
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Message-Passing Monte Carlo: Generating low-discrepancy point sets via
Graph Neural Networks

Anonymous Authors1

Abstract
Discrepancy is a well-known measure for the
irregularity of the distribution of a point set.
Point sets with small discrepancy are called low-
discrepancy and are known to efficiently fill the
space in a uniform manner. Low-discrepancy
points play a central role in many problems in
science and engineering, including numerical in-
tegration, computer vision, machine perception,
computer graphics, machine learning, and simu-
lation. In this work, we present the first machine
learning approach to generate a new class of low-
discrepancy point sets named Message-Passing
Monte Carlo (MPMC) points. Motivated by the
geometric nature of generating low-discrepancy
point sets, we leverage tools from Geometric
Deep Learning and base our model on Graph Neu-
ral Networks. We further provide an extension
of our framework to higher dimensions, which
flexibly allows the generation of custom-made
points that emphasize the uniformity in specific
dimensions that are primarily important for the
particular problem at hand. Finally, we demon-
strate that our proposed model achieves state-of-
the-art performance superior to previous methods
by a significant margin. In fact, MPMC points are
empirically shown to be either optimal or near-
optimal with respect to the discrepancy for every
dimension and the number of points for which the
optimal discrepancy can be determined.

1. Introduction
Monte Carlo (MC) methods have been commonly used
and are a popular choice for approximating and simulating
complex real-world systems. Known for their reliance on
repeated random sampling, MC methods function well in

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review at ICML 2024 AI for Science
workshop. Do not distribute.

problems involving optimization, numerical integration, and
financial mathematics (particularly derivative pricing and
risk management) via computer simulation. However, their
convergence rate of O(N−1/2) in the number of samples N
means that achieving high precision with MC requires an im-
practically large number of samples for complex problems.
To address this drawback, it is common to employ variance
reduction techniques such as importance sampling, stratified
sampling, or control of variates to obtain the same degree of
accuracy with fewer samples (for details, see (Glasserman,
2004), (Lemieux, 2009) and references therein).

A particularly successful approach for convergence is called
quasi-Monte Carlo (QMC). QMC methods employ a de-
terministic point set, which replaces the purely random
sampling with a sample whose points span the hypercube
[0, 1]d in a manner that is more uniform than what can be
achieved with MC sampling. The fact that these point sets
are constructed over [0, 1]d is not overly restrictive as most,
if not all, sampling algorithms used within the MC method
take as input (pseudo)random numbers in [0, 1]. The uni-
formity of these deterministic point sets (or indeed, any
point set) can be captured by one of several of measures of
irregularity of distribution, referred to by the umbrella term
discrepancy measures (Drmota & Tichy, 1997). The more
uniformly distributed the points are, the lower the discrep-
ancy is; point sets possessing a small enough discrepancy
value are called low-discrepancy. In the classical setting,
the star-discrepancy, widely regarded as the most important
uniformity measure, of an N−element point set {Xi}Ni=1

contained in [0, 1]d represents the largest absolute differ-
ence between the volume of a test box and the proportion of
points of {Xi}Ni=1 that fall inside the test box,

D∗ ({Xi}Ni=1

)
:=

sup
x∈[0,1]d

∣∣∣∣∣#
(
{Xi}Ni=1 ∩ [0,x)

)
N

− µ([0,x))

∣∣∣∣∣ (1)

where #({Xi}Ni=1 ∩ [0,x)) counts how many points of
{Xi}Ni=1 fall inside the box [0,x) =

∏d
i=1[0, xi) for

x = (x1, . . . , xd) ∈ [0, 1]d, and µ(·) denotes the usual
Lebesgue measure. Despite the framing in (1), computation
of the star-discrepancy is known to be a discrete problem;
see (Niederreiter, 1972). The discrepancy is closely re-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

lated to worst-case integration error of a particular class
of functions with the most well-known result being the
Koksma-Hlawka inequality; see (Kuipers & Niederreiter,
1974; Hlawka, 1984). Explicitly, given a point set {Xi}Ni=1

contained in [0, 1]d, we have∣∣∣∣∣
∫
[0,1]d

f(x)dx− 1

N

N∑
i=1

f(Xi)

∣∣∣∣∣ ≤ D∗({Xi}Ni=1)V (f)

(2)
where V (f) denotes the variation of the function f in the
sense of Hardy and Krause. This result illustrates that
points with small discrepancy induce approximations with
small errors. Thus in summary, it is of general interest to
find N−point configurations with smallest discrepancy; see
(Cauwet et al., 2020; Galanti & Jung, 1997; Paulin et al.,
2022; Mishra & Rusch, 2021; Longo et al., 2021) for exam-
ples of QMC implementation.

Given this context, our main goal is to present a machine
learning framework that generates point sets with minimal
discrepancy. Based on the geometric nature of this problem,
we suggest to leverage graph-learning models from Geomet-
ric Deep Learning (Bronstein et al., 2021) to achieve this.
More concretely, we construct a computational graph based
on nearest neighbors of the initial input points and process
the encoded input points with a deep message-passing neural
network, which is trained to minimize a closed-form solu-
tion of a specific discrepancy measure of its decoded and
clamped outputs. We term the resulting low-discrepancy
points Message-Passing Monte Carlo (MPMC) points.
While previous methods are either far from obtaining opti-
mal discrepancy values or intractable to compute (and thus
are only available in d = 2, 3 and very small number of
points N ≤ 20), MPMC reaches near-optimal discrepancy
in near-real time for potentially thousands of points. This
advancement represents a significant step forward in the
development of highly efficient sampling methods, which
are crucial for many applications in science and engineer-
ing. Concrete examples include problems in financial math-
ematics (L’Ecuyer, 2009), path and motion planning in
robotics (Branicky et al., 2001), and enhanced training of
3-D computer-vision models like Neural Radiance Fields
(NeRFs) (Mildenhall et al., 2021).

Main contributions. In the subsequent sections, we will:

• introduce a new state-of-the-art machine learning
model that generates low-discrepancy points. To our
knowledge, this is the first machine learning approach
in this context.

• extend our framework to higher dimensions by mini-
mizing the average discrepancy of randomly selected
subsets of projections. This allows for generating

custom-made points that emphasize specific dimen-
sions that are primarily important for the particular
problem at hand.

• provide an extensive empirical evaluation of our pro-
posed MPMC point sets and demonstrate their superior
performance over previous methods.

2. Background and previous work
Our general goal in this paper is to provide a method for
generating point sets with small discrepancy. In the follow-
ing, we use the term sequence to refer to an infinite series of
points, and point set for a finite one. Both these objects are
closely related as many results on sequences in dimension d
correspond to those on sets in dimension d+ 1; see (Roth,
1954).

A sequence of points {Xi}∞i=1 contained in [0, 1]d is called
a low-discrepancy sequence if the star-discrepancy of the
first N points satisfies D∗ ({Xi}Ni=1

)
= O((logN)d/N).

A finite point set {Xi}Ni=1 is said to be of low discrepancy if
its corresponding star-discrepancy D∗ ({Xi}Ni=1

)
is “small”

enough, which in practice means that a bound of the form
c(logN)d−1/N can be established, for a given constant c
independent of N (but possibly dependent on d). Moving
forward, for comparison purposes, we will regularly truncate
various known infinite low-discrepancy sequences resulting
in a finite point set, which inherits the low-discrepancy
property from the underlying infinite sequence.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Two different low-discrepancy point sets with N = 64:
Korobov lattice (left), and Sobol’ (right).

Figure 1 illustrates two examples of low-discrepancy point
sets. On the left-hand side we have a Korobov lattice (Ko-
robov, 1963), which is an example of a lattice rule (Haber,
1970; Sloan & Joe, 1994; Nuyens, 2014; Dick et al., 2022),
and on the right-hand side, we see the first 64 points of
the two-dimensional Sobol’ sequence (Sobol’, 1967). This
construction leverages a widely used building block for
many low-discrepancy sequences known as the van der Cor-
put sequence in base b (van der Corput, 1935). It is also
an example of what are modernly known as digital (t, s)-
sequences—which also include the Faure sequences (Faure,
1982)—that were first laid out in (Niederreiter, 1987), with a

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

comprehensive overview provided in the subsequent mono-
graph (Niederreiter, 1992). Halton sequences (Halton, 1960)
are another widely used type of low-discrepancy sequences
that concatenate d van der Corput sequences in different
bases, usually taken as the first d prime numbers.

More recently, there have been successful attempts to con-
struct low-discrepancy point sets using more sophisticated
means motivated by the lack of constructions adapted to
specific N and d. In (Doerr & De Rainville, 2013), new
low-discrepancy point sets were suggested via the optimiza-
tion of permutations applied to a Halton sequence. As a
consequence, several open problems were solved regarding
sets with small discrepancy from (Novak & Woźniakowski,
2010). Further, in (Doerr et al., 2005) an algorithm for
constructing a low-discrepancy set via a derandomized ver-
sion of Hoeffding’s inequality was provided which was
shown to improve the previous best known upper bounds
for the star-discrepancy. As some of the most recent work
in this direction, a method called subset selection was pre-
sented in (Clément et al., 2022; 2024) to choose from an
N−element point set (in practise, usually the first N points
of the Sobol’ sequence) the k < N points which yield the
smallest discrepancy using a swap-based heuristic. Further-
more, a method to generate optimal star-discrepancy point
sets for fixed N and d based on a non-linear programming
approach was suggested in (Clément et al., 2023). However,
this formulation of the problem presented huge computa-
tional burdens allowing optimal sets only to be found up to
20 points in dimension two and 8 points in dimension three.

3. Method
Let 1 < d < +∞ and 1 ≤ N < +∞ be fixed natural num-
bers. Our objective is to train a neural network to transform
(random) input points {Xi}Ni=1 into points {X̂i}Ni=1 that
reduce the star-discrepancy D∗ (1), where Xi, X̂i ∈ [0, 1]d

for all i.

In this work, we propose to leverage Graph Neural Net-
works (GNNs) (Sperduti, 1994; Goller & Kuchler, 1996;
Sperduti & Starita, 1997; Frasconi et al., 1998; Gori et al.,
2005; Scarselli et al., 2008; Bruna et al., 2014; Defferrard
et al., 2016; Kipf & Welling, 2017; Monti et al., 2017) based
on the message-passing framework to effectively learn such
transformations. GNNs are a popular class of model archi-
tectures for learning on relational data, and have success-
fully been applied on a variety of different tasks, e.g., in
computer science (Monti et al., 2017; Derrow-Pinion et al.,
2021; Ying et al., 2018), and the natural sciences (Gilmer
et al., 2017; Gaudelet et al., 2021; Shlomi et al., 2020) (see
(Zhou et al., 2019; Bronstein et al., 2021) for additional
applications). In particular, GNNs have successfully been
used in the context of learning on point clouds, or generally
learning on sets. This motivates the choice of GNNs in our

setup, where specific transformations of geometric sets (i.e.,
set of input points in [0, 1]d) have to be learned.

A schematic drawing of our approach can be seen in Fig. 2,
where we train a GNN model to transform N = 64 random
input points {Xi}Ni=1 into low-discrepancy points {X̂i}Ni=1.

via GNN

Transform

Figure 2. Schematic drawing of our proposed approach to trans-
form (random) input points {Xi}Ni=1 into low-discrepancy points
{X̂i}Ni=1. Both the input and output point sets are actual instances
of our proposed model, with N = 64 and d = 2 in this example.

3.1. Training set

Our approach can be classified as an unsupervised learning
setup, where, in contrast to supervised learning, only input
data is required without any labels. While it is intuitive to
generate the set of input points randomly, we suggest several
different approaches for constructing input data:

1. Uniform random sampled set of input points: Xi ∼
U([0, 1]d), for all points i = 1, . . . , N .

2. Base set of input points from available low-discrepancy
point sets, such as Sobol’, Halton, or a lattice rule.

3. Base set of input points from randomly perturbed low-
discrepancy points, i.e.,

Xi = Yi + ξ (mod 1), (3)

where Yi is generated by a known low-discrepancy
sequence and ξ is uniform randomly sampled from
[0, b]d, with 0 < b ≤ 1, for all points i = 1, . . . , N .

3.2. Architecture

Let G = (V,E ⊆ V × V) be an undirected, connected
graph with |V| = N nodes and |E| = e edges (unordered
pairs of nodes {i, j} denoted i ∼ j). We further denote
the 1-neighborhood of a node i ∈ V as Ni = {j ∈ V :
i ∼ j}. In addition, each node i ∈ V is equipped with an
m-dimensional feature vector Xi ∈ Rm. The main building
block of our model consist of GNN layers based on the
message-passing framework. This family of parametric
functions is defined through local updates of hidden node

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

representations. More concretely, we iteratively update node
features as,

Xl
i = ϕl

Xl−1
i ,

⊕
j∈Ni

ψl(Xl−1
i ,Xl−1

j)

 , ∀l = 1, . . . , L,

(4)
where

⊕
denotes a permutation-invariant operation, such

as SUM, MEAN, or MAX, and Xl
i ∈ Rml for all nodes

i. Moreover, we parameterize ϕl, ψl as ReLU-multilayer
perceptrons (MLPs), i.e., MLPs using the element-wise
ReLU(x) = max(0, x) activation function in-between lay-
ers. We further encode the initial node features by a trans-
formation that maps the initial points in dimension d to our
initial hidden node feature dimension m0. Moreover, we de-
code the output of the final GNN layer by a transformation
that maps the hidden node features of dimension mL back
to the physical dimension d. Both the encoder as well as the
decoder are parameterized as affine transformations. Finally,
we smoothly clamp the decoded outputs back into [0, 1]d by
using the element-wise sigmoidal activation function,

sigmoid(x) =
1

1 + e−x
.

Note that this step is crucial, as otherwise the training objec-
tives we introduce in the subsequent sections are ill-defined.
Moreover, the clamping step has to be differentiable in order
to be used within a gradient-based learning framework.

Another important part of the GNN architecture is the con-
struction of the underlying computational graph G, i.e.,
defining the local structure Ni for all nodes i in (4). It
is worth noting that in many GNN applications (e.g., net-
work science, or life sciences) the computational graph is
already given a-priori, either explicitly or implicitly. In con-
trast to that, our problem setup considers the construction
of the underlying computational graph as an additional de-
sign choice. While there are many suitable choices, often
balancing a global vs local connectivity structure, we sug-
gest to construct the underlying graph G based on nearest
neighbors, i.e., for a fixed radius 0 < r ≤ 1,

Ni = {j ∈ V : ∥Xi −Xj∥2 ≤ r}. (5)

We choose this inherently local structure to guide the
GNN training towards transforming input points into low-
discrepancy points by mainly considering the positions of
other near-by points (in the corresponding Euclidean space
of the input point set). A schematic of the full model can be
seen in Fig. 3.

3.3. Training objective

Our ultimate goal is to minimize the star-discrepancy D∗

(1). However, D∗ cannot serve as the training objective, as
(i) D∗ is computationally infeasible to calculate for high

dimensions d and large number of points N (it has been
shown to be an NP-hard problem in (Gnewuch et al., 2009)
and in fact, it is even W[1]-hard in d (Giannopoulos et al.,
2012)); (ii) the training objective should not only be compu-
tationally feasible but rather very efficient to compute, as it
needs to be evaluated at every step of the training procedure
(i.e., for every step of the gradient descent method) resulting
in potentially thousands of evaluations to train only a single
model, and (iii) the training objective needs to be differen-
tiable in order to be used in the context of gradient-based
learning. It turns out, we can derive a training objective
resolving all three issues while simultaneously minimizing
D∗ by leveraging previous work on the Lp-discrepancy,

Lp({Xi}Ni=1) :=(∫
[0,1]d

∣∣∣∣#({Xi}Ni=1 ∩ [0,x))

N
− µ([0,x))

∣∣∣∣p dx
) 1

p

.

(6)
Clearly, the star-discrepancy D∗ can be derived as a special
case of (6) with p = ∞. Here, we focus on the case of p = 2
as our training objective, since instead of computing the
integral in (6), we can leverage its closed-form expression,
known as Warnock’s formula (Warnock, 1972),

L2
2({Xi}Ni=1) =

1

3d
− 2

N

N−1∑
i=0

d∏
k=0

1−X2
i,k

2

+
1

N2

N−1∑
i,j=0

d∏
k=0

1−max(Xi,k,Xj,k),

(7)

where Xi,k is the k-th entry of Xi. This enables a very
fast and exact computation of the L2-discrepancy without
errors resulting from numerical quadrature methods. Thus,
the L2-discrepancy is an ideal candidate for the training
objective of our machine learning approach.

3.4. Extension to higher dimensions

In many practical problems, particularly in engineering and
finance, the dimension d of the problem can be very large.
This necessitates extending low-discrepancy sequences to
the high dimensional case of d≫ 1. However, it is known
(Morokoff & Caflisch, 1994; Wang & Sloan, 2008) that
the L2-discrepancy fails to identify superior distributional
properties of low-discrepancy point sets over random sam-
ples as the dimension increases. Indeed, in high dimensions
the classical L2-discrepancy of low-discrepancy point sets
behaves like O(1/

√
N), the same as for random points,

for moderate values of N , while an improved order close
to O(1/N) can only be seen for extremely large N . Em-
pirical evidence for these last claims can be found in the
discrepancy plots contained in (Morokoff & Caflisch, 1994).

To this end, we suggest to base our new training objective for
higher-dimensional generation of low-discrepancy points

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Figure 3. Schematic of the proposed model to learn low-discrepancy points. First, (random) input points {Xi}Ni=1 are encoded to a high
dimensional representation. Second, the encoded representations are passed through a deep GNN (4), where the underlying computational
graph is constructed based on nearest neighbors using the positions of the initial input points. Finally, the node-wise output representations
of the final GNN layer are decoded and clamped yielding new d-dimensional points {X̂i}Ni=1 in [0, 1]d.

on the Hickernell Lp-discrepancy (Hickernell, 1998),

DH,p({Xi}Ni=1) =

 ∑
∅̸=s⊆{1,...,d}

Lp
p({Xs

i}Ni=1)

 1
p

, (8)

where ∅ ̸= s ⊆ {1, . . . , d} is a non-empty subset of coor-
dinate indices, and {Xs

i}Ni=1 is the projection of {Xi}Ni=1

onto [0, 1]|s|. Note that while we can again make use of
Warnock’s formula (7) to compute DH,2, it requires com-
puting the sum of the L2-discrepancy of 2d − 1 projections,
which already for d = 32 is more than 1B. This highlights
the necessity of modifying DH,2 in order for it to be used
as a training objective in a machine learning framework.
Therefore, we suggest to base the training objective on a
modification of the Hickernell Lp-discrepancy via random
projections,

D̃H,p,K({Xi}Ni=1) =

(
K∑

k=1

Lp
p({Xsk

i }Ni=1)

) 1
p

, (9)

where ∅ ≠ sk ∼ P({1, . . . , d}) are randomly sampled
subsets of coordinate indices for each k = 1, . . . ,K, thus
requiring to compute the Lp-discrepancy only K times.

Generating problem-dependent point sets. As a further
advantage to this framework, we highlight its inherent flex-
ibility. Specifically, employing the modified Hickernell
discrepancy as the training objective represents a first step
towards an adaptive QMC sampling method tailored for
specific problems. It is widely recognized that for many
problems, the effective dimension—essentially, the num-
ber of dimensions capturing the majority of the problem’s
variability—is often significantly lower than the nominal
dimension; for full details, refer to (Caflisch et al., 1997).
Therefore, during high-dimensional training, prioritizing
sampling from specific lower dimensional projections will
yield a d-dimensional point set that is highly uniformly dis-
tributed in those same projections identified during training.
This approach effectively creates a custom-made point set,

optimized for problems that primarily depend upon particu-
lar dimensions.

4. Empirical results
In this section, we present empirical results comparing
MPMC points to current state-of-the-art low-discrepancy
point sets. More concretely, we demonstrate superior distri-
butional properties of MPMC over other low-discrepancy
point sets mainly with respect to the star-discrepancy D∗.

As described above, computing the star-discrepancy is usu-
ally a difficult task. Being a discrete problem, depending on
the number of points, a crude search for the worst distribu-
tion over all admissible test boxes is often extremely slow in
low dimensions, and intractable even in dimension as small
as four or five. The best known exact algorithm to calcu-
late the star-discrepancy is the so-called Dopkin, Eppstein
and Mitchell (DEM) algorithm (Dobkin et al., 1996) which
runs in O(N1+d/2) time. In all experiments, the results of
which are presented shortly, to calculate the star discrepancy
we either use a simple crude search or a parallelized ver-
sion of the DEM algorithm from (Clément et al., 2023) to
speed up calculation when necessary. The interested reader
is recommended to consult (Doerr et al., 2014) and refer-
ences therein for more information on the calculation of
the star-discrepancy, and indeed the computation of other
discrepancy measures.

4.1. Low-dimensional generation of MPMC points

Here, we focus on generating MPMC points within a lower-
dimensional setting particularly because this area has re-
cently attracted significant attention (Clément et al., 2022;
2024; Clément et al., 2023) providing a solid basis for com-
parison. Additionally, QMC methods are known to per-
form very well on many complex applications as long as
the low-dimensional projections of the underlying point
set have low discrepancy. Therefore, generating 2- or 3-
dimensional point sets with strong distributional properties
are of paramount interest toward building competitive con-

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

structions performing well on a variety of problems.

20 100 180 260 340 420 500
Number of points N

10−2

10−1

S
ta

r-
di

sc
re

pa
nc

y
D
∗

Halton

Subset

Fibonacci

Sobol

Hammersley

MPMC

Figure 4. Star-discrepancy D∗ of Halton, Sobol’, Subset Selection,
Hammersley, Fibonacci, and MPMC for increasing number of
points N = 20, . . . , 500 in d = 2.

We compare the irregularity of our MPMC point sets with
a truncation to the first N points of the widely used Sobol’
and Halton sequences. We note that MPMC points are sets
optimized for N chosen in advance, whereas a key advan-
tage of the Sobol’ and Halton sequences are that they are
built for repeated sampling and retain a low-discrepancy
for all values of N . Therefore, in addition, we provide
comparison with state-of-the-art point sets derived from
the subset selection method from (Clément et al., 2022;
2024), the Hammersley construction in base 1 +

√
2 as

introduced in (Kirk et al., 2023) and the Fibonacci set de-
fined as {(i/n, {iφ}) : i ∈ {0, . . . , n− 1}} where φ repre-
sents the golden ratio, the notation {x} denotes the frac-
tional part of x ∈ R. All three of these sets are recognized
for having among the lowest star-discrepancy for given N
in two dimensions. Fig. 4 shows the star-discrepancy of
MPMC, Sobol’, Halton, subset selection, Hammersley and
Fibonacci sets in two dimensions for increasing number of
points N = 20, . . . , 500. We can see that MPMC signif-
icantly outperforms all other methods with respect to the
star-discrepancy. In fact, the star-discrepancy of MPMC is
on average 1.5 times smaller than that of the current state-
of-the-art Fibonacci construction, and on average more than
2.5 times smaller than Sobol’ or Halton points. We provide
the exact values of Fig. 4 in the Supporting Information (SI)
such that it can serve as a benchmark for future methods.

4.2. Optimality of MPMC point sets

Much of the past research on low-discrepancy point sets
focused on achieving star-discrepancy with optimal asymp-
totic order in N for implementation in quasi-Monte Carlo
methods. However, there has been a recent surge in interest
in finding point sets that minimize discrepancy for fixed N
and d. The main contribution in this direction was given in

(Clément et al., 2023), where the authors constructed opti-
mal star-discrepancy point sets in two and three dimensions.
Naturally, we are interested in comparing MPMC points to
these optimal formulations. The results of the optimal star-
discrepancy comparison in two dimensions are presented in
Table 1 and the three dimensional case is found in the SI.

Table 1. Comparison in two dimensions of MPMC star-
discrepancy values against optimal sets and Fibonacci sets.

N 1 2 3 4 5

Fibonacci 1.0 0.6909 0.5880 0.4910 0.3528
Optimal 1/φ 0.366 0.2847 0.25 0.2
MPMC 1/φ 0.366 0.2847 0.25 0.2

N 6 7 8 9 10

Fibonacci 0.3183 0.2728 0.2553 0.2270 0.2042
Optimal 0.1667 0.15 0.1328 0.1235 0.1111
MPMC 0.1692 0.1508 0.1354 0.1240 0.1124

N 11 12 13 14 15

Fibonacci 0.1857 0.1702 0.1571 0.1459 0.1390
Optimal 0.1030 0.0952 0.0889 0.0837 0.0782
MPMC 0.1058 0.0975 0.0908 0.0853 0.0794

N 16 17 18 19 20

Fibonacci 0.1486 0.1398 0.1320 0.1251 0.1188
Optimal 0.0739 0.0699 0.0666 0.0634 0.0604
MPMC 0.0768 0.0731 0.0699 0.0668 0.0640

We can see that the star-discrepancy of MPMC points is
very close to the star-discrepancy of the optimal point sets,
and in fact match it exactly for small N . Moreover, the star-
discrepancy of the Fibonacci set is far off the optimal values,
i.e, approximately by a factor of 2. Finally, it is worth high-
lighting that the computation of the optimal points requires
to solve a non-linear programming problem and takes ap-
proximately 18 days to compute. In contrast to that, our
model generating MPMC points can be trained from scratch
in less than 5 minutes on a conventional GPU machine.

4.3. MPMC generation in high dimensions

As discussed in Section 3.4, the efficacy of discrepancy mea-
sures to justly evaluate irregularity of distribution is flawed
in higher dimensions. Therefore, to alternatively assess the
quality of the distribution of higher dimensional point sets
and sequences, motivated by the Koksma-Hlawka inequality
(2), we will implement high dimensional MPMC points in
an integral arising in a real-world problem from compu-
tational finance previously studied in (Lemieux & Owen,
2002; Wang & Sloan, 2005; Faure & Lemieux, 2009).

The primary goal is to accurately estimate the value at time
0 of an Asian call option on an underlying asset that follows
a log-normal distribution. Complete details of the problem

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

formulation are provided in the SI. Table 2 shows the ab-
solute errors observed when implementing Halton, Sobol’
and MPMC constructions. With our chosen parameters,
this problem is known (Lemieux & Owen, 2002) to exhibit
more than 97% of its variability in dimensions one, two,
and three. Therefore, we train a 32-dimensional MPMC
point set while emphasizing the 1-3-dimensional projec-
tions as described in Section 3.4. We report the average
absolute error of an MPMC training batch, which is selected
based on the minimal Hickernell L2-discrepancy restricted
to 1-3-dimensional projections.

Table 2. Approximation error of an Asian call option pricing of
MPMC, Halton and Sobol’.

N 32 64 128 256 512

Halton 6.4566 4.1580 3.5590 2.8046 1.9376
Sobol 1.2163 1.3545 0.9470 0.6043 0.4784
MPMC 1.3836 0.8129 0.4937 0.2317 0.1019

Once again, the 32-dimensional MPMC point sets show
significant enhancements over Halton and Sobol’. This im-
provement is particularly notable at higher values of N ,
where MPMC outperforms Sobol’ by a factor of approxi-
mately 5, and Halton by a factor of approximately 19. The
efficiency observed in this high-dimensional problem is
promising and suggests a superior uniformity of MPMC
points. In fact, the observed improvements may partially be
explained by the uniformity held in lower-dimensional pro-
jections when compared to the traditional choices of QMC
point sets. We refer to the SI for further discussion.

4.4. Ablations

Our proposed MPMC method is the result of several design
choices, such as the type of input points, the deep learning
model, and the training objective. In order to further jus-
tify our choices, we ablate several aspects of our MPMC
framework illustrated by the following questions:

How does the graph structure influence the performance?
To answer this, we compute the average L2-discrepancy
of several trained MPMC models for increasing values of
the nearest neighbor radius r in (5) ranging from 0 to 1 for
different number of points N = 64, 128, 1024, and plot
the results in the SI. These results lead to two important
observations. First, not using a graph structure at all, i.e.,
setting r = 0 resulting in Deepsets (Zaheer et al., 2017),
significantly impairs the performance of MPMC, reaching
average L2-discrepancy values that are 9 to 40 times worse
than using a graph structure. The second observation is
that although the performance of MPMC is relatively stable
for any choice of r > 0, including the radius r in hyper-
parameter tuning can help achieve point sets with minimal
discrepancy.

What is the role of the GNN architecture used in MPMC?
While we base MPMC on message-passing neural networks
(MPNNs) (Gilmer et al., 2017), other GNN architectures
such as Graph Convolutional Networks (GCNs) (Kipf &
Welling, 2017), or Graph Attention Networks (GATs) can be
used in this context as well. To check this, we train MPMC
based on MPNNs, GCNs, and GATs for three different
number of points N = 64, 256, 1024 and show the L2-
discrepancy in the SI. Based on these results, we conclude
that GCNs and GATs outperform each other based on the
number of pointsN . At the same time, MPNNs consistently
yield point sets with the lowest discrepancy values among
all three considered GNN architectures.

Does the choice of input point sets described in Section 3.1
influence the performance of MPMC? To answer this, we
train several MPMC models on all three different types of
input points, i.e., random points, Sobol’, and a randomized
Sobol’, where we choose ξ ∼ U([0, 0.1]d) in (3), for two
different number of points N = 256, 1024. We report the
average L2-discrepancy of all trained MPMC models for
increasing number of training steps in the SI. We observe
that on average Sobol’ and randomized Sobol’ yield slightly
lower discrepancy values and faster convergence compared
to random points and thus lead to a more robust performance.
However, we further note, that instead of averaging over all
trained MPMC models, but instead choosing the single best
model yield similar results for each input point type.

5. Discussion
Low-discrepancy points play a central role in many appli-
cations in science and engineering. In this article, we have
proposed MPMC, the first machine learning approach to
generate new sets of low-discrepancy points. Inspired by the
geometric nature of constructing such point sets, we base our
MPMC approach on GNNs. Choosing an adequate training
objective, i.e., closed-form solution of the L2-discrepancy,
we show that MPMC successfully transforms (random) in-
put points into point sets with low discrepancy. Moreover,
we extend this framework to higher dimensions, by training
with an approximation of the Hickernell L2-discrepancy.
We further present an extensive empirical evaluation to il-
lustrate different aspects of the proposed MPMC approach,
highlighting the superior distributional properties of MPMC
points compared to previous state-of-the-art methods. Fi-
nally, we carefully ablate key components of our MPMC
model, yielding deeper empirical insights.

MPMC represents a novel and efficient way of generat-
ing point sets with very low discrepancy. In fact, MPMC
is shown to obtain optimal or near-optimal discrepancy in
near-real time. This is crucial for computationally expensive
applications, where MPMC will lead to potentially signifi-
cantly lower absolute errors compared to previous methods.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Moreover, the generality of the MPMC framework allows
for designing tailor-made QMC points that exploit specific
structures of the problem at hand.

The aim of this paper was to generate point sets with low dis-
crepancy for a fixed dimension and fixed number of points.
On the other hand, many important applications require re-
peated sampling resulting in low-discrepancy sequences and
not fixed point sets. Thus, one important aspect of future
work will be to extend our MPMC point sets to MPMC
sequences. Another essential part of this paper was on
studying the distributional properties of MPMC points, in
contrast to simply showcasing their performance in practical
applications. However, based on the empirical evidence in
this paper, we expect MPMC point sets to excel in various
applications. Motivated by this, we would like to apply
MPMC to various problems in science and engineering as
future work.

References
Branicky, M. S., LaValle, S. M., Olson, K., and Yang, L.

Quasi-randomized path planning. In Proceedings 2001
ICRA. IEEE International Conference on Robotics and
Automation (Cat. No. 01CH37164), volume 2, pp. 1481–
1487. IEEE, 2001.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv:2104.13478, 2021.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and locally connected networks on graphs. In
2nd International Conference on Learning Representa-
tions, ICLR 2014, 2014.

Caflisch, R. E., Morokoff, W. J., and Owen, A. B. Valuation
of mortgage-backed securities using brownian bridges to
reduce effective dimension. Journal of Computational
Finance, 1:27–46, 1997.

Cauwet, M.-L., Couprie, C., Dehos, J., Luc, P., Rapin, J.,
Riviere, M., Teytaud, F., Teytaud, O., and Usunier, N.
Fully parallel hyperparameter search: Reshaped space-
filling. In International Conference on Machine Learning,
pp. 1338–1348. PMLR, 2020.

Clément, F., Doerr, C., and Paquete, L. Star discrepancy
subset selection: problem formulation and efficient ap-
proaches for low dimensions. J. Complexity, 70:Paper
No. 101645, 34, 2022. ISSN 0885-064X,1090-2708.

Clément, F., Vermetten, D., De Nobel, J., Jesus, A. D., Pa-
quete, L., and Doerr, C. Computing star discrepancies
with numerical black-box optimization algorithms. In
Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO ’23, pp. 1330–1338, New York,

NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701191.

Clément, F., Doerr, C., and Paquete, L. Heuristic approaches
to obtain low-discrepancy point sets via subset selection.
J. Complexity, 83:Paper No. 101852, 2024. ISSN 0885-
064X,1090-2708.

Clément, F., Doerr, C., Klamroth, K., and Paquete, L. Con-
structing optimal L∞ star discrepancy sets. Preprint,
2023. https://arxiv.org/abs/2311.17463.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. Advances in neural information pro-
cessing systems, 29:3844–3852, 2016.

Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester,
T., Perez, L., Nunkesser, M., Lee, S., Guo, X., Battaglia,
P. W., Gupta, V., Li, A., Xu, Z., Sanchez-Gonzalez, A., Li,
Y., and Veličković, P. Eta prediction with graph neural net-
works in google maps. In Proceedings of the 30th ACM
International Conference on Information & Knowledge
Management, pp. 3767–3776, 2021.

Dick, J., Kritzer, P., and Pillichshammer, F. Constructions
of Lattice Rules, pp. 95–139. Springer International Pub-
lishing, Cham, 2022.

Dobkin, D. P., Eppstein, D., and Mitchell, D. P. Comput-
ing the discrepancy with applications to supersampling
patterns. ACM Trans. Graph., 15(4):354–376, oct 1996.
ISSN 0730-0301.

Doerr, B., Gnewuch, M., and Srivastav, A. Bounds and con-
structions for the star-discrepancy via δ-covers. J. Com-
plexity, 21(5):691–709, 2005. ISSN 0885-064X,1090-
2708. doi: 10.1016/j.jco.2005.05.002. URL https:
//doi.org/10.1016/j.jco.2005.05.002.

Doerr, C. and De Rainville, F.-M. Constructing low star
discrepancy point sets with genetic algorithms. In Pro-
ceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation, pp. 789–796, New York, NY,
USA, 2013. Association for Computing Machinery. ISBN
9781450319638.

Doerr, C., Gnewuch, M., and Wahlström, M. Calculation
of Discrepancy Measures and Applications, pp. 621–678.
Springer International Publishing, 2014.

Drmota, M. and Tichy, R. F. Sequences, discrepancies
and applications, volume 1651 of Lecture Notes in Math-
ematics. Springer-Verlag, Berlin, 1997. ISBN 3-540-
62606-9. doi: 10.1007/BFb0093404. URL https:
//doi.org/10.1007/BFb0093404.

8

https://doi.org/10.1016/j.jco.2005.05.002
https://doi.org/10.1016/j.jco.2005.05.002
https://doi.org/10.1007/BFb0093404
https://doi.org/10.1007/BFb0093404

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Faure, H. Discrepance de suites associées à un système
de numération (en dimension s). Acta Arithmetica, 41:
337–351, 1982.

Faure, H. and Lemieux, C. Generalized halton sequences in
2008: A comparative study. ACM Trans. Model. Comput.
Simul., 19(4), 2009. ISSN 1049-3301.

Frasconi, P., Gori, M., and Sperduti, A. A general frame-
work for adaptive processing of data structures. IEEE
Trans. Neural Networks, 9(5):768–786, 1998.

Galanti, S. and Jung, A. Low-discrepancy sequences: Monte
carlo simulation of option prices. J. Deriv., pp. 63–83,
1997.

Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep,
C., Liu, G., Hayter, J. B., Vickers, R., Roberts, C., Tang,
J., et al. Utilizing graph machine learning within drug
discovery and development. Briefings in Bioinformatics,
22(6), 2021.

Giannopoulos, P., Knauer, C., Wahlström, M., and Werner,
D. Hardness of discrepancy computation and ϵ-net
verification in high dimension. J. Complexity, 28(2):
162–176, 2012. ISSN 0885-064X,1090-2708. doi:
10.1016/j.jco.2011.09.001. URL https://doi.org/
10.1016/j.jco.2011.09.001.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, 2017.

Glasserman, P. Monte Carlo methods in financial engi-
neering. Springer, New York, 2004. ISBN 0387004513
9780387004518 1441918221 9781441918222.

Gnewuch, M., Srivastav, A., and Winzen, C. Finding op-
timal volume subintervals with k-points and calculating
the star discrepancy are NP-hard problems. J. Complexity,
25(2):115–127, 2009. ISSN 0885-064X,1090-2708.

Goller, C. and Kuchler, A. Learning task-dependent
distributed representations by backpropagation through
structure. In ICNN, 1996.

Gori, M., Monfardini, G., and Scarselli, F. A new model for
learning in graph domains. In IJCNN, 2005.

Haber, S. Numerical evaluation of multiple integrals. SIAM
Review, (12):481–526, 1970.

Halton, J. H. On the efficiency of certain quasi-random
sequences of points in evaluating multi-dimensional inte-
grals. Numer. Math., 2:84–90, 1960.

Hickernell, F. A generalized discrepancy and quadrature
error bound. Mathematics of computation, 67(221):299–
322, 1998.

Hlawka, E. The theory of uniform distribution. A B Aca-
demic Publishers, Berkhamsted, 1984. ISBN 0-907360-
02-5.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Kirk, N., Lemieux, C., and Wiart, J. Golden ratio nets and se-
quences. Preprint, 2023. http://arxiv.org/abs/2312.11696.

Korobov, N. Number-theoretic methods of approximate
analysis. Fitzmatgiz, Moscow, 1963. In Russian.

Kuipers, L. and Niederreiter, H. Uniform distribution
of sequences. Pure and Applied Mathematics. Wiley-
Interscience [John Wiley & Sons], New York-London-
Sydney, 1974.

Lemieux, C. Monte Carlo and quasi-Monte Carlo sampling.
Springer Series in Statistics. Springer, New York, 2009.
ISBN 978-0-387-78164-8.

Lemieux, C. and Owen, A. B. Quasi-regression and the
relative importance of the anova components of a function.
In Fang, K.-T., Niederreiter, H., and Hickernell, F. J.
(eds.), Monte Carlo and Quasi-Monte Carlo Methods
2000, pp. 331–344, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

Longo, M., Mishra, S., Rusch, T. K., and Schwab, C. Higher-
order quasi-monte carlo training of deep neural networks.
SIAM Journal on Scientific Computing, 43(6):A3938–
A3966, 2021.

L’Ecuyer, P. Quasi-monte carlo methods with applications
in finance. Finance and Stochastics, 13:307–349, 2009.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. Communica-
tions of the ACM, 65(1):99–106, 2021.

Mishra, S. and Rusch, T. K. Enhancing accuracy of deep
learning algorithms by training with low-discrepancy se-
quences. SIAM Journal on Numerical Analysis, 59(3):
1811–1834, 2021.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In CVPR, 2017.

Morokoff, W. J. and Caflisch, R. E. Quasi-random se-
quences and their discrepancies. SIAM Journal on Sci-
entific Computing, 15(6):1251–1279, 1994. doi: https:
//doi.org/10.1137/0915077.

Niederreiter, H. Discrepancy and convex programming.
Annali di Matematica, 93:89–97, 1972.

9

https://doi.org/10.1016/j.jco.2011.09.001
https://doi.org/10.1016/j.jco.2011.09.001

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Niederreiter, H. Point sets and sequences with small dis-
crepancy. Monatshefte für Mathematik, 104(4):273–337,
1987.

Niederreiter, H. Random Number Generation and Quasi-
Monte Carlo Methods. 1992.

Novak, E. and Woźniakowski, H. Tractability of multi-
variate problems. Volume II: Standard information for
functionals, volume 12 of EMS Tracts in Mathematics.
European Mathematical Society (EMS), Zürich, 2010.
ISBN 978-3-03719-084-5.

Nuyens, D. The construction of good lattice rules and
polynomial lattice rules, pp. 223–256. De Gruyter, Berlin,
Boston, 2014.

Paulin, L., Bonneel, N., Coeurjolly, D., Iehl, J.-C., Keller,
A., and Ostromoukhov, V. Matbuilder: Mastering sam-
pling uniformity over projections. ACM Transactions on
Graphics (TOG), 41(4):1–13, 2022.

Roth, K. F. On irregularities of distribution. Mathematika,
1:73–79, 1954. ISSN 0025-5793.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Trans. Neural Networks, 20(1):61–80, 2008.

Shlomi, J., Battaglia, P., and Vlimant, J.-R. Graph neural
networks in particle physics. Machine Learning: Science
and Technology, 2(2):021001, 2020.

Sloan, I. H. and Joe, S. Lattice Methods for Multiple
Integration. Oxford University Press, 1994. ISBN
9780198534723.

Sobol’, I. On the distribution of points in a cube and the ap-
proximate evaluation of integrals. USSR Computational
Mathematics and Mathematical Physics, 7(4):86–112,
1967. ISSN 0041-5553.

Sperduti, A. Encoding labeled graphs by labeling RAAM.
In NIPS, 1994.

Sperduti, A. and Starita, A. Supervised neural networks
for the classification of structures. IEEE Trans. Neural
Networks, 8(3):714–735, 1997.

van der Corput, J. Verteilungsfunktionen i–ii. Proc. Akad.
Amsterdam, 38:813–821, 1058–1066, 1935.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In 6th
International Conference on Learning Representations,
ICLR, 2018.

Wang, X. and Sloan, I. H. Why are high-dimensional fi-
nance problems often of low effective dimension? SIAM
Journal on Scientific Computing, 27(1):159–183, 2005.

Wang, X. and Sloan, I. H. Low discrepancy sequences
in high dimensions: How well are their projections dis-
tributed? Journal of Computational and Applied Math-
ematics, 213(2):366–386, 2008. ISSN 0377-0427. doi:
https://doi.org/10.1016/j.cam.2007.01.005.

Warnock, T. T. Computational investigations of low-
discrepancy point sets. In Applications of number theory
to numerical analysis, pp. 319–343. Elsevier, 1972.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In KDD,
2018.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in neural information processing systems, 30,
2017.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., ,
Li, C., and Sun, M. Graph neural networks: a review of
methods and applications. arXiv:1812.08434v4, 2019.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Supplementary Material for:
Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

A. Training details
All experiments have been run on NVIDIA GeForce RTX 2080 Ti, GeForce RTX 3090, TITAN RTX and Quadro RTX 6000
GPUs. Each model was trained for initial 100k training steps, after which the learning rate was reduced by a factor of 10
whenever the discrepancy measure of the output point sets did not improve for a total of 2k training steps evaluated after
every 100 training steps. The training was stopped once the learning rate reached a value less than 10−6. Moreover, the
hyperparameters of the model were tuned based on random search according to Table 3, which shows the search-space of
each hyperparameter as well as the random distribution used to sample from it.

Table 3. Hyperparameter search-space and random distributions to sample from it.

range distribution

learning rate [10−4, 10−2] log uniform
hidden size m0 = m1 = · · · = mL {32, 64, 128, 256} disc. uniform
number of GNN layers L {1, 2, . . . , 10} disc. uniform
size of mini-batches {8, 16, 32} disc. uniform
weight decay [10−8, 10−2] log uniform

B. The Asian Option Problem Formulation
We describe the problem of estimating the value at time 0 of an Asian call option on an underlying asset in detail. The
results of which are presented in the main text as Table 2.

The main goal is to estimate an expectation of the form,

C0 = E

e−rT

1

d

d∑
j=1

S(uj)−K

+ .
We let T be the expiration time of the contract, K the strike price, for Z ∼ N(0, 1) let S(u) = S(0)e

(
r−σ2

2

)
u+σ

√
uZ be

the price of the underlying asset at time u, and 0 < u1 < . . . < ud = T are d times at which the asset price is observed in
order to compute the average used in the option pricing formula. The expectation is taken under the risk-neutral probability
measure. Finally, r is the risk-free rate, the notation x+ means max(0, x), Φ−1 is the inverse CDF of the standard normal
distribution and ∆l = ul − ul−1. Assuming the stock price follows a geometric Brownian motion with volatility σ, it can be
shown that this expectation can be written as follows:

C0 = e−rT

∫
[0,1]d

1

d

d∑
j=1

S(0)e(r−
σ2

2)uj+σ
∑j

l=1

√
∆lΦ

−1(xl) −K

+

dx1 . . . dxd.

In our simulations, the true value C0 = 7.04704 was calculated in advance via QMC simulation with 2M Sobol’ points with
the following set of parameters: S(0) = 50, T = 1 year, r = 0.05, σ = 0.3,K = 45 and d = 32.

C. Further empirical insights
C.1. Structure of MPMC Points

Initially explored in (Clément et al., 2023), the authors provide insights into the configurations of two dimensional point sets
that achieve optimal star-discrepancy by providing visualizations of the local discrepancy within the unit square. Providing
equivalent comparisons, Figure 5 displays the local discrepancy plots for Sobol’ sequences, MPMC points, and optimal
point sets, respectively. Each plot has its own color scale where darker areas indicate lower local discrepancy values, and

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

brighter areas denote higher values. The presence of a black dot in each plot marks the point of maximum local discrepancy,
i.e., the explicit anchored test box where the star-discrepancy is obtained. Additionally, regions of high local discrepancy
form bright triangular regions whose corner is either directed toward the upper right corner to represent open boxes with too
few points, or angled toward the lower left, indicating closed boxes with an excess of points. For instance, the Sobol’ plots
exclusively show closed overfilled boxes, with bright triangles pointing downward and leftward toward the origin.

A visual comparison reveals structural similarities between the optimal sets and the MPMC points, suggesting a more
balanced distribution of local discrepancy values across the unit square, with both open and closed boxes appearing in the
plots. Interestingly, this similar structure emerges despite the sets consisting of quite different exact point values.

In conclusion, it seems evident that the GNN captures an essential underlying local discrepancy structure, which is key for
minimizing star-discrepancy.

Figure 5. Local discrepancy plots for Sobol’ sequence (top), optimal point sets obtained in (Clément et al., 2023) (middle row), and
MPMC point sets (bottom) for N = 6 points (left), N = 12 points (middle column), and N = 18 points (right).

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

C.2. Projections of MPMC points

As noted in the main text, when applied to the computational finance integral described in Section B to estimate the value of an
Asian call option, the MPMC points far outperform the Sobol’ or Halton in terms of approximation accuracy. A significantly
important factor for the success of QMC methods in high dimensional application is the quality of the distribution in the
lower dimensional projections of the QMC point set. See (Lemieux & Owen, 2002) for a more comprehensive discussion.
Figure 6 and 7 display the 5-th and 6-th, and 26-th and 27-th coordinate projections respectively of the MPMC points,
Sobol’ and Halton sequences constructed in 32 dimensions. Visual inspection reveals that the projections seem to be just as
uniformly distributed in the 5-th and 6-th dimensions and notably more evenly distributed as the dimension increases to
26 and 27. At these higher dimensions, we start noticing some undesired correlations in the coordinates of the Sobol’ and
Halton sequences, however, fortunately the MPMC construction does not exhibit this problematic feature displaying no
significant correlation, clustering, or sparsity; the MPMC point sets appear random yet maintain a high degree of uniformity.
This characteristic is particularly advantageous for tackling high-dimensional problems.

Figure 6. Projections of the 5-th and 6-th coordinates of 32-dimensional MPMC (left), Sobol’ (middle) and Halton (right) with N = 512.

Figure 7. Projections of the 26-th and 27-th coordinates of 32-dimensional MPMC (left), Sobol’ (middle) and Halton (right) with
N = 512.

C.3. Optimality of MPMC in Three Dimensions

Table 4 shows the star-discrepancy of MPMC in three dimensions for N = 1, 2, . . . , 8 number of points, as well as the
optimal star-discrepancy values obtained from (Clément et al., 2023). We can see that MPMC obtains again near-optimal
star-discrepancy for all choices of N .

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Table 4. Comparison in three dimensions of MPMC points star-discrepancy values against optimal sets.

N 1 2 3 4 5 6 7 8

Optimal 0.6823 0.4239 0.3445 0.3038 0.2618 0.2326 0.2090 0.1875
MPMC 0.6833 0.4239 0.3491 0.3071 0.2669 0.2371 0.2158 0.1993

C.4. Star-discrepancy values of Figure 4 in the main text

From the main text, we present the exact numerical values of the star-discrepancy for Halton, Sobol’, Subset Selection,
Hammersley, Fibonacci, and MPMC points as a benchmark for future methods.

Table 5. Star-discrepancy values of Figure 4 in the main text for Halton, Sobol’, Subset Selection, Hammersley, Fibonacci, and MPMC.
N 20 60 100 140 180 220 260 300 340 380 420 460 500

Halton 0.1738 0.0654 0.0502 0.0369 0.032 0.0232 0.0206 0.0199 0.0195 0.0166 0.0162 0.0128 0.0117
Sobol 0.1312 0.0658 0.0462 0.0331 0.0247 0.0242 0.0257 0.0185 0.0128 0.0144 0.0133 0.0123 0.0129
Subset Selection 0.0880 0.0547 0.0286 0.0244 0.0203 0.015 0.0134 0.0153 0.0117 0.0109 0.0107 0.0095 0.0090
Hammersley 0.1230 0.0494 0.0314 0.0229 0.0184 0.0151 0.0131 0.0116 0.0106 0.0094 0.0085 0.008 0.0074
Fibonacci 0.1188 0.0442 0.0275 0.0213 0.0165 0.0135 0.012 0.0105 0.0096 0.0086 0.0078 0.0071 0.0065
MPMC 0.0666 0.0273 0.0188 0.0137 0.0115 0.0097 0.0084 0.0075 0.0071 0.0070 0.0058 0.0054 0.0052

C.5. On the role of the radius in the nearest neighbor graph

We recall from the main text, that our proposed MPMC method is based on GNNs that leverage r-radius nearest neighbors
as the underlying computational graph, connecting nodes within a given radius r. How does the performance of MPMC
depend on the radius r? Moreover, is it necessary to use GNNs? To answer this, we train 10 MPMC models for different
radius values r = 0.1, . . . , 1.0 for different number of points N and plot the resulting average L2-discrepancy in Fig. 8. We
can see that there is no correlation between the performance and a fixed radius r. Moreover, the performance appears to be
not overly sensitive with respect to different values for the radius. Nevertheless, small variations of the performance with
respect to the radius r can be seen and it is thus advisable to include the radius to the set of tune-able hyperparameters of the
model.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Radius r of nearest neighbor graph

0.01

0.005

0.001

L 2
-d

is
cr

ep
an

cy

N = 64

N = 128

N = 1024

Figure 8. L2-discrepancy of MPMC points for increasing values
of the radius of the underlying nearest neighbor computational
graph ranging from 0.1 to 1.0 for different number of points N =
64, 128, 1024.

N = 64 N = 256 N = 10240.000

0.002

0.004

0.006

0.008

0.010

L 2
-d

is
cr

ep
an

cy

GCN

GAT

MPNN

Figure 9. L2-discrepancy of MPMC for different choices of GNN
architectures, i.e., GCN (Kipf & Welling, 2017), GAT (Velickovic
et al., 2018), and MPNN (Gilmer et al., 2017) for three different
number of points N = 64, 256, 1024.

We further note that a radius of r = 0 corresponds to zero edges in the underlying computational graph. Thus, the model
becomes a deepset (Zaheer et al., 2017), processing each point in the set individually without aggregating any neighborhood

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

information. The average L2-discrepancy of this deepset is approximately 0.073 for N = 64, 0.058 for N = 128, and 0.063
for N = 1024, i.e., between 9 to over 40 times worse than GNNs with r ≥ 0.1. Moreover, the deepset fails to decrease the
L2-discrepancy for increasing number of points N . This highlights the necessity of using GNNs that aggregate geometric
information from neighboring points for successfully generating low-discrepancy point sets.

C.6. On the role of the GNN architecture

While we base our proposed MPMC model on MPNNs (Gilmer et al., 2017), any other GNN architecture could be used
instead. Therefore, it is natural to ask how the choice of the GNN architecture influences the performance of MPMC. To
answer this, we test three different configurations of MPMC: one based on MPNNs, one based on GCNs (Kipf & Welling,
2017), and one based on GATs (Velickovic et al., 2018). We train all three configurations for different number of points
N = 64, 256, 1024, and provide the results as a bar plot in Fig. 9. We can see that while GCNs and GATs outperform each
other depending on the chosen number of points, MPNNs consistently produce point sets with the lowest L2-discrepancy
among all three configurations for all number of points considered here.

C.7. On the role of the input points

0 200 400 600 800 1000
Training steps (in hundreds)

10−2

10−1

L 2
-d

is
cr

ep
an

cy

N = 256

Sobol input

RandSobol input

Rand input

0 200 400 600 800 1000
Training steps (in hundreds)

10−2

10−1

L 2
-d

is
cr

ep
an

cy

N = 1024

Sobol input

RandSobol input

Rand input

Figure 10. .

In the main text, we suggest three different input types to be transformed into low-discrepancy points via our MPMC
framework, namely random points, Sobol’, and randomized Sobol’. In this experiment, we empirically analyse how these
different types influence the discrepancy of the resulting MPMC points. To this end, we train several MPMC models based
on the three different input types and report the average L2-discrepancy during training for two different number of points
N = 256, 1024 in Fig. 10. We can see that on average either Sobol’ or randomized Sobol’ reach lower discrepancy values
as well as exhibit faster convergence compared to random points. We note, however, that the single best MPMC model for
each of the three different input point types yield almost identical discrepancy values. Thus, we conclude that Sobol’ and
randomized Sobol’ points on average yield lower discrepancy values compared to random points, while at the same time the
best performing input type has to be evaluated in practice for each number of points N .

15

