster the reliability of our evaluation, the test set is
also supplemented with submodules from open-source projects external to our dataset.

Two fundamental EDA prediction tasks evaluate the effectiveness of the proposed CircuitNet 3.0.
The timing prediction task takes RTL code as input to predict post-layout timing metrics (WNS,
TNS, AT), enabling early-stage timing closure assessment. The power prediction task utilizes both
RTL and netlist representations to estimate circuit power consumption, facilitating power-aware de-
sign optimization across abstraction levels. We evaluate against state-of-the-art baselines, including
RTL-only models (MasterRTL (Fang et al., 2023), RTL-Timer (Fang et al., 2024), GRASPE (Rakesh
et al., 2023), VIRTUAL (Lu et al., 2025)), netlist-only models (DeepSeq2 (Khan et al., 2024),
MOSS (Wang et al., 2025a) without multi-modal learning), and our proposed multi-stage/multi-
modal approaches (RTLDistil (Wang et al., 2025b) for timing, MOSS (Wang et al., 2025a) for
power). Three dataset variants assess augmentation impact on Resyn-27k from RTLCoder (Liu
et al., 2024a), our original data, and augmented CircuitNet 3.0.

5.2 MULTI-STAGE AND MULTI-MODAL LEARNING SUPERIORITY

Table 4 demonstrates the effectiveness of multi-modal representations compared to single-modal
approaches. For timing prediction, RTLDistil employs cross-stage knowledge distillation between
RTL and layout representations, achieving a PCC of 0.885 for arrival time prediction, a 70.4% im-
provement over MasterRTL and 6.0% over RTL-Timer. WNS prediction achieves a PCC of 0.871
with a 35.28% MAPE, reducing the error by 45.8% compared to MasterRTL. TNS prediction at-
tains the highest PCC of 0.918, demonstrating superior capability in capturing cumulative timing
violations. In the power prediction task, MOSS jointly processes RTL code and netlist graphs,
achieving a toggle rate accuracy of 85.6% with a PCC of 0.871, surpassing DeepSeq2 by 21.4% and
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Table 4: Performance comparison of multi-modal models.
(a) Timing prediction on RTL stage, where RTLDistil leverages multi-stage knowledge distillation.

Model Arrival Time (AT) WNS TNS
PCC↑ MAPE↓ PCC↑ MAPE↓ PCC↑ MAPE↓

MasterRTL 0.520 43.25% 0.698 65.12% 0.593 68.45%
RTL-Timer 0.835 26.48% 0.842 44.36% 0.801 43.92%
RTLDistil 0.887 19.72% 0.871 35.28% 0.918 40.15%

(b) Power prediction on netlist stage, where MOSS demonstrates the effectiveness of multi-modal learning.

Model Toggle Rate Total Power
PCC↑ MAPE↓ PCC↑ MAPE↓

DeepSeq2 0.759 29.5% 0.872 22.2%
MOSS w/o Multi-Modal learning 0.674 34.7% 0.815 27.7%
MOSS (Full) 0.871 14.4% 0.948 7.4%
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Figure 6: Distributions of Worst Negative Slack (WNS) and Total Power across layout density
cases before and after data augmentation. (a) WNS distribution before augmentation and (b) after
augmentation. (c) Power distribution before augmentation and (d) after augmentation.

Table 5: Comparison of RTL timing prediction across various datasets

Dataset Model Arrival Time (AT) WNS TNS
PCC↑ R2 ↑ MAPE↓ PCC↑ R2 ↑ MAPE↓ PCC↑ R2 ↑ MAPE↓

Resyn-27k
MasterRTL 0.465 -0.384 48.32% 0.612 0.217 73.45% 0.541 -0.127 72.38%
RTLTimer 0.762 0.567 31.65% 0.768 0.581 52.17% 0.743 0.529 49.85%
RTLDistil 0.842 0.705 23.86% 0.825 0.676 40.73% 0.876 0.763 44.27%

Original Data
MasterRTL 0.520 -0.216 43.25% 0.698 0.462 65.12% 0.593 0.184 68.45%
RTLTimer 0.835 0.692 26.48% 0.842 0.705 44.36% 0.801 0.636 43.92%
RTLDistil 0.887 0.785 19.72% 0.871 0.756 35.28% 0.918 0.841 40.15%

Augmented Data
MasterRTL 0.613 0.287 38.74% 0.752 0.549 58.65% 0.641 0.363 62.18%
RTLTimer 0.873 0.760 22.35% 0.878 0.769 38.42% 0.843 0.707 39.67%
RTLDistil 0.935 0.863 15.28% 0.926 0.846 28.96% 0.968 0.927 35.42%

single-modal MOSS by 31.1%. Total power prediction reaches 92.6% accuracy with PCC of 0.948,
improving 19.0% over DeepSeq2. The ablation study confirms that incorporating RTL behavioral
information with netlist structural features enables comprehensive power characterization by cap-
turing both functional intent and gate-level switching activities. The substantial gains validate that
layout-level physical information, when distilled into RTL-stage models through multi-granularity
knowledge transfer, enables accurate early-stage predictions. This cross-stage paradigm effectively
bridges the abstraction gap between behavioral descriptions and physical implementations.

5.3 DATA DISTRIBUTION ANALYSIS: PRE- AND POST-AUGMENTATION

Figure 6 visualizes how task-oriented augmentation transforms performance metric distributions.
Pre-augmentation timing characteristics exhibit limited diversity, with the WNS clustered between
-2 ns and zero at high layout densities, with a percentage greater than 94%. Post-augmentation, the
dataset exhibits enriched timing diversity spanning -6 ns to zero across layout densities ranging from
86% to 100%, ensuring that models encounter comprehensive scenarios, from highly optimized to
critically constrained designs. Power distribution similarly evolves from a limited variation con-
centrated below 60 mW to uniform coverage ranging from zero to 160 mW. This diversification
enables robust model training for a range of power profiles, from ultra-low-power edge applications
to high-performance computing applications. The expanded distributions confirm that augmentation
successfully addresses the limited diversity in original datasets while maintaining design validity.
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5.4 PERFORMANCE ANALYSIS ON AUGMENTED DATA

Timing Prediction Enhancement. Table 5 demonstrates substantial improvements in timing pre-
diction accuracy achieved through our task-oriented data augmentation strategy. All models consis-
tently achieve superior performance on the augmented dataset across three critical timing metrics of
AT, WNS, and TNS. MasterRTL achieves PCC improvements of 31.9% of AT, 22.9% of WNS, and
18.5% of TNS compared to Resyn-27k data, with R2 values transitioning from negative to positive,
confirming the effective learning of timing relationships. RTL-Timer shows balanced gains with
PCC improvements exceeding 13% across all metrics and MAPE reductions of from 20% to 29%.
The RTLDistil attains state-of-the-art performance on augmented data with PCC values of 0.935 AT,
0.926 WNS, and 0.968 TNS. The R2 values exceeding 0.85 indicate the model captures over 85%
of timing variance, while achieving the lowest MAPE of 15.28% AT, 28.96% WNS, and 35.42%
TNS, which represents 36.0%, 28.9%, and 20.0% improvements over Resyn-27k data. These con-
sistent improvements across all models validate the effectiveness of our task-oriented augmentation
strategy for enhancing timing prediction capabilities.

Table 6: Comparison of RTL power prediction
across datasets.

Dataset Model Total Power
PCC↑ R2 ↑ MAPE↓

Resyn-27k
Graspe 0.642 0.655 30.41%
MasterRTL 0.609 0.620 32.67%
VIRTUAL 0.675 0.704 27.48%

Original
Dataset

Graspe 0.671 0.845 28.45%
MasterRTL 0.647 0.825 30.28%
VIRTUAL 0.672 0.858 26.85%

Augmented
Dataset

Graspe 0.701 0.850 26.55%
MasterRTL 0.696 0.845 27.16%
VIRTUAL 0.753 0.867 23.92%

Power Prediction Enhancement. Table 6 re-
veals substantial improvements in power pre-
diction accuracy through our augmentation
framework. All models achieve peak perfor-
mance on the augmented dataset, establishing
new benchmarks for RTL power analysis. The
VIRTUAL attains best performance with PCC
of 0.753, R2 of 0.867, MAPE of 23.92% with
11.6%, 23.2%, and 12.9% improvements over
Resyn-27k data. Additionally, GRASPE and
MasterRTL demonstrate significant gains with
PCC improvements of 9− 14%, R2 improve-
ments of approximately 30 − 36%, and MAPE reduction of approximately 13 − 17%. The consis-
tently higher PCC and R2 values, along with lower MAPE values, on augmented data, demonstrate
that our augmentation strategy successfully creates more predictable power consumption patterns
while preserving realistic design characteristics. These results validate the effectiveness of task-
oriented augmentation for addressing critical data quality challenges in power-aware circuit design.

Our evaluation demonstrates three key contributions. First, multi-modal models consistently out-
perform single-modal baselines: on timing prediction, RTLDistil improves PCC by an average of
8.0% and reduces MAPE by an average of 18.2% across AT, WNS, and TNS relative to the strongest
RTL-only baseline (RTL-Timer), demonstrating the efficacy of cross-stage information fusion. Sec-
ond, task-oriented augmentation expands timing coverage from -6 ns to 0 ns and power range from
0 mW to 160 mW, while preserving design validity. Third, CircuitNet 3.0 enhances model general-
ization in power prediction, with VIRTUAL trained on our augmented dataset, achieving an 11.6%
PCC gain and a 12.9% MAPE reduction in total power compared with training on existing dataset.
These results establish CircuitNet 3.0 as a comprehensive foundation for ML-driven EDA research.

6 CONCLUSION

We present CircuitNet 3.0, a comprehensive multi-stage multi-modal dataset designed for ML-
driven EDA. Through systematic data collection and rigorous validation, the dataset comprises over
15,000 designs, along with corresponding netlists, layouts, and performance metrics, addressing
the critical shortage of high-fidelity public data for AI4EDA. Experimental evaluation demonstrates
multi-modal models trained on CircuitNet 3.0 achieve significant performance improvements over
existing dataset baselines, with approximately 36.0% and 12.9% error reductions for timing and
power tasks, respectively. The multi-stage design representation enables effective cross-abstraction
information fusion, facilitating accurate early-stage prediction to guide early optimization. Task-
oriented augmentation strategies successfully expand design diversity while maintaining EDA tool
validation, extending timing coverage, and power ranges. This enhanced diversity enables robust
model training and superior generalization across a wide range of design specifications and func-
tions. As the first large-scale public benchmark for multi-modal circuit analysis, CircuitNet 3.0
establishes reproducible evaluation standards and accelerates collaborative research in ML-driven
EDA tools and methodologies.
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SUPPLEMENTARY MATERIALS

APPENDIX A: THE PIPELINE OF DATA GENERATION AND PROCESSING

A.1 MULTI-STAGE EDA FLOW WITH ITERATIVE OPTIMIZATION

The construction of CircuitNet 3.0 employs a sophisticated multi-stage EDA flow utilizing com-
mercial tools including Synopsys Design Compiler and Cadence Innovus. Unlike conventional
approaches that rely on fixed tool configurations, our methodology implements an iterative opti-
mization strategy to achieve industrial-grade design quality.

A.1.1 ITERATIVE OPTIMIZATION METHODOLOGY

Our iterative optimization framework, illustrated in Figure 7, represents a significant departure from
traditional single-pass EDA flows. Each design undergoes multiple optimization iterations, where
tool parameters are systematically adjusted based on convergence metrics. This approach ensures
that the final layouts represent realistic industrial-quality implementations rather than artifacts of
specific tool configurations.

The iterative process begins with RTL synthesis using Synopsys Design Compiler, where multiple
synthesis strategies are explored through varying optimization directives. The synthesized netlists
then proceed to Cadence Innovus for physical implementation. At each iteration, we monitor three
critical convergence indicators:

RTL Design
(.v files)

Design
Compiler
Synthesis

Cadence
Innovus

P&R

Convergence
Check

Parameter
Adjustment

Not
Converged Converged Final

Design

Figure 7: Iterative optimization flow for dataset generation. The process continues until meeting
convergence criteria across placement density, timing metrics, and power consumption.

For each design, we automatically explore multiple parameter configurations, including:

• Density thresholds: Ranging from 85% to 95% placement utilization. Lower densities
provide more optimization flexibility but may result in larger die areas, while higher densi-
ties challenge the routing algorithms and timing closure capabilities.

• Routing constraints: Various congestion and optimization settings including layer assign-
ment preferences, via minimization objectives, and antenna rule compliance strategies.

• Clock constraints: Multiple timing scenarios from relaxed to aggressive, exploring clock
periods from 10% above to 20% below the critical path delay.

A.1.2 CONVERGENCE CRITERIA

The optimization process continues until stringent convergence criteria are met:

1. Placement density convergence: Density changes less than 0.5% between consecutive
iterations, indicating that further cell movement provides negligible area improvement.

2. Timing stability: WNS and TNS metrics stabilize within 2% tolerance across three con-
secutive iterations, ensuring timing closure reliability.

3. Power convergence: Total power consumption variations fall below 3% threshold, con-
firming that power optimization has reached a practical limit.

This iterative approach typically requires 10-50 iterations per design, with complex designs requir-
ing more iterations to achieve convergence. The resulting dataset quality justifies the computational

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

overhead—each design represents a practically optimized implementation comparable to manually
refined industrial flows.

A.1.3 QUALITY ASSURANCE

The iterative optimization process incorporates multiple quality checks:

• Design rule checking (DRC) compliance: Each iteration verifies the remaining DRC vi-
olations in acceptable limits.

• Layout versus schemati (LVS) correctness: LVS ensure maintaining the functional equiv-
alence.

• Timing closure: Setup and hold time violations are monitored to prevent timing degrada-
tion.

• Power integrity: IR drop and electron migration checks validate power distribution net-
work robustness.

A.2 DATASET COLLECTION AND VALIDATION

A.2.1 SOURCE SELECTION STRATEGY

The dataset construction required approximately 8 months of dedicated effort, reflecting the com-
plexity of collecting, validating, and processing high-quality RTL designs. Our source selection
strategy prioritized diversity and quality over quantity:

• GitHub repositories: We systematically searched for repositories containing synthesiz-
able Verilog or SystemVerilog codes, focusing on projects with active maintenance, com-
prehensive documentation, and proper licensing. Over 50, 000 repositories were examined,
yielding more than 8, 000 suitable designs.

• OpenCores platform: As a dedicated hardware design repository, OpenCores provided
hundreds of validated IP cores spanning various application domains. These designs often
include testbenches and documentation, facilitating validation.

• Hugging Face hardware collections: Emerging hardware design datasets on Hugging
Face contributed more than 10, 000 designs, many featuring modern design patterns and
coding styles.

• RISC-V open-source projects: The RISC-V ecosystem provided hundreds of designs,
including processor cores, accelerators, and peripheral controllers, representing state-of-
the-art open hardware development.

A.2.2 DESIGN SELECTION CRITERIA

We specifically avoided over-reliance on traditional benchmarks (e.g., ISCAS-89, ITC-99) or large-
scale CPU or GPU due to several limitations:

• Limited diversity: Traditional benchmarks often contain similar circuit structures, limiting
the diversity needed for robust ML model training.

• Path duplication: Large designs like CPUs contain many structurally identical paths, lead-
ing to dataset imbalance.

• Outdated design styles: Many benchmark circuits use obsolete design patterns not repre-
sentative of modern RTL development.

Instead, we prioritize the following criteria that designs meet:

• Functional diversity: Selected designs span arithmetic units (adders, multipliers, di-
viders), control circuits (FSMs, sequencers), data processing elements (encoders, decoders,
FIFOs), and communication interfaces (UART, SPI, I2C).

• Size variation: Circuit sizes range from simple combinational blocks (less than 200 gates)
to complex subsystems (greater than 100, 000 gates), ensuring model exposure to varied
optimization challenges.
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module half_adder  (
        input A,
        input B,
        output Sum,
        output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

module half_adder  (
        input A,
        input B,
        output Sum,
        output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

module half_adder  (
        input A,
        input B,
        output Sum,
        output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

Figure 8: Prediction tasks of timing and power closure through multi-stage and multi-modal de-
sign representations. The framework demonstrates how different ML models (XGBoost for tabular
features, GNN for graph structures, LLM for text processing, and CNN for layout images) can lever-
age the multi-modal data from logic design to physical design stages for comprehensive timing and
power optimization.

• Modern coding practices: Designs utilize contemporary RTL coding styles, including
parameterized modules, generate statements, and SystemVerilog implementations.

• Synthesis cleanliness: All designs pass synthesis without errors using commercial tools,
eliminating problematic constructs that could bias training.

A.2.3 VALIDATION PIPELINE

Each collected design underwent rigorous validation:

1. Syntax verification: Initial parsing using open-source tools (Icarus Verilog, Verilator) to
identify basic syntax errors.

2. Synthesis validation: Commercial synthesis using Synopsys Design Compiler with strict
error checking enabled.

3. Simulation testing: Functional verification using provided test benches or automatically
generated test vectors.

4. Lint checking: Static analysis to identify potential issues including combinational loops,
unconnected ports, and synthesis-simulation mismatches.

5. Complexity analysis: Extraction of design metrics including gate count, path depth, and
sequential element ratio to ensure dataset balance.

This comprehensive validation process resulted in a final collection of 8, 659 high-quality RTL de-
signs, representing approximately 8.7% of initially collected designs, highlighting our commitment
to dataset quality over quantity.

A.3 MULTI-MODAL PREDICTION FRAMEWORK

The comprehensive validation process ensures that CircuitNet 3.0 provides high-quality data suitable
for various machine learning approaches. Figure 8 illustrates how the multi-stage and multi-modal
representations extracted from our dataset enable diverse ML models to perform timing and power
prediction tasks.

The prediction framework leverages the multi-modal nature of CircuitNet 3.0:

• Text Modality: RTL code and specifications are processed through Large Language Mod-
els (LLMs) to extract semantic features and design intent

• Graph Modality: Both RTL operator graphs and gate-level netlists are analyzed using
Graph Neural Networks (GNNs) to capture structural dependencies
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• Image Modality: Physical layout images are processed through Convolutional Neural Net-
works (CNNs) to extract spatial and geometric features

• Tabular Features: Traditional ML models like XGBoost process extracted statistical fea-
tures for rapid inference

This multi-modal approach enables models to learn complementary representations across abstrac-
tion levels, significantly improving prediction accuracy compared to single-modal baselines as
demonstrated in our experimental results (Section 5.2).

APPENDIX B: ANALYSIS OF CIRCUIT CLASSIFICATION OF THE GENERATED
DATASET BY LLM

B.1 CLASSIFICATION ARCHITECTURE

B.1.1 SYSTEM OVERVIEW

Our classification system leverages the API of Claude Opus 4, a state-of-the-art language model,
combined with expert validation to achieve accurate and consistent circuit categorization. The sys-
tem architecture incorporates multiple innovative components designed to maximize classification
accuracy while minimizing computational costs.

The classification pipeline, formalized in Algorithm 1, implements a sophisticated multi-stage ap-
proach.
Algorithm 1 LLM-Based RTL Classification

Require: RTL code C, API key K
Ensure: Classification

result (category, subcategory, confidence)
1: structure← ExtractCodeStructure(C)
2: cache key ← SHA256(C)[:16]
3: if CacheExists(cache key) then
4: return LoadFromCache(cache key)
5: end if
6: prompt← CreateExpertPrompt(C, structure)
7: result← CallLLMAPI(prompt, K)
8: if result.confidence < 0.7 then
9: verify prompt← CreateVerificationPrompt(C, result)

10: verified← CallLLMAPI(verify prompt, K)
11: if not verified.is correct then
12: result← verified
13: end if
14: end if
15: SaveToCache(cache key, result)
16: return result

B.1.2 STRUCTURAL ANALYSIS ENGINE

Before invoking the LLM, our system performs a comprehensive structural analysis to extract key
circuit characteristics. This pre-processing step serves multiple purposes:

• Context reduction: By extracting relevant structural features, we reduce the token count
required for LLM processing, improving efficiency and reducing costs.

• Feature highlighting: Structural indicators guide the LLM’s attention to classification-
relevant patterns.

• Consistency enhancement: Standardized feature extraction ensures consistent classifica-
tion across similar designs.

The structural analysis examines multiple code aspects:
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• Module hierarchy: Extraction of module names, port declarations, and instantiation pat-
terns.

• Signal patterns: Identification of clock signals, reset networks, and control paths.
• Operational constructs: Detection of arithmetic operations, state machines, and memory

structures.
• Coding patterns: Recognition of design idioms indicative of specific circuit types.

B.1.3 INTELLIGENT CACHING SYSTEM

To optimize API usage and ensure reproducibility, we implement a sophisticated caching mecha-
nism:

• Content-based hashing: Each RTL design is hashed using SHA-256, with the first 16
characters serving as a unique identifier

• Persistent storage: Classification results are stored in JSON format, enabling cross-session
persistence

• Cache validation: Periodic cache cleaning removes outdated entries and validates stored
results

This caching system reduced API calls by approximately 40% during dataset construction, signifi-
cantly decreasing processing time and costs.

B.2 STRUCTURAL FEATURE EXTRACTION

B.2.1 COMPLEXITY INDICATORS

The classification system analyzes multiple structural indicators to inform the categorization pro-
cess. Table 7 presents the key patterns used for feature detection.

Table 7: Complexity Indicators for Classification
Indicator Detection Pattern
has fsm (state|STATE|next state|current state)
has arithmetic [+\-*\/%]
has memory (\[\d+:\d+\]\s*\[\d+:\d+\]|mem|ram|rom)
has counter (count|counter|cnt)
has comparison [<>]=?|==|!=

Indicators serve as strong markers for circuit functionality:

• FSM detection: The presence of state-related identifiers strongly indicates control logic,
with 92% of FSM-containing circuits correctly classified in the Control Sequential
category.

• Arithmetic operations: Circuits with arithmetic operators predominantly fall into the
Arithmetic Logic category, though their presence alone is insufficient for subcate-
gory determination.

• Memory structures: Two-dimensional arrays and memory-related keywords reliably in-
dicate Communication Memory circuits, particularly Memory/Register subcategories.

• Counter patterns: Counter-related identifiers provide strong evidence for Counter/Timer
classification within Control Sequential.

• Comparison operations: While common across categories, comparison operators com-
bined with other indicators help distinguish Comparator or Selector circuits.

B.2.2 PROMPT ENGINEERING

Our classification system employs carefully crafted prompts that leverage the LLM’s understanding
of hardware design patterns. The expert prompt includes:

1. Role definition: Establishing the LLM as a senior RTL design expert with over twenty
years of experience.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2. Context provision: Supplying extracted structural features and code snippets.
3. Category definitions: Clear descriptions of each category and subcategory with examples.
4. Classification instructions: Step-by-step guidance for analysis and categorization.
5. Output formatting: Structured JSON response format ensuring parseability.

B.2.3 CONFIDENCE-BASED VERIFICATION

For classifications with confidence scores below 0.7, the system initiates a verification phase:

• Secondary analysis: A verification prompt challenges the initial classification, asking the
LLM to reconsider based on additional context.

• Consistency checking: The verification process examines whether the assigned category
aligns with detected structural features.

• Expert override: Manual expert review is triggered for persistently low-confidence classi-
fications, ensuring dataset quality.

This multi-stage approach achieved 94.3% agreement with human expert classifications, demon-
strating the effectiveness of our LLM-based methodology.

B.3 CLASSIFICATION RESULTS

B.3.1 CATEGORY DISTRIBUTION ANALYSIS

The final classification results, presented in Table 8, reveal a well-balanced distribution across the
four main categories:

Table 8: RTL Classification Results
Main Category Subcategory Count Percentage Avg Confidence

Arithmetic Logic (23.6%)

Adder/Subtractor 645 7.5% 0.940
Multiplier/Divider 774 8.9% 0.920
ALU/Accumulator 519 6.0% 0.911
Others 114 1.3% 0.877

Control Sequential (17.9%)

Counter/Timer 906 10.5% 0.909
FSM/Sequencer 392 4.5% 0.911
Control Logic 242 2.8% 0.883
Others 8 0.1% 0.881

Data Processing (29.9%)

Comparator/Selector 1,453 16.8% 0.886
Encoder/Decoder 431 5.0% 0.917
FIFO/Buffer 407 4.7% 0.902
Others 292 3.4% 0.881

Communication Memory (28.6%)

Memory/Register 1,061 12.3% 0.925
Bus Interface 943 10.9% 0.917
Serial Interface 445 5.1% 0.921
Others 27 0.3% 0.926

Total 8,659 100.0% 0.910

B.3.2 CATEGORY CHARACTERISTICS

Circuits within the same category exhibit distinctive structural and functional characteristics:

Arithmetic Logic Units (23.6%): These circuits implement mathematical operations and logical
functions. The prevalence of multiplier/divider circuits (8.9%) reflects modern design requirements
for DSP and AI accelerators. Notably, these circuits typically exhibit:

• Deep combinational logic paths.
• Regular data-path structures.
• Minimal state elements relative to combinational logics.
• Bit-width parameterization for reusability.
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Control Sequential Circuits (17.9%): Dominated by counter/timer implementations (10.5%), this
category encompasses circuits managing temporal behavior and control flow. Characteristic features
include:

• High ratio of sequential to combinational elements.

• Explicit state encoding and transitions.

• Clock and reset sensitivity.

• Control signal generation patterns.

Data Processing Units (29.9%): The largest category reflects the importance of data manipulation
in modern designs. Comparator or Selector circuits (16.8%) form the majority, indicating the
prevalence of decision-making logic. Common patterns include:

• Moderate complexity with balanced sequential/combinational ratios.

• Data steering and multiplexing structures.

• Pipeline stages for throughput optimization.

• Parameterized data widths and depths.

Communication Memory (28.6%): This category spans storage elements and communication in-
terfaces. The high proportion of memory/register (12.3%) and bus interface (10.9%) circuits reflects
modern SoC architectures. Typical characteristics include:

• Array structures for storage.

• Protocol-specific state machines.

• Synchronization logic for clock domain crossing.

• Standardized interface implementations.

B.3.3 CLASSIFICATION QUALITY METRICS

The classification quality was validated through multiple approaches:

• Inter-rater reliability: Three hardware design experts independently classified a random
sample of 500 designs, achieving 91.2% agreement with the LLM classification.

• Functional validation: Synthesis statistics (gate types, timing characteristics) correlate
strongly with assigned categories, validating the functional relevance of classifications.

• Cross-validation: Leave-one-out testing on category exemplars demonstrates 96.5% clas-
sification consistency.

This categorization enables targeted augmentation strategies for each circuit type, ensuring that mu-
tations preserve category-specific characteristics while introducing meaningful variations for robust
model training.

APPENDIX C: AST-BASED MUTATION FRAMEWORK

C.1 MUTATION METHODOLOGY

C.1.1 OVERVIEW OF AST-BASED APPROACH

Our AST-based mutation system represents a fundamental advancement over traditional text-based
RTL modification approaches. By operating at the abstract syntax tree level, we ensure syntactic
validity while introducing semantically meaningful variations. The mutation process, formalized in
Algorithm 2, leverages the hierarchical structure of Verilog code to identify and transform specific
language constructs systematically.

The AST approach offers several critical advantages:
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Algorithm 2 AST-Based RTL Mutation Process

Require: RTL code R, mutation count N
Ensure: Mutated RTL code R′

1: ast← ParseVerilogToAST(R)
2: node paths← BuildNodePaths(ast)
3: mutations← []
4: for each node in ast do
5: if IsMutable(node) then
6: candidates← GetMutationCandidates(node)
7: mutations.append(candidates)
8: end if
9: end for

10: selected← RandomSample(mutations, N )
11: for each mutation in selected do
12: ast← ApplyMutation(ast, mutation)
13: CheckConsistency(ast)
14: end for
15: R′ ← ASTToVerilog(ast)
16: if not PassesSynthesis(R′) then
17: return ApplyTextMutation(R, N )
18: end if
19: return R′

• Syntactic guarantee: All mutations preserve the grammatical structure of Verilog, elimi-
nating syntax errors that plague text-based approaches.

• Semantic awareness: Mutations respect scope rules, type constraints, and language se-
mantics.

• Targeted transformation: Specific node types can be selectively mutated based on their
functional impacts.

• Preservation of design intent: High-level design structure remains intact while low-level
implementations vary.

C.1.2 NODE PATH CONSTRUCTION

A crucial innovation in our approach is the node path construction mechanism. Each AST node is
assigned a unique path from the root, enabling precise node location even after structural modifi-
cations. The path consists of tuples (parent, attribute, index) that encode the traversal
route:

• Parent reference: The parent node in the AST hierarchy.
• Attribute name: The attribute containing the child node (e.g., ’left’, ’right’,
’statement’).

• Index value: Position within list attributes (−1 for scalar attributes).

This path-based approach ensures that mutations can be applied reliably even when the AST struc-
ture changes during the mutation process, maintaining referential integrity throughout the transfor-
mation pipeline.

C.1.3 MUTATION SELECTION STRATEGY

The mutation selection process balances diversity with validity through a multi-criteria approach:

1. Node type filtering: Only nodes with defined mutation operators are considered.
2. Context validation: Mutations are filtered based on surrounding context (e.g., no arith-

metic mutations in sensitivity lists).
3. Diversity maximization: Selected mutations span different node types and locations to

ensure comprehensive coverage.
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4. Synthesis feasibility: Mutations likely to cause synthesis failures are deprioritized.

The random sampling of N mutations from the candidate pool ensures that each generated variant
explores a different aspect of the design space while maintaining functional validity.

C.2 MUTATION OPERATORS

C.2.1 OPERATOR CATEGORIES AND DESIGN RATIONALE

Table 9 presents our comprehensive mutation operator set, carefully designed to introduce realistic
design variations while preserving synthesizability. Each operator category targets specific aspects
of digital design:

Table 9: AST Mutation Operators and Constraints
Category Original Mutated Constraint

Arithmetic

a + b a - b Type preservation
a - b a + b Type preservation
a * b a / b Non-zero divisor
a % b a + b Type compatibility

Logical
a && b a || b Boolean context
a & b a | b Bit-width match
a ˆ b a & b Bit-width match

Relational

a > b a < b Same operand types
a >= b a <= b Same operand types
a == b a != b Type compatibility
a != b a == b Type compatibility

Temporal @(posedge clk) @(negedge clk) Sequential blocks
q <= d q = d Always block consistency

Constant 8’d10 8’d11 Bit-width preservation
16’hFF 16’hFE Base preservation

Arithmetic Operators: These mutations explore different mathematical relationships while main-
taining type compatibility. The bidirectional nature of addition/subtraction mutations reflects com-
mon design alternatives. Multiplication to division mutations are constrained to prevent division-
by-zero scenarios through static analysis of divisor ranges.

Logical Operators: Mutations between logical AND/OR operations model different decision logic
implementations. Bitwise operator mutations (AND/OR/XOR) explore alternative bit manipulation
strategies commonly found in data processing circuits. The bit-width matching constraint ensures
signal compatibility.

Relational Operators: These mutations model boundary condition variations critical for control
logic. The systematic exploration of comparison operators (>, <, >=, <=, ==, !=) ensures
comprehensive coverage of decision boundaries in FSMs and control paths.

Temporal Operators: Edge mutations (posedge/negedge) explore different clocking schemes,
particularly relevant for interface circuits. Assignment type mutations (blocking/non-
blocking) model different hardware implementation strategies while always respecting block
semantics.

Constant Mutations: Limited to ±1 modifications, these mutations explore adjacent design points
in the parameter space. The preservation of bit-width and base notation ensures that mutations
remain within the original design constraints.

C.2.2 CONSTRAINT ENFORCEMENT MECHANISMS

Each mutation operator is accompanied by constraints that ensure the transformed code remains
valid:

• Type preservation: Ensures operand types remain compatible with operators.

• Context awareness: Mutations respect their syntactic context (e.g., no blocking assign-
ments in continuous assignments).
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Algorithm 3 Assignment Consistency Enforcement

Require: Always block A with assignments
Ensure: Consistent assignment types

1: assignments← ExtractAssignments(A)
2: blocking count← 0
3: nonblocking count← 0
4: for each assign in assignments do
5: if assign is NonblockingSubstitution then
6: nonblocking count← nonblocking count+ 1
7: else if assign is BlockingSubstitution then
8: blocking count← blocking count+ 1
9: end if

10: end for
11: if blocking count > 0 AND nonblocking count > 0 then
12: if nonblocking count ≥ blocking count then
13: target type← nonblocking
14: else
15: target type← blocking
16: end if
17: ConvertAllAssignments(A, target type)
18: end if

• Semantic validity: Transformations maintain semantic correctness (e.g., no mixed assign-
ments in always blocks).

• Synthesis compatibility: Mutations avoid constructs known to cause synthesis issues.

C.3 ASSIGNMENT CONSISTENCY ENFORCEMENT

C.3.1 MIXED ASSIGNMENT PROBLEM

A critical challenge in RTL mutation is maintaining assignment consistency within always blocks.
Verilog’s distinction between blocking (=) and non-blocking (<=) assignments has profound impli-
cations for synthesis results. Mixed assignments within a single always block can lead to:

• Race conditions: Unpredictable behavior due to simulation/synthesis mismatches.
• Synthesis warnings/errors: Many synthesis tools reject mixed assignments.
• Unrealistic designs: Mixed assignments rarely appear in professional RTL code.

C.3.2 CONSISTENCY ALGORITHM

Algorithm 3 implements our solution to the mixed assignment problem:

The algorithm employs a majority-rule approach: when mixed assignments are detected, all assign-
ments are converted to the predominant type. This strategy:

• Preserves design intent: The majority type likely represents the designer’s intended style.
• Minimizes changes: Fewer assignments require modification.
• Maintains functionality: The conversion preserves logical behavior while ensuring syn-

thesis compatibility.

C.3.3 IMPLEMENTATION DETAILS

The assignment conversion process handles several edge cases:

• Nested blocks: Assignments within nested begin-end blocks are tracked recursively
• Case statements: Assignments within case branches are included in the consistency check.
• Conditional assignments: If-else structures are traversed to ensure complete coverage.
• Generate blocks: Dynamically generated assignments are analyzed at the AST level.
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Figure 9: Distribution comparison of key metrics before and after augmentation. The box figures
show median (center line), quartiles (box edges), whiskers (1.5 IQR), and outliers (individual points)
for each metric. Original distributions (left) show limited diversity, while augmented distributions
(right) demonstrate significantly enhanced coverage.

This comprehensive approach ensures that the mutated RTL maintains professional coding standards
while exploring meaningful design variations.

APPENDIX D: DATASET DISTRIBUTION ANALYSIS

D.1 PRE- AND POST-AUGMENTATION DISTRIBUTIONS

D.1.1 VISUAL DISTRIBUTION ANALYSIS

Figure 9 provides a comprehensive visualization of how our augmentation strategy transforms the
dataset characteristics across four critical metrics. The box figure representation enables direct com-
parison of distributional properties, revealing the substantial improvements in dataset diversity and
coverage.

D.1.2 DENSITY DISTRIBUTION ENHANCEMENT

The layout density distribution (Figure 9(a)) reveals a fundamental transformation in placement
characteristics:

• Original dataset: Highly concentrated around 87% to 89%, reflecting default tool behavior
with minimal optimization variations.
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• Augmented dataset: Spans 85% to 100% with increased presence of outliers, representing
diverse optimization scenarios from relaxed to extremely constrained placements.

• Upper quartile expansion: The 75th percentile shifts from 89.5% to 93.2%, indicating
successful generation of high-density designs.

This expansion is crucial for training robust models that can handle both conservative and aggressive
placement strategies encountered in industrial settings.

D.1.3 TIMING DISTRIBUTION ANALYSIS

The timing metrics (WNS and TNS) show complementary improvements:

Worst Negative Slack (Figure 9(b)):

• Range expansion: From [−2.5, 0] ns to [−6, 0] ns, covering more critical timing scenarios.

• Increased variance: Standard deviation grows by 52%, providing richer training data.

• Outlier generation: More extreme negative slack values represent challenging timing clo-
sure cases.

Total Negative Slack (Figure 9(c)):

• Distribution shape: Transforms from highly skewed to more symmetric, indicating bal-
anced representation of timing violations.

• Median shift: From −8.71 ns to −11.96 ns, reflecting realistic timing challenges.

• Reduced extreme outliers: While maintaining diversity, the augmentation avoids unreal-
istic TNS values.

D.1.4 POWER DISTRIBUTION TRANSFORMATION

The power consumption distribution (Figure 9(d)) undergoes the most dramatic transformation:

• Skewness correction: Original heavily right-skewed distribution (mean/median ratio:
2.65) becomes more balanced (ratio: 2.31).

• Coverage expansion: From concentrated low-power designs to comprehensive coverage
up to 160mW.

• Quartile redistribution: Interquartile range increases from 8.2mW to 15.3mW, providing
better representation of medium-power designs.

D.2 STATISTICAL SUMMARY

D.2.1 QUANTITATIVE ANALYSIS

Table 10 provides precise statistical measurements confirming the visual observations:
Table 10: Distribution Statistics: Original vs Augmented Dataset

Metric Original Augmented
Mean Median Std Mean Median Std

Density (%) 88.49 87.58 3.16 90.75 90.84 3.63
WNS (ns) -0.88 -0.49 2.31 -1.20 -0.59 3.51
TNS (ns) -42.17 -8.71 256.04 -41.69 -11.96 200.60
Power (mW) 12.92 4.88 23.00 18.14 7.85 29.21

D.2.2 STATISTICAL INSIGHTS

The statistical analysis reveals several key improvements:

Variance Enhancement:

• Density: 22% increase in standard deviation while maintaining realistic bounds.
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• WNS: 52% increase in variability, crucial for timing prediction tasks.
• Power: 27% increase in standard deviation with better mean-median alignment.

Distribution Balance:

• TNS: Reduced standard deviation (22% decrease) indicates removal of extreme outliers
while maintaining diversity.

• Power: Although the mean–median difference increases from 8.04 mW to 10.29 mW, the
mean-to-median ratio decreases from 2.65 to 2.31, indicating reduced skewness and a more
balanced power distribution.

Central Tendency Shifts:

• All metrics show meaningful shifts in central values, indicating successful generation of
diverse operating points.

• Median changes are more moderate than mean changes, suggesting controlled augmenta-
tion without extreme bias.

D.3 DISTRIBUTION ENHANCEMENT ANALYSIS

D.3.1 COMPREHENSIVE IMPACT ASSESSMENT

The augmentation process achieves multiple objectives critical for ML model training:

• Density: The expansion from a narrow range from 87% to 89% to a broad range from 85%
to 100% coverage enables models to learn placement strategies across the entire feasible
spectrum. This diversity is essential for:

– Handling various design constraints in industrial applications.
– Learning trade-offs between area efficiency and routability.
– Generalizing to different technology nodes with varying density limits.

• Timing (WNS): The 52% increase in standard deviation (2.31 to 3.51 ns) while maintain-
ing realistic timing values ensures:

– Exposure to both timing-critical and relaxed designs.
– Better calibration of timing prediction models.
– Improved handling of edge cases in timing closure.

• Timing (TNS): The more balanced distribution with reduced skewness provides:
– Better coverage of cumulative timing effects.
– Reduced bias toward designs with minimal violations.
– Improved learning of system-wide timing impacts.

• Power: The transformation from heavily right-skewed (median 4.88mW, mean 12.92mW)
to more balanced distribution (median 7.85mW, mean 18.14mW) enables:

– Accurate power modeling across diverse design styles.
– Better representation of modern low-power and high-performance designs.
– Reduced model bias toward low-power circuits.

D.3.2 TASK-SPECIFIC BENEFITS

The distribution enhancements directly benefit specific EDA tasks:

For Timing Prediction:

• Wider WNS range improves model robustness to timing variations.
• Balanced TNS distribution enables better multi-path timing analysis.
• Density diversity teaches placement-timing correlations.

For Power Prediction:
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• Comprehensive power range covers edge-to-cloud applications.

• Improved distribution symmetry reduces prediction bias.

• Density-power correlation learning from diverse samples.

D.3.3 VALIDATION OF AUGMENTATION QUALITY

The augmented distributions maintain several critical properties:

• Physical feasibility: All values remain within realizable bounds for the target technology.

• Correlation preservation: Inter-metric correlations (e.g., density-timing) remain consis-
tent with physical principles.

• Industrial relevance: Distribution ranges align with real-world design specifications.

These enhancements collectively ensure that models trained on CircuitNet 3.0 encounter compre-
hensive design scenarios, ranging from highly optimized to critically constrained cases, thereby
improving their generalization capability for industrial applications. The careful balance between
diversity expansion and realistic constraint maintenance distinguishes our augmentation approach
from random perturbation methods, resulting in a dataset that truly advances the state-of-the-art in
ML-driven EDA research.

APPENDIX E: INDUSTRIAL-GRADE PHYSICAL IMPLEMENTATION
METHODOLOGY

E.1 TECHNOLOGY FOUNDATION AND DESIGN PREPARATION

E.1.1 COMMERCIAL PDK INTEGRATION

The physical implementation of CircuitNet 3.0 leverages the GSCLIB 45nm commercial Process
Design Kit (PDK), providing industrial-grade accuracy for layout generation and performance char-
acterization. This mature technology node ensures realistic parasitic effects and manufacturing con-
straints essential for training robust ML models. The PDK configuration encompasses:

• Standard Cell Library: GSCLIB045 with comprehensive cell variants including combi-
national logic (e.g., INVX1-X8, BUFX1-X16, AND/OR/NAND/NOR gates with multi-
ple drive strengths), sequential elements (e.g., DFFHQX1-X8), complex cells (e.g., MUX,
XOR), and so on

• Technology Files: Complete LEF abstracts (gsclib045 tech.lef, gsclib045.
fixed2.lef) defining physical geometries, pin locations, and routing obstructions

• Parasitic Models: QRC technology files calibrated for accurate resistance and capacitance
extraction across 11 metal layers

• Timing Libraries: Multi-corner characterization at typical conditions with comprehensive
setup/hold timing models

E.1.2 NETLIST FLATTENING STRATEGY

To ensure consistent optimization and analysis across diverse design complexities, all synthesized
netlists undergo hierarchical flattening before physical implementation:

set_flatten true -effort high
ungroup -all -flatten
compile_ultra

This flattening approach eliminates hierarchical boundaries, enabling:

• Global optimization opportunities across module boundaries

• Uniform timing analysis without hierarchy-induced pessimism
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• Consistent power grid distribution across the entire design

• Standardized parasitic extraction and analysis methodologies

The flattened netlists are filtered based on structural characteristics to ensure design quality:

• Minimum instance count threshold: 200 gates

• Combinational-to-sequential ratio: 5 < ratio < 10,000

• These constraints eliminate trivial or structurally imbalanced designs

E.2 SCALABLE POWER DISTRIBUTION NETWORK

E.2.1 ADAPTIVE PDN ARCHITECTURE

The power distribution network implementation employs a systematic approach with layer-specific
parameters optimized for different current-carrying requirements:

# Layer-specific stripe generation with progressive sizing
addStripe -nets {VSS VDD} -layer Metal2 -direction vertical \

-width 0.2 -spacing 0.8 -set_to_set_distance 6
addStripe -nets {VSS VDD} -layer Metal3 -direction horizontal \

-width 0.2 -spacing 0.8 -set_to_set_distance 6
addStripe -nets {VSS VDD} -layer Metal4 -direction vertical \

-width 0.4 -spacing 0.8 -set_to_set_distance 6
# ... continuing through Metal10 with increasing dimensions

The multi-layer PDN architecture implements:

• Standard cell layer (M1): Reserved for intra-cell routing and local power rails

• Lower distribution layers (M2-M3): Fine-pitch stripes (0.2µm width, 6µm pitch)

• Intermediate layers (M4-M7): Medium-pitch stripes (0.4µm width, 6-8µm pitch)

• Upper layers (M8-M10): Wide stripes (1.0µm width, 10µm pitch) for global distribution

• Pad connection layer (M11): Top-level power/ground pad connections

E.2.2 VIA INSERTION AND CONNECTIVITY

Comprehensive via insertion ensures robust vertical connectivity:

foreach layer_idx $PG_stripe_layers_idx {
editSelect -layer Metal$layer_idx -net {VDD VSS}
editPowerVia -between_selected_wires 1 -nets {VDD VSS} \

-add_vias 1 -top_layer $top_layer
}

E.3 AUTOMATED PHYSICAL OPTIMIZATION FLOW

E.3.1 PLACEMENT OPTIMIZATION

The placement stage employs Cadence Innovus’s advanced optimization algorithms with industrial-
grade settings:

setPlaceMode -place_global_uniform_density true \
-place_global_place_io_pins true

place_opt_design -place

setOptMode -fixDrc false -addInst true -deleteInst false \
-moveInst true -downsizeInst true \
-optimizeFF true -maxDensity 0.7

optDesign -preCTS
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Key optimization techniques include:

• Progressive Density Control: Staged utilization targets - 70% (placement), 80% (CTS),
95% (routing) - providing optimization headroom at each stage

• Position Exchange: Iterative cell swapping for wirelength and timing improvement

• Density Control: Target utilization of 60-70% for pre-CTS optimization headroom

• Instance Prefixing: Systematic naming (PLC prefix) for tracking optimization history

E.3.2 CLOCK TREE SYNTHESIS

Clock tree implementation with useful skew optimization:

setOptMode -usefulSkew true -usefulSkewCCOpt standard \
-maxDensity 0.8

ccopt_design
optDesign -postCTS

E.3.3 ROUTING AND POST-ROUTE OPTIMIZATION

Advanced routing with comprehensive optimization:

setNanoRouteMode -routeWithTimingDriven true \
-droutePostRouteSpreadWire true \
-droutePostRouteWidenWire true

routeDesign -globalDetail

setOptMode -fixDrc true -addInst true -moveInst true \
-downsizeInst true -optimizeFF true -maxDensity 0.95

optDesign -postRoute -setup
ecoRoute -fix_drc

Optimization capabilities include:

• Gate Sizing: Dynamic adjustment across multiple drive strength variants (typically X1,
X2, X4, X8) per cell type

• Buffer Insertion/Deletion: Automated buffer tree optimization for timing closure

• Wire Spreading/Widening: Post-route enhancements for signal integrity

• DRC Fixing: Automatic violation repair with ECO routing

• Density Target: Up to 95% utilization for area-efficient implementations

E.4 PERFORMANCE CHARACTERIZATION AND LABEL GENERATION

E.4.1 GRAPH-BASED STATIC TIMING ANALYSIS

Post-routing timing characterization employs graph-based STA for comprehensive path analysis:

# Extract detailed timing after routing completion
timeDesign -postRoute -pathReports -slackReports \

-numPaths 100 -prefix postRoute_setup

# Hold time analysis and fixing
setOptMode -holdTargetSlack 0.05
optDesign -postRoute -hold
timeDesign -postRoute -hold -pathReports -slackReports

The STA engine generates (implemented in post-processing scripts):

• Arrival Time (AT): Accurate signal propagation delays including wire parasitics
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• Worst Negative Slack (WNS): Critical path timing margin after optimization

• Total Negative Slack (TNS): Cumulative timing violations across all endpoints

• Setup/Hold Reports: Comprehensive timing closure verification

E.4.2 PARASITIC EXTRACTION WITH QUANTUS RC

High-fidelity parasitic extraction using Cadence Quantus RC technology:

setExtractRCMode -engine postRoute -effortLevel high \
-coupling_c_th 0.003

extractRC
rcOut -spef design.spef

Extraction parameters ensure:

• Coupling capacitance threshold: 3fF for crosstalk-aware analysis

• High effort level for detailed metal fill and via modeling

• SPEF generation for downstream power analysis integration

E.4.3 VECTORLESS POWER ANALYSIS WITH STATISTICAL PROPAGATION

Dynamic power characterization through vectorless activity propagation:

set_power_analysis_mode -method vector_free \
-analysis_view typical

set_default_switching_activity -input_activity 0.2 \
-period 10.0ns

propagate_activity
report_power -hierarchy -threshold 0.01

Power analysis methodology:

• Activity Propagation: Statistical switching activity propagation through combinational
logic

• Toggle Rate: Default 20% switching activity for realistic power estimation

• Hierarchical Reporting: Instance-level power breakdown for detailed analysis

• Dynamic Power: Pdynamic = α · f · Ceff · V 2
DD with extracted parasitics

E.5 QUALITY ASSURANCE AND VALIDATION

E.5.1 DESIGN RULE COMPLIANCE

Comprehensive DRC verification ensures manufacturing readiness:

verify_drc -limit 10000
verify_connectivity -type all -noAntenna
checkPlace -noPreplace

E.5.2 DATASET QUALITY METRICS

Each generated layout undergoes rigorous quality assessment, as shown in Table 11.

Note: The 96.8% timing closure rate reflects our intentional inclusion of challenging designs near
timing limits, providing valuable training cases for ML models targeting critical-path scenarios.

E.5.3 INDUSTRIAL RELEVANCE VALIDATION

The physical implementation methodology ensures:
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Table 11: Physical Implementation Quality Metrics
Metric Target Achieved
Placement Density 60-95% 88.3% (avg)
DRC Violations (post-fix) 0 0
Timing Closure Rate > 95% 96.8%
Power Correlation (R2) > 0.9 0.92
Routing Congestion < 85% 78.5% (avg)

• Tool Compatibility: Scripts compatible with Synopsys DC 2020.09 and Cadence Innovus
19.11

• Process Portability: Adaptable to different technology nodes through PDK abstraction
• Optimization Depth: Multiple optimization stages matching industrial tape-out flows
• Label Accuracy: Post-layout labels incorporating all physical effects for realistic ML

training

This comprehensive methodology ensures CircuitNet 3.0 provides industrially relevant physical im-
plementations with accurate performance characterization, enabling robust ML model training for
real-world EDA applications. The systematic approach from synthesis through post-route optimiza-
tion mirrors commercial design flows, ensuring trained models can generalize to industrial design
challenges.
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