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Abstract
Discrepancy is a well-known measure for the
irregularity of the distribution of a point set.
Point sets with small discrepancy are called low-
discrepancy and are known to efficiently fill the
space in a uniform manner. Low-discrepancy
points play a central role in many problems in
science and engineering, including numerical in-
tegration, computer vision, machine perception,
computer graphics, machine learning, and simu-
lation. In this work, we present the first machine
learning approach to generate a new class of low-
discrepancy point sets named Message-Passing
Monte Carlo (MPMC) points. Motivated by the
geometric nature of generating low-discrepancy
point sets, we leverage tools from Geometric
Deep Learning and base our model on Graph Neu-
ral Networks. We further provide an extension
of our framework to higher dimensions, which
flexibly allows the generation of custom-made
points that emphasize the uniformity in specific
dimensions that are primarily important for the
particular problem at hand. Finally, we demon-
strate that our proposed model achieves state-of-
the-art performance superior to previous methods
by a significant margin. In fact, MPMC points are
empirically shown to be either optimal or near-
optimal with respect to the discrepancy for every
dimension and the number of points for which the
optimal discrepancy can be determined.

1. Introduction
Monte Carlo (MC) methods have been commonly used
and are a popular choice for approximating and simulating
complex real-world systems. Known for their reliance on
repeated random sampling, MC methods function well in
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problems involving optimization, numerical integration, and
financial mathematics (particularly derivative pricing and
risk management) via computer simulation. However, their
convergence rate of O(N−1/2) in the number of samples N
means that achieving high precision with MC requires an im-
practically large number of samples for complex problems.
To address this drawback, it is common to employ variance
reduction techniques such as importance sampling, stratified
sampling, or control of variates to obtain the same degree of
accuracy with fewer samples (for details, see (Glasserman,
2004), (Lemieux, 2009) and references therein).

A particularly successful approach for convergence is called
quasi-Monte Carlo (QMC). QMC methods employ a de-
terministic point set, which replaces the purely random
sampling with a sample whose points span the hypercube
[0, 1]d in a manner that is more uniform than what can be
achieved with MC sampling. The fact that these point sets
are constructed over [0, 1]d is not overly restrictive as most,
if not all, sampling algorithms used within the MC method
take as input (pseudo)random numbers in [0, 1]. The uni-
formity of these deterministic point sets (or indeed, any
point set) can be captured by one of several of measures of
irregularity of distribution, referred to by the umbrella term
discrepancy measures (Drmota & Tichy, 1997). The more
uniformly distributed the points are, the lower the discrep-
ancy is; point sets possessing a small enough discrepancy
value are called low-discrepancy. In the classical setting,
the star-discrepancy, widely regarded as the most important
uniformity measure, of an N−element point set {Xi}Ni=1

contained in [0, 1]d represents the largest absolute differ-
ence between the volume of a test box and the proportion of
points of {Xi}Ni=1 that fall inside the test box,

D∗ ({Xi}Ni=1

)
:=

sup
x∈[0,1]d

∣∣∣∣∣#
(
{Xi}Ni=1 ∩ [0,x)

)
N

− µ([0,x))

∣∣∣∣∣ (1)

where #({Xi}Ni=1 ∩ [0,x)) counts how many points of
{Xi}Ni=1 fall inside the box [0,x) =

∏d
i=1[0, xi) for

x = (x1, . . . , xd) ∈ [0, 1]d, and µ(·) denotes the usual
Lebesgue measure. Despite the framing in (1), computation
of the star-discrepancy is known to be a discrete problem;
see (Niederreiter, 1972). The discrepancy is closely re-
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lated to worst-case integration error of a particular class
of functions with the most well-known result being the
Koksma-Hlawka inequality; see (Kuipers & Niederreiter,
1974; Hlawka, 1984). Explicitly, given a point set {Xi}Ni=1

contained in [0, 1]d, we have∣∣∣∣∣
∫
[0,1]d

f(x)dx− 1

N

N∑
i=1

f(Xi)

∣∣∣∣∣ ≤ D∗({Xi}Ni=1)V (f)

(2)
where V (f) denotes the variation of the function f in the
sense of Hardy and Krause. This result illustrates that
points with small discrepancy induce approximations with
small errors. Thus in summary, it is of general interest to
find N−point configurations with smallest discrepancy; see
(Cauwet et al., 2020; Galanti & Jung, 1997; Paulin et al.,
2022; Mishra & Rusch, 2021; Longo et al., 2021) for exam-
ples of QMC implementation.

Given this context, our main goal is to present a machine
learning framework that generates point sets with minimal
discrepancy. Based on the geometric nature of this problem,
we suggest to leverage graph-learning models from Geomet-
ric Deep Learning (Bronstein et al., 2021) to achieve this.
More concretely, we construct a computational graph based
on nearest neighbors of the initial input points and process
the encoded input points with a deep message-passing neural
network, which is trained to minimize a closed-form solu-
tion of a specific discrepancy measure of its decoded and
clamped outputs. We term the resulting low-discrepancy
points Message-Passing Monte Carlo (MPMC) points.
While previous methods are either far from obtaining opti-
mal discrepancy values or intractable to compute (and thus
are only available in d = 2, 3 and very small number of
points N ≤ 20), MPMC reaches near-optimal discrepancy
in near-real time for potentially thousands of points. This
advancement represents a significant step forward in the
development of highly efficient sampling methods, which
are crucial for many applications in science and engineer-
ing. Concrete examples include problems in financial math-
ematics (L’Ecuyer, 2009), path and motion planning in
robotics (Branicky et al., 2001), and enhanced training of
3-D computer-vision models like Neural Radiance Fields
(NeRFs) (Mildenhall et al., 2021).

Main contributions. In the subsequent sections, we will:

• introduce a new state-of-the-art machine learning
model that generates low-discrepancy points. To our
knowledge, this is the first machine learning approach
in this context.

• extend our framework to higher dimensions by mini-
mizing the average discrepancy of randomly selected
subsets of projections. This allows for generating

custom-made points that emphasize specific dimen-
sions that are primarily important for the particular
problem at hand.

• provide an extensive empirical evaluation of our pro-
posed MPMC point sets and demonstrate their superior
performance over previous methods.

2. Background and previous work
Our general goal in this paper is to provide a method for
generating point sets with small discrepancy. In the follow-
ing, we use the term sequence to refer to an infinite series of
points, and point set for a finite one. Both these objects are
closely related as many results on sequences in dimension d
correspond to those on sets in dimension d+ 1; see (Roth,
1954).

A sequence of points {Xi}∞i=1 contained in [0, 1]d is called
a low-discrepancy sequence if the star-discrepancy of the
first N points satisfies D∗ ({Xi}Ni=1

)
= O((logN)d/N).

A finite point set {Xi}Ni=1 is said to be of low discrepancy if
its corresponding star-discrepancy D∗ ({Xi}Ni=1

)
is “small”

enough, which in practice means that a bound of the form
c(logN)d−1/N can be established, for a given constant c
independent of N (but possibly dependent on d). Moving
forward, for comparison purposes, we will regularly truncate
various known infinite low-discrepancy sequences resulting
in a finite point set, which inherits the low-discrepancy
property from the underlying infinite sequence.
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Figure 1. Two different low-discrepancy point sets with N = 64:
Korobov lattice (left), and Sobol’ (right).

Figure 1 illustrates two examples of low-discrepancy point
sets. On the left-hand side we have a Korobov lattice (Ko-
robov, 1963), which is an example of a lattice rule (Haber,
1970; Sloan & Joe, 1994; Nuyens, 2014; Dick et al., 2022),
and on the right-hand side, we see the first 64 points of
the two-dimensional Sobol’ sequence (Sobol’, 1967). This
construction leverages a widely used building block for
many low-discrepancy sequences known as the van der Cor-
put sequence in base b (van der Corput, 1935). It is also
an example of what are modernly known as digital (t, s)-
sequences—which also include the Faure sequences (Faure,
1982)—that were first laid out in (Niederreiter, 1987), with a
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comprehensive overview provided in the subsequent mono-
graph (Niederreiter, 1992). Halton sequences (Halton, 1960)
are another widely used type of low-discrepancy sequences
that concatenate d van der Corput sequences in different
bases, usually taken as the first d prime numbers.

More recently, there have been successful attempts to con-
struct low-discrepancy point sets using more sophisticated
means motivated by the lack of constructions adapted to
specific N and d. In (Doerr & De Rainville, 2013), new
low-discrepancy point sets were suggested via the optimiza-
tion of permutations applied to a Halton sequence. As a
consequence, several open problems were solved regarding
sets with small discrepancy from (Novak & Woźniakowski,
2010). Further, in (Doerr et al., 2005) an algorithm for
constructing a low-discrepancy set via a derandomized ver-
sion of Hoeffding’s inequality was provided which was
shown to improve the previous best known upper bounds
for the star-discrepancy. As some of the most recent work
in this direction, a method called subset selection was pre-
sented in (Clément et al., 2022; 2024) to choose from an
N−element point set (in practise, usually the first N points
of the Sobol’ sequence) the k < N points which yield the
smallest discrepancy using a swap-based heuristic. Further-
more, a method to generate optimal star-discrepancy point
sets for fixed N and d based on a non-linear programming
approach was suggested in (Clément et al., 2023). However,
this formulation of the problem presented huge computa-
tional burdens allowing optimal sets only to be found up to
20 points in dimension two and 8 points in dimension three.

3. Method
Let 1 < d < +∞ and 1 ≤ N < +∞ be fixed natural num-
bers. Our objective is to train a neural network to transform
(random) input points {Xi}Ni=1 into points {X̂i}Ni=1 that
reduce the star-discrepancy D∗ (1), where Xi, X̂i ∈ [0, 1]d

for all i.

In this work, we propose to leverage Graph Neural Net-
works (GNNs) (Sperduti, 1994; Goller & Kuchler, 1996;
Sperduti & Starita, 1997; Frasconi et al., 1998; Gori et al.,
2005; Scarselli et al., 2008; Bruna et al., 2014; Defferrard
et al., 2016; Kipf & Welling, 2017; Monti et al., 2017) based
on the message-passing framework to effectively learn such
transformations. GNNs are a popular class of model archi-
tectures for learning on relational data, and have success-
fully been applied on a variety of different tasks, e.g., in
computer science (Monti et al., 2017; Derrow-Pinion et al.,
2021; Ying et al., 2018), and the natural sciences (Gilmer
et al., 2017; Gaudelet et al., 2021; Shlomi et al., 2020) (see
(Zhou et al., 2019; Bronstein et al., 2021) for additional
applications). In particular, GNNs have successfully been
used in the context of learning on point clouds, or generally
learning on sets. This motivates the choice of GNNs in our

setup, where specific transformations of geometric sets (i.e.,
set of input points in [0, 1]d) have to be learned.

A schematic drawing of our approach can be seen in Fig. 2,
where we train a GNN model to transform N = 64 random
input points {Xi}Ni=1 into low-discrepancy points {X̂i}Ni=1.

via GNN

Transform

Figure 2. Schematic drawing of our proposed approach to trans-
form (random) input points {Xi}Ni=1 into low-discrepancy points
{X̂i}Ni=1. Both the input and output point sets are actual instances
of our proposed model, with N = 64 and d = 2 in this example.

3.1. Training set

Our approach can be classified as an unsupervised learning
setup, where, in contrast to supervised learning, only input
data is required without any labels. While it is intuitive to
generate the set of input points randomly, we suggest several
different approaches for constructing input data:

1. Uniform random sampled set of input points: Xi ∼
U([0, 1]d), for all points i = 1, . . . , N .

2. Base set of input points from available low-discrepancy
point sets, such as Sobol’, Halton, or a lattice rule.

3. Base set of input points from randomly perturbed low-
discrepancy points, i.e.,

Xi = Yi + ξ (mod 1), (3)

where Yi is generated by a known low-discrepancy
sequence and ξ is uniform randomly sampled from
[0, b]d, with 0 < b ≤ 1, for all points i = 1, . . . , N .

3.2. Architecture

Let G = (V,E ⊆ V × V) be an undirected, connected
graph with |V| = N nodes and |E| = e edges (unordered
pairs of nodes {i, j} denoted i ∼ j). We further denote
the 1-neighborhood of a node i ∈ V as Ni = {j ∈ V :
i ∼ j}. In addition, each node i ∈ V is equipped with an
m-dimensional feature vector Xi ∈ Rm. The main building
block of our model consist of GNN layers based on the
message-passing framework. This family of parametric
functions is defined through local updates of hidden node

3
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representations. More concretely, we iteratively update node
features as,

Xl
i = ϕl

Xl−1
i ,

⊕
j∈Ni

ψl(Xl−1
i ,Xl−1

j )

 , ∀l = 1, . . . , L,

(4)
where

⊕
denotes a permutation-invariant operation, such

as SUM, MEAN, or MAX, and Xl
i ∈ Rml for all nodes

i. Moreover, we parameterize ϕl, ψl as ReLU-multilayer
perceptrons (MLPs), i.e., MLPs using the element-wise
ReLU(x) = max(0, x) activation function in-between lay-
ers. We further encode the initial node features by a trans-
formation that maps the initial points in dimension d to our
initial hidden node feature dimension m0. Moreover, we de-
code the output of the final GNN layer by a transformation
that maps the hidden node features of dimension mL back
to the physical dimension d. Both the encoder as well as the
decoder are parameterized as affine transformations. Finally,
we smoothly clamp the decoded outputs back into [0, 1]d by
using the element-wise sigmoidal activation function,

sigmoid(x) =
1

1 + e−x
.

Note that this step is crucial, as otherwise the training objec-
tives we introduce in the subsequent sections are ill-defined.
Moreover, the clamping step has to be differentiable in order
to be used within a gradient-based learning framework.

Another important part of the GNN architecture is the con-
struction of the underlying computational graph G, i.e.,
defining the local structure Ni for all nodes i in (4). It
is worth noting that in many GNN applications (e.g., net-
work science, or life sciences) the computational graph is
already given a-priori, either explicitly or implicitly. In con-
trast to that, our problem setup considers the construction
of the underlying computational graph as an additional de-
sign choice. While there are many suitable choices, often
balancing a global vs local connectivity structure, we sug-
gest to construct the underlying graph G based on nearest
neighbors, i.e., for a fixed radius 0 < r ≤ 1,

Ni = {j ∈ V : ∥Xi −Xj∥2 ≤ r}. (5)

We choose this inherently local structure to guide the
GNN training towards transforming input points into low-
discrepancy points by mainly considering the positions of
other near-by points (in the corresponding Euclidean space
of the input point set). A schematic of the full model can be
seen in Fig. 3.

3.3. Training objective

Our ultimate goal is to minimize the star-discrepancy D∗

(1). However, D∗ cannot serve as the training objective, as
(i) D∗ is computationally infeasible to calculate for high

dimensions d and large number of points N (it has been
shown to be an NP-hard problem in (Gnewuch et al., 2009)
and in fact, it is even W[1]-hard in d (Giannopoulos et al.,
2012)); (ii) the training objective should not only be compu-
tationally feasible but rather very efficient to compute, as it
needs to be evaluated at every step of the training procedure
(i.e., for every step of the gradient descent method) resulting
in potentially thousands of evaluations to train only a single
model, and (iii) the training objective needs to be differen-
tiable in order to be used in the context of gradient-based
learning. It turns out, we can derive a training objective
resolving all three issues while simultaneously minimizing
D∗ by leveraging previous work on the Lp-discrepancy,

Lp({Xi}Ni=1) :=(∫
[0,1]d

∣∣∣∣#({Xi}Ni=1 ∩ [0,x))

N
− µ([0,x))

∣∣∣∣p dx
) 1

p

.

(6)
Clearly, the star-discrepancy D∗ can be derived as a special
case of (6) with p = ∞. Here, we focus on the case of p = 2
as our training objective, since instead of computing the
integral in (6), we can leverage its closed-form expression,
known as Warnock’s formula (Warnock, 1972),

L2
2({Xi}Ni=1) =

1

3d
− 2

N

N−1∑
i=0

d∏
k=0

1−X2
i,k

2

+
1

N2

N−1∑
i,j=0

d∏
k=0

1−max(Xi,k,Xj,k),

(7)

where Xi,k is the k-th entry of Xi. This enables a very
fast and exact computation of the L2-discrepancy without
errors resulting from numerical quadrature methods. Thus,
the L2-discrepancy is an ideal candidate for the training
objective of our machine learning approach.

3.4. Extension to higher dimensions

In many practical problems, particularly in engineering and
finance, the dimension d of the problem can be very large.
This necessitates extending low-discrepancy sequences to
the high dimensional case of d≫ 1. However, it is known
(Morokoff & Caflisch, 1994; Wang & Sloan, 2008) that
the L2-discrepancy fails to identify superior distributional
properties of low-discrepancy point sets over random sam-
ples as the dimension increases. Indeed, in high dimensions
the classical L2-discrepancy of low-discrepancy point sets
behaves like O(1/

√
N), the same as for random points,

for moderate values of N , while an improved order close
to O(1/N) can only be seen for extremely large N . Em-
pirical evidence for these last claims can be found in the
discrepancy plots contained in (Morokoff & Caflisch, 1994).

To this end, we suggest to base our new training objective for
higher-dimensional generation of low-discrepancy points

4
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Figure 3. Schematic of the proposed model to learn low-discrepancy points. First, (random) input points {Xi}Ni=1 are encoded to a high
dimensional representation. Second, the encoded representations are passed through a deep GNN (4), where the underlying computational
graph is constructed based on nearest neighbors using the positions of the initial input points. Finally, the node-wise output representations
of the final GNN layer are decoded and clamped yielding new d-dimensional points {X̂i}Ni=1 in [0, 1]d.

on the Hickernell Lp-discrepancy (Hickernell, 1998),

DH,p({Xi}Ni=1) =

 ∑
∅̸=s⊆{1,...,d}

Lp
p({Xs

i}Ni=1)

 1
p

, (8)

where ∅ ̸= s ⊆ {1, . . . , d} is a non-empty subset of coor-
dinate indices, and {Xs

i}Ni=1 is the projection of {Xi}Ni=1

onto [0, 1]|s|. Note that while we can again make use of
Warnock’s formula (7) to compute DH,2, it requires com-
puting the sum of the L2-discrepancy of 2d − 1 projections,
which already for d = 32 is more than 1B. This highlights
the necessity of modifying DH,2 in order for it to be used
as a training objective in a machine learning framework.
Therefore, we suggest to base the training objective on a
modification of the Hickernell Lp-discrepancy via random
projections,

D̃H,p,K({Xi}Ni=1) =

(
K∑

k=1

Lp
p({Xsk

i }Ni=1)

) 1
p

, (9)

where ∅ ≠ sk ∼ P({1, . . . , d}) are randomly sampled
subsets of coordinate indices for each k = 1, . . . ,K, thus
requiring to compute the Lp-discrepancy only K times.

Generating problem-dependent point sets. As a further
advantage to this framework, we highlight its inherent flex-
ibility. Specifically, employing the modified Hickernell
discrepancy as the training objective represents a first step
towards an adaptive QMC sampling method tailored for
specific problems. It is widely recognized that for many
problems, the effective dimension—essentially, the num-
ber of dimensions capturing the majority of the problem’s
variability—is often significantly lower than the nominal
dimension; for full details, refer to (Caflisch et al., 1997).
Therefore, during high-dimensional training, prioritizing
sampling from specific lower dimensional projections will
yield a d-dimensional point set that is highly uniformly dis-
tributed in those same projections identified during training.
This approach effectively creates a custom-made point set,

optimized for problems that primarily depend upon particu-
lar dimensions.

4. Empirical results
In this section, we present empirical results comparing
MPMC points to current state-of-the-art low-discrepancy
point sets. More concretely, we demonstrate superior distri-
butional properties of MPMC over other low-discrepancy
point sets mainly with respect to the star-discrepancy D∗.

As described above, computing the star-discrepancy is usu-
ally a difficult task. Being a discrete problem, depending on
the number of points, a crude search for the worst distribu-
tion over all admissible test boxes is often extremely slow in
low dimensions, and intractable even in dimension as small
as four or five. The best known exact algorithm to calcu-
late the star-discrepancy is the so-called Dopkin, Eppstein
and Mitchell (DEM) algorithm (Dobkin et al., 1996) which
runs in O(N1+d/2) time. In all experiments, the results of
which are presented shortly, to calculate the star discrepancy
we either use a simple crude search or a parallelized ver-
sion of the DEM algorithm from (Clément et al., 2023) to
speed up calculation when necessary. The interested reader
is recommended to consult (Doerr et al., 2014) and refer-
ences therein for more information on the calculation of
the star-discrepancy, and indeed the computation of other
discrepancy measures.

4.1. Low-dimensional generation of MPMC points

Here, we focus on generating MPMC points within a lower-
dimensional setting particularly because this area has re-
cently attracted significant attention (Clément et al., 2022;
2024; Clément et al., 2023) providing a solid basis for com-
parison. Additionally, QMC methods are known to per-
form very well on many complex applications as long as
the low-dimensional projections of the underlying point
set have low discrepancy. Therefore, generating 2- or 3-
dimensional point sets with strong distributional properties
are of paramount interest toward building competitive con-
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structions performing well on a variety of problems.

20 100 180 260 340 420 500
Number of points N

10−2

10−1

S
ta

r-
di

sc
re

pa
nc

y
D
∗

Halton

Subset

Fibonacci

Sobol

Hammersley

MPMC

Figure 4. Star-discrepancy D∗ of Halton, Sobol’, Subset Selection,
Hammersley, Fibonacci, and MPMC for increasing number of
points N = 20, . . . , 500 in d = 2.

We compare the irregularity of our MPMC point sets with
a truncation to the first N points of the widely used Sobol’
and Halton sequences. We note that MPMC points are sets
optimized for N chosen in advance, whereas a key advan-
tage of the Sobol’ and Halton sequences are that they are
built for repeated sampling and retain a low-discrepancy
for all values of N . Therefore, in addition, we provide
comparison with state-of-the-art point sets derived from
the subset selection method from (Clément et al., 2022;
2024), the Hammersley construction in base 1 +

√
2 as

introduced in (Kirk et al., 2023) and the Fibonacci set de-
fined as {(i/n, {iφ}) : i ∈ {0, . . . , n− 1}} where φ repre-
sents the golden ratio, the notation {x} denotes the frac-
tional part of x ∈ R. All three of these sets are recognized
for having among the lowest star-discrepancy for given N
in two dimensions. Fig. 4 shows the star-discrepancy of
MPMC, Sobol’, Halton, subset selection, Hammersley and
Fibonacci sets in two dimensions for increasing number of
points N = 20, . . . , 500. We can see that MPMC signif-
icantly outperforms all other methods with respect to the
star-discrepancy. In fact, the star-discrepancy of MPMC is
on average 1.5 times smaller than that of the current state-
of-the-art Fibonacci construction, and on average more than
2.5 times smaller than Sobol’ or Halton points. We provide
the exact values of Fig. 4 in the Supporting Information (SI)
such that it can serve as a benchmark for future methods.

4.2. Optimality of MPMC point sets

Much of the past research on low-discrepancy point sets
focused on achieving star-discrepancy with optimal asymp-
totic order in N for implementation in quasi-Monte Carlo
methods. However, there has been a recent surge in interest
in finding point sets that minimize discrepancy for fixed N
and d. The main contribution in this direction was given in

(Clément et al., 2023), where the authors constructed opti-
mal star-discrepancy point sets in two and three dimensions.
Naturally, we are interested in comparing MPMC points to
these optimal formulations. The results of the optimal star-
discrepancy comparison in two dimensions are presented in
Table 1 and the three dimensional case is found in the SI.

Table 1. Comparison in two dimensions of MPMC star-
discrepancy values against optimal sets and Fibonacci sets.

N 1 2 3 4 5

Fibonacci 1.0 0.6909 0.5880 0.4910 0.3528
Optimal 1/φ 0.366 0.2847 0.25 0.2
MPMC 1/φ 0.366 0.2847 0.25 0.2

N 6 7 8 9 10

Fibonacci 0.3183 0.2728 0.2553 0.2270 0.2042
Optimal 0.1667 0.15 0.1328 0.1235 0.1111
MPMC 0.1692 0.1508 0.1354 0.1240 0.1124

N 11 12 13 14 15

Fibonacci 0.1857 0.1702 0.1571 0.1459 0.1390
Optimal 0.1030 0.0952 0.0889 0.0837 0.0782
MPMC 0.1058 0.0975 0.0908 0.0853 0.0794

N 16 17 18 19 20

Fibonacci 0.1486 0.1398 0.1320 0.1251 0.1188
Optimal 0.0739 0.0699 0.0666 0.0634 0.0604
MPMC 0.0768 0.0731 0.0699 0.0668 0.0640

We can see that the star-discrepancy of MPMC points is
very close to the star-discrepancy of the optimal point sets,
and in fact match it exactly for small N . Moreover, the star-
discrepancy of the Fibonacci set is far off the optimal values,
i.e, approximately by a factor of 2. Finally, it is worth high-
lighting that the computation of the optimal points requires
to solve a non-linear programming problem and takes ap-
proximately 18 days to compute. In contrast to that, our
model generating MPMC points can be trained from scratch
in less than 5 minutes on a conventional GPU machine.

4.3. MPMC generation in high dimensions

As discussed in Section 3.4, the efficacy of discrepancy mea-
sures to justly evaluate irregularity of distribution is flawed
in higher dimensions. Therefore, to alternatively assess the
quality of the distribution of higher dimensional point sets
and sequences, motivated by the Koksma-Hlawka inequality
(2), we will implement high dimensional MPMC points in
an integral arising in a real-world problem from compu-
tational finance previously studied in (Lemieux & Owen,
2002; Wang & Sloan, 2005; Faure & Lemieux, 2009).

The primary goal is to accurately estimate the value at time
0 of an Asian call option on an underlying asset that follows
a log-normal distribution. Complete details of the problem

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

formulation are provided in the SI. Table 2 shows the ab-
solute errors observed when implementing Halton, Sobol’
and MPMC constructions. With our chosen parameters,
this problem is known (Lemieux & Owen, 2002) to exhibit
more than 97% of its variability in dimensions one, two,
and three. Therefore, we train a 32-dimensional MPMC
point set while emphasizing the 1-3-dimensional projec-
tions as described in Section 3.4. We report the average
absolute error of an MPMC training batch, which is selected
based on the minimal Hickernell L2-discrepancy restricted
to 1-3-dimensional projections.

Table 2. Approximation error of an Asian call option pricing of
MPMC, Halton and Sobol’.

N 32 64 128 256 512

Halton 6.4566 4.1580 3.5590 2.8046 1.9376
Sobol 1.2163 1.3545 0.9470 0.6043 0.4784
MPMC 1.3836 0.8129 0.4937 0.2317 0.1019

Once again, the 32-dimensional MPMC point sets show
significant enhancements over Halton and Sobol’. This im-
provement is particularly notable at higher values of N ,
where MPMC outperforms Sobol’ by a factor of approxi-
mately 5, and Halton by a factor of approximately 19. The
efficiency observed in this high-dimensional problem is
promising and suggests a superior uniformity of MPMC
points. In fact, the observed improvements may partially be
explained by the uniformity held in lower-dimensional pro-
jections when compared to the traditional choices of QMC
point sets. We refer to the SI for further discussion.

4.4. Ablations

Our proposed MPMC method is the result of several design
choices, such as the type of input points, the deep learning
model, and the training objective. In order to further jus-
tify our choices, we ablate several aspects of our MPMC
framework illustrated by the following questions:

How does the graph structure influence the performance?
To answer this, we compute the average L2-discrepancy
of several trained MPMC models for increasing values of
the nearest neighbor radius r in (5) ranging from 0 to 1 for
different number of points N = 64, 128, 1024, and plot
the results in the SI. These results lead to two important
observations. First, not using a graph structure at all, i.e.,
setting r = 0 resulting in Deepsets (Zaheer et al., 2017),
significantly impairs the performance of MPMC, reaching
average L2-discrepancy values that are 9 to 40 times worse
than using a graph structure. The second observation is
that although the performance of MPMC is relatively stable
for any choice of r > 0, including the radius r in hyper-
parameter tuning can help achieve point sets with minimal
discrepancy.

What is the role of the GNN architecture used in MPMC?
While we base MPMC on message-passing neural networks
(MPNNs) (Gilmer et al., 2017), other GNN architectures
such as Graph Convolutional Networks (GCNs) (Kipf &
Welling, 2017), or Graph Attention Networks (GATs) can be
used in this context as well. To check this, we train MPMC
based on MPNNs, GCNs, and GATs for three different
number of points N = 64, 256, 1024 and show the L2-
discrepancy in the SI. Based on these results, we conclude
that GCNs and GATs outperform each other based on the
number of pointsN . At the same time, MPNNs consistently
yield point sets with the lowest discrepancy values among
all three considered GNN architectures.

Does the choice of input point sets described in Section 3.1
influence the performance of MPMC? To answer this, we
train several MPMC models on all three different types of
input points, i.e., random points, Sobol’, and a randomized
Sobol’, where we choose ξ ∼ U([0, 0.1]d) in (3), for two
different number of points N = 256, 1024. We report the
average L2-discrepancy of all trained MPMC models for
increasing number of training steps in the SI. We observe
that on average Sobol’ and randomized Sobol’ yield slightly
lower discrepancy values and faster convergence compared
to random points and thus lead to a more robust performance.
However, we further note, that instead of averaging over all
trained MPMC models, but instead choosing the single best
model yield similar results for each input point type.

5. Discussion
Low-discrepancy points play a central role in many appli-
cations in science and engineering. In this article, we have
proposed MPMC, the first machine learning approach to
generate new sets of low-discrepancy points. Inspired by the
geometric nature of constructing such point sets, we base our
MPMC approach on GNNs. Choosing an adequate training
objective, i.e., closed-form solution of the L2-discrepancy,
we show that MPMC successfully transforms (random) in-
put points into point sets with low discrepancy. Moreover,
we extend this framework to higher dimensions, by training
with an approximation of the Hickernell L2-discrepancy.
We further present an extensive empirical evaluation to il-
lustrate different aspects of the proposed MPMC approach,
highlighting the superior distributional properties of MPMC
points compared to previous state-of-the-art methods. Fi-
nally, we carefully ablate key components of our MPMC
model, yielding deeper empirical insights.

MPMC represents a novel and efficient way of generat-
ing point sets with very low discrepancy. In fact, MPMC
is shown to obtain optimal or near-optimal discrepancy in
near-real time. This is crucial for computationally expensive
applications, where MPMC will lead to potentially signifi-
cantly lower absolute errors compared to previous methods.
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Moreover, the generality of the MPMC framework allows
for designing tailor-made QMC points that exploit specific
structures of the problem at hand.

The aim of this paper was to generate point sets with low dis-
crepancy for a fixed dimension and fixed number of points.
On the other hand, many important applications require re-
peated sampling resulting in low-discrepancy sequences and
not fixed point sets. Thus, one important aspect of future
work will be to extend our MPMC point sets to MPMC
sequences. Another essential part of this paper was on
studying the distributional properties of MPMC points, in
contrast to simply showcasing their performance in practical
applications. However, based on the empirical evidence in
this paper, we expect MPMC point sets to excel in various
applications. Motivated by this, we would like to apply
MPMC to various problems in science and engineering as
future work.
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Supplementary Material for:
Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks

A. Training details
All experiments have been run on NVIDIA GeForce RTX 2080 Ti, GeForce RTX 3090, TITAN RTX and Quadro RTX 6000
GPUs. Each model was trained for initial 100k training steps, after which the learning rate was reduced by a factor of 10
whenever the discrepancy measure of the output point sets did not improve for a total of 2k training steps evaluated after
every 100 training steps. The training was stopped once the learning rate reached a value less than 10−6. Moreover, the
hyperparameters of the model were tuned based on random search according to Table 3, which shows the search-space of
each hyperparameter as well as the random distribution used to sample from it.

Table 3. Hyperparameter search-space and random distributions to sample from it.

range distribution

learning rate [10−4, 10−2] log uniform
hidden size m0 = m1 = · · · = mL {32, 64, 128, 256} disc. uniform
number of GNN layers L {1, 2, . . . , 10} disc. uniform
size of mini-batches {8, 16, 32} disc. uniform
weight decay [10−8, 10−2] log uniform

B. The Asian Option Problem Formulation
We describe the problem of estimating the value at time 0 of an Asian call option on an underlying asset in detail. The
results of which are presented in the main text as Table 2.

The main goal is to estimate an expectation of the form,

C0 = E

e−rT

1

d

d∑
j=1

S(uj)−K

+ .
We let T be the expiration time of the contract, K the strike price, for Z ∼ N(0, 1) let S(u) = S(0)e

(
r−σ2

2

)
u+σ

√
uZ be

the price of the underlying asset at time u, and 0 < u1 < . . . < ud = T are d times at which the asset price is observed in
order to compute the average used in the option pricing formula. The expectation is taken under the risk-neutral probability
measure. Finally, r is the risk-free rate, the notation x+ means max(0, x), Φ−1 is the inverse CDF of the standard normal
distribution and ∆l = ul − ul−1. Assuming the stock price follows a geometric Brownian motion with volatility σ, it can be
shown that this expectation can be written as follows:

C0 = e−rT

∫
[0,1]d

1

d

d∑
j=1

S(0)e(r−
σ2

2 )uj+σ
∑j

l=1

√
∆lΦ

−1(xl) −K

+

dx1 . . . dxd.

In our simulations, the true value C0 = 7.04704 was calculated in advance via QMC simulation with 2M Sobol’ points with
the following set of parameters: S(0) = 50, T = 1 year, r = 0.05, σ = 0.3,K = 45 and d = 32.

C. Further empirical insights
C.1. Structure of MPMC Points

Initially explored in (Clément et al., 2023), the authors provide insights into the configurations of two dimensional point sets
that achieve optimal star-discrepancy by providing visualizations of the local discrepancy within the unit square. Providing
equivalent comparisons, Figure 5 displays the local discrepancy plots for Sobol’ sequences, MPMC points, and optimal
point sets, respectively. Each plot has its own color scale where darker areas indicate lower local discrepancy values, and
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brighter areas denote higher values. The presence of a black dot in each plot marks the point of maximum local discrepancy,
i.e., the explicit anchored test box where the star-discrepancy is obtained. Additionally, regions of high local discrepancy
form bright triangular regions whose corner is either directed toward the upper right corner to represent open boxes with too
few points, or angled toward the lower left, indicating closed boxes with an excess of points. For instance, the Sobol’ plots
exclusively show closed overfilled boxes, with bright triangles pointing downward and leftward toward the origin.

A visual comparison reveals structural similarities between the optimal sets and the MPMC points, suggesting a more
balanced distribution of local discrepancy values across the unit square, with both open and closed boxes appearing in the
plots. Interestingly, this similar structure emerges despite the sets consisting of quite different exact point values.

In conclusion, it seems evident that the GNN captures an essential underlying local discrepancy structure, which is key for
minimizing star-discrepancy.

Figure 5. Local discrepancy plots for Sobol’ sequence (top), optimal point sets obtained in (Clément et al., 2023) (middle row), and
MPMC point sets (bottom) for N = 6 points (left), N = 12 points (middle column), and N = 18 points (right).
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C.2. Projections of MPMC points

As noted in the main text, when applied to the computational finance integral described in Section B to estimate the value of an
Asian call option, the MPMC points far outperform the Sobol’ or Halton in terms of approximation accuracy. A significantly
important factor for the success of QMC methods in high dimensional application is the quality of the distribution in the
lower dimensional projections of the QMC point set. See (Lemieux & Owen, 2002) for a more comprehensive discussion.
Figure 6 and 7 display the 5-th and 6-th, and 26-th and 27-th coordinate projections respectively of the MPMC points,
Sobol’ and Halton sequences constructed in 32 dimensions. Visual inspection reveals that the projections seem to be just as
uniformly distributed in the 5-th and 6-th dimensions and notably more evenly distributed as the dimension increases to
26 and 27. At these higher dimensions, we start noticing some undesired correlations in the coordinates of the Sobol’ and
Halton sequences, however, fortunately the MPMC construction does not exhibit this problematic feature displaying no
significant correlation, clustering, or sparsity; the MPMC point sets appear random yet maintain a high degree of uniformity.
This characteristic is particularly advantageous for tackling high-dimensional problems.

Figure 6. Projections of the 5-th and 6-th coordinates of 32-dimensional MPMC (left), Sobol’ (middle) and Halton (right) with N = 512.

Figure 7. Projections of the 26-th and 27-th coordinates of 32-dimensional MPMC (left), Sobol’ (middle) and Halton (right) with
N = 512.

C.3. Optimality of MPMC in Three Dimensions

Table 4 shows the star-discrepancy of MPMC in three dimensions for N = 1, 2, . . . , 8 number of points, as well as the
optimal star-discrepancy values obtained from (Clément et al., 2023). We can see that MPMC obtains again near-optimal
star-discrepancy for all choices of N .
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Table 4. Comparison in three dimensions of MPMC points star-discrepancy values against optimal sets.

N 1 2 3 4 5 6 7 8

Optimal 0.6823 0.4239 0.3445 0.3038 0.2618 0.2326 0.2090 0.1875
MPMC 0.6833 0.4239 0.3491 0.3071 0.2669 0.2371 0.2158 0.1993

C.4. Star-discrepancy values of Figure 4 in the main text

From the main text, we present the exact numerical values of the star-discrepancy for Halton, Sobol’, Subset Selection,
Hammersley, Fibonacci, and MPMC points as a benchmark for future methods.

Table 5. Star-discrepancy values of Figure 4 in the main text for Halton, Sobol’, Subset Selection, Hammersley, Fibonacci, and MPMC.
N 20 60 100 140 180 220 260 300 340 380 420 460 500

Halton 0.1738 0.0654 0.0502 0.0369 0.032 0.0232 0.0206 0.0199 0.0195 0.0166 0.0162 0.0128 0.0117
Sobol 0.1312 0.0658 0.0462 0.0331 0.0247 0.0242 0.0257 0.0185 0.0128 0.0144 0.0133 0.0123 0.0129
Subset Selection 0.0880 0.0547 0.0286 0.0244 0.0203 0.015 0.0134 0.0153 0.0117 0.0109 0.0107 0.0095 0.0090
Hammersley 0.1230 0.0494 0.0314 0.0229 0.0184 0.0151 0.0131 0.0116 0.0106 0.0094 0.0085 0.008 0.0074
Fibonacci 0.1188 0.0442 0.0275 0.0213 0.0165 0.0135 0.012 0.0105 0.0096 0.0086 0.0078 0.0071 0.0065
MPMC 0.0666 0.0273 0.0188 0.0137 0.0115 0.0097 0.0084 0.0075 0.0071 0.0070 0.0058 0.0054 0.0052

C.5. On the role of the radius in the nearest neighbor graph

We recall from the main text, that our proposed MPMC method is based on GNNs that leverage r-radius nearest neighbors
as the underlying computational graph, connecting nodes within a given radius r. How does the performance of MPMC
depend on the radius r? Moreover, is it necessary to use GNNs? To answer this, we train 10 MPMC models for different
radius values r = 0.1, . . . , 1.0 for different number of points N and plot the resulting average L2-discrepancy in Fig. 8. We
can see that there is no correlation between the performance and a fixed radius r. Moreover, the performance appears to be
not overly sensitive with respect to different values for the radius. Nevertheless, small variations of the performance with
respect to the radius r can be seen and it is thus advisable to include the radius to the set of tune-able hyperparameters of the
model.
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Figure 8. L2-discrepancy of MPMC points for increasing values
of the radius of the underlying nearest neighbor computational
graph ranging from 0.1 to 1.0 for different number of points N =
64, 128, 1024.
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Figure 9. L2-discrepancy of MPMC for different choices of GNN
architectures, i.e., GCN (Kipf & Welling, 2017), GAT (Velickovic
et al., 2018), and MPNN (Gilmer et al., 2017) for three different
number of points N = 64, 256, 1024.

We further note that a radius of r = 0 corresponds to zero edges in the underlying computational graph. Thus, the model
becomes a deepset (Zaheer et al., 2017), processing each point in the set individually without aggregating any neighborhood
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information. The average L2-discrepancy of this deepset is approximately 0.073 for N = 64, 0.058 for N = 128, and 0.063
for N = 1024, i.e., between 9 to over 40 times worse than GNNs with r ≥ 0.1. Moreover, the deepset fails to decrease the
L2-discrepancy for increasing number of points N . This highlights the necessity of using GNNs that aggregate geometric
information from neighboring points for successfully generating low-discrepancy point sets.

C.6. On the role of the GNN architecture

While we base our proposed MPMC model on MPNNs (Gilmer et al., 2017), any other GNN architecture could be used
instead. Therefore, it is natural to ask how the choice of the GNN architecture influences the performance of MPMC. To
answer this, we test three different configurations of MPMC: one based on MPNNs, one based on GCNs (Kipf & Welling,
2017), and one based on GATs (Velickovic et al., 2018). We train all three configurations for different number of points
N = 64, 256, 1024, and provide the results as a bar plot in Fig. 9. We can see that while GCNs and GATs outperform each
other depending on the chosen number of points, MPNNs consistently produce point sets with the lowest L2-discrepancy
among all three configurations for all number of points considered here.

C.7. On the role of the input points
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Figure 10. .

In the main text, we suggest three different input types to be transformed into low-discrepancy points via our MPMC
framework, namely random points, Sobol’, and randomized Sobol’. In this experiment, we empirically analyse how these
different types influence the discrepancy of the resulting MPMC points. To this end, we train several MPMC models based
on the three different input types and report the average L2-discrepancy during training for two different number of points
N = 256, 1024 in Fig. 10. We can see that on average either Sobol’ or randomized Sobol’ reach lower discrepancy values
as well as exhibit faster convergence compared to random points. We note, however, that the single best MPMC model for
each of the three different input point types yield almost identical discrepancy values. Thus, we conclude that Sobol’ and
randomized Sobol’ points on average yield lower discrepancy values compared to random points, while at the same time the
best performing input type has to be evaluated in practice for each number of points N .
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