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ABSTRACT

Decoding experimental variables from brain imaging data is gaining popularity,
with applications in brain-computer interfaces and the study of neural represen-
tations. Decoding is typically subject-specific and does not generalise well over
subjects. Here, we propose a method that uses subject embedding, analogous to
word embedding in Natural Language Processing, to learn and exploit the structure
in between subject variability as part of a decoding model, our adaptation of the
WaveNet architecture for classification. We apply this to magnetoencephalography
data, where 15 subjects viewed 118 different images, with 30 examples per image;
to classify images using the entire 1s window following image presentation. We
show that the combination of deep learning and subject embedding is crucial to
closing the performance gap between subject- and group-level decoding models.
Importantly, group models outperform subject models on low-accuracy subjects
(but impair high-accuracy subjects) and can be helpful for initialising subject mod-
els. The potential of such group modelling is even higher with bigger datasets. To
better enable physiological interpretation at the group level we demonstrate the use
of permutation feature importance developing insights into the spatio-temporal and
spectral information encoded in the models. All code is available on GitHub1.

1 INTRODUCTION

In recent years, decoding has gained in popularity in neuroscience (Kay et al., 2008), specifically
decoding external variables (e.g. stimulus category) from internal states (i.e. brain activity). Such
analyses can be useful for brain-computer interface (BCI) applications (Willett et al., 2021) or to
gain neuroscientific insights (Guggenmos et al., 2018; Kay et al., 2008). Analysing deep learning
methods on such data is also beneficial for the machine learning community. Namely, the small,
noisy, high-dimensional datasets test the limits of popular architectures on real data and demand
research into new methods (Zubarev et al., 2019; Kostas et al., 2021). Applications of decoding to
brain recordings typically fit separate (often linear) models per dataset, per subject (Guggenmos et al.,
2018; Dash et al., 2020b). This has the benefit that the decoding is tuned to the dataset/subject, but has
the drawback that it is unable to leverage knowledge that could be transferred across datasets/subjects.
This is especially desirable for the field of neuroimaging, because gathering more data is expensive
and often impossible (e.g. in clinical populations). More practical drawbacks of subject-specific
(subject-level) models include increased computational load, a higher chance of overfitting, and the
inability to adapt to new subjects. We aim to leverage data from multiple subjects and train a shared
model that can generalise across subjects (group-level). A conceptual visualisation of subject-level
(SL) and group-level (GL) models is given in Figure 1.

Magnetoencephalography (MEG) measures magnetic fields induced by electrical activity in the brain,
and it is one of the main noninvasive brain recording methodologies, next to electroencephalography
(EEG) and functional Magnetic Resonance Imaging (fMRI). Due to high temporal resolution and
relatively good spatial resolution, MEG is an excellent method for studying the fast dynamics of brain
activity. MEG is highly suitable for decoding analyses (Du et al., 2019), which is mostly done using
SL models. This is because between-subject variability of neuroimaging data limits the application of
a single shared model between subjects without capturing the structure of between-subject variability
(Olivetti et al., 2014; Li et al., 2021). Such an approach, which we call naive group modelling,

1Anonymized.
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Figure 1: Comparison of subject-level (SL) and naive group-level (GL) modelling. (a) A separate
model is trained on the trials (examples) of each subject. (b) A single, shared model is trained on the
trials of all subjects without capturing between subject variability. Each trial is C x T (channels x
timesteps) dimensional. Each of the s subjects has t trials.

effectively pretends that all data comes from the same subject (see Figure 1b). Between-subject
variability has multiple sources, such as different anatomical structures, different positions in the
scanner, signal-to-noise ratio, etc. (Saha & Baumert, 2020). To overcome this, we propose a general
architecture capable of jointly decoding multiple subjects with the help of subject embeddings
(Figure 2). The scope of this paper is full-epoch decoding, and comparisons with sliding-window
decoding approaches often used in neuroscience are left for future work.

To qualify how we aim to improve on SL models, we will next describe the two main approaches to
evaluating decoding models, with different underlying assumptions and goals. One approach is to
construct separate train and test splits for each subject that are made up of different, non-overlapping
trials. This can be called within-subject splitting evaluation. SL models are evaluated by definition
in this way, and it is a very common setup in the neuroscience literature (Guggenmos et al., 2018;
Cooney et al., 2019b; Cichy & Pantazis, 2017; Dash et al., 2020b;a; Nath et al., 2020). In this work,
our main aim is to improve over SL models in the context of within-subject splitting evaluation and
improve the prediction of left-out trials, by using a single group decoding model that generalises
across subjects. We call this GL method across-subject decoding. We are motivated by the fact that
GL models that perform well in this manner can be useful for gaining neuroscientific insights that are
relevant at the group level, as we will show in Sections 4.4 and 4.5. The other prominent approach to
evaluating group models, leave-one-subject-out (LOSO) analysis, is also presented in Section 4.3.
In this scenario, GL models are trained on data from multiple subjects and tested on a new, unseen
subject (Zubarev et al., 2019), which can be especially useful in zero-shot BCI applications. Although
in this case, we find no improvement using our embedding-aided group model, we think this may
change with larger datasets with many more subjects. Our aim is to improve across-subject decoding
of MEG data by using a group model that generalizes across subjects. To be clear this objective and
the datasets we use are not related to any kind of direct BCI application.

We make the following contributions using a MEG dataset with visual task (Cichy et al., 2016):
1. A GL model with subject embeddings is introduced, substantially improving over naive group
modelling. 2. Insight is provided into how non-linearity and subject embedding helps group modelling.
3. Neuroscientific insights are gained from the deep learning-based decoding model. 4. Analysis of
model weights reveals how meaningful spatio-temporal and spectral information is encoded.

2 RELATED WORK

Decoding can be applied to most tasks/modalities, such as images (Cichy et al., 2016), phonemes
(Mugler et al., 2014), words (Cooney et al., 2019b; Hultén et al., 2021), sentences (Dash et al., 2020b),
and motor movements such as imagined handwriting (Willett et al., 2021), jaw movements (Dash
et al., 2020a), or finger movements (Elango et al., 2017). Here, we used image categorisation because
it is a widely studied decoding task and we had access to a dataset which is relatively large for the field
of neuroimaging. Our results should readily generalise to other decoding modalities. Chaibub Neto
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et al. (2019) strongly argue against using SL modelling, especially for clinical applications. Recently,
some transfer learning approaches have been proposed to deal with the problem of variability between
subjects. Kostas & Rudzicz (2020) have proposed two distinct methods. The euclidean alignment
is very similar to a spatial whitening of the data. We have tried this in conjunction with our group
model, however, we found this to lower performance, and thus opted for a simpler channel-wise
standardization. The other method, mixup regularization is entirely complementary to our approach
and can be used in conjunction. This is a general regularization/data augmentation technique and
does not specifically deal with inter-subject variability. Most transfer learning frameworks consist of
applying a model trained on one subject to a different (target) subject (Elango et al., 2017; Dash et al.,
2019; Cooney et al., 2019a; Olivetti et al., 2014; Halme & Parkkonen, 2018; Li et al., 2021). Some
approaches use learnable affine transformations between subjects (Elango et al., 2017), while others
finetune the whole model on target subjects (Cooney et al., 2019a; Dash et al., 2019). However, these
approaches offer only a marginal improvement over naive group modelling and do not use a shared
model across subjects. We aim to significantly improve this by using a general framework and model
capable of decoding multiple subjects at once.

We must note that while there is a clear distinction between within-subject splitting and LOSO
(leave-one-subject-out) evaluation, most of the transfer learning works that aim to improve in a
LOSO scenario do use some form of training on the left-out subject (Zubarev et al., 2019). Thus, the
distinction between the two evaluation frameworks gets less transparent and we discuss in Section 4.3
how our methods could be useful in this less stringent LOSO definition. We believe that ultimately the
way a method is intended to be used in practise should determine how that method is benchmarked.

Transfer learning is popular in the wider machine learning field. Parallels can be drawn with domain
adaptation (Long et al., 2015), or transferring knowledge from large to small datasets within the same
domain (Wang et al., 2019; Zhuang et al., 2020). Natural language processing (NLP) datasets often
contain data from widely different sources (Radford et al., 2022), but due to the sheer size of the
dataset and model complexity, training on joint data achieves good results (Brown et al., 2020; Devlin
et al., 2019). As discussed before, this naive concatenation of subjects does not work well on small
neuroimaging datasets. Perhaps the most relevant parallels can be drawn with dialogue and speech
modelling work, where inter-speaker differences are modelled using speaker embeddings (Li et al.,
2016; Zhang et al., 2018; Saito et al., 2019; Mridha et al., 2021). Chehab et al. (2021) have similarly
found that subject embeddings provide a small but significant improvement in encoding MEG data
from a language task. However, limited information is provided on how subject embedding helps, and
their results cannot be directly generalised to MEG decoding. We build on this work, expanding it to
the task of decoding MEG data, and provide additional insight into how deep learning and subject
embeddings help GL decoding models.

3 METHODS

3.1 DATA

In this work, a task-MEG dataset is used where 15 subjects view 118 different images, with each
image viewed 30 times (Cichy et al., 2016). The data is publicly available2, however, we obtained
the continuous raw MEG data directly from the authors to be able to run our preprocessing pipeline
using MNE-Python (Gramfort et al., 2013). Raw data is bandpass filtered between 0.1 and 125 Hz
and line noise is removed with notch filters. After downsampling to 250 Hz, 1.024-second epochs are
extracted, starting 100 ms before stimulus presentation. This resulted in 306 x 256-dimensional trials
(channels x timesteps) from the 306 MEG sensors. Whitening is used to remove covariance between
channels for SL models, whereas for GL models, a standardisation is performed per channel. We do
multiclass decoding, predicting a separate probability for each of the 118 classes (images).

3.2 MODELS

Our deep learning model, the WaveNet Classifier, is inspired by previous approaches to applying
WaveNet (van den Oord et al., 2016) for classification (Zhang et al., 2020). We do not aim to design
a new kind of architecture for decoding MEG data, but rather build our model based on previously

2http://userpage.fu-berlin.de/rmcichy/fusion_project_page/main.html
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Figure 2: Group-level WaveNet Classifier with subject embeddings. Dashed boxes represent parts
of the model which differ between SL and GL versions of our architecture. Red boxes represent
learnable parameters. For convolutional layers the numbers represent input channels x output channels
x kernel size. For fully-connected layers the numbers represent input neurons x output neurons. The
embedding layer dimensionality is given as s x E (15 x 10), where s is number of subjects, and E
is the embedding size. Embeddings are concatenated with input trials to provide information about
which trial is coming from which subject. The classification loss is cross-entropy.

proven CNN-based architectures for EEG and MEG data (Lawhern et al., 2018). While Wavenet has
proved to be successful in the audio domain, to the best of our knowledge, there is no prior work
applying Wavenet to neural decoding. Our model consists of 2 parts: the (temporal) convolutional
block, intended to act as a feature extractor; and the fully-connected block, which is designed for
classification (Figure 2). The convolutional block uses a stack of 1D dilated convolutional layers,
which include dropout and the inverse hyperbolic sine activation function. The dilated convolutions
in WaveNet are effective for modelling time series data as successive layers extracts complementary
frequency content of the input (Borovykh et al., 2018). Since the dilation factor is doubled in
successive layers, the receptive field of the convolutional block is 2num_layers. Given there is no
pooling and a convolution stride of 1, the output of each layer preserves the temporal dimensionality3.
At the end of the convolutional block, we downsample temporally by the size of the receptive field.
In the model with 6 convolutional layers, this means that the initial input of size 256 is downsampled
by a factor of 64, resulting in 4 values per channel. Next, this output is flattened and fed into a
fully-connected block. The final output is a logit vector corresponding to the 118 classes. The model
is trained with the cross-entropy loss for classification.

For SL modelling, the Wavenet Classifier contains 3 convolutional layers, whereas for group mod-
elling it has 6, further motivated in Section 4. Our improvement of the naive group model includes
subject embeddings, which are introduced as a way of dealing with between-subject variability,
similarly to Chehab et al. (2021). Like word embeddings in NLP, each subject has a corresponding
dense vector (Mikolov et al., 2013). This vector is concatenated with the channel dimension of the
input trial across all timesteps. Thus, in the embedding-aided GL model, input trials are (C+E) x
T dimensional, where E is the embedding size. Subject embeddings are learnt together with other
model weights using backpropagation. We reasoned that an embedding-aided model can learn general
features across subjects, with the capability of adapting its internal representations for each subject.

3.3 MODEL ANALYSIS

In this section, we describe several approaches to uncover the information encoded in the WaveNet
Classifier. In Kernel FIR Analysis, we investigate the frequency characteristics of the convolutional
kernels. Random noise is fed into a trained model, and the power spectral density of the output of
specific kernels is computed to assess their finite impulse response (FIR) properties. Permutation
Feature Importance (PFI) is a powerful method to assess which features contribute the most to model
performance (Altmann et al., 2010; Chehab et al., 2021). Chehab et al. (2021) specifically have
showed the power of PFI for analysing how certain language features like word frequency affect
the performance of forecasting MEG data at different temporal and spatial locations. Conversely, in
MEG decoding we can directly assess both spatial and temporal information by permuting across
timesteps (for each channel) and across channels (for each timestep), respectively. We call these

3Except the amount that gets chopped off because of the kernel size itself, since we do not use padding.
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Figure 3: SL and GL models evaluated on the validation set of each subject. Paired samples T-tests
are shown for comparisons of interest (∗ = p < 5e−2, ∗∗ = p < 1e−2, ∗∗∗ = p < 1e−3, ∗∗∗∗ =
p < 1e−4). The non-linear group-emb finetuned model is finetuned separately on each
subject, initialized with the non-linear group-emb model. Chance level is 1/118.

temporal and spatial PFI, respectively. A decrease from the original accuracy (with unpermuted
inputs) indicates that (visual) stimulus-related information is present in the MEG data in certain time
periods or sensors. Alternatively, when looking at individual kernels, our feature importance measure
is the absolute difference between the kernel output using the original and permuted inputs. We
reason that a more important feature will cause a higher output deviation. To assess the frequency
sensitivity of individual kernels, we introduce the spectral PFI. First, the data in each channel of
each trial is Fourier transformed, and the Fourier coefficients are shuffled across channels for each
frequency (or frequency band). Then, the inverse Fourier transform is computed, obtaining a trial
with disrupted information in specific frequency bands.

4 RESULTS

4.1 SUBJECT EMBEDDING CLOSES THE GAP BETWEEN SL AND GL MODELS

Our main evaluation metric is classification accuracy across the 118 classes. Train and validation
splits with a 4:1 ratio were constructed for each subject and class. This means that classes are
balanced (i.e., contain the same amount of examples) across subjects and splits. The first 20% of the
continuous MEG data is used to extract validation examples, with the remaining used for training
trials. SL and GL models are trained and evaluated on the same splits. For each model, an extra
training is conducted wherein the (linear) identity function is used as an activation function to assess
the influence of non-linearity, which is the bedrock of deep learning. Linear and non-linear models
are trained for 500 and 2000 epochs (full passes of the training data), respectively, with the Adam
optimiser (Kingma & Ba, 2015). More training details are provided in the Appendix. We compute
paired samples T-tests for comparisons of interest over methods, where the pairing is within subject
and samples are the subject-level mean accuracies over validation trials. We used PyTorch for training
(Paszke et al., 2019) and several other packages for analysis and visualisation (Pedregosa et al., 2011;
Virtanen et al., 2020; Harris et al., 2020; Wes McKinney, 2010; Waskom, 2021; Hunter, 2007).

Validation accuracies for all models are shown in Figure 3. Interestingly, at the subject level, linear
models performed slightly better than non-linear (4% increase, p = 5.7e− 4). We think that both
the limit in data size and noise levels in the data contribute to the subpar performance of non-linear
models. Although some studies have found deep learning to improve over simpler linear models, this
improvement is often marginal (Cooney et al., 2019b; Schirrmeister et al., 2017). Such results are
difficult to generalise across different MEG datasets, due to variability in tasks, the number of subjects,
and the amount and quality of data (Schirrmeister et al., 2017). The large between-subject variability
common to MEG datasets is apparent, with individual subjects’ accuracy ranging from 5% to 88%. As
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expected, the naive group models, i.e. a naive application of either the linear or non-linear WaveNet
Classifier to the group modelling problem, result in much worse performance than SL models (30%
decrease). Inferring such high variability between so few subjects implicitly is not trivial. Adding
subject embeddings to the non-linear model improves performance by 24% (p = 1.9e− 6), with no
increase for the linear model. This shows that leveraging subject embeddings in conjunction with
non-linear activations can narrow the gap with SL models (6% difference, p = 1.3e− 2). Limiting
the non-linearity to the first layer resulted in a subpar performance, similar to that of a linear model.
This indicates that non-linearity is needed within multiple layers to benefit from subject embeddings.

We also finetuned the embedding-aided GL model on the training data of each subject separately
(non-linear group-emb finetuned) for 500 epochs. We effectively use the GL model
as an initialisation for SL models, improving over SL models trained from scratch, achieving
50% accuracy (5% increase, p = 1e − 3). This shows that representations learned at the group
level are useful for SL modelling. In contrast, finetuning a naive group model (non-linear
group finetuned) only achieved 42% accuracy (8% lower), showing that finetuning perfor-
mance depends on good GL performance. Thus, in addition to closing the gap between SL and
GL modelling, finetuning our embedding-aided model provides the best overall accuracy for SL
modelling. The variance of non-linear group-emb (0.19) and non-linear group-emb
finetuned (0.24) is lower than the SL models (0.26). Generally, the group model is reducing
between-subject variability. In the case of non-linear group-emb, 4 subjects with generally
low accuracies (15-30%) had higher accuracies than SL models (even though the mean across sub-
jects is lower). This shows that training a group model is a good approach to improve low-accuracy
subjects. Indeed, strong negative correlations of -0.88 and -0.54 are obtained between the SL accu-
racy and the change in accuracy achieved by the non-linear group-emb and non-linear
group-emb finetuned models, respectively. Comparing finetuning to from-scratch SL models,
only 2 high-accuracy subjects are slightly worse, and generally low/mid-accuracy subjects show more
improvement than high-accuracy subjects (see Appendix for plots). In addition to the main dataset
used in this section we also analysed our main findings on another publicly available visual MEG
dataset (see Appendix for results).

In summary, these results suggest the following recommendations for decoding MEG task data.
1. Subject embeddings and non-linearity should be used for achieving good group models. 2. GL
models can be used to improve over SL models on low-performance subjects. 3. For the best SL
performance, the finetuning approach should be used, benefitting low-performance subjects the most.

4.2 INSIGHTS INTO SUBJECT EMBEDDINGS AND OTHER MODELLING CHOICES

For the embedding-aided GL setup, 4 further models were trained for 5-fold cross-validation. Average
accuracy was 37.4% (as opposed to the 38% reported in Figure 3), with a 95% confidence interval
of 0.8%. Thus, the proposed GL model is robust to different random seeds and dataset partitions.
A more extensive robustness analysis is omitted due to computational constraints. In non-linear
SL models, performance improves as we use fewer convolutional layers. This effect plateaus at 3
layers, whereas for non-linear GL models using more layers improved accuracy (see Table 1 in the
Appendix for exact accuracies). Thus, SL models seem to rely more on the fully-connected block
as they are unable to extract good features, and GL models rely more on the convolutional block to
learn shared features across subjects. To be clear, because of how we perform the downsampling
after the convolutional layers (described in Section 4.1), using fewer convolutional layers increases
the overall parameter count because the fully-connected block has to be enlarged. Thus, the group
model (with 6 conv layers), is about 2.5x smaller than the SL models (with 3 conv layers). However,
non-linear group-emb finetuned models achieve higher accuracy than from-scratch SL
models. This shows that when initialised well (with a group model trained on multiple subjects) even
SL models can benefit from non-linearity and more convolutional layers.

We tried different approaches to understand how subject embeddings help the group model. A
clustering or 2D projection of the embedding space such as PCA or t-SNE (Van der Maaten & Hinton,
2008) did not show any clusters (see Figure 8 in the Appendix). This is likely to be a consequence of
only having 15 subjects, since cases where such visualisations work well (Liu et al., 2017) typically
have thousands of dimensions (e.g. words in word-embeddings). To assess whether the embeddings
simply encode which subjects are good, we transformed the embeddings with PCA and correlated
all components with the accuracies across subjects. We found no significant correlations; therefore,
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(a) Generalisation and finetuning on left-out subjects. The
horizontal axis shows the amount of training data used
from the left-out subject; a training set ratio of 0 corre-
sponds to a zero-shot approach. subject is trained from
scratch, while group-emb and group are initialised
with the non-linear GL model with and without embed-
dings, respectively. The 95% confidence interval of the
accuracy across left-out subjects is shown with shading.

(b) Temporal (line) and spatial (sensor space map)
PFI for the non-linear group-emb model.
For temporal PFI accuracy loss (vertical axis) is
plotted with respect to time since visual image
presentation (horizontal axis). Shading shows
the 95% confidence interval which is not visible
due to low variability. For spatial PFI, darker red
shading is equivalent to higher accuracy loss.

Figure 4: Generalisation performance (a); Temporal and Spatial PFI (b).

embeddings do not appear to encode information about SL accuracy. To assess how much embeddings
contribute to a trained model, we tried both setting the embeddings to zero and shuffling them. This
reduced the accuracy to 10% (from 38%). Thus, embeddings encode crucial information to aid
decoding, but the model is still better than chance without them. For further insights see Appendix.

4.3 LEAVE-ONE-SUBJECT-OUT EVALUATION

In this section we report leave-one-subject-out (LOSO) cross-validation results, a common evaluation
setup with several use cases as described in Section 1. We also analyse how performance improves
when we allow models to use increasing amounts of data (finetuning) from the left-out subject. We
compared the naive group and group-embedding models (non-linear) with a from-scratch SL model
(linear) trained only on the left-out subject. To be clear, as in the finetuning approach in Section 4.1
the group models are only used as initialisation for an SL model trained on the left-out subject.
The only difference is that the subject on which we are finetuning is not in the training data of the
group models (as opposed to the finetuning setup in Section 4.1). For the embedding-aided group
model, the left-out subject’s embedding was initialised randomly. In the LOSO (zero-shot) evaluation,
group models achieve 5% accuracy (Figure 4a). Up to the case when 70% of the training set is
used a finetuned GL model is much better than a from-scratch SL model (p < 0.05, corrected for
multiple comparisons). The benefit of GL models in LOSO analysis has been previously established
(Elango et al., 2017). Unsurprisingly, the embedding-aided group model does not improve over the
naive group model, but is, importantly, not worse. As opposed to the finetuning setup in Figure 3,
when adapting to new subjects, better group performance does not translate to better finetuning
performance, as the model is unable to leverage the new subject’s embedding.

Exploiting subject embeddings in a pure LOSO framework is not trivial, as some additional approach
is needed to initialise/learn the embedding of the left-out subject in an unbiased manner. In larger
datasets with more subjects, between-subject similarities in the embeddings could be exploited and
different heuristics explored, e.g. initialising the embedding with the average of all learned subject
embeddings. However, research aimed at improving performance in new subjects often leverages
transfer learning in some way, where a limited amount of data from the new subject can be used
(Zubarev et al., 2019). In this scenario, we think our across-subject group model could be helpful,
by, for example, using the limited data from the new subject or by learning a useful embedding
for the new subject in an unsupervised manner. As we have shown in Section 4.1 this could be
especially useful for subjects with low performance. As opposed to a naive continuation of the trends
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in Figure 4a, we expect that with more trials, the gap between group initialisation and training from
scratch would continue, up to some limit. We believe that the reason why the gap closes at 100%
training data is due to the ratio of training and validation sets and the low number of examples. The
small validation set (6 examples per class) is probably not representative of the full data distribution.

4.4 NEUROSCIENTIFIC INSIGHTS ARE GAINED FROM A DEEP LEARNING BASED GL MODEL

An established critique of deep learning models applied to neuroimaging data is the lack of inter-
pretable insight (Murdoch et al., 2019) they provide about the underlying neural processes that drive
the decoding. To gain such neuroscientific insights, it is useful to assess the time- and space-resolved
information/discriminability within trials. As mentioned in Section 3.3, permutation feature impor-
tance (PFI) is a suitable, model-agnostic measure to do this. Figure 4b shows the temporal and spatial
PFI of the non-linear group-embedding model. To make the results robust and smooth, the shuffling
for temporal PFI was applied to 100 ms windows, and magnetometers and gradiometers in the same
location were shuffled together for spatial PFI. Time windows or channels with higher accuracy loss
than others are interpreted as containing more information about the neural discriminability of the
visual images. This indicates when and where information processing related to the presented images
is happening in the brain. Temporal PFI shows a large peak around 150 ms which is often observed in
neuroscientific decoding studies employing sliding window analysis to assess temporal information
content (Higgins et al., 2022). After this, the information content rapidly decreases, with a second,
smaller peak around 650 ms, which could correspond to a brain response following the end of image
presentation at 500 ms. Spatial PFI shows that the most important channels are in the back of the
head in the sensors in visual areas, which is as expected for a visual task. We found good agreement
between this PFI analysis and a standard gradient-based analysis, further detailed in the Appendix.

4.5 WEIGHTS ENCODE MEANINGFUL SPATIO-TEMPORAL AND SPECTRAL INFORMATION

To provide further insight into our non-linear group-emb model, we next show that neuro-
scientifically interpretable spatial, temporal, and spectral information can be obtained by analysing
the learnt weights. All visualisations are from 3 convolutional layers, with all 6 layers shown in
the Appendix. Kernels within a layer seem to have similar temporal sensitivity, even though only 5
are shown from over 1e5 total kernels (Figure 5c). Output deviations are standardised to compare
temporal PFI across kernels with different output magnitudes. In the early layers, sensitivity peaks
around 100 ms (as in Figure 4b), then rapidly decreases, eventually climbing again slowly. Kernels in
early layers have somewhat random spatial sensitivity (Figure 5a), but this gets narrowed down to
channels over the visual cortex in deeper layers, with some differences between individual kernels.
This sensitivity is similar to the spatial features that were shown to be most informative for classifica-
tion performance (see Figure 4b). Figure 5b shows the temporal profile of the spatial PFI. This is
achieved by focusing the shuffling to 100 ms time windows and 4-channel neighbourhoods (3 closest
channels for each channel), repeated across all timesteps and channels. Spatial sensitivity does not
seem to change with time; i.e. the most important channels are always the same.

Spectral PFI measures the change in kernel output to perturbations in specific frequency bands (see
Figure 10a in Appendix). Across all layers and kernels, the profile has a 1/f (frequency) shape with a
clear peak at 10 Hz. These are common features of the MEG signal (Demanuele et al., 2007; Drewes
et al., 2022), indicating that the spectral sensitivity of the kernels coincides with the power spectra of
the data. We also looked at the spectral PFI of 4-channel neighbourhoods (Figure 10b in Appendix)
and found that kernels are sensitive to the same channels (in the visual area) across all frequencies,
with these channels having larger 10 Hz peaks. Kernel FIR analysis shows the power spectra of
kernels’ outputs when input examples are Gaussian noise (see Figure 10c in Appnedix). The subject
embedding was set to a subject with average accuracy. The power spectra were normalised to make
visual comparisons between kernels easier. Since the WaveNet architecture uses dilated filters with
only 2 values per filter, early layers show broad filtering characteristics, but already in layer 2 more
emphasis is put on lower frequencies. In deeper layers, filters (kernels) become more tuned to
specific frequencies, generally below 20Hz. This is in line with the spectral properties of MEG data
as discussed above. Both the spectral PFI and kernel FIR analysis shows that there is significant
variability between the spectral information encoded by various kernels. From the analysis presented
in this section, we can conclude that kernels are sensitive to interpretable temporal, spatial, and
spectral features of the MEG data.
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Figure 5: Spatio-temporal insights can be obtained using PFI. Spatial (a), channel-wise temporal (b),
and temporal (c) PFI across non-linear group-emb kernels within 3 layers (rows). For spatial
PFI, kernels are plotted separately; whereas for temporal PFI, 5 kernels (lines) are plotted together.
Channel-wise temporal PFI shows the temporal PFI of each channel for Kernel 2. Channel colouring
is matched to the corresponding spatial PFI map, and darker reds mean higher output deviation. For
temporal PFI, output deviation is normalised. The horizontal axis shows the time elapsed since image
presentation, for both temporal PFI types. 95% confidence intervals are shown with shading.

5 DISCUSSION

We have proposed a deep learning-based group-level (GL) model that improves significantly over
naive GL modelling, in which nothing is learnt about the nature of between-subject variability,
achieving similar performance to subject-level (SL) models. We have shown how subject embeddings
and non-linearity are crucial for this. These are important insights towards the goal of using group
models in decoding neuroimaging data, which would allow for better use of this inherently limited
resource. Our proposed GL model is especially beneficial in the case of low-accuracy subjects,
and can be useful as an initialisation for SL models in the case of across-subject decoding. In
addition, we have demonstrated that we can use PFI to obtain insight into which time points and
channels contributed to the decoding and to obtain meaningful information encoded in convolutional
kernels. Using this and other methods, such as representational similarity analysis, neuroscientific
investigations can be performed at the group level.

We found that in the context of leave-one-subject-out evaluation, using subject embeddings did
not improve performance. The outcome may be different when our method is applied to larger
neuroimaging datasets with more subjects or when subject embeddings are combined with other
transfer learning methods, as discussed in Section 4.3. Further research is needed into deep learning
models capable of implicitly learning inter-subject variability. An important question is whether
scaling up models on large datasets would achieve this goal. We expect the subject embedding and
group modelling to generalise to different task and recording modalities (EEG, fMRI, etc.) because
they face similar decoding challenges. The specific Wavenet-based model is readily generalisable to
other electrophysiological data such as EEG and Electrocortiocography, because of the same temporal
dynamics they capture. The scope of this work is full-epoch decoding, and it remains to be seen how
our methods perform with sliding-window decoding.

Other than being useful for fine-tuning, our embedding-aided group model can be useful in the
case of much larger datasets where we cannot afford to have a separate model for each subject. In
neural decoding, group models are widely understood to perform worse than individual models
((Guggenmos et al., 2018; Dash et al., 2020b)). But why is this? By plotting per-subject performance
in both kinds of models (see Figure 9 in the Appendix), we see something revealing. While group
results are worse on average, some subjects are decoded better in the group model than in their
individual models. These generally appear to be the subjects who perform worst on the individual
models. This suggests that group models could be successfully used for some subjects if those
subjects could be identified. Our results suggest follow-up studies to understand why some subjects
performed better or worse.
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A APPENDIX

Dropout was set to 0.4 and 0.7, and a batch size of 590 and 59 was used for GL and SL models,
respectively. Learning rate was set to 0.0001 for GL, and 0.00005 for SL models. Training of a
single SL and GL model took 5-15 minutes and 4 hours on an NVIDIA A100 GPU, respectively.
For linear models, validation losses (cross-entropy) and accuracies were negatively correlated, i.e.
loss decreases while accuracy increases, and eventually both suggested overfitting. Since non-linear
models are more expressive, they overfitted sooner according to the loss, but accuracy kept improving
until it reached a plateau, never overfitting. Analysing the loss distribution across validation examples
(for non-linear models) shows that even during overfitting most examples’ loss keeps decreasing with
a few high-loss outliers disproportionately influencing the mean. Since accuracy is binary, outliers
are diminished, explaining the apparent difference in learning behaviour. For linear models, this
unintuitive behaviour was not observed probably due to inherent model simplicity.
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(a) Temporal gradient analysis (b) Spatial gradient analysis

Figure 6: Using gradient analysis by backpropagating the loss to randomly initialized inputs. In (a)
we can see the temporal profile of the gradients averaged over channels. In (b) we can see the spatial
profile of the gradients averaged over time.

We analysed our main findings on another publicly available visual MEG dataset with 92 different
images (15 subjects, and 30 trials per image) (Cichy et al., 2014). Linear SL models achieved 35%
accuracy, whereas a linear group model without embeddings had 12%, and a nonlinear group model
with embeddings had 28%. Thus we can see that our approach behaves similarly on this dataset,
improving a lot over the naive group baseline, but not quite achieving the performance of the linear
SL models. Finetuning the group model separately on individual subjects achieved 38% accuracy
surpassing from-scratch SL models.

Training with an embedding dimensionality of 3 and 14, resulted in 20% and 38% accuracy, re-
spectively. We tried these two settings to see how embedding size in the lower and upper limits
influences performance. As an embedding dimensionality of 14 performs the same as 10, we could
draw the conclusion that 10 is not a limiting factor. From the much worse result with an embedding
dimensionality of 3 we could draw the conclusion that compressing the embedding representations
too much is not possible. As with the clustering analysis, this is likely to be due to having few
subjects. To gain further insight into the learned subject embeddings we computed accuracy on
each subject’s validation data using other subjects’ embeddings. In the resulting subject-by-subject
confusion matrix the value in the i-th row and j-th column shows how well the embedding of subject i
can be replaced with the embedding of subject j (Figure 7). After division with the original accuracies
the metric shows how much accuracy can be retained when swapping subject embeddings. Some
subjects’ embedding cannot be replaced by others (e.g. subject 3), and some subjects’ embedding can
be more easily replaced (e.g. subject 12). Conversely, some subjects’ embeddings are more general
as they can replace many others (e.g. subject 14), and some are less general (e.g. subject 2). We tried
clustering this matrix, and looked at correlation with both embedding distance and subject accuracy,
however no meaningful results were found.

We compared the accuracy-based PFI analysis with a standard gradient-based analysis where a
saliency map is obtained by backpropagating to randomly initialized inputs (Figure 6. We smoothed
the temporal profile with the same window size as for the PFI analysis. Temporally we can see
that the agreement between the two methods is high, with peaks aligning very well (less than 10ms
difference). Spatially the two methods do show some differences, but overall gradient analysis still
points to the most important information being in the visual cortex.

14



Under review as a conference paper at ICLR 2023

linear subject nonlinear subject nonlinear group-emb

3 conv layers 0.45 0.39 0.22
6 conv layers 0.41 0.25 0.38

Table 1: Effect of number of convolutional layers on the validation accuracy of two subject-level and
one group-level model.

Figure 7: Subject embedding confusion matrix. Columns (E0-E14) refer to subject embedding indices
and rows (V0-V14) refer to subject validation sets. Greener shading (higher values) shows subjects
with higher retained accuracy when their embeddings are swapped.

Figure 8: 2D Tsne projection of the subject embeddings in the nonlinear group-embedding model.
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(a) Subject to group (b) Subject to finetuned (c) Group to finetuned

Figure 9: Accuracy changes across all 15 subjects (individual colours), when comparing SL, GL, and
finetuned group models. Group models clearly reduce the variability of accuracies across subjects,
and are especially helpful for low-accuracy subjects. When finetuning our group model on individual
subjects (c), we can see that accuracy increases for all subjects, and especially for high accuracy
subjects. This is unsurprising because these subjects have good enough data on their own for SL
models to be able to learn well. As seen in (a) and (b) these high-accuracy subjects are usually
impaired by GL models, exactly for the aforementioned reason.
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(c) Kernel FIR analysis

Figure 10: Frequency sensitivity of kernels via spectral PFI (a), channel-wise spectral PFI (b), and
frequency characteristics via kernel FIR analysis (c), from 3 layers (rows). Kernels are plotted
together (lines) for spectral PFI, and in separate columns for kernel FIR analysis (normalised). Each
channel-wise spectral PFI plot is for 1 kernel, where lines show the spectral PFI of corresponding
channels in the sensor space map. 95% confidence intervals are shown with shading for spectral PFI.
Due to small variability across permutations, this is barely visible. For spectral PFI the band-width
was set to 5 Hz to obtain a smooth frequency profile.
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Figure 11: Spatial PFI across 6 layers (rows), with 5 kernels per row. Darker reds mean higher output
deviation.
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Figure 12: Channelwise temporal PFI (a), and temporal PFI (b) across kernels of the non-linear
group-emb model in 6 layers (rows). For temporal PFI 5 kernels (lines) are plotted together.
Channelwise temporal PFI shows the temporal PFI of each channel for Kernel 5. Channel coloring is
matched to the corresponding spatial PFI map, and darker reds mean higher output deviation. For
temporal PFI output deviation is normalized. The horizontal axis shows time elapsed since image
presentation for both temporal PFI types. 95% confidence interval is shown with shading.
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Figure 13: Frequency sensitivity of kernels via spectral PFI (a), channelwise spectral PFI (b) from 6
layers (rows). Kernels are plotted together (lines) for spectral PFI. Each channelwise spectral PFI
plot is for 1 kernel, where lines show the spectral PFI of corresponding channels in the topomap.
95% confidence interval is shown with shading for spectral PFI. Due to small variability across
permutations this is barely visible.
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Figure 14: Frequency characteristics of 5 kernels across 6 layers (rows) via kernel FIR analysis. The
power spectra is normalized.
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