
Message-Passing Monte Carlo: Generating low-discrepancy point sets via
Graph Neural Networks

T. Konstantin Rusch 1 Nathan Kirk 2 Michael M. Bronstein 3 Christiane Lemieux 2 Daniela Rus 1

Abstract
Discrepancy is a well-known measure for the
irregularity of the distribution of a point set.
Point sets with small discrepancy are called low-
discrepancy and are known to efficiently fill the
space in a uniform manner. Low-discrepancy
points play a central role in many problems in
science and engineering, including numerical in-
tegration, computer vision, machine perception,
computer graphics, machine learning, and simu-
lation. In this work, we present the first machine
learning approach to generate a new class of low-
discrepancy point sets named Message-Passing
Monte Carlo (MPMC) points. Motivated by the
geometric nature of generating low-discrepancy
point sets, we leverage tools from Geometric
Deep Learning and base our model on Graph Neu-
ral Networks. We further provide an extension
of our framework to higher dimensions, which
flexibly allows the generation of custom-made
points that emphasize the uniformity in specific
dimensions that are primarily important for the
particular problem at hand. Finally, we demon-
strate that our proposed model achieves state-of-
the-art performance superior to previous methods
by a significant margin. In fact, MPMC points are
empirically shown to be either optimal or near-
optimal with respect to the discrepancy for low
dimension and small number of points, i.e., for
which the optimal discrepancy can be determined.

1. Introduction
Monte Carlo (MC) methods have been commonly used
and are a popular choice for approximating and simulating
complex real-world systems. Known for their reliance on

1Massachusetts Institute of Technology (MIT) 2University of
Waterloo 3University of Oxford. Correspondence to: T. Konstantin
Rusch <tkrusch@mit.edu>.

Proceedings of the 5 th Workshop on AI for Science at the 41 st

International Conference on Machine Learning, Vienna, Austria.
2024. Copyright 2024 by the author(s).

repeated random sampling, MC methods function well in
problems involving optimization, numerical integration, and
financial mathematics (particularly derivative pricing and
risk management) via computer simulation. However, their
convergence rate of O(N−1/2) in the number of samples N
means that achieving high precision with MC requires an im-
practically large number of samples for complex problems.
To address this drawback, it is common to employ variance
reduction techniques such as importance sampling, stratified
sampling, or control variates to obtain the same degree of
accuracy with fewer samples (for details, see (Glasserman,
2004), (Lemieux, 2009) and references therein).

A particularly successful approach for convergence is called
quasi-Monte Carlo (QMC). QMC methods employ a de-
terministic point set, which replaces the purely random
sampling with a sample whose points span the hypercube
[0, 1]d in a manner that is more uniform than what can be
achieved with MC sampling. The fact that these point sets
are constructed over [0, 1]d is not overly restrictive as most,
if not all, sampling algorithms used within the MC method
take as input (pseudo)random numbers in [0, 1]. The uni-
formity of these deterministic point sets (or indeed, any
point set) can be captured by one of several of measures of
irregularity of distribution, referred to by the umbrella term
discrepancy measures (Drmota & Tichy, 1997). The more
uniformly distributed the points are, the lower the discrep-
ancy is; point sets possessing a small enough discrepancy
value are called low-discrepancy. In the classical setting,
the star-discrepancy, widely regarded as the most important
uniformity measure, of an N−element point set {Xi}Ni=1

contained in [0, 1]d represents the largest absolute differ-
ence between the volume of a test box and the proportion of
points of {Xi}Ni=1 that fall inside the test box,

D∗ ({Xi}Ni=1

)
:=

sup
x∈[0,1]d

∣∣∣∣∣#
(
{Xi}Ni=1 ∩ [0,x)

)
N

− µ([0,x))

∣∣∣∣∣ (1)

where #({Xi}Ni=1 ∩ [0,x)) counts how many points of
{Xi}Ni=1 fall inside the box [0,x) =

∏d
i=1[0, xi) for

x = (x1, . . . , xd) ∈ [0, 1]d, and µ(·) denotes the usual
Lebesgue measure. The discrepancy is closely related to
worst-case integration error of a particular class of functions

1

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

with the most well-known result being the Koksma-Hlawka
inequality; see (Kuipers & Niederreiter, 1974; Hlawka,
1984). Explicitly, given a point set {Xi}Ni=1 contained in
[0, 1]d, we have∣∣∣∣∣
∫
[0,1]d

f(x)dx− 1

N

N∑
i=1

f(Xi)

∣∣∣∣∣ ≤ D∗({Xi}Ni=1)V (f)

(2)
where V (f) denotes the variation of the function f in the
sense of Hardy and Krause. This result illustrates that
points with small discrepancy induce approximations with
small errors. Thus in summary, it is of general interest to
find N−point configurations with smallest discrepancy; see
(Cauwet et al., 2020; Galanti & Jung, 1997; Paulin et al.,
2022; Mishra & Rusch, 2021; Longo et al., 2021) for exam-
ples of QMC implementation.

Given this context, our main goal is to present a machine
learning framework that generates point sets with minimal
discrepancy. Based on the geometric nature of this problem,
we suggest to leverage graph-learning models from Geomet-
ric Deep Learning (Bronstein et al., 2021) to achieve this.
More concretely, we construct a computational graph based
on nearest neighbors of the initial input points and process
the encoded input points with a deep message-passing neural
network, which is trained to minimize a closed-form solu-
tion of a specific discrepancy measure of its decoded and
clamped outputs. We term the resulting low-discrepancy
points Message-Passing Monte Carlo (MPMC) points.
Previous methods either fail to achieve optimal discrepancy
values or are computationally intractable, being limited to
small dimensions (d ≤ 3) and very small numbers of points
(N ≤ 21), which can still require weeks of computation. In
contrast, MPMC can be trained in a few minutes to achieve
near-optimal discrepancy for these cases. Moreover, we
show that MPMC is not limited to small number of points
in small dimensions but can efficiently generate N > 1000
points in tens of dimensions. This advancement represents
a significant step forward in the development of highly effi-
cient sampling methods, which are crucial for many applica-
tions in science and engineering. Concrete examples include
problems in financial mathematics (L’Ecuyer, 2009), path
and motion planning in robotics (Branicky et al., 2001), and
enhanced training of neural scene rendering methods like
Neural Radiance Fields (NeRFs) (Mildenhall et al., 2021).

Main contributions. In the subsequent sections, we will:

• introduce a new state-of-the-art machine learning
model that generates low-discrepancy points. To our
knowledge, this is the first machine learning approach
in this context.

• extend our framework to higher dimensions by mini-
mizing the average discrepancy of randomly selected

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Two different low-discrepancy point sets with N = 64:
Korobov lattice (left), and Sobol’ (right).

subsets of projections. This allows for generating
custom-made points that emphasize specific dimen-
sions that are primarily important for the particular
problem at hand.

• provide an extensive empirical evaluation of our pro-
posed MPMC point sets and demonstrate their superior
performance over previous methods.

2. Background and previous work
Our general goal in this paper is to provide a method for
generating point sets with small discrepancy. In the follow-
ing, we use the term sequence to refer to an infinite series
of points, and point set for a finite one.

A sequence of points {Xi}∞i=1 contained in [0, 1]d is called
a low-discrepancy sequence if the star-discrepancy of the
first N points satisfies D∗ ({Xi}Ni=1

)
= O((logN)d/N).

A finite point set {Xi}Ni=1 is said to be of low discrepancy if
its corresponding star-discrepancy D∗ ({Xi}Ni=1

)
is “small”

enough, which in practice means that a bound of the form
c(logN)d−1/N can be established, for a given constant c
independent of N (but possibly dependent on d). Moving
forward, for comparison purposes, we will truncate various
known infinite low-discrepancy sequences resulting in a
finite point set, which inherits the low-discrepancy property
from the underlying infinite sequence.

Figure 1 illustrates two examples of low-discrepancy point
sets. On the left-hand side we have a Korobov lattice (Ko-
robov, 1963), which is an example of a lattice rule (Haber,
1970; Sloan & Joe, 1994; Nuyens, 2014; Dick et al., 2022),
and on the right-hand side, we see the first 64 points of
the two-dimensional Sobol’ sequence (Sobol’, 1967). This
construction leverages a widely used building block for
many low-discrepancy sequences known as the van der Cor-
put sequence in base b (van der Corput, 1935). It is also
an example of what are modernly known as digital (t, s)-
sequences—which also include the Faure sequences (Faure,
1982)—that were first laid out in (Niederreiter, 1987), with a
comprehensive overview provided in the subsequent mono-
graph (Niederreiter, 1992). Halton sequences (Halton, 1960)

2

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

are another widely used type of low-discrepancy sequences
that concatenate d van der Corput sequences in different
bases, usually taken as the first d prime numbers.

More recently, there have been successful attempts to con-
struct low-discrepancy point sets using more sophisticated
means motivated by the lack of constructions adapted to
specific N and d. In (Doerr & De Rainville, 2013), new
low-discrepancy point sets were suggested via the optimiza-
tion of permutations applied to a Halton sequence. More
recently, a method called subset selection is formulated to
choose from an N−element point set, the k < N points
which yield the smallest discrepancy. An exact selection
algorithm was presented in (Clément et al., 2022), while a
swap-based heuristic approach was used in (Clément et al.,
2024). Furthermore, a method to generate optimal star-
discrepancy point sets for fixed N and d based on a non-
linear programming approach was suggested in (Clément
et al., 2023). However, this formulation of the problem pre-
sented huge computational burdens allowing optimal sets
only to be found up to 21 points in dimension two and 8
points in dimension three.

3. Method
Let 1 < d < +∞ and 1 ≤ N < +∞ be fixed natural num-
bers. Our objective is to train a neural network to transform
(random) input points {Xi}Ni=1 into points {X̂i}Ni=1 that
reduce the star-discrepancy D∗ (1), where Xi, X̂i ∈ [0, 1]d

for all i.

In this work, we propose to leverage Graph Neural Net-
works (GNNs) (Sperduti, 1994; Goller & Kuchler, 1996;
Sperduti & Starita, 1997; Frasconi et al., 1998; Gori et al.,
2005; Scarselli et al., 2008; Bruna et al., 2014; Defferrard
et al., 2016; Kipf & Welling, 2017; Monti et al., 2017) based
on the message-passing framework to effectively learn such
transformations. GNNs are a popular class of model archi-
tectures for learning on relational data, and have success-
fully been applied on a variety of different tasks, e.g., in
computer science (Monti et al., 2017; Derrow-Pinion et al.,
2021; Ying et al., 2018), and the natural sciences (Gilmer
et al., 2017; Gaudelet et al., 2021; Shlomi et al., 2020) (see
(Zhou et al., 2019; Bronstein et al., 2021) for additional
applications). In particular, GNNs have successfully been
used in the context of learning on point clouds, or generally
learning on sets. This motivates the choice of GNNs in our
setup, where specific transformations of geometric sets (i.e.,
set of input points in [0, 1]d) have to be learned.

A schematic drawing of our approach can be seen in Fig. 2,
where we train a GNN model to transform N = 64 random
input points {Xi}Ni=1 into low-discrepancy points {X̂i}Ni=1.

via GNN

Transform

Figure 2. Schematic drawing of our proposed approach to trans-
form (random) input points {Xi}Ni=1 into low-discrepancy points
{X̂i}Ni=1. Both the input and output point sets are actual instances
of our proposed model, with N = 64 and d = 2 in this example.

3.1. Training set

Our approach can be classified as an unsupervised learning
setup, where, in contrast to supervised learning, only input
data is required without any labels. While it is intuitive to
generate the set of input points randomly, we suggest several
different approaches for constructing input data. First, using
aforementioned uniform random sampled set of input points
Xi ∼ U([0, 1]d), for all points i = 1, . . . , N . Second, using
set of input points from available low-discrepancy construc-
tions, such as Sobol’, Halton, or a lattice rule. Third, using
set of input points from randomly perturbed low-discrepancy
points, i.e.,

Xi = Yi + ξ (mod 1), (3)

where Yi is generated by a known low-discrepancy set and
ξ is uniform randomly sampled from [0, b]d, with 0 < b ≤ 1,
for all points i = 1, . . . , N .

3.2. Model architecture

We start by constructing an undirected computational graph
G = (V,E ⊆ V ×V), where V denotes the set of unordered
nodes corresponding to the input points {Xi}Ni=1, and E

is the set of pair-wise connections between the nodes. In
addition, each node i ∈ V is equipped with a node fea-
ture set to the coordinates of an input point, i.e., set to
Xi ∈ Rd. We further denote the 1-neighborhood of a node
i ∈ V as Ni = {j ∈ V : (i, j) ∈ E}. Clearly, the set of
all 1-neighborhoods induces the connectivity of the graph,
i.e., the set of node-wise connections E. Hence, the only
remaining part of the construction of the underlying com-
putational graph G is to define the local structure of the
graph, i.e., defining Ni for all nodes i. It is worth noting
that in many GNN applications (e.g., network science, or
life sciences) the computational graph structure is already
given a-priori, either explicitly or implicitly. In contrast to
that, our problem setup considers the connectivity of the un-
derlying computational graph as an additional design choice.

3

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

While there are many suitable choices, often balancing a
global vs local connectivity structure, we suggest basing
the local connectivity on the nearest neighbors of the node
features, i.e., for a fixed radius 0 < r ≤

√
d,

Ni = {j ∈ V : ∥Xi −Xj∥2 ≤ r}. (4)

We choose this inherently local structure to guide the
GNN training towards transforming input points into low-
discrepancy points by mainly considering the positions of
other near-by points (in the corresponding Euclidean space
of the input point set).

We can now define the main building block of our MPMC
model, i.e., GNN layers based on the message-passing
framework. Message-passing GNNs are a family of para-
metric functions defined through local updates of hidden
node representations. More concretely, we iteratively update
node features as,

Xl
i = ϕl

Xl−1
i ,

∑
j∈Ni

ψl(Xl−1
i ,Xl−1

j)

 , for all l = 1, . . . , L,

(5)
with Xl

i ∈ Rml for all nodes i. Moreover, we parame-
terize ϕl, ψl as ReLU-multilayer perceptrons (MLPs), i.e.,
MLPs using the element-wise ReLU(x) = max(0, x) acti-
vation function in-between layers. We further encode the
initial node features by an affine transformation X0

i =
AencXi + benc for all i = 1, . . . , N , with weight matrix
Aenc ∈ Rm0×d and bias benc ∈ Rm0 . Finally, we decode
the output of the final GNN layer by an affine transformation
and smoothly clamp the decoded outputs back into [0, 1]d

by using the element-wise sigmoidal activation function,
i.e., X̂i = σ(AdecX

L
i + bdec) for all i = 1, . . . , N , with

sigmoidal function σ(x) = 1/(1 + e−x), weight matrix
Adec ∈ Rd×mL , and bias bdec ∈ Rd. Note that clamping is
crucial, as otherwise the training objectives we introduce in
the subsequent sections are ill-defined. A schematic of the
full model can be seen in Fig. 3.

3.3. Training objective

Our ultimate goal is to minimize the star-discrepancy D∗

(1). However, D∗ cannot serve as the training objective, as
(i) D∗ is computationally infeasible to calculate for high
dimensions d and large number of points N , (ii) the training
objective should not only be computationally feasible but
rather very efficient to compute, as it needs to be evaluated at
every step of the training procedure (i.e., for every step of the
gradient descent method) resulting in potentially thousands
of evaluations to train only a single model, and (iii) the
training objective needs to be sufficiently differentiable (i.e.,
that can be handled by automatic differentiation packages
such as (Paszke et al., 2017)) in order to be used in the
context of gradient-based learning. It turns out, we can

derive a training objective resolving all three issues while
simultaneously reducing D∗ by leveraging previous work
on the Lp-discrepancy,

Lp({Xi}Ni=1) :=(∫
[0,1]d

∣∣∣∣#({Xi}Ni=1 ∩ [0,x))

N
− µ([0,x))

∣∣∣∣p dx
) 1

p

.

(6)
Clearly, the star-discrepancy D∗ can be derived as a special
case of (6) with p = ∞. Here, we focus on the case of p = 2
as our training objective, since instead of computing the
integral in (6), we can leverage its closed-form expression,
known as Warnock’s formula (Warnock, 1972),

L2
2({Xi}Ni=1) =

1

3d
− 2

N

N−1∑
i=0

d∏
k=0

1−X2
i,k

2

+
1

N2

N−1∑
i,j=0

d∏
k=0

1−max(Xi,k,Xj,k),

(7)

where Xi,k is the k-th entry of Xi. This enables a very
fast and exact computation of the L2-discrepancy without
errors resulting from numerical quadrature methods. Thus,
the L2-discrepancy is an ideal candidate for the training
objective of our machine learning approach.

3.4. Extension to higher dimensions

In many practical problems, particularly in engineering and
finance, the dimension d of the problem can be very large.
This necessitates extending low-discrepancy sequences to
the high dimensional case of d≫ 1. However, it is known
(Morokoff & Caflisch, 1994; Wang & Sloan, 2008) that
the L2-discrepancy fails to identify superior distributional
properties of low-discrepancy point sets over random sam-
ples as the dimension increases. Indeed, in high dimensions
the classical L2-discrepancy of low-discrepancy point sets
behaves like O(1/

√
N), the same as for random points,

for moderate values of N , while an improved order close
to O(1/N) can only be seen for extremely large N . Em-
pirical evidence for these last claims can be found in the
discrepancy plots contained in (Morokoff & Caflisch, 1994).

To this end, we suggest to base our new training objective for
higher-dimensional generation of low-discrepancy points
on the Hickernell Lp-discrepancy (Hickernell, 1998),

DH,p({Xi}Ni=1) =

 ∑
∅̸=s⊆{1,...,d}

Lp
p({Xs

i}Ni=1)

 1
p

, (8)

where ∅ ̸= s ⊆ {1, . . . , d} is a non-empty subset of coor-
dinate indices, and {Xs

i}Ni=1 is the projection of {Xi}Ni=1

onto [0, 1]|s|. Note that while we can again make use of

4

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Figure 3. Schematic of the proposed model to learn low-discrepancy points. First, (random) input points {Xi}Ni=1 are encoded to a high
dimensional representation. Second, the encoded representations are passed through a deep GNN (5), where the underlying computational
graph is constructed based on nearest neighbors using the positions of the initial input points. Finally, the node-wise output representations
of the final GNN layer are decoded and clamped yielding new d-dimensional points {X̂i}Ni=1 in [0, 1]d.

Warnock’s formula (7) to compute DH,2, it requires com-
puting the sum of the L2-discrepancy of 2d − 1 projections,
which already for d = 32 is more than 1B. This highlights
the necessity of modifying DH,2 in order for it to be used
as a training objective in a machine learning framework.
Therefore, we suggest to base the training objective on a
modification of the Hickernell Lp-discrepancy via random
projections,

D̃H,p,K({Xi}Ni=1) =

(
K∑

k=1

Lp
p({Xsk

i }Ni=1)

) 1
p

, (9)

where ∅ ≠ sk ∼ P({1, . . . , d}) are randomly sampled sub-
sets of coordinate indices for each k = 1, . . . ,K, thus re-
quiring to compute the Lp-discrepancy only K times. More
specifically, we sample sk by first selecting the dimension
dk of the projection uniformly at random, and then sampling
the projection itself uniformly at random from the set of
all dk-dimensional projections. This method ensures that
the dimensions of the projections are uniformly distributed
during training. Alternatively, we could randomly sample
the dimensions of the projections according to a binomial
distribution.

Generating problem-dependent point sets. As a further
advantage to this framework, we highlight its inherent flex-
ibility. Specifically, employing the modified Hickernell
discrepancy as the training objective represents a first step
towards an adaptive QMC sampling method tailored for
specific problems. It is widely recognized that for many
problems, the effective dimension—essentially, the num-
ber of dimensions capturing the majority of the problem’s
variability—is often significantly lower than the nominal
dimension; for full details, refer to (Caflisch et al., 1997).
Therefore, during high-dimensional training, assuming that
the important subsets of variables are known or identified
in advance, e.g., by functional ANOVA methods (Lemieux
& Owen, 2002), prioritizing sampling from specific lower
dimensional projections will yield a d-dimensional point set
that is highly uniformly distributed in those same projec-

tions identified during training. This approach effectively
creates a custom-made point set, optimized for problems
that primarily depend upon particular subsets of variables.

4. Empirical results
In this section, we present empirical results comparing
MPMC points to current state-of-the-art low-discrepancy
point sets. More concretely, we demonstrate superior distri-
butional properties of MPMC over other low-discrepancy
point sets mainly with respect to the star-discrepancy, D∗.

As previously mentioned, computing the star-discrepancy is
typically a challenging task. The DEM algorithm (Dobkin
et al., 1996) denotes the fastest method to compute the exact
star-discrepancy with a significantly reduced complexity,
running in O(N1+d/2) time. In all experiments, the results
of which are presented shortly, to calculate the star discrep-
ancy we either use a simple crude search or a parallelized
version of the DEM algorithm from (Clément et al., 2023) to
speed up calculation when necessary. The interested reader
is recommended to consult (Doerr et al., 2014) and refer-
ences therein for more information on the calculation of
the star-discrepancy, and indeed the computation of other
discrepancy measures.

4.1. Low-dimensional generation of MPMC points

Here, we focus on generating MPMC points within a lower-
dimensional setting particularly because this area has re-
cently attracted significant attention (Clément et al., 2022;
2024; Clément et al., 2023) providing a solid basis for com-
parison.

We compare the irregularity of our MPMC point sets with
a truncation to the first N points of the widely used Sobol’
and Halton sequences. We note that MPMC points are sets
optimized for N chosen in advance, whereas a key advan-
tage of the Sobol’ and Halton sequences are that they are
built for repeated sampling and retain a low-discrepancy for
all values of N . Therefore, in addition, we provide compari-

5

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

20 220 420 620 820 1020
Number of points N

10−2

10−1

S
ta

r-
di

sc
re

pa
nc

y
D
∗

Halton

Subset

Fibonacci

MPMC

Hammersley

lifted Sobol’

Sobol’

Figure 4. Star-discrepancy D∗ of Halton, Sobol’, lifted Sobol’,
Subset Selection, Hammersley, Fibonacci, and MPMC for increas-
ing number of points N = 20, . . . , 1020 in d = 2.

son with state-of-the-art point sets derived from the subset
selection method from (Clément et al., 2022; 2024), lifted
Sobol’ (the first N terms of a one-dimensional Sobol’ se-
quence concatenated with i/N for i ∈ {0, . . . , N − 1}),
the Hammersley construction in base 1 +

√
2 as intro-

duced in (Kirk et al., 2023) and the Fibonacci set defined
as {(i/N, {iφ}) : i ∈ {0, . . . , N − 1}} where φ represents
the golden ratio, the notation {x} denotes the fractional part
of x ∈ R. All four of these sets are recognized for hav-
ing among the lowest star-discrepancy for given N in two
dimensions. Fig. 4 shows the star-discrepancy of MPMC,
Sobol’, Halton, subset selection, lifted Sobol’, Hammersley
and Fibonacci sets in two dimensions for increasing num-
ber of points N = 20, . . . , 1020. We can see that MPMC
significantly outperforms all other methods with respect to
the star-discrepancy. In fact, the star-discrepancy of MPMC
is on average 1.3 times smaller than that of the current state-
of-the-art Fibonacci construction, and on average more than
2.2 times smaller than Sobol’ or Halton points. We provide
the exact values of Fig. 4 in the Supporting Information (SI)
such that it can serve as a benchmark for future methods.
We further provide the L2-discrepancy values of MPMC
together with a discussion outlining their relevance in the
SI.

4.2. Optimality of MPMC point sets

Much of the past research on low-discrepancy point sets
focused on achieving star-discrepancy with optimal asymp-
totic order in N for implementation in quasi-Monte Carlo
methods. However, there has been a recent surge in interest
in finding point sets that minimize discrepancy for fixed N
and d. The main contribution in this direction was given in
(Clément et al., 2023), where the authors constructed opti-
mal star-discrepancy point sets in two and three dimensions.

Naturally, we are interested in comparing MPMC points to
these optimal formulations. The results of the optimal star-
discrepancy comparison in two dimensions are presented in
Table 1 and the three dimensional case is found in the SI.

Table 1. Comparison in two dimensions of MPMC star-
discrepancy values against optimal sets and Fibonacci sets.

N 1 2 3 4 5 6 7

Fibonacci 1.0 0.6909 0.5880 0.4910 0.3528 0.3183 0.2728
Optimal 1/φ 0.3660 0.2847 0.2500 0.2000 0.1667 0.1500
MPMC 1/φ 0.3660 0.2847 0.2500 0.2000 0.1692 0.1508

N 8 9 10 11 12 13 14

Fibonacci 0.2553 0.2270 0.2042 0.1857 0.1702 0.1571 0.1459
Optimal 0.1328 0.1235 0.1111 0.1030 0.0952 0.0889 0.0837
MPMC 0.1354 0.1240 0.1124 0.1058 0.0975 0.0908 0.0853

N 15 16 17 18 19 20 21

Fibonacci 0.1390 0.1486 0.1398 0.1320 0.1251 0.1188 0.1131
Optimal 0.0782 0.0739 0.0699 0.0666 0.0634 0.0604 0.0580
MPMC 0.0794 0.0768 0.0731 0.0699 0.0668 0.0640 0.0606

We can see that the star-discrepancy of MPMC points is
very close to the star-discrepancy of the optimal point sets,
and in fact match it exactly for small N . Moreover, the
star-discrepancy of the Fibonacci set is far off the optimal
values, i.e., approximately by a factor of 2. Finally, it is
worth highlighting, as reported in (Clément et al., 2023),
that the computation of the optimal points requires to solve
a non-linear programming problem and takes approximately
18 days to compute for the case of d = 3 and N = 8.
In contrast to that, MPMC was trained from scratch in 72
seconds on an NVIDIA GeForce RTX 2080 Ti GPU for the
same case.

4.3. MPMC generation in high dimensions

As discussed in Section 3.4, the efficacy of discrepancy mea-
sures to justly evaluate irregularity of distribution is flawed
in higher dimensions. Therefore, to alternatively assess the
quality of the distribution of higher dimensional point sets
and sequences, motivated by the Koksma-Hlawka inequality
(2), we will implement high dimensional MPMC points in
an integral arising in a real-world problem from compu-
tational finance previously studied in (Lemieux & Owen,
2002; Wang & Sloan, 2005; Faure & Lemieux, 2009).

The primary goal is to accurately estimate the value at time
0 of an Asian call option on an underlying asset that follows
a log-normal distribution. Complete details of the problem
formulation are provided in the SI. With our chosen pa-
rameters, this problem is known (Lemieux & Owen, 2002)
to exhibit more than 97% of its variability in dimensions
one, two, and three. Table 2 shows the absolute errors ob-
served when implementing Hammersley, lattice, Sobol’ and
MPMC constructions. We train a 32-dimensional MPMC
point set while emphasizing the 1-3-dimensional projections
as described in Section 3.4. Likewise, we utilize the custom

6

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

QMC software LatNet Builder (L’Ecuyer et al., 2020) to
construct a rank-1 lattice by the component-by-component
construction (Kuo & Joe, 2002; Dick et al., 2015) placing im-
portance on the 1-3-dimensional projections. We report the
average absolute error of an MPMC training batch, which
is selected based on the minimal Hickernell L2-discrepancy
restricted to 1-3-dimensional projections.

Table 2. Approximation error of an Asian call option pricing of
MPMC, Hammersley, a rank-1 lattice, and Sobol’.

N 32 64 128 256 512 1024

Hammersley 6.449 4.125 3.575 2.817 1.947 1.296
Rank-1 lattice 5.636 4.638 1.331 2.151 0.180 0.203
Sobol’ 1.235 1.373 0.965 0.623 0.497 0.290
MPMC 1.402 0.831 0.512 0.250 0.120 0.055

The 32-dimensional MPMC point sets show significant en-
hancements over previous methods. This improvement is
particularly notable at higher values of N , where MPMC
outperforms rank-1 lattice by a factor of approximately 4,
Sobol’ by a factor of 5, and Hammersley by a factor of
24. A particularly promising feature is the gain shown by
MPMC points through targeted training, surpassing LatNet
Builder’s targeted rank-1 lattice. The efficiency observed in
this high-dimensional problem suggests a superior unifor-
mity of MPMC points. In fact, the observed improvements
may partially be explained by the uniformity held in lower-
dimensional projections when compared to the traditional
choices of QMC point sets. We refer to the SI for further
discussion.

4.4. Ablations

Our proposed MPMC method is the result of several design
choices, such as the type of input points, the deep learning
model, and the training objective. In order to further jus-
tify our choices, we ablate several aspects of our MPMC
framework illustrated by the following questions:

How does the graph structure influence the performance?
To answer this, we compute the average L2-discrepancy
of several trained MPMC models for increasing values of
the nearest neighbor radius r in (4) ranging from 0 to

√
d

for different number of points N = 64, 128, 1024, and plot
the results in the SI. These results lead to two important
observations. First, not using a graph structure at all, i.e.,
setting r = 0 resulting in Deepsets (Zaheer et al., 2017),
significantly impairs the performance of MPMC, reaching
average L2-discrepancy values that are 9 to 40 times worse
than using a graph structure. The second observation is
that although the performance of MPMC is relatively stable
for any choice of r > 0, including the radius r in hyper-
parameter tuning can help achieve point sets with minimal
discrepancy.

What is the role of the GNN architecture used in MPMC?
While we base MPMC on message-passing neural networks
(MPNNs) (Gilmer et al., 2017), other GNN architectures
such as Graph Convolutional Networks (GCNs) (Kipf &
Welling, 2017), or Graph Attention Networks (GATs) can be
used in this context as well. To check this, we train MPMC
based on MPNNs, GCNs, and GATs for three different
number of points N = 64, 256, 1024 and show the L2-
discrepancy in the SI. Based on these results, we conclude
that GCNs and GATs outperform each other based on the
number of pointsN . At the same time, MPNNs consistently
yield point sets with the lowest discrepancy values among
all three considered GNN architectures.

Does the choice of input point sets described in Section 3.1
influence the performance of MPMC? To answer this, we
train several MPMC models on all three different types of
input points, i.e., random points, Sobol’, and a randomized
Sobol’, where we choose ξ ∼ U([0, 0.1]d) in (3), for two
different number of points N = 256, 1024. We report the
average L2-discrepancy of all trained MPMC models for
increasing number of training steps in the SI. We observe
that on average Sobol’ and randomized Sobol’ yield slightly
lower discrepancy values and faster convergence compared
to random points and thus lead to a more robust performance.
However, we further note, that instead of averaging over all
trained MPMC models, but instead choosing the single best
model yield similar results for each input point type.

5. Discussion
Low-discrepancy points play a central role in many appli-
cations in science and engineering. In this article, we have
proposed MPMC, the first machine learning approach to
generate new sets of low-discrepancy points. Inspired by the
geometric nature of constructing such point sets, we base our
MPMC approach on GNNs. Choosing an adequate training
objective, i.e., closed-form solution of the L2-discrepancy,
we show that MPMC successfully transforms (random) in-
put points into point sets with low discrepancy. Moreover,
we extend this framework to higher dimensions, by training
with an approximation of the Hickernell L2-discrepancy.
We further present an extensive empirical evaluation to il-
lustrate different aspects of the proposed MPMC approach,
highlighting the superior uniformity properties of MPMC
points compared to previous state-of-the-art methods. Fi-
nally, we carefully ablate key components of our MPMC
model, yielding deeper empirical insights.

MPMC represents a novel and efficient way of generating
point sets with very low discrepancy. In fact, MPMC is
empirically shown to obtain optimal or near-optimal dis-
crepancy for every dimension and the number of points for
which the optimal discrepancy can be determined. This is
crucial for computationally expensive applications, where

7

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

MPMC will lead to potentially significantly lower abso-
lute errors compared to previous methods. Moreover, the
generality of the MPMC framework allows for designing
tailor-made QMC points that exploit specific structures of
the problem at hand.

The aim of this paper was to generate point sets with low dis-
crepancy for a fixed dimension and fixed number of points.
On the other hand, many important applications require re-
peated sampling resulting in low-discrepancy sequences and
not fixed point sets. Thus, one important aspect of future
work will be to extend our MPMC point sets to MPMC
sequences. Lastly, based on the superior discrepancy per-
formance, we expect MPMC point sets to excel in various
applications. Motivated by this, we would like to apply
MPMC to various problems in science and engineering as
future work.

Acknowledgements
The authors would like to thank François Clément (Sor-
bonne Université, CNRS) for several helpful discussions,
and for providing computer code for the further visual and
empirical insights contained in the SI. This research was
supported in part by the AI2050 program at Schmidt Futures
(grant G-22-63172), the Boeing Company, and the United
States Air Force Research Laboratory and the United States
Air Force Artificial Intelligence Accelerator and was accom-
plished under cooperative agreement number FA8750-19-2-
1000. The work of TKR is supported by Postdoc.Mobility
grant P500PT-217915 from the Swiss National Science
Foundation. The work of NK and CL is supported by
the Natural Science and Engineering Research Council of
Canada (NSERC) via grant 238959. MB is supported in part
by EPSRC Turing AI World-Leading Research Fellowship
No. EP/X040062/1.

References
Borda, B. Optimal and typical L2-discrepancy

of 2-dimensional lattices. Annali di Matemat-
ica, 2024. URL https://doi.org/10.1007/
s10231-024-01440-4.

Branicky, M. S., LaValle, S. M., Olson, K., and Yang, L.
Quasi-randomized path planning. In Proceedings 2001
ICRA. IEEE International Conference on Robotics and
Automation (Cat. No. 01CH37164), volume 2, pp. 1481–
1487. IEEE, 2001.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv:2104.13478, 2021.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and locally connected networks on graphs. In

2nd International Conference on Learning Representa-
tions, ICLR 2014, 2014.

Caflisch, R. E., Morokoff, W. J., and Owen, A. B. Valuation
of mortgage-backed securities using Brownian bridges to
reduce effective dimension. Journal of Computational
Finance, 1:27–46, 1997.

Cauwet, M.-L., Couprie, C., Dehos, J., Luc, P., Rapin, J.,
Riviere, M., Teytaud, F., Teytaud, O., and Usunier, N.
Fully parallel hyperparameter search: Reshaped space-
filling. In International Conference on Machine Learning,
pp. 1338–1348. PMLR, 2020.

Clément, F., Doerr, C., and Paquete, L. Star discrepancy
subset selection: problem formulation and efficient ap-
proaches for low dimensions. J. Complexity, 70:Paper
No. 101645, 34, 2022. ISSN 0885-064X,1090-2708.

Clément, F., Vermetten, D., De Nobel, J., Jesus, A. D., Pa-
quete, L., and Doerr, C. Computing star discrepancies
with numerical black-box optimization algorithms. In
Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO ’23, pp. 1330–1338, New York,
NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701191.

Clément, F., Doerr, C., and Paquete, L. Heuristic approaches
to obtain low-discrepancy point sets via subset selection.
J. Complexity, 83:Paper No. 101852, 2024. ISSN 0885-
064X,1090-2708.

Clément, F., Doerr, C., Klamroth, K., and Paquete, L. Con-
structing optimal L∞ star discrepancy sets. Preprint,
2023. https://arxiv.org/abs/2311.17463.

Cranley, R. and Patterson, T. N. L. Randomization of num-
ber theoretic methods for multiple integration. SIAM
Journal on Numerical Analysis, 13(6):904–914, 1976.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. Advances in neural information pro-
cessing systems, 29:3844–3852, 2016.

Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester,
T., Perez, L., Nunkesser, M., Lee, S., Guo, X., Battaglia,
P. W., Gupta, V., Li, A., Xu, Z., Sanchez-Gonzalez, A., Li,
Y., and Veličković, P. Eta prediction with graph neural net-
works in google maps. In Proceedings of the 30th ACM
International Conference on Information & Knowledge
Management, pp. 3767–3776, 2021.

Dick, J., Kritzer, P., Leobacher, G., and Pillichshammer, F.
A reduced fast component-by-component construction
of lattice points for integration in weighted spaces with
fast decreasing weights. Journal of Computational and
Applied Mathematics, 276:1–15, 2015.

8

https://doi.org/10.1007/s10231-024-01440-4
https://doi.org/10.1007/s10231-024-01440-4

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Dick, J., Kritzer, P., and Pillichshammer, F. Constructions
of Lattice Rules, pp. 95–139. Springer International Pub-
lishing, Cham, 2022.

Dobkin, D. P., Eppstein, D., and Mitchell, D. P. Comput-
ing the discrepancy with applications to supersampling
patterns. ACM Trans. Graph., 15(4):354–376, oct 1996.
ISSN 0730-0301.

Doerr, C. and De Rainville, F.-M. Constructing low star
discrepancy point sets with genetic algorithms. In Pro-
ceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation, pp. 789–796, New York, NY,
USA, 2013. Association for Computing Machinery. ISBN
9781450319638.

Doerr, C., Gnewuch, M., and Wahlström, M. Calculation
of Discrepancy Measures and Applications, pp. 621–678.
Springer International Publishing, 2014.

Drmota, M. and Tichy, R. F. Sequences, discrepancies
and applications, volume 1651 of Lecture Notes in Math-
ematics. Springer-Verlag, Berlin, 1997. ISBN 3-540-
62606-9. doi: 10.1007/BFb0093404. URL https:
//doi.org/10.1007/BFb0093404.

Faure, H. Discrepance de suites associées à un système
de numération (en dimension s). Acta Arithmetica, 41:
337–351, 1982.

Faure, H. and Lemieux, C. Generalized Halton sequences in
2008: A comparative study. ACM Trans. Model. Comput.
Simul., 19(4), 2009. ISSN 1049-3301.

Frasconi, P., Gori, M., and Sperduti, A. A general frame-
work for adaptive processing of data structures. IEEE
Trans. Neural Networks, 9(5):768–786, 1998.

Galanti, S. and Jung, A. Low-discrepancy sequences: Monte
Carlo simulation of option prices. J. Deriv., pp. 63–83,
1997.

Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep,
C., Liu, G., Hayter, J. B., Vickers, R., Roberts, C., Tang,
J., et al. Utilizing graph machine learning within drug
discovery and development. Briefings in Bioinformatics,
22(6), 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, 2017.

Glasserman, P. Monte Carlo methods in financial engi-
neering. Springer, New York, 2004. ISBN 0387004513
9780387004518 1441918221 9781441918222.

Goller, C. and Kuchler, A. Learning task-dependent
distributed representations by backpropagation through
structure. In ICNN, 1996.

Gori, M., Monfardini, G., and Scarselli, F. A new model for
learning in graph domains. In IJCNN, 2005.

Haber, S. Numerical evaluation of multiple integrals. SIAM
Review, (12):481–526, 1970.

Halton, J. H. On the efficiency of certain quasi-random
sequences of points in evaluating multi-dimensional inte-
grals. Numer. Math., 2:84–90, 1960.

Hickernell, F. A generalized discrepancy and quadrature
error bound. Mathematics of computation, 67(221):299–
322, 1998.

Hlawka, E. The theory of uniform distribution. A B Aca-
demic Publishers, Berkhamsted, 1984. ISBN 0-907360-
02-5.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Kirk, N. and Pausinger, F. On the expected L2-discrepancy
of jittered sampling. Unif. Distrib. Theory, 18(1):65–82,
2023.

Kirk, N., Lemieux, C., and Wiart, J. Golden ratio nets and se-
quences. Preprint, 2023. http://arxiv.org/abs/2312.11696.

Korobov, N. Number-theoretic methods of approximate
analysis. Fitzmatgiz, Moscow, 1963. In Russian.

Kritzinger, R. Uniformly distributed sequences generated
by a greedy minimization of the L2 discrepancy. Moscow
Journal of Combinatorics and Number Theory, 11(3):215
– 236, 2022.

Kuipers, L. and Niederreiter, H. Uniform distribution
of sequences. Pure and Applied Mathematics. Wiley-
Interscience [John Wiley & Sons], New York-London-
Sydney, 1974.

Kuo, F. Y. and Joe, S. Component-by-component construc-
tion of good lattice rules with a composite number of
points. Journal of Complexity, 18(4):943–976, 2002.

L’Ecuyer, P. and Lemieux, C. Recent Advances in Random-
ized Quasi-Monte Carlo Methods, pp. 419–474. Springer
US, New York, NY, 2002.

Lemieux, C. Monte Carlo and quasi-Monte Carlo sampling.
Springer Series in Statistics. Springer, New York, 2009.
ISBN 978-0-387-78164-8.

Lemieux, C. and Owen, A. B. Quasi-regression and the
relative importance of the ANOVA components of a func-
tion. In Fang, K.-T., Niederreiter, H., and Hickernell, F. J.
(eds.), Monte Carlo and Quasi-Monte Carlo Methods
2000, pp. 331–344, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

9

https://doi.org/10.1007/BFb0093404
https://doi.org/10.1007/BFb0093404

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Longo, M., Mishra, S., Rusch, T. K., and Schwab, C. Higher-
order quasi-Monte Carlo training of deep neural networks.
SIAM Journal on Scientific Computing, 43(6):A3938–
A3966, 2021.

L’Ecuyer, P. Quasi-Monte Carlo methods with applications
in finance. Finance and Stochastics, 13:307–349, 2009.

L’Ecuyer, P., Marion, P., Godin, M., and Puchhammer, F. A
tool for custom construction of QMC and RQMC point
sets. In International Conference on Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing, pp.
51–70. Springer, 2020.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. Communica-
tions of the ACM, 65(1):99–106, 2021.

Mishra, S. and Rusch, T. K. Enhancing accuracy of deep
learning algorithms by training with low-discrepancy se-
quences. SIAM Journal on Numerical Analysis, 59(3):
1811–1834, 2021.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In CVPR, 2017.

Morokoff, W. J. and Caflisch, R. E. Quasi-random se-
quences and their discrepancies. SIAM Journal on Sci-
entific Computing, 15(6):1251–1279, 1994. doi: https:
//doi.org/10.1137/0915077.

Niederreiter, H. Point sets and sequences with small dis-
crepancy. Monatshefte für Mathematik, 104(4):273–337,
1987.

Niederreiter, H. Random Number Generation and Quasi-
Monte Carlo Methods. 1992.

Nuyens, D. The construction of good lattice rules and
polynomial lattice rules, pp. 223–256. De Gruyter, Berlin,
Boston, 2014.

Ökten, G., Shah, M., and Goncharov, Y. Random and
deterministic digit permutations of the Halton sequence.
In Monte Carlo and quasi-Monte Carlo methods 2010,
volume 23 of Springer Proc. Math. Stat., pp. 609–622.
Springer, Heidelberg, 2012.

Owen, A. B. Randomly permuted (t,m, s)-nets and (t, s)-
sequences. In Niederreiter, H., Shiue, P.JS. (eds) Monte
Carlo and Quasi-Monte Carlo Methods in Scientific Com-
puting. Lecture Notes in Statistics, vol 106. Springer, New
York, NY, 1995.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,

A. Automatic differentiation in pytorch. Openreview.com,
2017.

Paulin, L., Bonneel, N., Coeurjolly, D., Iehl, J.-C., Keller,
A., and Ostromoukhov, V. Matbuilder: Mastering sam-
pling uniformity over projections. ACM Transactions on
Graphics (TOG), 41(4):1–13, 2022.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Trans. Neural Networks, 20(1):61–80, 2008.

Shlomi, J., Battaglia, P., and Vlimant, J.-R. Graph neural
networks in particle physics. Machine Learning: Science
and Technology, 2(2):021001, 2020.

Sloan, I. H. and Joe, S. Lattice Methods for Multiple
Integration. Oxford University Press, 1994. ISBN
9780198534723.

Sobol’, I. On the distribution of points in a cube and the ap-
proximate evaluation of integrals. USSR Computational
Mathematics and Mathematical Physics, 7(4):86–112,
1967. ISSN 0041-5553.

Sperduti, A. Encoding labeled graphs by labeling RAAM.
In NIPS, 1994.

Sperduti, A. and Starita, A. Supervised neural networks
for the classification of structures. IEEE Trans. Neural
Networks, 8(3):714–735, 1997.

van der Corput, J. Verteilungsfunktionen i–ii. Proc. Akad.
Amsterdam, 38:813–821, 1058–1066, 1935.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In 6th
International Conference on Learning Representations,
ICLR, 2018.

Wang, X. and Hickernell, F. J. Randomized Halton se-
quences. Math. Comput. Modelling, 32(7-8):887–899,
2000.

Wang, X. and Sloan, I. H. Why are high-dimensional fi-
nance problems often of low effective dimension? SIAM
Journal on Scientific Computing, 27(1):159–183, 2005.

Wang, X. and Sloan, I. H. Low discrepancy sequences
in high dimensions: How well are their projections dis-
tributed? Journal of Computational and Applied Math-
ematics, 213(2):366–386, 2008. ISSN 0377-0427. doi:
https://doi.org/10.1016/j.cam.2007.01.005.

Warnock, T. T. Computational investigations of low-
discrepancy point sets. In Applications of number theory
to numerical analysis, pp. 319–343. Elsevier, 1972.

10

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In KDD,
2018.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in neural information processing systems, 30,
2017.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., ,
Li, C., and Sun, M. Graph neural networks: a review of
methods and applications. arXiv:1812.08434v4, 2019.

11

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Supplementary Material for:
Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

A. Training details
All experiments have been run on NVIDIA GeForce RTX 2080 Ti, GeForce RTX 3090, TITAN RTX and Quadro RTX 6000
GPUs. Each model was trained for initial 100k training steps, after which the learning rate was reduced by a factor of 10
whenever the discrepancy measure of the output point sets did not improve for a total of 2k training steps evaluated after
every 100 training steps. The training was stopped once the learning rate reached a value less than 10−6. Moreover, the
hyperparameters of the model were tuned based on random search according to Table 3, which shows the search-space of
each hyperparameter as well as the random distribution used to sample from it.

Table 3. Hyperparameter search-space and random distributions to sample from it.

range distribution

learning rate [10−4, 10−2] log uniform
hidden size m0 = m1 = · · · = mL {32, 64, 128, 256} disc. uniform
number of GNN layers L {1, 2, . . . , 10} disc. uniform
size of mini-batches {8, 16, 32} disc. uniform
weight decay [10−8, 10−2] log uniform

B. On the Asian Option Pricing Experiment
We describe the problem of estimating the value at time 0 of an Asian call option on an underlying asset in detail. The
results of which are presented in the main text as Table 2.

The main goal is to estimate an expectation of the form,

C0 = E

e−rT

1

d

d∑
j=1

S(uj)−K

+ .
We let T be the expiration time of the contract, K the strike price, for Z ∼ N(0, 1) let S(u) = S(0)e

(
r−σ2

2

)
u+σ

√
uZ be

the price of the underlying asset at time u, and 0 < u1 < . . . < ud = T are d times at which the asset price is observed in
order to compute the average used in the option pricing formula. The expectation is taken under the risk-neutral probability
measure. Finally, r is the risk-free rate, the notation x+ means max(0, x), Φ−1 is the inverse CDF of the standard normal
distribution and ∆l = ul − ul−1. Assuming the stock price follows a geometric Brownian motion with volatility σ, it can be
shown that this expectation can be written as follows:

C0 = e−rT

∫
[0,1]d

1

d

d∑
j=1

S(0)e(r−
σ2

2)uj+σ
∑j

l=1

√
∆lΦ

−1(xl) −K

+

dx1 . . . dxd.

In our simulations, the true value C0 = 7.06574 was calculated in advance via QMC simulation with 2M Sobol’ points with
the following set of parameters: S(0) = 50, T = 1 year, r = 0.05, σ = 0.3,K = 45 and d = 32.

Further, for eachN , the generating vector for the rank-1 lattice is produced from LatNet builder from the command line by the
following syntax: latnetbuilder -t lattice -c ordinary -s N -d 32 -e full-CBC -f CU:P2
-q 2 --weights file:/path/to/weights.txt. The file weights.txt contains order-dependent weights of
10 on projection orders 1, 2 and 3 and otherwise a default weight of 0.001.

C. On the L2-discrepancy
The L2-discrepancy is a well-researched and widely used measure of distribution irregularity, consistently attracting attention
from the QMC research community (Borda, 2024; Kirk & Pausinger, 2023; Kritzinger, 2022). In our MPNN framework, we

12

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

utilize the L2-discrepancy function as a training objective because of its efficient computation and differentiable formulation
to be used in the gradient-based learning. This allows the generation of point sets with very small star discrepancy. As a
by-product, we also create point sets with small L2-discrepancy. Fig. 5 shows the L2-discrepancy values for increasing
number of points N = 20, . . . , 1020 for MPMC, Halton, Sobol’, Subset Selection method, Hammersley, and Fibonacci in
2 dimensions. We further present the numerical values of Fig. 5 in Table 4. We can see that MPMC consistently obtains
the lowest L2-discrepancy values for all number of points N . Moreover, MPMC significantly outperforms the previous
state-of-the-art method based on Fibonacci point sets. We highlight that the performance gap between MPMC and any
other method considered here is even wider for the L2-discrepancy than for the star-discrepancy D∗ in Figure 4 of the main
text. This can be explained by the fact that MPMC is trained to minimize the L2-discrepancy directly, and thus by design
optimizes the L2-discrepancy instead of the star-discrepancy D∗.

Table 4. L2-discrepancy values for Halton, Sobol’, Subset Selection, Hammersley, Fibonacci, and MPMC for different number of points
N = 20, . . . , 1020 in d = 2.

N 20 60 100 140 180 220 260 300 340 380 420 460 500

Halton 0.06511 0.01323 0.00751 0.00627 0.00460 0.00434 0.00389 0.00343 0.00292 0.00238 0.00266 0.00215 0.00226
Sobol’ 0.03564 0.01660 0.01006 0.00645 0.00551 0.00690 0.00655 0.00435 0.00276 0.00330 0.00267 0.00258 0.00242
Subset Selection 0.02569 0.01541 0.00823 0.00693 0.00530 0.00397 0.00352 0.00410 0.00310 0.00276 0.00266 0.00250 0.00221
Hammersley 0.04796 0.01812 0.01119 0.00833 0.00664 0.00554 0.00469 0.00416 0.00371 0.00335 0.00305 0.00283 0.00262
Fibonacci 0.04324 0.01465 0.00870 0.00657 0.00492 0.00399 0.00344 0.00306 0.00275 0.00249 0.00221 0.00198 0.00182
MPMC 0.02016 0.00756 0.00479 0.00353 0.00284 0.00241 0.00203 0.00179 0.00162 0.00154 0.00135 0.00122 0.00117

N 540 580 620 660 700 740 780 820 860 900 940 980 1020

Halton 0.00182 0.00179 0.00164 0.00171 0.00190 0.00179 0.00139 0.00122 0.00139 0.00126 0.00147 0.00117 0.00107
Sobol’ 0.00220 0.00216 0.00157 0.00152 0.00198 0.00164 0.00138 0.00196 0.00155 0.00154 0.00130 0.00125 0.00121
Subset Selection 0.00206 0.00228 0.00205 0.00178 0.00166 0.00167 0.00141 0.00151 0.00153 0.00152 0.00136 0.00112 0.00120
Hammersley 0.00243 0.00224 0.00211 0.00200 0.00190 0.00181 0.00173 0.00165 0.00158 0.00152 0.00146 0.00140 0.00135
Fibonacci 0.00168 0.00155 0.00145 0.00139 0.00132 0.00127 0.00121 0.00115 0.00110 0.00107 0.00103 0.00099 0.00094
MPMC 0.00104 0.00104 0.00098 0.00090 0.00087 0.00088 0.00082 0.00080 0.00074 0.00075 0.00072 0.00072 0.00068

20 220 420 620 820 1020
Number of points N

10−3

10−2

L 2
-d

is
cr

ep
an

cy

Halton

Subset

Fibonacci

Hammersley

Sobol

MPMC

Figure 5. L2-discrepancy of Halton, Sobol’, Subset Selection, Hammersley, Fibonacci, and MPMC for increasing number of points
N = 20, . . . , 1020 in d = 2.

D. Further empirical insights
D.1. Post-construction enhancements

Classical quasi-Monte Carlo (QMC) constructions have known limitations, including poor uniformity in low-dimensional
projections of high-dimensional point sets (see Figure 7 and 8). To mitigate these issues, significant amount of research
has concentrated on incorporating randomness into these deterministic constructions, as discussed in (Ökten et al., 2012;
Wang & Hickernell, 2000; L’Ecuyer & Lemieux, 2002). This approach also offers the advantage of using repeated uniform
sampling – known as randomized quasi-Monte Carlo (RQMC) – for straightforward unbiased error estimation.

13

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

One successful method is Owen scrambling in base b (Owen, 1995) which involves sequentially applying uniformly chosen
permutations to the base b digits of each point in the set. This method has proven to be very popular and highly effective.
Another simpler technique is the random shift modulo 1 (Cranley & Patterson, 1976), where a vector in [0, 1]d is chosen
uniformly at random and added (modulo 1) to each point in the set.

In this section, we test how these enhancements improve the results of selected QMC constructions in the Asian option
pricing application presented in Section 3.C. of the main text (i.e., Table 2 of the main text). To this end, we start by applying
scrambling (in the natural base 2) to the Sobol’ sequence and present the mean absolute error (MAE) in Table 5. We can see
that on average scrambling massively improves the absolute error of Sobol’, i.e., by a factor of more than 10. While Owen
scrambling in base b can be applied to an arbitrary point set, the choice of b is paramount to ensure that the low-discrepancy
property is preserved after randomization. Since the correct choice of the base is not immediately apparent, scrambling is
not directly applicable to MPMC and a direct comparison involving both methods leveraging the scrambling enhancement is
not possible. However, uniform random shifting (modulo 1) can be applied to any QMC construction, including MPMC.
Therefore, we present the results of randomly shifted MPMC in Table 5. We can see that randomly shifting on average
leads to a lower absolute error compared to MPMC without random shifting for smaller number of points N . For large
N = 1024, however, MPMC with random shifting appears to perform worse than MPMC without random shifting. This
highlights the importance of developing suitable randomization techniques specifically tailored for MPMC, a topic we plan
to focus on in future research.

Table 5. Errors of Sobol’, scrambled Sobol’, MPMC and randomly shifted MPMC for the Asian option pricing experiment in Section 3.C.
of the main text. MPMC and Sobol’ errors are provided as absolute errors and taken from Table 2 in the main text, while shifted MPMC
and scrambled Sobol’ are provided as mean absolute errors (MAE).

N 32 64 128 256 512 1024

Sobol’ 1.235 1.373 0.965 0.623 0.497 0.290
Scrambled Sobol’ 0.516 0.169 0.076 0.064 0.040 0.022
MPMC 1.402 0.831 0.512 0.250 0.120 0.055
Shifted MPMC 0.521 0.310 0.188 0.128 0.082 0.061

D.2. Structure of MPMC Points

Initially explored in (Clément et al., 2023), the authors provide insights into the configurations of two dimensional point sets
that achieve optimal star-discrepancy by providing visualizations of the local discrepancy within the unit square. Providing
equivalent comparisons, Figure 6 displays the local discrepancy plots for Sobol’ sequences, optimal point sets and MPMC
points. Each plot has its own color scale where darker areas indicate lower local discrepancy values, and brighter areas
denote higher values. The presence of a black dot in each plot marks the point of maximum local discrepancy, i.e., the
explicit anchored test box where the star-discrepancy is obtained. Additionally, regions of high local discrepancy form
bright triangular regions whose corner is either directed toward the upper right corner to represent open boxes with too few
points, or angled toward the lower left, indicating closed boxes with an excess of points. For instance, the Sobol’ plots
exclusively show closed overfilled boxes, with bright triangles pointing downward and leftward toward the origin.

A visual comparison reveals structural similarities between the optimal sets and the MPMC points, suggesting a more
balanced distribution of local discrepancy values across the unit square, with both open and closed boxes appearing in the
plots. Interestingly, this similar structure emerges despite the sets consisting of quite different exact point values.

In conclusion, it seems evident that the GNN captures an essential underlying local discrepancy structure, which is key for
minimizing star-discrepancy.

D.3. Projections of MPMC points

As noted in the main text, when applied to the computational finance integral described in Section B to estimate the
value of an Asian call option, the MPMC points far outperform the Sobol’ or Hammersley in terms of approximation
accuracy. A significantly important factor for the success of QMC methods in high dimensional application is the quality
of the distribution in the lower dimensional projections of the QMC point set. See (Lemieux & Owen, 2002) for a more
comprehensive discussion. Figure 7 and 8 display the 5-th and 6-th, and 26-th and 27-th coordinate projections respectively

14

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Figure 6. Local discrepancy plots for Sobol’ sequence (top), optimal point sets obtained in (Clément et al., 2023) (middle row), and
MPMC point sets (bottom) for N = 6 points (left), N = 12 points (middle column), and N = 18 points (right).

of the MPMC points, Sobol’, rank-1 lattice and Hammersley constructed in 32 dimensions. Visual inspection reveals that
the projections seem to be just as uniformly distributed in the 5-th and 6-th dimensions and notably more evenly distributed
as the dimension increases to 26 and 27. At these higher dimensions, we start noticing some undesired correlations in the
coordinates of the Sobol’ and Hammersley constructions, however, fortunately the MPMC construction does not exhibit
this problematic feature displaying no significant correlation, clustering, or sparsity; the MPMC point sets appear random
yet maintain a high degree of uniformity. This characteristic is particularly advantageous for tackling high-dimensional
problems.

D.4. Optimality of MPMC in Three Dimensions

Table 7 shows the star-discrepancy of MPMC in three dimensions for N = 1, 2, . . . , 8 number of points, as well as the
optimal star-discrepancy values obtained from (Clément et al., 2023). We can see that MPMC obtains again near-optimal
star-discrepancy for all choices of N .

15

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Figure 7. Projections of the 5-th and 6-th coordinates of 32-dimensional MPMC, Sobol’, rank-1 lattice and Hammersley with N = 512
(left to right).

Figure 8. Projections of the 26-th and 27-th coordinates of 32-dimensional MPMC, Sobol’, rank-1 lattice and Hammersley with N = 512
(left to right).

Table 6. Comparison in three dimensions of MPMC points star-discrepancy values against optimal sets.

N 1 2 3 4 5 6 7 8

Optimal 0.6823 0.4239 0.3445 0.3038 0.2618 0.2326 0.2090 0.1875
MPMC 0.6833 0.4239 0.3491 0.3071 0.2669 0.2371 0.2158 0.1993

D.5. Star-discrepancy values of Figure 4 in the main text

From the main text, we present the exact numerical values of the star-discrepancy for Halton, Sobol’, Subset Selection,
Hammersley, lifted Sobol’, Fibonacci, and MPMC points as a benchmark for future methods.

D.6. On the role of the radius in the nearest neighbor graph

We recall from the main text, that our proposed MPMC method is based on GNNs that leverage r-radius nearest neighbors as
the underlying computational graph, connecting nodes within a given radius r. How does the performance of MPMC depend
on the radius r? Moreover, is it necessary to use GNNs? To answer this, we train 10 MPMC models for different radius
values r = 0.1, . . . ,

√
2 for different number of points N in d = 2 and plot the resulting average L2-discrepancy in Fig. 9.

16

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

Table 7. Star-discrepancy values of Figure 4 in the main text for Halton, Sobol’, Subset Selection, Hammersley, lifted Sobol’, Fibonacci,
and MPMC.

N 20 60 100 140 180 220 260 300 340 380 420 460 500

Halton 0.17384 0.06535 0.05024 0.03686 0.03200 0.02323 0.02062 0.01994 0.01950 0.01659 0.01617 0.01279 0.01172
Sobol’ 0.13125 0.06583 0.04617 0.03306 0.02466 0.02420 0.02571 0.01851 0.01280 0.01442 0.01326 0.01225 0.01289
Subset Selection 0.08799 0.05469 0.02860 0.02439 0.02028 0.01499 0.01339 0.01527 0.01175 0.01089 0.01073 0.00950 0.00898
Hammersley 0.12304 0.04941 0.03136 0.02292 0.01842 0.01512 0.01308 0.01164 0.01056 0.00945 0.00855 0.00803 0.00739
Lifted Sobol’ 0.11875 0.04609 0.02766 0.02388 0.01501 0.01584 0.01221 0.01294 0.00837 0.00994 0.00915 0.00849 0.00721
Fibonacci 0.11885 0.04422 0.02749 0.02128 0.01655 0.01354 0.01200 0.01054 0.00957 0.00857 0.00775 0.00708 0.00651
MPMC 0.06664 0.02729 0.01879 0.01373 0.01147 0.00975 0.00843 0.00752 0.00710 0.00695 0.00584 0.00540 0.00518

N 540 580 620 660 700 740 780 820 860 900 940 980 1020

Halton 0.01101 0.01005 0.00957 0.00949 0.00841 0.00709 0.00685 0.00718 0.00710 0.00571 0.00626 0.00619 0.00636
Sobol’ 0.00967 0.00967 0.00977 0.01064 0.00724 0.00765 0.00697 0.00691 0.00772 0.00638 0.00637 0.00640 0.00616
Subset Selection 0.00800 0.00927 0.00802 0.00727 0.00680 0.00664 0.00582 0.00626 0.00626 0.00602 0.00536 0.00457 0.00488
Hammersley 0.00685 0.00637 0.00596 0.00578 0.00545 0.00523 0.00496 0.00472 0.00450 0.00431 0.00413 0.00396 0.00380
Lifted Sobol’ 0.00642 0.00645 0.00534 0.00759 0.00509 0.00466 0.00547 0.00441 0.00422 0.00450 0.00373 0.00471 0.00362
Fibonacci 0.00603 0.00561 0.00525 0.00509 0.00480 0.00484 0.00459 0.00436 0.00416 0.00398 0.00381 0.00365 0.00351
MPMC 0.00488 0.00476 0.00454 0.00437 0.00416 0.00397 0.00376 0.00360 0.00356 0.00319 0.00321 0.00308 0.00303

We can see that there is no correlation between the performance and a fixed radius r. Moreover, the performance appears to
be not overly sensitive with respect to different values for the radius. Nevertheless, small variations of the performance with
respect to the radius r can be seen and it is thus advisable to include the radius to the set of tune-able hyperparameters of the
model.

0.1 0.4 0.7 1.0 1.3
Radius r of nearest neighbor graph

0.01

0.005

0.001

L 2
-d

is
cr

ep
an

cy

N = 64

N = 128

N = 1024

Figure 9. L2-discrepancy of MPMC points for increasing values
of the radius of the underlying nearest neighbor computational
graph ranging from 0.1 to

√
2 for different number of points

N = 64, 128, 1024 in d = 2.

N = 64 N = 256 N = 10240.000

0.002

0.004

0.006

0.008

0.010

L 2
-d

is
cr

ep
an

cy

GCN

GAT

MPNN

Figure 10. L2-discrepancy of MPMC for different choices of GNN
architectures, i.e., GCN (Kipf & Welling, 2017), GAT (Velickovic
et al., 2018), and MPNN (Gilmer et al., 2017) for three different
number of points N = 64, 256, 1024 in d = 2.

We further note that a radius of r = 0 corresponds to zero edges in the underlying computational graph. Thus, the model
becomes a deepset (Zaheer et al., 2017), processing each point in the set individually without aggregating any neighborhood
information. The average L2-discrepancy of this deepset is approximately 0.073 for N = 64, 0.058 for N = 128, and 0.063
for N = 1024, i.e., between 9 to over 40 times worse than GNNs with r ≥ 0.1. Moreover, the deepset fails to decrease the
L2-discrepancy for increasing number of points N . This highlights the necessity of using GNNs that aggregate geometric
information from neighboring points for successfully generating low-discrepancy point sets.

D.7. On the role of the GNN architecture

While we base our proposed MPMC model on MPNNs (Gilmer et al., 2017), any other GNN architecture could be used
instead. Therefore, it is natural to ask how the choice of the GNN architecture influences the performance of MPMC. To
answer this, we test three different configurations of MPMC: one based on MPNNs, one based on GCNs (Kipf & Welling,
2017), and one based on GATs (Velickovic et al., 2018). We train all three configurations for different number of points

17

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

N = 64, 256, 1024 in d = 2, and provide the results as a bar plot in Fig. 10. We can see that while GCNs and GATs
outperform each other depending on the chosen number of points, MPNNs consistently produce point sets with the lowest
L2-discrepancy among all three configurations for all number of points considered here.

0 200 400 600 800 1000
Training steps (in hundreds)

10−2

10−1

L 2
-d

is
cr

ep
an

cy

N = 256

Sobol input

RandSobol input

Rand input

0 200 400 600 800 1000
Training steps (in hundreds)

10−2

10−1

L 2
-d

is
cr

ep
an

cy

N = 1024

Sobol input

RandSobol input

Rand input

Figure 11. L2-discrepancy values of MPMC during training for three different types of input points, i.e., Sobol’, Randomized Sobol’, and
random points, for N = 256 and N = 1024 in d = 2.

D.8. On the role of the input points

In the main text, we suggest three different input types to be transformed into low-discrepancy points via our MPMC
framework, namely random points, Sobol’, and randomized Sobol’. In this experiment, we empirically analyse how these
different types influence the discrepancy of the resulting MPMC points. To this end, we train several MPMC models in
d = 2 based on the three different input types and report the average L2-discrepancy during training for two different
number of points N = 256, 1024 in Fig. 11. We can see that on average either Sobol’ or randomized Sobol’ reach lower
discrepancy values as well as exhibit faster convergence compared to random points. We note, however, that the single best
MPMC model for each of the three different input point types yield almost identical discrepancy values. Thus, we conclude
that Sobol’ and randomized Sobol’ points on average yield lower discrepancy values compared to random points, while at
the same time the best performing input type has to be evaluated in practice for each number of points N .

18

