
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CIRCUITNET 3.0: A MULTI-MODAL DATASET WITH
TASK-ORIENTED AUGMENTATION FOR AI-DRIVEN
CIRCUIT DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Integrated circuit (IC) designs require transforming high-level specifications into
physical layouts, demanding extensive expertise and specialized tools, as well
as months of time and numerous iterations. While Machine Learning (ML) has
shown promise in various research domains, the lack of large-scale, open datasets
limits its application in chip design. To address this limitation, we introduce Cir-
cuitNet 3.0, a large-scale, comprehensive, and open-source dataset curated to fa-
cilitate the evaluation of ML models on challenging timing and power prediction
tasks. Starting with a diverse set of 8,659 validated open-source designs, we em-
ploy a systematic framework to generate over 15,000 instances. Through special-
ized syntax-tree mutation strategies and principled, task-oriented filtering method-
ology, we enrich each design with multi-modal information spanning multiple de-
sign stages, including complete design flow documentation, register-transfer-level
(RTL) designs and corresponding netlists, detailed physical layouts, and compre-
hensive performance metrics. The experimental results convincingly demonstrate
that ML models leveraging multi-stage, multi-modal circuit representations sig-
nificantly improve performance over existing open-source datasets in electronic
design automation (EDA) tasks, paving the way for efficient and accessible cir-
cuit representation learning. The dataset and codes are available in https:
//anonymous.4open.science/r/ICLR26-CircuitNet3-272B.

1 INTRODUCTION

Digital circuits constitute the cornerstone of contemporary computing infrastructure, enabling the
advancement of modern technology (Agarwal & Lang, 2005). The intricate process of IC design en-
compasses the systematic transformation of abstract functional specifications into manufactured sil-
icon implementations while adhering to increasingly demanding performance requirements (Lienig
& Scheible, 2020; Calhoun et al., 2008). A fundamental challenge lies in maintaining functional
correctness and achieving performance objectives, particularly as design complexity continues to
scale (Bryant et al., 2001).

As illustrated in Figure 1(a), IC design traditionally follows a waterfall methodology comprising
three sequential stages: (1) Register-Transfer Level Design, where designers create and validate
functional specifications (Chu, 2006); (2) Logic Synthesis, which converts these specifications into
optimized gate-level netlists (Kaeslin, 2014); and (3) Physical Design, which implements these
netlists as manufacturable silicon layouts (Kulkarni & Chopde, 2024). While this hierarchical ap-
proach facilitates focused optimization at each stage, it introduces substantial design inefficiencies.
The conventional flow requires complete layout implementation before performance validation, re-
sulting in verification cycles that can span weeks (Kahng, 2018). When designs fail to meet specifi-
cations, Engineering Change Orders (ECOs) trigger cascading modifications across multiple stages,
often necessitating fundamental RTL redesign (Huang et al., 2013). This linear progression signifi-
cantly hampers design convergence and extends development timelines.

Nowadays, advanced EDA tools have embraced ML-driven approaches (Xing, 2024). The shift-left
methodology, depicted in Figure 1(b), introduces predictive violation detection and ECO mecha-
nisms at earlier design stages, enabling proactive optimization of power, performance, and area
(PPA) metrics (Zeng, 2024). However, the widespread adoption of ML-driven EDA faces several

1

https://anonymous.4open.science/r/ICLR26-CircuitNet3-272B
https://anonymous.4open.science/r/ICLR26-CircuitNet3-272B

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Lengthy Iterative Design Cycles

Netlist

Violations

RTL Design

ECO

Layout

PPA Analysis

Waterfall Model

Timeline

(a) The traditional waterfall model.

Prediction ECO

Violations

Netlist LayoutRTL Design

Prediction ECO

Violations
Shift-Left Model

Time Saving by Shift-Left ModelTimeline

(b) The modern shift-left model.

Figure 1: Comparison of IC design workflows. The shift-left model (b) accelerates the design cycle
by incorporating early, predictive feedback loops, avoiding the lengthy, iterative ECOs inherent in
the traditional waterfall model (a).

fundamental challenges. The first is for data scarcity. EDA domains lack comprehensive design
datasets due to intellectual property restrictions, unlike established ML fields such as computer vi-
sion and natural language processing (Srivastava et al., 2024). Another challenge is the complexity
of data generation. Developing realistic EDA datasets requires sophisticated commercial tools, ex-
tensive domain expertise, and considerable computational infrastructure (Kamat et al., 2011), as
well as months of numerous iterations. Finally, achieving high prediction accuracy for various tasks
in EDA is challenging. In industrial practice, the value of a predictive model is determined not by its
average-case performance, but by its accuracy on designs that push the limits of timing and power
budgets Lavagno et al. (2018). Current early-stage estimation techniques fail to achieve commercial-
grade accuracy and lack integration with realistic layout representations, limiting the effectiveness
of multi-modal analysis approaches (Chai et al., 2023).

To address these fundamental challenges in ML-driven EDA, we propose CircuitNet 3.0, a compre-
hensive multi-stage and multi-modal dataset that enables advanced AI-driven circuit design through
innovative cross-stage data augmentation and filtering. Our contributions are as follows:

• A large-scale, multi-modal, and multi-stage digital circuit dataset with full RTL-to-layout
traceability. CircuitNet 3.0 contains 8,659 unique and validated source RTL designs and over
15,000 total augmented designs, each with corresponding netlist and layout representations.
Through an industrial EDA workflow, we extract rich cross-modal features at each design stage,
providing a valuable resource for research in multi-stage multi-modal representation learning.

• A principled framework for data augmentation. For the critical scarcity of open-source RTL
designs, we develop a novel data augmentation framework based on Verilog syntax trees. This
framework systematically enhances dataset diversity through stage-aware transformations and
task-specific filtering mechanisms, focusing on industrially valuable cases (e.g., designs contain-
ing critical timing paths or high dynamic power). This enables robust learning for ML models,
providing simultaneous cross-stage analysis and early-stage prediction capabilities.

• A comprehensive set of new baselines and rigorous experimental protocols. Through com-
prehensive evaluation with state-of-the-art ML models, we demonstrate significant prediction
accuracy improvements over single-modal datasets, with approximately 36.0% and 12.9% error
reductions for timing and power tasks, respectively, compared to the existing dataset. Models
trained on CircuitNet 3.0 consistently outperform single-modal approaches, establishing new
performance benchmarks for ML-driven EDA tasks.

2 PRELIMINARIES

Representations of Designs. IC designs are represented in multiple forms throughout the chip
development process, each serving specific purposes and containing different levels of design in-
formation (Wolf, 2002). These representations evolve through the EDA flow, ensuring functional
correctness and manufacture (Wang et al., 2009). As illustrated in Figure 2, these representations
can be categorized into three distinct stages and modalities.

The design flow progresses through three key representations (Lienig et al., 2020b). The RTL repre-
sentation serves as the primary entry for digital circuit design, providing an abstract behavioral de-
scription that enables designers to focus on functionality while abstracting lower-level details (Vahid,
2010; Churiwala & Garg, 2011). The following netlist representation implements logical circuits
through the synthesis of RTL, comprising standard cells and their connectivity, while bridging be-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Spec RTL Netlist Layout

Text Modality Graph Modality Image Modality

Gate-Level NetlistSimple Operator Graph Layout ImageRTL codeDescription

D
Q

Graph EmbeddingLLM Embedding
Features/

Ground Truths

Design
Compiler

Cadence
Innovus

module half_adder (
 input A,
 input B,
 output Sum,
 output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

module half_adder (
 input A,
 input B,
 output Sum,
 output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

module half_adder (
 input A,
 input B,
 output Sum,
 output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

module half_adder (
 input A,
 input B,
 output Sum,
 output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

Testbench Functionality:

Testing Target Module:

Input and Output Signals:

Testbench Functionality:

Testing Target Module:

Input and Output Signals:

Testbench Functionality:

Testing Target Module:

Input and Output Signals:

Testbench Functionality:

Testing Target Module:

Input and Output Signals:

Figure 2: Design representations from different stages in the EDA workflow.

(a) (b)

D Q D Q

FF1 FF2

Clock Path

Data

Path

Setup and Hold Time Checks

CLK

Combinational

Logics

Figure 3: (a) Timing analysis of designs; (b) Power estimation of designs.

havioral and physical implementations (Gayathri & Taranath, 2017; Skouson et al., 2020; Lienig
et al., 2020a). The last representation of layouts defines physical implementations through geomet-
ric patterns on silicon (Lienig & Scheible, 2020), including precise cell placement and metal inter-
connect routing (Cong et al., 2005), which ultimately determine the timing, power, and area metrics
of circuits (Baker, 2019). Each representation plays a crucial role in the whole design flow, with an
increasing level of detail and complexity aligning with design progress from RTLs to layouts.

Closure Objectives of Design. The primary goal of digital circuit design is to meet key performance
objectives—principally timing and power closure—across all stages of EDA workflow (Huang et al.,
2021). Accurately predicting these metrics at early stages is a critical application for ML models.

Timing Closure is essential for ensuring a circuit operates correctly at its target frequency (Golshan,
2020). As shown in Figure 3 (a), this is governed by setup and hold time constraints on all signal
paths between sequential elements. To quantify timing performance, three key metrics are used (Guo
& Lin, 2022): Arrival Time (AT), the signal propagation delay along a path; Worst Negative Slack
(WNS), the timing violation of the single most critical path in the design; and Total Negative Slack
(TNS), the sum of violations across all failing paths. A non-negative WNS indicates all timing
constraints are met, making it a primary objective for design closure (Kahng et al., 2011).

Power Closure primarily targets the management of dynamic power consumption, which arises from
the switching activity of transistors (Benini & DeMicheli, 1997). As illustrated in Figure 3(b), this
power (PSwitching) is mathematically expressed as α×f×CL×V 2

DD , where α represents switching
activity, f is clock frequency, CL is load capacitance, and VDD is the supply voltage. Accurate early
estimation is crucial for meeting power budgets and managing thermal constraints (Kawa, 2007).

Predicting these closure metrics early in the design flow, such as at the RTL stage, is highly valuable
for reducing design iterations and time-to-market. However, early-stage predictions are challeng-
ing because key physical information (e.g., parasitic resistance and capacitance from the layout) is
not yet available. This creates a critical need for ML models that can effectively leverage multi-
modal representations (RTL, netlist, layout) to learn the complex relationships between early design
choices and final physical outcomes.

Datasets of Designs. Datasets are essential for advancing ML methodologies in EDA tasks. Cir-
cuitNet 1.0and 2.0 (Chai et al., 2023; Jiang et al., 2024) datasets target logical and physical design
stages, providing extensive layout data for functions as routability prediction. However, they lack
sufficient RTL designs, limiting their applicability in early-stage modeling. RTL-focused datasets

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Open-Source EDA Datasets for Circuit Design
Dataset Features VerilogEval V2 RTLLM 2.0 CircuitNet 2.0 RTLCoder CircuitNet 3.0

(Pinckney et al., 2024) (Lu et al., 2024) (Jiang et al., 2024) (Liu et al., 2024b) (Ours)

Open Source ✓ ✓ ✓ ✓ ✓
Data Augmentation × × ✓ ✓ ✓
Design Validation

Pass-Synthesis × × ✓ × ✓
Pass-Simulation ✓ ✓ × × ✓

Stage Coverage
Front-End (RTL) ✓ ✓ ✓ ✓ ✓
Back-End (Layout) × × ✓ × ✓

Data Modalities Text Only Text Only Text/Graph/Image Text Only Text/Graph/Image
of RTL Designs 156 50 8 26,532 8,659 (w/o Augment)
of Layout Designs N/A N/A 10,791 N/A 15,863

Target Tasks Evaluating LLM
on RTL generation

Evaluating LLM
on RTL generation

Routability/
IR-Drop/

Timing Analysis

Training LLM on
RTL generation

Early-Stage
Timing/Power

Prediction

Slack
AT

Power
Map
......

EDA Flow Feature Extract

RTL

Netlist

Layout
P & R

SynthesisEDA-Task-
Oriented

Refinement

Expansion Refinement

 Data Generation and
Task-Oriented Augmentation

RTL
AST-Based

Rewrite

Multi-Stage Data Gene-
ration and Feature Extract

module half_adder (
 input A,
 input B,
 output Sum,
 output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

SimulateCompile
Synthesize
Simulate

Original Data Data Cleaning

Github
Hugging Face

OpenCore
RISC-V

......

RTL Data Collection
and Cleaning

Figure 4: CircuitNet 3.0 workflow framework of multi-stage and multi-modality dataset.

like RTLLM (Lu et al., 2024) and Verilog-Eval (Liu et al., 2023) concentrate on RTL generation from
specifications but lack corresponding netlist, layout, and performance metrics. While recent works
have focused on EDA representation benchmarks, they exhibit key limitations. Although ForgeEDA
provides diverse circuit representations for benchmarking logic synthesis tasks (Shi et al., 2025), it
lacks the final physical implementation stage and is not open-source. EDALearn (Pan et al., 2024),
which presents an end-to-end flow to study the impact of varying open-source EDA tool parameters,
is limited in scale to only a few designs, lacking sufficient diversity. Consequently, these contri-
butions do not offer the complete, industry-standard RTL-to-Layout workflow and design variety
necessary to train robust and generalizable ML models. Furthermore, most open-source datasets are
primarily for single-stage tasks, with few containing comprehensive, synthesizable RTL implemen-
tations of designs and complete multi-stage data extending to the physical level. To bridge this gap,
we present CircuitNet 3.0, an advanced large-scale dataset that provides multi-modal multi-stage cir-
cuit representations, spanning from RTLs to layouts, along with corresponding performance metrics.
This enables ML models to explore the complete design flow and achieve inter-stage collaboration.

3 OVERVIEW OF CIRCUITNET 3.0

CircuitNet 3.0 is an open-source dataset containing 15, 863 design schemes, each of which encom-
passes data with RTL, netlist, and layout representations from all stages of the entire IC design
workflow for EDA tasks. Among the data, 8, 659 samples are original circuits collected directly,
while the rest of the designs were optimized and rewritten for timing and power prediction tasks
to generate new designs. We design a large-scale, diverse, and comprehensive dataset to meet the
needs of machine learning-driven circuit modeling.

Table 1 provides a summary of CircuitNet 3.0 compared with other existing datasets for EDA tasks.
CircuitNet 3.0 includes multi-stage RTL, netlist, and layout descriptions, covering all three circuit
representation stages and verified using synthesis and simulation tools. In contrast, other datasets
lack both the richness of circuit representations and the diversity of designs. For instance, although
CircuitNet 2.0 includes complete multi-stage data, it contains insufficient RTL entries. Conversely,
RTLcoder offers more RTL designs but does not provide data for the netlist and layout stages. More
importantly, CircuitNet 3.0 introduces a task-driven EDA data augmentation strategy, improving the
representativeness and utility of the dataset.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: LLM & expert-based categories of the original RTL dataset. The dataset comprises 16
subcategories across four main functional categories.

Main Category Subcategory Count Main Category Subcategory Count
Arithmetic & Logic Units (23.6%) Data Processing Units (29.9%)

Adder/Subtractor 645 Comparator/Selector 1,453
Multiplier/Divider 774 Encoder/Decoder 431
ALU/Accumulator 519 FIFO/Buffer 407
Others 114 Others 292

Control & Sequential Circuits (17.9%) Communication & Memory (28.6%)
Counter/Timer 906 Memory/Register 1,061
FSM/Sequencer 392 Bus Interface 943
Control Logic 242 Serial Interface 445
Others 8 Others 27

Total RTL Designs: 8,659

4 DATA GENERATION AND AUGMENTATION

4.1 OVERVIEW OF CHALLENGES AND METHODOLOGIES

Constructing effective datasets for complex circuit design tasks presents fundamental challenges.
Simply collecting internet-sourced data proves insufficient due to its limited availability and incon-
sistent quality. Random circuit generation typically yields low-quality designs that fail synthesis
validation or contribute minimal value to predictive modeling. To address these limitations, we pro-
pose a systematic multi-stage data augmentation framework that leverages circuit representations
at different abstraction levels. This combines efficient RTL-level generation with task-oriented re-
finement at netlist and layout stages, ensuring scalability and task-specific representativeness while
maintaining design validity through rigorous EDA tool validation.

Figure 4 illustrates the completed data construction and augmentation procedures for the dataset.
First, we collected more than 100, 000 RTL code lines from open-source websites, cleaned up illegal
samples, resulting 8, 659 high-quality RTL implementations as the original dataset. Then, using
the coarse-grained characteristics of the RTL, we efficiently generate a large number of various
circuits based on the cleaned dataset through the Verilog syntax tree rewriting method. Finally, at the
netlist and layout level (i.e., the stage where circuit structures are implemented at a finer resolution),
we perform task-oriented data augmentation to generate more representative and instructive circuit
data. In the following sections, we will first describe our data collection and cleaning process, then
introduce our fast RTL source data rewriting generation scheme, and present our EDA task-oriented
multi-stage data augmentation method of IC designs.

4.2 RTL DATA COLLECTION AND CLEANING

We systematically collected RTL designs from established platforms, including GitHub, Hugging
Face, OpenCore, and RISC-V projects, ensuring compliance with open-source licensing require-
ments. All designs underwent rigorous validation using commercial synthesis and simulation tools
to guarantee functional correctness and eliminate circuits with errors or combinational loops.

Our final curated dataset, classified using Claude Opus 4 with expert validation, comprises 8, 659
high-quality RTL designs spanning four primary categories of arithmetic and logic units (23.6%),
control and sequential circuits (17.9%), data processing units (29.9%), and communication and
memory (28.6%). The category ensures comprehensive coverage of fundamental circuit building
blocks while maintaining design diversity essential for robust ML model training.

Notably, our approach prioritizes modular and well-characterized designs over large-scale CPU im-
plementations that often contain repetitive structures. This strategy enhances dataset uniformity and
enables precise performance analysis across different circuit categories, facilitating targeted model
optimization and systematic comparison of ML-driven EDA methodologies.

4.3 RAPID AND EFFICIENT DATA GENERATION

Leveraging a higher abstraction level of RTL implementations compared to netlists, we implement
systematic circuit generation through Verilog abstract syntax tree (AST) rewriting. Rather than
generating random RTL code, we apply sophisticated transformation rules to validated designs, as
illustrated in Figure 5 (a) and detailed in Table 3, which ensures that our rewriting results are more
reliable and trustworthy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Use DC in different Compile Config

Innovus optimize
until density > 90%

.v
.v

.v.v
RTL code

M
operator

state

.v
.v

.v.v

Augmented
RTL code

M

(b) Timing-Task-Oriented Data Augment and Refinement

(c) Power-Task-Oriented Data Augment and Refinement
RTL

Dataset

Netlist

Netlist

Netlist

RTL

RTL

RTLVo
ltu

s r
ep

or
t_

po
w

er
D

C
 c

om
pi

le
_u

ltr
a

Power-
Task-

Oriented
Dataset

Timing-
Task-

Oriented
Dataset

(a
) A

ST
-b

as
ed

 R
ew

ri
te

Layout

Layout

Layout

Innovus optimize
until density > 90%

Innovus optimize
until density > 90%

Succ

Succ

Fail

save

save

Netlist

Netlist

Netlist

Netlist

DC compile config1

DC compile config1

DC compile config2

DC compile config2

save

save

save

save

M Mutation operator

DC compile_ultra

Layout
Succ

Layout successful optimzed by innovus

Layout
Fail

Layout unsuccessful optimzed by innovus

RTL

RTL

RTL passed power check by Voltus

RTL failed power check by Voltus

Voltus report_power

Design Compiler‘s systhesis command

Voltus‘s power analysis command
DC compile config1/2

Netlist
Optimal

Optimal

Netlist version with the optimal power

Figure 5: Data Augmentation Process for Enhancing Diversity and EDA Task Representativeness

Table 3: Examples of AST-based Mutation Operators for RTL Data Augmentation
Mutation Type Operators Transformation Constraints
Arithmetic +, −, ×, ÷, etc. Bidirectional substitution Type preservation
Logical &&, ||, &, |, ˆ, etc. Cross-operator replacement Context-aware
Relational ==, ! =, >, <, ≥, ≤, etc. Comparison inversion Type-safe
Temporal posedge ↔ negedge Edge polarity toggle Sequential blocks
Assignment <=↔ = Blocking type conversion Always-block consistency
Constant Integer values ±1 modification Bit-width preservation

This methodology offers two key benefits, which are minimal code modifications to RTLs and gen-
eration with validated models. The coarse granularity of RTLs enables a few code modifications to
produce significant structural variations, efficiently generating diverse circuit instances. Moreover,
focusing on localized modifications of cleaned validated designs rather than randomly generated
RTLs, we substantially improve synthesis success rates and design quality.

The AST-based rewriting employs context-aware mutation operators including arithmetic substitu-
tions, logical transformations, and temporal edge modifications, all constrained by type preservation
and synthesis validity requirements. This approach ensures generated circuits maintain functional
correctness while achieving substantial structural diversity.

4.4 TASK-ORIENTED DATA AUGMENTATION

A primary goal of CircuitNet 3.0 is to create a dataset that effectively focuses on challenging,
performance-critical designs. In industrial practice, the value of a predictive model is determined not
by its average-case performance, but by its accuracy on cases that push the limits of timing and power
budgets. During logic and physical design stages, we leverage fine-grained circuit representations
for task-specific augmentation through two complementary strategies: multi-stage generation and
intelligent selection tailored to timing and power requirements. Through the systematic approaches,
we generate high-quality, task-specific datasets that effectively capture the structural and behavioral
characteristics essential for accurate timing and power prediction in industrial EDA workflows. By
leveraging commercial EDA tools such as Synopsys Design Compiler (Synopsys, 2025a) and Ca-
dence Innovus (Cadence, 2025a), this workflow generates three distinct data modalities: text (from
specifications and RTL codes), graph (from RTL and netlist stages), and image (from layout stage).

Data Augmentation for Timing Prediction Task. (1) Multi-stage data generation. Timing predic-
tion fundamentally requires accurate estimation of signal propagation delays across logic elements
and interconnects. For each RTL design, we perform comprehensive logic and physical optimiza-
tion to generate timing-optimal netlists and layouts, as shown in Figure 5 (b), providing high-quality
training labels. (2) Data selection. Timing closure is often dictated by a circuit’s longest paths.
Models trained only on designs with ample timing slack may fail to generalize to the timing-critical
scenarios that engineers focus on. We prioritize circuits with substantial path lengths, as longer
paths present the most critical challenges for timing closure and represent worst-case scenarios es-
sential for model robustness. The filtering excludes trivial short-path circuits, concentrating training
resources on challenging, industrial cases for training efficiency.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Data Augmentation for Power-Prediction Task. (1) Multi-stage data generation. Power predic-
tion requires accurate modeling of switching activity across diverse logic topologies. Since RTL-
level granularity may be insufficient—single RTL statements can map to vastly different gate-level
implementations—we focus on netlist-level analysis. As illustrated in Figure 5(c), for the same RTL
code, we generate multiple netlist variants using different synthesis constraints, capturing the im-
pact of logic topology on power while maintaining functional equivalence. (2) Data selection. For
power-prediction model training, circuits with meaningful variations in switching activity under dif-
ferent inputs are most valuable. Suppose a module’s logic is unreachable or never toggles under any
input (possibly due to logic unreachability introduced by rewriting). In that case, it contributes little
to the training and may even reduce efficiency. Therefore, we further use the EDA tool Cadence
Voltus (Cadence, 2025b) to perform a vectorless dynamic power analysis and select circuit designs
where the fraction of inactive logic is low, excluding circuits with large amounts of ineffective logic.
The result is a curated dataset that improves training efficiency for power prediction.

5 EVALUATIONS ON CIRCUITNET 3.0

5.1 EXPERIMENTAL SETUP

We conduct comprehensive experiments on CircuitNet 3.0, comprising 15, 863 unique circuit de-
signs with complete representations across RTL, netlist, and layout stages. Each design instance
encompasses Verilog code with functional specifications at the RTL stage, gate-level representa-
tions with connectivity graphs at the netlist stage, and physical implementation data with parasitic
parameters at the layout stage. Ground-truth performance metrics, including arrival time (AT), the
worst negative slack (WNS), the total negative slack (TNS), and power, are generated using Syn-
opsys Design Compiler (Synopsys, 2025a) with compile ultra optimization for synthesis, Ca-
dence Innovus (Cadence, 2025a) with multi-corner multi-mode (MCMM) optimization for physical
design, and Synopsys PrimePower (Synopsys, 2025b) for power analysis.

All experiments utilize 8 NVIDIA A100 GPUs with PyTorch 2.0.1 and PyTorch Geometric 2.3.1.
Training employs AdamW optimization with learning rate 2 × 10−4 and cosine annealing. Models
are trained for 50 epochs with early stopping based on the validation loss. The dataset is partitioned
at the source design level into training (80%), validation (10%), and test (10%) sets. To create
a stringent test of generalization, the test set is composed exclusively of original, un-augmented
designs. Crucially, suppose a source design is allocated to the test set. In that case, all of its
augmented variants are entirely excluded from the training and validation pools, preventing any
leakage of structural information. To further bolster the reliability of our evaluation, the test set is
also supplemented with submodules from open-source projects external to our dataset.

Two fundamental EDA prediction tasks evaluate the effectiveness of the proposed CircuitNet 3.0.
The timing prediction task takes RTL code as input to predict post-layout timing metrics (WNS,
TNS, AT), enabling early-stage timing closure assessment. The power prediction task utilizes both
RTL and netlist representations to estimate circuit power consumption, facilitating power-aware de-
sign optimization across abstraction levels. We evaluate against state-of-the-art baselines, including
RTL-only models (MasterRTL (Fang et al., 2023), RTL-Timer (Fang et al., 2024), GRASPE (Rakesh
et al., 2023), VIRTUAL (Lu et al., 2025)), netlist-only models (DeepSeq2 (Khan et al., 2024),
MOSS (Wang et al., 2025a) without multi-modal learning), and our proposed multi-stage/multi-
modal approaches (RTLDistil (Wang et al., 2025b) for timing, MOSS (Wang et al., 2025a) for
power). Three dataset variants assess augmentation impact on Resyn-27k from RTLCoder (Liu
et al., 2024a), our original data, and augmented CircuitNet 3.0.

5.2 MULTI-STAGE AND MULTI-MODAL LEARNING SUPERIORITY

Table 4 demonstrates the effectiveness of multi-modal representations compared to single-modal
approaches. For timing prediction, RTLDistil employs cross-stage knowledge distillation between
RTL and layout representations, achieving a PCC of 0.885 for arrival time prediction, a 70.4% im-
provement over MasterRTL and 6.0% over RTL-Timer. WNS prediction achieves a PCC of 0.871
with a 35.28% MAPE, reducing the error by 45.8% compared to MasterRTL. TNS prediction at-
tains the highest PCC of 0.918, demonstrating superior capability in capturing cumulative timing
violations. In the power prediction task, MOSS jointly processes RTL code and netlist graphs,
achieving a toggle rate accuracy of 85.6% with a PCC of 0.871, surpassing DeepSeq2 by 21.4% and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Performance comparison of multi-modal models.
(a) Timing prediction on RTL stage, where RTLDistil leverages multi-stage knowledge distillation.

Model Arrival Time (AT) WNS TNS
PCC↑ MAPE↓ PCC↑ MAPE↓ PCC↑ MAPE↓

MasterRTL 0.520 43.25% 0.698 65.12% 0.593 68.45%
RTL-Timer 0.835 26.48% 0.842 44.36% 0.801 43.92%
RTLDistil 0.887 19.72% 0.871 35.28% 0.918 40.15%

(b) Power prediction on netlist stage, where MOSS demonstrates the effectiveness of multi-modal learning.

Model Toggle Rate Total Power
PCC↑ MAPE↓ PCC↑ MAPE↓

DeepSeq2 0.759 29.5% 0.872 22.2%
MOSS w/o Multi-Modal learning 0.674 34.7% 0.815 27.7%
MOSS (Full) 0.871 14.4% 0.948 7.4%

86 88 90 92 94 96 98 100

Case layout density
6

5

4

3

2

1

0

Ca
se

 W
NS

 (n
s)

(a) Pre-Augment WNS

86 88 90 92 94 96 98 100

Case layout density
6

5

4

3

2

1

0

Ca
se

 W
NS

 (n
s)

(b) Post-Augment WNS

86 88 90 92 94 96 98 100

Case layout density
0

20

40

60

80

100

120

140

160

Ca
se

 p
ow

er
 (m

W
)

(c) Pre-Augment Power

86 88 90 92 94 96 98 100

Case layout density
0

20

40

60

80

100

120

140

160

Ca
se

 p
ow

er
 (m

W
)

(d) Post-Augment Power

Figure 6: Distributions of Worst Negative Slack (WNS) and Total Power across layout density
cases before and after data augmentation. (a) WNS distribution before augmentation and (b) after
augmentation. (c) Power distribution before augmentation and (d) after augmentation.

Table 5: Comparison of RTL timing prediction across various datasets

Dataset Model Arrival Time (AT) WNS TNS
PCC↑ R2 ↑ MAPE↓ PCC↑ R2 ↑ MAPE↓ PCC↑ R2 ↑ MAPE↓

Resyn-27k
MasterRTL 0.465 -0.384 48.32% 0.612 0.217 73.45% 0.541 -0.127 72.38%
RTLTimer 0.762 0.567 31.65% 0.768 0.581 52.17% 0.743 0.529 49.85%
RTLDistil 0.842 0.705 23.86% 0.825 0.676 40.73% 0.876 0.763 44.27%

Original Data
MasterRTL 0.520 -0.216 43.25% 0.698 0.462 65.12% 0.593 0.184 68.45%
RTLTimer 0.835 0.692 26.48% 0.842 0.705 44.36% 0.801 0.636 43.92%
RTLDistil 0.887 0.785 19.72% 0.871 0.756 35.28% 0.918 0.841 40.15%

Augmented Data
MasterRTL 0.613 0.287 38.74% 0.752 0.549 58.65% 0.641 0.363 62.18%
RTLTimer 0.873 0.760 22.35% 0.878 0.769 38.42% 0.843 0.707 39.67%
RTLDistil 0.935 0.863 15.28% 0.926 0.846 28.96% 0.968 0.927 35.42%

single-modal MOSS by 31.1%. Total power prediction reaches 92.6% accuracy with PCC of 0.948,
improving 19.0% over DeepSeq2. The ablation study confirms that incorporating RTL behavioral
information with netlist structural features enables comprehensive power characterization by cap-
turing both functional intent and gate-level switching activities. The substantial gains validate that
layout-level physical information, when distilled into RTL-stage models through multi-granularity
knowledge transfer, enables accurate early-stage predictions. This cross-stage paradigm effectively
bridges the abstraction gap between behavioral descriptions and physical implementations.

5.3 DATA DISTRIBUTION ANALYSIS: PRE- AND POST-AUGMENTATION

Figure 6 visualizes how task-oriented augmentation transforms performance metric distributions.
Pre-augmentation timing characteristics exhibit limited diversity, with the WNS clustered between
-2 ns and zero at high layout densities, with a percentage greater than 94%. Post-augmentation, the
dataset exhibits enriched timing diversity spanning -6 ns to zero across layout densities ranging from
86% to 100%, ensuring that models encounter comprehensive scenarios, from highly optimized to
critically constrained designs. Power distribution similarly evolves from a limited variation con-
centrated below 60 mW to uniform coverage ranging from zero to 160 mW. This diversification
enables robust model training for a range of power profiles, from ultra-low-power edge applications
to high-performance computing applications. The expanded distributions confirm that augmentation
successfully addresses the limited diversity in original datasets while maintaining design validity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.4 PERFORMANCE ANALYSIS ON AUGMENTED DATA

Timing Prediction Enhancement. Table 5 demonstrates substantial improvements in timing pre-
diction accuracy achieved through our task-oriented data augmentation strategy. All models consis-
tently achieve superior performance on the augmented dataset across three critical timing metrics of
AT, WNS, and TNS. MasterRTL achieves PCC improvements of 31.9% of AT, 22.9% of WNS, and
18.5% of TNS compared to Resyn-27k data, with R2 values transitioning from negative to positive,
confirming the effective learning of timing relationships. RTL-Timer shows balanced gains with
PCC improvements exceeding 13% across all metrics and MAPE reductions of from 20% to 29%.
The RTLDistil attains state-of-the-art performance on augmented data with PCC values of 0.935 AT,
0.926 WNS, and 0.968 TNS. The R2 values exceeding 0.85 indicate the model captures over 85%
of timing variance, while achieving the lowest MAPE of 15.28% AT, 28.96% WNS, and 35.42%
TNS, which represents 36.0%, 28.9%, and 20.0% improvements over Resyn-27k data. These con-
sistent improvements across all models validate the effectiveness of our task-oriented augmentation
strategy for enhancing timing prediction capabilities.

Table 6: Comparison of RTL power prediction
across datasets.

Dataset Model Total Power
PCC↑ R2 ↑ MAPE↓

Resyn-27k
Graspe 0.642 0.655 30.41%
MasterRTL 0.609 0.620 32.67%
VIRTUAL 0.675 0.704 27.48%

Original
Dataset

Graspe 0.671 0.845 28.45%
MasterRTL 0.647 0.825 30.28%
VIRTUAL 0.672 0.858 26.85%

Augmented
Dataset

Graspe 0.701 0.850 26.55%
MasterRTL 0.696 0.845 27.16%
VIRTUAL 0.753 0.867 23.92%

Power Prediction Enhancement. Table 6 re-
veals substantial improvements in power pre-
diction accuracy through our augmentation
framework. All models achieve peak perfor-
mance on the augmented dataset, establishing
new benchmarks for RTL power analysis. The
VIRTUAL attains best performance with PCC
of 0.753, R2 of 0.867, MAPE of 23.92% with
11.6%, 23.2%, and 12.9% improvements over
Resyn-27k data. Additionally, GRASPE and
MasterRTL demonstrate significant gains with
PCC improvements of 9− 14%, R2 improve-
ments of approximately 30 − 36%, and MAPE reduction of approximately 13 − 17%. The consis-
tently higher PCC and R2 values, along with lower MAPE values, on augmented data, demonstrate
that our augmentation strategy successfully creates more predictable power consumption patterns
while preserving realistic design characteristics. These results validate the effectiveness of task-
oriented augmentation for addressing critical data quality challenges in power-aware circuit design.

Our evaluation demonstrates three key contributions. First, multi-modal models consistently out-
perform single-modal baselines: on timing prediction, RTLDistil improves PCC by an average of
8.0% and reduces MAPE by an average of 18.2% across AT, WNS, and TNS relative to the strongest
RTL-only baseline (RTL-Timer), demonstrating the efficacy of cross-stage information fusion. Sec-
ond, task-oriented augmentation expands timing coverage from -6 ns to 0 ns and power range from
0 mW to 160 mW, while preserving design validity. Third, CircuitNet 3.0 enhances model general-
ization in power prediction, with VIRTUAL trained on our augmented dataset, achieving an 11.6%
PCC gain and a 12.9% MAPE reduction in total power compared with training on existing dataset.
These results establish CircuitNet 3.0 as a comprehensive foundation for ML-driven EDA research.

6 CONCLUSION

We present CircuitNet 3.0, a comprehensive multi-stage multi-modal dataset designed for ML-
driven EDA. Through systematic data collection and rigorous validation, the dataset comprises over
15,000 designs, along with corresponding netlists, layouts, and performance metrics, addressing
the critical shortage of high-fidelity public data for AI4EDA. Experimental evaluation demonstrates
multi-modal models trained on CircuitNet 3.0 achieve significant performance improvements over
existing dataset baselines, with approximately 36.0% and 12.9% error reductions for timing and
power tasks, respectively. The multi-stage design representation enables effective cross-abstraction
information fusion, facilitating accurate early-stage prediction to guide early optimization. Task-
oriented augmentation strategies successfully expand design diversity while maintaining EDA tool
validation, extending timing coverage, and power ranges. This enhanced diversity enables robust
model training and superior generalization across a wide range of design specifications and func-
tions. As the first large-scale public benchmark for multi-modal circuit analysis, CircuitNet 3.0
establishes reproducible evaluation standards and accelerates collaborative research in ML-driven
EDA tools and methodologies.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anant Agarwal and Jeffrey Lang. Foundations of analog and digital electronic circuits. Elsevier,
2005.

R Jacob Baker. CMOS: circuit design, layout, and simulation. John Wiley & Sons, 2019.

Luca Benini and Giovanni DeMicheli. Dynamic power management: design techniques and CAD
tools. Springer Science & Business Media, 1997.

Randal E Bryant, Kwang-Ting Cheng, Andrew B Kahng, Kurt Keutzer, Wojciech Maly, Richard
Newton, Lawrence Pileggi, Jan M Rabaey, and Alberto Sangiovanni-Vincentelli. Limitations and
challenges of computer-aided design technology for cmos vlsi. Proceedings of the IEEE, 89(3):
341–365, 2001.

Cadence. Cadence Innovus Implementation System. https://www.
cadence.com/en US/home/tools/digital-design-and-signoff/
soc-implementation-and-floorplanning/innovus-implementation-system.
html, 2025a.

Cadence. Cadence Voltus. https://www.cadence.com/en US/
home/tools/digital-design-and-signoff/silicon-signoff/
voltus-ic-power-integrity-solution.html, 2025b.

Benton H Calhoun, Yu Cao, Xin Li, Ken Mai, Lawrence T Pileggi, Rob A Rutenbar, and Ken-
neth L Shepard. Digital circuit design challenges and opportunities in the era of nanoscale cmos.
Proceedings of the IEEE, 96(2):343–365, 2008.

Zhuomin Chai, Yuxiang Zhao, Wei Liu, Yibo Lin, Runsheng Wang, and Ru Huang. Circuitnet:
An open-source dataset for machine learning in vlsi cad applications with improved domain-
specific evaluation metric and learning strategies. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 42(12):5034–5047, 2023.

Pong P Chu. RTL hardware design using VHDL: coding for efficiency, portability, and scalability.
John Wiley & Sons, 2006.

Sanjay Churiwala and Sapan Garg. Principles of VLSI RTL design: a practical guide. Springer
Science & Business Media, 2011.

Jason Cong, Joseph R Shinnerl, Min Xie, Tim Kong, and Xin Yuan. Large-scale circuit placement.
ACM Transactions on Design Automation of Electronic Systems (TODAES), 10(2):389–430, 2005.

Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and
Zhiyao Xie. MasterRTL: A Pre-Synthesis PPA Estimation Framework for Any RTL Design. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–9. IEEE, 2023.

Wenji Fang, Shang Liu, Hongce Zhang, and Zhiyao Xie. Annotating Slack Directly on Your Verilog:
Fine-grained RTL Timing Evaluation for Early Optimization. In ACM/IEEE Design Automation
Conference (DAC), pp. 1–6, 2024.

S Gayathri and TC Taranath. Rtl synthesis of case study using design compiler. In 2017 International
Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques
(ICEECCOT), pp. 1–7. IEEE, 2017.

Khosrow Golshan. The art of timing closure. Springer, 2020.

Zizheng Guo and Yibo Lin. Differentiable-timing-driven global placement. In Proceedings of the
59th ACM/IEEE Design Automation Conference, pp. 1315–1320, 2022.

Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuan-
fan Xu, Hengrui Zhang, Kai Zhong, et al. Machine learning for electronic design automation: A
survey. ACM Transactions on Design Automation of Electronic Systems (TODAES), 26(5):1–46,
2021.

10

https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/silicon-signoff/voltus-ic-power-integrity-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/silicon-signoff/voltus-ic-power-integrity-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/silicon-signoff/voltus-ic-power-integrity-solution.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shao-Lun Huang, Wei-Hsun Lin, Po-Kai Huang, and Chung-Yang Huang. Match and replace: A
functional eco engine for multierror circuit rectification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 32(3):467–478, 2013.

Xun Jiang, Yuxiang Zhao, Yibo Lin, Runsheng Wang, Ru Huang, et al. Circuitnet 2.0: An advanced
dataset for promoting machine learning innovations in realistic chip design environment. In The
Twelfth International Conference on Learning Representations, 2024.

Hubert Kaeslin. Top-down digital VLSI design: from architectures to gate-level circuits and FPGAs.
Morgan Kaufmann, 2014.

Andrew B Kahng. Machine learning applications in physical design: Recent results and directions.
In Proceedings of the 2018 international symposium on physical design, pp. 68–73, 2018.

Andrew B Kahng, Jens Lienig, Igor L Markov, and Jin Hu. Timing closure. In VLSI Physical
Design: From Graph Partitioning to Timing Closure, pp. 219–264. Springer, 2011.

Rajanish K Kamat, Santosh A Shinde, Pawan K Gaikwad, and Hansraj Guhilot. Harnessing VLSI
system design with EDA tools. Springer Science & Business Media, 2011.

Jamil Kawa. Low power and power management for cmos—an eda perspective. IEEE transactions
on electron devices, 55(1):186–196, 2007.

Sadaf Khan, Zhengyuan Shi, Ziyang Zheng, Min Li, and Qiang Xu. DeepSeq2: Enhanced Se-
quential Circuit Learning with Disentangled Representations. arXiv preprint arXiv:2411.00530,
2024.

Atharva M Kulkarni and Abhay Chopde. Physical design: Methodologies and developments. arXiv
preprint arXiv:2409.04726, 2024.

Luciano Lavagno, Louis Scheffer, and Grant Martin. EDA for IC implementation, circuit design,
and process technology. CRC press, 2018.

Jens Lienig and Juergen Scheible. Fundamentals of layout design for electronic circuits. 2020.

Jens Lienig, Juergen Scheible, Jens Lienig, and Juergen Scheible. Bridges to technology: Interfaces,
design rules, and libraries. Fundamentals of Layout Design for Electronic Circuits, pp. 83–126,
2020a.

Jens Lienig, Juergen Scheible, Jens Lienig, and Juergen Scheible. Steps in physical design: From
netlist generation to layout post processing. Fundamentals of Layout Design for Electronic Cir-
cuits, pp. 165–211, 2020b.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–8. IEEE, 2023.

Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. RTL-
Coder: Fully Open-Source and Efficient LLM-Assisted RTL Code Generation Technique. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1, 2024a. doi:
10.1109/TCAD.2024.3483089.

Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder: Outper-
forming gpt-3.5 in design rtl generation with our open-source dataset and lightweight solution. In
2024 IEEE LLM Aided Design Workshop (LAD), pp. 1–5. IEEE, 2024b.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design rtl
generation with large language model. In 2024 29th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 722–727. IEEE, 2024.

Yuntao Lu, Mingjun Wang, Yihan Wen, Boyu Han, Jianan Mu, Huawei Li, and Bei Yu. VIRTUAL:
Vector-based Dynamic Power Estimation via Decoupled Multi-Modality Learning. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 1–8, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jingyu Pan, Chen-Chia Chang, Zhiyao Xie, Yiran Chen, and Hai Helen Li. Edalearn: A compre-
hensive rtl-to-signoff eda benchmark for democratized and reproducible ml for eda research. In
Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided Design, pp.
1–8, 2024.

Nathaniel Pinckney, Christopher Batten, Mingjie Liu, Haoxing Ren, and Brucek Khailany. Re-
visiting verilogeval: Newer llms, in-context learning, and specification-to-rtl tasks, 2024. URL
https://arxiv.org/abs/2408.11053.

MB Rakesh, Pabitra Das, Anant Terkar, and Amit Acharyya. Graspe: accurate post-synthesis power
estimation from rtl using graph representation learning. In 2023 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1–5. IEEE, 2023.

Zhengyuan Shi, Zeju Li, Chengyu Ma, Yunhao Zhou, Ziyang Zheng, Jiawei Liu, Hongyang Pan,
Lingfeng Zhou, Kezhi Li, Jiaying Zhu, et al. Forgeeda: A comprehensive multimodal dataset for
advancing eda. arXiv preprint arXiv:2505.02016, 2025.

Dallin Skouson, Andrew Keller, and Michael Wirthlin. Netlist analysis and transformations using
spydrnet. In Proceedings of the Python in Science Conference, 2020.

Prasha Srivastava, Pawan Kumar, and Zia Abbas. Enhancing ml model accuracy for digital vlsi
circuits using diffusion models: A study on synthetic data generation. In 2024 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE, 2024.

Synopsys. Synopsys Design Compiler. https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/dc-ultra.html,
2025a.

Synopsys. Synopsys PrimePower. https://www.synopsys.com/
implementation-and-signoff/signoff/primepower.html, 2025b.

Frank Vahid. Digital design with RTL design, VHDL, and Verilog. John Wiley & Sons, 2010.

Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Tim Cheng. Electronic design automation:
synthesis, verification, and test. Morgan Kaufmann, 2009.

Mingjun Wang, Bin Sun, Jianan Mu, Feng Gu, Boyu Han, Tianmeng Yang, Xinyu Zhang, Silin Liu,
Yihan Wen, Hui Wang, Gao Jun, Zhiteng Chao, Husheng Han, Zizhen Liu, Liang Shengwen,
Jing Ye, Bei Yu, Xiaowei Li, and Huawei Li. MOSS: Multi-Modal Representation Learning on
Sequential Circuits. In ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2025a.

Mingjun Wang, Yihan Wen, Bin Sun, Jianan Mu, Juan Li, Xiaoyi Wang, Jing Justin Ye, Bei Yu,
and Huawei Li. Bridging Layout and RTL: Knowledge Distillation based Timing Prediction. In
International Conference on Machine Learning (ICML), pp. 1–9, 2025b.

Wayne Wolf. Modern VLSI design: system-on-chip design. Pearson Education, 2002.

Zeyuan Xing. Survey on Machine Learning and Artificial Intelligence Used for Electronic Design
Automation. PhD thesis, Politecnico di Torino, 2024.

Yu Zeng. Automatic Generation of Hardware Abstractions From Register-Transfer Level (RTL)
Designs. PhD thesis, Princeton University, 2024.

12

https://arxiv.org/abs/2408.11053
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIALS

APPENDIX A: THE PIPELINE OF DATA GENERATION AND PROCESSING

A.1 MULTI-STAGE EDA FLOW WITH ITERATIVE OPTIMIZATION

The construction of CircuitNet 3.0 employs a sophisticated multi-stage EDA flow utilizing com-
mercial tools including Synopsys Design Compiler and Cadence Innovus. Unlike conventional
approaches that rely on fixed tool configurations, our methodology implements an iterative opti-
mization strategy to achieve industrial-grade design quality.

A.1.1 ITERATIVE OPTIMIZATION METHODOLOGY

Our iterative optimization framework, illustrated in Figure 7, represents a significant departure from
traditional single-pass EDA flows. Each design undergoes multiple optimization iterations, where
tool parameters are systematically adjusted based on convergence metrics. This approach ensures
that the final layouts represent realistic industrial-quality implementations rather than artifacts of
specific tool configurations.

The iterative process begins with RTL synthesis using Synopsys Design Compiler, where multiple
synthesis strategies are explored through varying optimization directives. The synthesized netlists
then proceed to Cadence Innovus for physical implementation. At each iteration, we monitor three
critical convergence indicators:

RTL Design
(.v files)

Design
Compiler
Synthesis

Cadence
Innovus

P&R

Convergence
Check

Parameter
Adjustment

Not
Converged Converged Final

Design

Figure 7: Iterative optimization flow for dataset generation. The process continues until meeting
convergence criteria across placement density, timing metrics, and power consumption.

For each design, we automatically explore multiple parameter configurations, including:

• Density thresholds: Ranging from 85% to 95% placement utilization. Lower densities
provide more optimization flexibility but may result in larger die areas, while higher densi-
ties challenge the routing algorithms and timing closure capabilities.

• Routing constraints: Various congestion and optimization settings including layer assign-
ment preferences, via minimization objectives, and antenna rule compliance strategies.

• Clock constraints: Multiple timing scenarios from relaxed to aggressive, exploring clock
periods from 10% above to 20% below the critical path delay.

A.1.2 CONVERGENCE CRITERIA

The optimization process continues until stringent convergence criteria are met:

1. Placement density convergence: Density changes less than 0.5% between consecutive
iterations, indicating that further cell movement provides negligible area improvement.

2. Timing stability: WNS and TNS metrics stabilize within 2% tolerance across three con-
secutive iterations, ensuring timing closure reliability.

3. Power convergence: Total power consumption variations fall below 3% threshold, con-
firming that power optimization has reached a practical limit.

This iterative approach typically requires 10-50 iterations per design, with complex designs requir-
ing more iterations to achieve convergence. The resulting dataset quality justifies the computational

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

overhead—each design represents a practically optimized implementation comparable to manually
refined industrial flows.

A.1.3 QUALITY ASSURANCE

The iterative optimization process incorporates multiple quality checks:

• Design rule checking (DRC) compliance: Each iteration verifies the remaining DRC vi-
olations in acceptable limits.

• Layout versus schemati (LVS) correctness: LVS ensure maintaining the functional equiv-
alence.

• Timing closure: Setup and hold time violations are monitored to prevent timing degrada-
tion.

• Power integrity: IR drop and electron migration checks validate power distribution net-
work robustness.

A.2 DATASET COLLECTION AND VALIDATION

A.2.1 SOURCE SELECTION STRATEGY

The dataset construction required approximately 8 months of dedicated effort, reflecting the com-
plexity of collecting, validating, and processing high-quality RTL designs. Our source selection
strategy prioritized diversity and quality over quantity:

• GitHub repositories: We systematically searched for repositories containing synthesiz-
able Verilog or SystemVerilog codes, focusing on projects with active maintenance, com-
prehensive documentation, and proper licensing. Over 50, 000 repositories were examined,
yielding more than 8, 000 suitable designs.

• OpenCores platform: As a dedicated hardware design repository, OpenCores provided
hundreds of validated IP cores spanning various application domains. These designs often
include testbenches and documentation, facilitating validation.

• Hugging Face hardware collections: Emerging hardware design datasets on Hugging
Face contributed more than 10, 000 designs, many featuring modern design patterns and
coding styles.

• RISC-V open-source projects: The RISC-V ecosystem provided hundreds of designs,
including processor cores, accelerators, and peripheral controllers, representing state-of-
the-art open hardware development.

A.2.2 DESIGN SELECTION CRITERIA

We specifically avoided over-reliance on traditional benchmarks (e.g., ISCAS-89, ITC-99) or large-
scale CPU or GPU due to several limitations:

• Limited diversity: Traditional benchmarks often contain similar circuit structures, limiting
the diversity needed for robust ML model training.

• Path duplication: Large designs like CPUs contain many structurally identical paths, lead-
ing to dataset imbalance.

• Outdated design styles: Many benchmark circuits use obsolete design patterns not repre-
sentative of modern RTL development.

Instead, we prioritize the following criteria that designs meet:

• Functional diversity: Selected designs span arithmetic units (adders, multipliers, di-
viders), control circuits (FSMs, sequencers), data processing elements (encoders, decoders,
FIFOs), and communication interfaces (UART, SPI, I2C).

• Size variation: Circuit sizes range from simple combinational blocks (less than 200 gates)
to complex subsystems (greater than 100, 000 gates), ensuring model exposure to varied
optimization challenges.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

......

Timing/Power
Prediction

Optimisation

Logic
Design

XGBoost

Multi stages
/modalities Models

Physical
Design

LLM CNN

GNN

module half_adder (
 input A,
 input B,
 output Sum,
 output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

module half_adder (
 input A,
 input B,
 output Sum,
 output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

module half_adder (
 input A,
 input B,
 output Sum,
 output Cout
);
assign Sum = A ^ B;
assign Cout = A & B;
endmodule

Figure 8: Prediction tasks of timing and power closure through multi-stage and multi-modal de-
sign representations. The framework demonstrates how different ML models (XGBoost for tabular
features, GNN for graph structures, LLM for text processing, and CNN for layout images) can lever-
age the multi-modal data from logic design to physical design stages for comprehensive timing and
power optimization.

• Modern coding practices: Designs utilize contemporary RTL coding styles, including
parameterized modules, generate statements, and SystemVerilog implementations.

• Synthesis cleanliness: All designs pass synthesis without errors using commercial tools,
eliminating problematic constructs that could bias training.

A.2.3 VALIDATION PIPELINE

Each collected design underwent rigorous validation:

1. Syntax verification: Initial parsing using open-source tools (Icarus Verilog, Verilator) to
identify basic syntax errors.

2. Synthesis validation: Commercial synthesis using Synopsys Design Compiler with strict
error checking enabled.

3. Simulation testing: Functional verification using provided test benches or automatically
generated test vectors.

4. Lint checking: Static analysis to identify potential issues including combinational loops,
unconnected ports, and synthesis-simulation mismatches.

5. Complexity analysis: Extraction of design metrics including gate count, path depth, and
sequential element ratio to ensure dataset balance.

This comprehensive validation process resulted in a final collection of 8, 659 high-quality RTL de-
signs, representing approximately 8.7% of initially collected designs, highlighting our commitment
to dataset quality over quantity.

A.3 MULTI-MODAL PREDICTION FRAMEWORK

The comprehensive validation process ensures that CircuitNet 3.0 provides high-quality data suitable
for various machine learning approaches. Figure 8 illustrates how the multi-stage and multi-modal
representations extracted from our dataset enable diverse ML models to perform timing and power
prediction tasks.

The prediction framework leverages the multi-modal nature of CircuitNet 3.0:

• Text Modality: RTL code and specifications are processed through Large Language Mod-
els (LLMs) to extract semantic features and design intent

• Graph Modality: Both RTL operator graphs and gate-level netlists are analyzed using
Graph Neural Networks (GNNs) to capture structural dependencies

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Image Modality: Physical layout images are processed through Convolutional Neural Net-
works (CNNs) to extract spatial and geometric features

• Tabular Features: Traditional ML models like XGBoost process extracted statistical fea-
tures for rapid inference

This multi-modal approach enables models to learn complementary representations across abstrac-
tion levels, significantly improving prediction accuracy compared to single-modal baselines as
demonstrated in our experimental results (Section 5.2).

APPENDIX B: ANALYSIS OF CIRCUIT CLASSIFICATION OF THE GENERATED
DATASET BY LLM

B.1 CLASSIFICATION ARCHITECTURE

B.1.1 SYSTEM OVERVIEW

Our classification system leverages the API of Claude Opus 4, a state-of-the-art language model,
combined with expert validation to achieve accurate and consistent circuit categorization. The sys-
tem architecture incorporates multiple innovative components designed to maximize classification
accuracy while minimizing computational costs.

The classification pipeline, formalized in Algorithm 1, implements a sophisticated multi-stage ap-
proach.
Algorithm 1 LLM-Based RTL Classification

Require: RTL code C, API key K
Ensure: Classification

result (category, subcategory, confidence)
1: structure← ExtractCodeStructure(C)
2: cache key ← SHA256(C)[:16]
3: if CacheExists(cache key) then
4: return LoadFromCache(cache key)
5: end if
6: prompt← CreateExpertPrompt(C, structure)
7: result← CallLLMAPI(prompt, K)
8: if result.confidence < 0.7 then
9: verify prompt← CreateVerificationPrompt(C, result)

10: verified← CallLLMAPI(verify prompt, K)
11: if not verified.is correct then
12: result← verified
13: end if
14: end if
15: SaveToCache(cache key, result)
16: return result

B.1.2 STRUCTURAL ANALYSIS ENGINE

Before invoking the LLM, our system performs a comprehensive structural analysis to extract key
circuit characteristics. This pre-processing step serves multiple purposes:

• Context reduction: By extracting relevant structural features, we reduce the token count
required for LLM processing, improving efficiency and reducing costs.

• Feature highlighting: Structural indicators guide the LLM’s attention to classification-
relevant patterns.

• Consistency enhancement: Standardized feature extraction ensures consistent classifica-
tion across similar designs.

The structural analysis examines multiple code aspects:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Module hierarchy: Extraction of module names, port declarations, and instantiation pat-
terns.

• Signal patterns: Identification of clock signals, reset networks, and control paths.
• Operational constructs: Detection of arithmetic operations, state machines, and memory

structures.
• Coding patterns: Recognition of design idioms indicative of specific circuit types.

B.1.3 INTELLIGENT CACHING SYSTEM

To optimize API usage and ensure reproducibility, we implement a sophisticated caching mecha-
nism:

• Content-based hashing: Each RTL design is hashed using SHA-256, with the first 16
characters serving as a unique identifier

• Persistent storage: Classification results are stored in JSON format, enabling cross-session
persistence

• Cache validation: Periodic cache cleaning removes outdated entries and validates stored
results

This caching system reduced API calls by approximately 40% during dataset construction, signifi-
cantly decreasing processing time and costs.

B.2 STRUCTURAL FEATURE EXTRACTION

B.2.1 COMPLEXITY INDICATORS

The classification system analyzes multiple structural indicators to inform the categorization pro-
cess. Table 7 presents the key patterns used for feature detection.

Table 7: Complexity Indicators for Classification
Indicator Detection Pattern
has fsm (state|STATE|next state|current state)
has arithmetic [+\-*\/%]
has memory (\[\d+:\d+\]\s*\[\d+:\d+\]|mem|ram|rom)
has counter (count|counter|cnt)
has comparison [<>]=?|==|!=

Indicators serve as strong markers for circuit functionality:

• FSM detection: The presence of state-related identifiers strongly indicates control logic,
with 92% of FSM-containing circuits correctly classified in the Control Sequential
category.

• Arithmetic operations: Circuits with arithmetic operators predominantly fall into the
Arithmetic Logic category, though their presence alone is insufficient for subcate-
gory determination.

• Memory structures: Two-dimensional arrays and memory-related keywords reliably in-
dicate Communication Memory circuits, particularly Memory/Register subcategories.

• Counter patterns: Counter-related identifiers provide strong evidence for Counter/Timer
classification within Control Sequential.

• Comparison operations: While common across categories, comparison operators com-
bined with other indicators help distinguish Comparator or Selector circuits.

B.2.2 PROMPT ENGINEERING

Our classification system employs carefully crafted prompts that leverage the LLM’s understanding
of hardware design patterns. The expert prompt includes:

1. Role definition: Establishing the LLM as a senior RTL design expert with over twenty
years of experience.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2. Context provision: Supplying extracted structural features and code snippets.
3. Category definitions: Clear descriptions of each category and subcategory with examples.
4. Classification instructions: Step-by-step guidance for analysis and categorization.
5. Output formatting: Structured JSON response format ensuring parseability.

B.2.3 CONFIDENCE-BASED VERIFICATION

For classifications with confidence scores below 0.7, the system initiates a verification phase:

• Secondary analysis: A verification prompt challenges the initial classification, asking the
LLM to reconsider based on additional context.

• Consistency checking: The verification process examines whether the assigned category
aligns with detected structural features.

• Expert override: Manual expert review is triggered for persistently low-confidence classi-
fications, ensuring dataset quality.

This multi-stage approach achieved 94.3% agreement with human expert classifications, demon-
strating the effectiveness of our LLM-based methodology.

B.3 CLASSIFICATION RESULTS

B.3.1 CATEGORY DISTRIBUTION ANALYSIS

The final classification results, presented in Table 8, reveal a well-balanced distribution across the
four main categories:

Table 8: RTL Classification Results
Main Category Subcategory Count Percentage Avg Confidence

Arithmetic Logic (23.6%)

Adder/Subtractor 645 7.5% 0.940
Multiplier/Divider 774 8.9% 0.920
ALU/Accumulator 519 6.0% 0.911
Others 114 1.3% 0.877

Control Sequential (17.9%)

Counter/Timer 906 10.5% 0.909
FSM/Sequencer 392 4.5% 0.911
Control Logic 242 2.8% 0.883
Others 8 0.1% 0.881

Data Processing (29.9%)

Comparator/Selector 1,453 16.8% 0.886
Encoder/Decoder 431 5.0% 0.917
FIFO/Buffer 407 4.7% 0.902
Others 292 3.4% 0.881

Communication Memory (28.6%)

Memory/Register 1,061 12.3% 0.925
Bus Interface 943 10.9% 0.917
Serial Interface 445 5.1% 0.921
Others 27 0.3% 0.926

Total 8,659 100.0% 0.910

B.3.2 CATEGORY CHARACTERISTICS

Circuits within the same category exhibit distinctive structural and functional characteristics:

Arithmetic Logic Units (23.6%): These circuits implement mathematical operations and logical
functions. The prevalence of multiplier/divider circuits (8.9%) reflects modern design requirements
for DSP and AI accelerators. Notably, these circuits typically exhibit:

• Deep combinational logic paths.
• Regular data-path structures.
• Minimal state elements relative to combinational logics.
• Bit-width parameterization for reusability.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Control Sequential Circuits (17.9%): Dominated by counter/timer implementations (10.5%), this
category encompasses circuits managing temporal behavior and control flow. Characteristic features
include:

• High ratio of sequential to combinational elements.

• Explicit state encoding and transitions.

• Clock and reset sensitivity.

• Control signal generation patterns.

Data Processing Units (29.9%): The largest category reflects the importance of data manipulation
in modern designs. Comparator or Selector circuits (16.8%) form the majority, indicating the
prevalence of decision-making logic. Common patterns include:

• Moderate complexity with balanced sequential/combinational ratios.

• Data steering and multiplexing structures.

• Pipeline stages for throughput optimization.

• Parameterized data widths and depths.

Communication Memory (28.6%): This category spans storage elements and communication in-
terfaces. The high proportion of memory/register (12.3%) and bus interface (10.9%) circuits reflects
modern SoC architectures. Typical characteristics include:

• Array structures for storage.

• Protocol-specific state machines.

• Synchronization logic for clock domain crossing.

• Standardized interface implementations.

B.3.3 CLASSIFICATION QUALITY METRICS

The classification quality was validated through multiple approaches:

• Inter-rater reliability: Three hardware design experts independently classified a random
sample of 500 designs, achieving 91.2% agreement with the LLM classification.

• Functional validation: Synthesis statistics (gate types, timing characteristics) correlate
strongly with assigned categories, validating the functional relevance of classifications.

• Cross-validation: Leave-one-out testing on category exemplars demonstrates 96.5% clas-
sification consistency.

This categorization enables targeted augmentation strategies for each circuit type, ensuring that mu-
tations preserve category-specific characteristics while introducing meaningful variations for robust
model training.

APPENDIX C: AST-BASED MUTATION FRAMEWORK

C.1 MUTATION METHODOLOGY

C.1.1 OVERVIEW OF AST-BASED APPROACH

Our AST-based mutation system represents a fundamental advancement over traditional text-based
RTL modification approaches. By operating at the abstract syntax tree level, we ensure syntactic
validity while introducing semantically meaningful variations. The mutation process, formalized in
Algorithm 2, leverages the hierarchical structure of Verilog code to identify and transform specific
language constructs systematically.

The AST approach offers several critical advantages:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2 AST-Based RTL Mutation Process

Require: RTL code R, mutation count N
Ensure: Mutated RTL code R′

1: ast← ParseVerilogToAST(R)
2: node paths← BuildNodePaths(ast)
3: mutations← []
4: for each node in ast do
5: if IsMutable(node) then
6: candidates← GetMutationCandidates(node)
7: mutations.append(candidates)
8: end if
9: end for

10: selected← RandomSample(mutations, N)
11: for each mutation in selected do
12: ast← ApplyMutation(ast, mutation)
13: CheckConsistency(ast)
14: end for
15: R′ ← ASTToVerilog(ast)
16: if not PassesSynthesis(R′) then
17: return ApplyTextMutation(R, N)
18: end if
19: return R′

• Syntactic guarantee: All mutations preserve the grammatical structure of Verilog, elimi-
nating syntax errors that plague text-based approaches.

• Semantic awareness: Mutations respect scope rules, type constraints, and language se-
mantics.

• Targeted transformation: Specific node types can be selectively mutated based on their
functional impacts.

• Preservation of design intent: High-level design structure remains intact while low-level
implementations vary.

C.1.2 NODE PATH CONSTRUCTION

A crucial innovation in our approach is the node path construction mechanism. Each AST node is
assigned a unique path from the root, enabling precise node location even after structural modifi-
cations. The path consists of tuples (parent, attribute, index) that encode the traversal
route:

• Parent reference: The parent node in the AST hierarchy.
• Attribute name: The attribute containing the child node (e.g., ’left’, ’right’,
’statement’).

• Index value: Position within list attributes (−1 for scalar attributes).

This path-based approach ensures that mutations can be applied reliably even when the AST struc-
ture changes during the mutation process, maintaining referential integrity throughout the transfor-
mation pipeline.

C.1.3 MUTATION SELECTION STRATEGY

The mutation selection process balances diversity with validity through a multi-criteria approach:

1. Node type filtering: Only nodes with defined mutation operators are considered.
2. Context validation: Mutations are filtered based on surrounding context (e.g., no arith-

metic mutations in sensitivity lists).
3. Diversity maximization: Selected mutations span different node types and locations to

ensure comprehensive coverage.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

4. Synthesis feasibility: Mutations likely to cause synthesis failures are deprioritized.

The random sampling of N mutations from the candidate pool ensures that each generated variant
explores a different aspect of the design space while maintaining functional validity.

C.2 MUTATION OPERATORS

C.2.1 OPERATOR CATEGORIES AND DESIGN RATIONALE

Table 9 presents our comprehensive mutation operator set, carefully designed to introduce realistic
design variations while preserving synthesizability. Each operator category targets specific aspects
of digital design:

Table 9: AST Mutation Operators and Constraints
Category Original Mutated Constraint

Arithmetic

a + b a - b Type preservation
a - b a + b Type preservation
a * b a / b Non-zero divisor
a % b a + b Type compatibility

Logical
a && b a || b Boolean context
a & b a | b Bit-width match
a ˆ b a & b Bit-width match

Relational

a > b a < b Same operand types
a >= b a <= b Same operand types
a == b a != b Type compatibility
a != b a == b Type compatibility

Temporal @(posedge clk) @(negedge clk) Sequential blocks
q <= d q = d Always block consistency

Constant 8’d10 8’d11 Bit-width preservation
16’hFF 16’hFE Base preservation

Arithmetic Operators: These mutations explore different mathematical relationships while main-
taining type compatibility. The bidirectional nature of addition/subtraction mutations reflects com-
mon design alternatives. Multiplication to division mutations are constrained to prevent division-
by-zero scenarios through static analysis of divisor ranges.

Logical Operators: Mutations between logical AND/OR operations model different decision logic
implementations. Bitwise operator mutations (AND/OR/XOR) explore alternative bit manipulation
strategies commonly found in data processing circuits. The bit-width matching constraint ensures
signal compatibility.

Relational Operators: These mutations model boundary condition variations critical for control
logic. The systematic exploration of comparison operators (>, <, >=, <=, ==, !=) ensures
comprehensive coverage of decision boundaries in FSMs and control paths.

Temporal Operators: Edge mutations (posedge/negedge) explore different clocking schemes,
particularly relevant for interface circuits. Assignment type mutations (blocking/non-
blocking) model different hardware implementation strategies while always respecting block
semantics.

Constant Mutations: Limited to ±1 modifications, these mutations explore adjacent design points
in the parameter space. The preservation of bit-width and base notation ensures that mutations
remain within the original design constraints.

C.2.2 CONSTRAINT ENFORCEMENT MECHANISMS

Each mutation operator is accompanied by constraints that ensure the transformed code remains
valid:

• Type preservation: Ensures operand types remain compatible with operators.

• Context awareness: Mutations respect their syntactic context (e.g., no blocking assign-
ments in continuous assignments).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 3 Assignment Consistency Enforcement

Require: Always block A with assignments
Ensure: Consistent assignment types

1: assignments← ExtractAssignments(A)
2: blocking count← 0
3: nonblocking count← 0
4: for each assign in assignments do
5: if assign is NonblockingSubstitution then
6: nonblocking count← nonblocking count+ 1
7: else if assign is BlockingSubstitution then
8: blocking count← blocking count+ 1
9: end if

10: end for
11: if blocking count > 0 AND nonblocking count > 0 then
12: if nonblocking count ≥ blocking count then
13: target type← nonblocking
14: else
15: target type← blocking
16: end if
17: ConvertAllAssignments(A, target type)
18: end if

• Semantic validity: Transformations maintain semantic correctness (e.g., no mixed assign-
ments in always blocks).

• Synthesis compatibility: Mutations avoid constructs known to cause synthesis issues.

C.3 ASSIGNMENT CONSISTENCY ENFORCEMENT

C.3.1 MIXED ASSIGNMENT PROBLEM

A critical challenge in RTL mutation is maintaining assignment consistency within always blocks.
Verilog’s distinction between blocking (=) and non-blocking (<=) assignments has profound impli-
cations for synthesis results. Mixed assignments within a single always block can lead to:

• Race conditions: Unpredictable behavior due to simulation/synthesis mismatches.
• Synthesis warnings/errors: Many synthesis tools reject mixed assignments.
• Unrealistic designs: Mixed assignments rarely appear in professional RTL code.

C.3.2 CONSISTENCY ALGORITHM

Algorithm 3 implements our solution to the mixed assignment problem:

The algorithm employs a majority-rule approach: when mixed assignments are detected, all assign-
ments are converted to the predominant type. This strategy:

• Preserves design intent: The majority type likely represents the designer’s intended style.
• Minimizes changes: Fewer assignments require modification.
• Maintains functionality: The conversion preserves logical behavior while ensuring syn-

thesis compatibility.

C.3.3 IMPLEMENTATION DETAILS

The assignment conversion process handles several edge cases:

• Nested blocks: Assignments within nested begin-end blocks are tracked recursively
• Case statements: Assignments within case branches are included in the consistency check.
• Conditional assignments: If-else structures are traversed to ensure complete coverage.
• Generate blocks: Dynamically generated assignments are analyzed at the AST level.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Original Augmented

84

86

88

90

92

94

96

98

100

D
en

si
ty

 (%
)

Mean: 88.49
Median: 87.58

Std: 3.16

Mean: 90.75
Median: 90.84

Std: 3.63

Density Comparison: Original vs Augmented Data

(a) Layout Density Distribution

Original Augmented

2.0

1.5

1.0

0.5

0.0

W
N

S
(n

s)

Mean: -0.88
Median: -0.49

Std: 2.31

Mean: -1.20
Median: -0.59

Std: 3.51

WNS Comparison: Original vs Augmented Data

(b) Worst Negative Slack Distribution

Original Augmented

70

60

50

40

30

20

10

0

T
N

S
(n

s)

Mean: -42.17
Median: -8.71

Std: 256.04

Mean: -41.69
Median: -11.96

Std: 200.60

TNS Comparison: Original vs Augmented Data

(c) Total Negative Slack Distribution

Original Augmented
0

5

10

15

20

25

30

Po
w

er
 (m

W
)

Mean: 12.92
Median: 4.88

Std: 23.00

Mean: 18.14
Median: 7.85

Std: 29.21

Power Comparison: Original vs Augmented Data

(d) Power Consumption Distribution

Figure 9: Distribution comparison of key metrics before and after augmentation. The box figures
show median (center line), quartiles (box edges), whiskers (1.5 IQR), and outliers (individual points)
for each metric. Original distributions (left) show limited diversity, while augmented distributions
(right) demonstrate significantly enhanced coverage.

This comprehensive approach ensures that the mutated RTL maintains professional coding standards
while exploring meaningful design variations.

APPENDIX D: DATASET DISTRIBUTION ANALYSIS

D.1 PRE- AND POST-AUGMENTATION DISTRIBUTIONS

D.1.1 VISUAL DISTRIBUTION ANALYSIS

Figure 9 provides a comprehensive visualization of how our augmentation strategy transforms the
dataset characteristics across four critical metrics. The box figure representation enables direct com-
parison of distributional properties, revealing the substantial improvements in dataset diversity and
coverage.

D.1.2 DENSITY DISTRIBUTION ENHANCEMENT

The layout density distribution (Figure 9(a)) reveals a fundamental transformation in placement
characteristics:

• Original dataset: Highly concentrated around 87% to 89%, reflecting default tool behavior
with minimal optimization variations.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• Augmented dataset: Spans 85% to 100% with increased presence of outliers, representing
diverse optimization scenarios from relaxed to extremely constrained placements.

• Upper quartile expansion: The 75th percentile shifts from 89.5% to 93.2%, indicating
successful generation of high-density designs.

This expansion is crucial for training robust models that can handle both conservative and aggressive
placement strategies encountered in industrial settings.

D.1.3 TIMING DISTRIBUTION ANALYSIS

The timing metrics (WNS and TNS) show complementary improvements:

Worst Negative Slack (Figure 9(b)):

• Range expansion: From [−2.5, 0] ns to [−6, 0] ns, covering more critical timing scenarios.

• Increased variance: Standard deviation grows by 52%, providing richer training data.

• Outlier generation: More extreme negative slack values represent challenging timing clo-
sure cases.

Total Negative Slack (Figure 9(c)):

• Distribution shape: Transforms from highly skewed to more symmetric, indicating bal-
anced representation of timing violations.

• Median shift: From −8.71 ns to −11.96 ns, reflecting realistic timing challenges.

• Reduced extreme outliers: While maintaining diversity, the augmentation avoids unreal-
istic TNS values.

D.1.4 POWER DISTRIBUTION TRANSFORMATION

The power consumption distribution (Figure 9(d)) undergoes the most dramatic transformation:

• Skewness correction: Original heavily right-skewed distribution (mean/median ratio:
2.65) becomes more balanced (ratio: 2.31).

• Coverage expansion: From concentrated low-power designs to comprehensive coverage
up to 160mW.

• Quartile redistribution: Interquartile range increases from 8.2mW to 15.3mW, providing
better representation of medium-power designs.

D.2 STATISTICAL SUMMARY

D.2.1 QUANTITATIVE ANALYSIS

Table 10 provides precise statistical measurements confirming the visual observations:
Table 10: Distribution Statistics: Original vs Augmented Dataset

Metric Original Augmented
Mean Median Std Mean Median Std

Density (%) 88.49 87.58 3.16 90.75 90.84 3.63
WNS (ns) -0.88 -0.49 2.31 -1.20 -0.59 3.51
TNS (ns) -42.17 -8.71 256.04 -41.69 -11.96 200.60
Power (mW) 12.92 4.88 23.00 18.14 7.85 29.21

D.2.2 STATISTICAL INSIGHTS

The statistical analysis reveals several key improvements:

Variance Enhancement:

• Density: 22% increase in standard deviation while maintaining realistic bounds.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• WNS: 52% increase in variability, crucial for timing prediction tasks.
• Power: 27% increase in standard deviation with better mean-median alignment.

Distribution Balance:

• TNS: Reduced standard deviation (22% decrease) indicates removal of extreme outliers
while maintaining diversity.

• Power: Although the mean–median difference increases from 8.04 mW to 10.29 mW, the
mean-to-median ratio decreases from 2.65 to 2.31, indicating reduced skewness and a more
balanced power distribution.

Central Tendency Shifts:

• All metrics show meaningful shifts in central values, indicating successful generation of
diverse operating points.

• Median changes are more moderate than mean changes, suggesting controlled augmenta-
tion without extreme bias.

D.3 DISTRIBUTION ENHANCEMENT ANALYSIS

D.3.1 COMPREHENSIVE IMPACT ASSESSMENT

The augmentation process achieves multiple objectives critical for ML model training:

• Density: The expansion from a narrow range from 87% to 89% to a broad range from 85%
to 100% coverage enables models to learn placement strategies across the entire feasible
spectrum. This diversity is essential for:

– Handling various design constraints in industrial applications.
– Learning trade-offs between area efficiency and routability.
– Generalizing to different technology nodes with varying density limits.

• Timing (WNS): The 52% increase in standard deviation (2.31 to 3.51 ns) while maintain-
ing realistic timing values ensures:

– Exposure to both timing-critical and relaxed designs.
– Better calibration of timing prediction models.
– Improved handling of edge cases in timing closure.

• Timing (TNS): The more balanced distribution with reduced skewness provides:
– Better coverage of cumulative timing effects.
– Reduced bias toward designs with minimal violations.
– Improved learning of system-wide timing impacts.

• Power: The transformation from heavily right-skewed (median 4.88mW, mean 12.92mW)
to more balanced distribution (median 7.85mW, mean 18.14mW) enables:

– Accurate power modeling across diverse design styles.
– Better representation of modern low-power and high-performance designs.
– Reduced model bias toward low-power circuits.

D.3.2 TASK-SPECIFIC BENEFITS

The distribution enhancements directly benefit specific EDA tasks:

For Timing Prediction:

• Wider WNS range improves model robustness to timing variations.
• Balanced TNS distribution enables better multi-path timing analysis.
• Density diversity teaches placement-timing correlations.

For Power Prediction:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• Comprehensive power range covers edge-to-cloud applications.

• Improved distribution symmetry reduces prediction bias.

• Density-power correlation learning from diverse samples.

D.3.3 VALIDATION OF AUGMENTATION QUALITY

The augmented distributions maintain several critical properties:

• Physical feasibility: All values remain within realizable bounds for the target technology.

• Correlation preservation: Inter-metric correlations (e.g., density-timing) remain consis-
tent with physical principles.

• Industrial relevance: Distribution ranges align with real-world design specifications.

These enhancements collectively ensure that models trained on CircuitNet 3.0 encounter compre-
hensive design scenarios, ranging from highly optimized to critically constrained cases, thereby
improving their generalization capability for industrial applications. The careful balance between
diversity expansion and realistic constraint maintenance distinguishes our augmentation approach
from random perturbation methods, resulting in a dataset that truly advances the state-of-the-art in
ML-driven EDA research.

APPENDIX E: INDUSTRIAL-GRADE PHYSICAL IMPLEMENTATION
METHODOLOGY

E.1 TECHNOLOGY FOUNDATION AND DESIGN PREPARATION

E.1.1 COMMERCIAL PDK INTEGRATION

The physical implementation of CircuitNet 3.0 leverages the GSCLIB 45nm commercial Process
Design Kit (PDK), providing industrial-grade accuracy for layout generation and performance char-
acterization. This mature technology node ensures realistic parasitic effects and manufacturing con-
straints essential for training robust ML models. The PDK configuration encompasses:

• Standard Cell Library: GSCLIB045 with comprehensive cell variants including combi-
national logic (e.g., INVX1-X8, BUFX1-X16, AND/OR/NAND/NOR gates with multi-
ple drive strengths), sequential elements (e.g., DFFHQX1-X8), complex cells (e.g., MUX,
XOR), and so on

• Technology Files: Complete LEF abstracts (gsclib045 tech.lef, gsclib045.
fixed2.lef) defining physical geometries, pin locations, and routing obstructions

• Parasitic Models: QRC technology files calibrated for accurate resistance and capacitance
extraction across 11 metal layers

• Timing Libraries: Multi-corner characterization at typical conditions with comprehensive
setup/hold timing models

E.1.2 NETLIST FLATTENING STRATEGY

To ensure consistent optimization and analysis across diverse design complexities, all synthesized
netlists undergo hierarchical flattening before physical implementation:

set_flatten true -effort high
ungroup -all -flatten
compile_ultra

This flattening approach eliminates hierarchical boundaries, enabling:

• Global optimization opportunities across module boundaries

• Uniform timing analysis without hierarchy-induced pessimism

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• Consistent power grid distribution across the entire design

• Standardized parasitic extraction and analysis methodologies

The flattened netlists are filtered based on structural characteristics to ensure design quality:

• Minimum instance count threshold: 200 gates

• Combinational-to-sequential ratio: 5 < ratio < 10,000

• These constraints eliminate trivial or structurally imbalanced designs

E.2 SCALABLE POWER DISTRIBUTION NETWORK

E.2.1 ADAPTIVE PDN ARCHITECTURE

The power distribution network implementation employs a systematic approach with layer-specific
parameters optimized for different current-carrying requirements:

Layer-specific stripe generation with progressive sizing
addStripe -nets {VSS VDD} -layer Metal2 -direction vertical \

-width 0.2 -spacing 0.8 -set_to_set_distance 6
addStripe -nets {VSS VDD} -layer Metal3 -direction horizontal \

-width 0.2 -spacing 0.8 -set_to_set_distance 6
addStripe -nets {VSS VDD} -layer Metal4 -direction vertical \

-width 0.4 -spacing 0.8 -set_to_set_distance 6
... continuing through Metal10 with increasing dimensions

The multi-layer PDN architecture implements:

• Standard cell layer (M1): Reserved for intra-cell routing and local power rails

• Lower distribution layers (M2-M3): Fine-pitch stripes (0.2µm width, 6µm pitch)

• Intermediate layers (M4-M7): Medium-pitch stripes (0.4µm width, 6-8µm pitch)

• Upper layers (M8-M10): Wide stripes (1.0µm width, 10µm pitch) for global distribution

• Pad connection layer (M11): Top-level power/ground pad connections

E.2.2 VIA INSERTION AND CONNECTIVITY

Comprehensive via insertion ensures robust vertical connectivity:

foreach layer_idx $PG_stripe_layers_idx {
editSelect -layer Metal$layer_idx -net {VDD VSS}
editPowerVia -between_selected_wires 1 -nets {VDD VSS} \

-add_vias 1 -top_layer $top_layer
}

E.3 AUTOMATED PHYSICAL OPTIMIZATION FLOW

E.3.1 PLACEMENT OPTIMIZATION

The placement stage employs Cadence Innovus’s advanced optimization algorithms with industrial-
grade settings:

setPlaceMode -place_global_uniform_density true \
-place_global_place_io_pins true

place_opt_design -place

setOptMode -fixDrc false -addInst true -deleteInst false \
-moveInst true -downsizeInst true \
-optimizeFF true -maxDensity 0.7

optDesign -preCTS

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Key optimization techniques include:

• Progressive Density Control: Staged utilization targets - 70% (placement), 80% (CTS),
95% (routing) - providing optimization headroom at each stage

• Position Exchange: Iterative cell swapping for wirelength and timing improvement

• Density Control: Target utilization of 60-70% for pre-CTS optimization headroom

• Instance Prefixing: Systematic naming (PLC prefix) for tracking optimization history

E.3.2 CLOCK TREE SYNTHESIS

Clock tree implementation with useful skew optimization:

setOptMode -usefulSkew true -usefulSkewCCOpt standard \
-maxDensity 0.8

ccopt_design
optDesign -postCTS

E.3.3 ROUTING AND POST-ROUTE OPTIMIZATION

Advanced routing with comprehensive optimization:

setNanoRouteMode -routeWithTimingDriven true \
-droutePostRouteSpreadWire true \
-droutePostRouteWidenWire true

routeDesign -globalDetail

setOptMode -fixDrc true -addInst true -moveInst true \
-downsizeInst true -optimizeFF true -maxDensity 0.95

optDesign -postRoute -setup
ecoRoute -fix_drc

Optimization capabilities include:

• Gate Sizing: Dynamic adjustment across multiple drive strength variants (typically X1,
X2, X4, X8) per cell type

• Buffer Insertion/Deletion: Automated buffer tree optimization for timing closure

• Wire Spreading/Widening: Post-route enhancements for signal integrity

• DRC Fixing: Automatic violation repair with ECO routing

• Density Target: Up to 95% utilization for area-efficient implementations

E.4 PERFORMANCE CHARACTERIZATION AND LABEL GENERATION

E.4.1 GRAPH-BASED STATIC TIMING ANALYSIS

Post-routing timing characterization employs graph-based STA for comprehensive path analysis:

Extract detailed timing after routing completion
timeDesign -postRoute -pathReports -slackReports \

-numPaths 100 -prefix postRoute_setup

Hold time analysis and fixing
setOptMode -holdTargetSlack 0.05
optDesign -postRoute -hold
timeDesign -postRoute -hold -pathReports -slackReports

The STA engine generates (implemented in post-processing scripts):

• Arrival Time (AT): Accurate signal propagation delays including wire parasitics

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

• Worst Negative Slack (WNS): Critical path timing margin after optimization

• Total Negative Slack (TNS): Cumulative timing violations across all endpoints

• Setup/Hold Reports: Comprehensive timing closure verification

E.4.2 PARASITIC EXTRACTION WITH QUANTUS RC

High-fidelity parasitic extraction using Cadence Quantus RC technology:

setExtractRCMode -engine postRoute -effortLevel high \
-coupling_c_th 0.003

extractRC
rcOut -spef design.spef

Extraction parameters ensure:

• Coupling capacitance threshold: 3fF for crosstalk-aware analysis

• High effort level for detailed metal fill and via modeling

• SPEF generation for downstream power analysis integration

E.4.3 VECTORLESS POWER ANALYSIS WITH STATISTICAL PROPAGATION

Dynamic power characterization through vectorless activity propagation:

set_power_analysis_mode -method vector_free \
-analysis_view typical

set_default_switching_activity -input_activity 0.2 \
-period 10.0ns

propagate_activity
report_power -hierarchy -threshold 0.01

Power analysis methodology:

• Activity Propagation: Statistical switching activity propagation through combinational
logic

• Toggle Rate: Default 20% switching activity for realistic power estimation

• Hierarchical Reporting: Instance-level power breakdown for detailed analysis

• Dynamic Power: Pdynamic = α · f · Ceff · V 2
DD with extracted parasitics

E.5 QUALITY ASSURANCE AND VALIDATION

E.5.1 DESIGN RULE COMPLIANCE

Comprehensive DRC verification ensures manufacturing readiness:

verify_drc -limit 10000
verify_connectivity -type all -noAntenna
checkPlace -noPreplace

E.5.2 DATASET QUALITY METRICS

Each generated layout undergoes rigorous quality assessment, as shown in Table 11.

Note: The 96.8% timing closure rate reflects our intentional inclusion of challenging designs near
timing limits, providing valuable training cases for ML models targeting critical-path scenarios.

E.5.3 INDUSTRIAL RELEVANCE VALIDATION

The physical implementation methodology ensures:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 11: Physical Implementation Quality Metrics
Metric Target Achieved
Placement Density 60-95% 88.3% (avg)
DRC Violations (post-fix) 0 0
Timing Closure Rate > 95% 96.8%
Power Correlation (R2) > 0.9 0.92
Routing Congestion < 85% 78.5% (avg)

• Tool Compatibility: Scripts compatible with Synopsys DC 2020.09 and Cadence Innovus
19.11

• Process Portability: Adaptable to different technology nodes through PDK abstraction
• Optimization Depth: Multiple optimization stages matching industrial tape-out flows
• Label Accuracy: Post-layout labels incorporating all physical effects for realistic ML

training

This comprehensive methodology ensures CircuitNet 3.0 provides industrially relevant physical im-
plementations with accurate performance characterization, enabling robust ML model training for
real-world EDA applications. The systematic approach from synthesis through post-route optimiza-
tion mirrors commercial design flows, ensuring trained models can generalize to industrial design
challenges.

30

	Introduction
	Preliminaries
	Overview of CircuitNet 3.0
	Data Generation and Augmentation
	Overview of Challenges and Methodologies
	RTL Data Collection and Cleaning
	Rapid and Efficient Data Generation
	Task-Oriented Data Augmentation

	Evaluations on CircuitNet 3.0
	Experimental Setup
	Multi-Stage and Multi-Modal Learning Superiority
	Data Distribution Analysis: Pre- and Post-Augmentation
	Performance Analysis on Augmented Data

	Conclusion

