
Differentiable Iterated Function Systems

Cory B. Scott 1

Abstract

This preliminary paper presents initial explo-
rations in rendering Iterated Function System
(IFS) fractals using a differentiable rendering
pipeline. Differentiable rendering is a recent in-
novation at the intersection of computer graph-
ics and machine learning. A fractal rendering
pipeline composed of differentiable operations
opens up many possibilities for generating frac-
tals that meet particular criteria. In this paper I
demonstrate this pipeline by generating IFS frac-
tals with fixed points that resemble a given tar-
get image - a famous problem known as the in-
verse IFS problem. The main contributions of
this work are as follows: 1) I demonstrate (and
make code available for) this rendering pipeline;
2) I discuss some of the nuances and pitfalls in
gradient-descent-based optimization over fractal
structures; 3) I discuss best practices to address
some of these pitfalls; and finally 4) I discuss di-
rections for further experiments to validate the
technique.

1. Introduction and Prior Work
Fractals are ubiquitous objects in computer graphics, mathe-
matical art, and data analysis. A common way to generate
fractal images is the iterated function system (IFS), defined
in detail below. In this paper, I demonstrate a differentiable
system for drawing IFS fractals written in Pytorch. The
advantage of doing this in Pytorch is that it enables opti-
mization through the fractal rasterization process, so that the
generated IFS fractal resembles a target image. This paper
is inspired by the recent work ”Differentiable Drawing and
Sketching”, by Mihai et al. [1]. Those authors presented a
framework for differentiating through the rasterization of
lines and curves, using the insight that the distance from a

1Department of Mathematics and Computer Science, Colorado
College, Colorado Springs, USA. Correspondence to: Cory B.
Scott <cbs@coloradocollege.edu>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

pixel to a line can act as a differentiable proxy for rasteriza-
tion. Since distance estimators have a long history of use in
the fractal rendering community [2]–[4], it is natural to com-
bine some of those ideas with the techniques from Mihai
et al. I will first define some of the background needed to
understand the rendering problem, and then I will introduce
how the rendering pipeline works. Throughout this paper, I
will use the Koch curve (a famous fractal [5]) as a test case.

1.1. IFS Fractals

I follow the definition of IFS fractal given by Barnsley [6]
and later by Heptig [7]. Let F1, F2 . . . Fk be a set of affine
transformations of the Euclidean plane R2, and for any
region S ⊂ R2 let Fi(S) denote the image of S under Fi.
The Hutchinson transform [8] H(S) is the union of the
images of S under all of the Fi: H(S) = ∪n

i=1Fi(S).

The attractor of an IFS is a limit figure (not necessarily
unique) which results from applying this process infinitely
many times, i.e. a region A such that A = H(A). For
an attractor to exist, the set of affine transformations must
on average be contractive, meaning that they shrink the
distance between points in the plane.

A related common construction for self-similar curves is
to start with a base figure, and then recursively replace
parts of the current figure with a transformed copy of the
entire figure. For example, the Koch curve (see Figure 1)
is generated by beginning with the line segment between
(0, 0) and (0, 1) and recursively applying the four affine
transformations shown in Equation 1.

T1 =

 1
3 0 0
0 1

3 0
0 0 1

 T2 =

 1
6 −

√
3
6

1
3√

3
6

1
6 0

0 0 1


T3 =

 1
6

√
3
6

1
3

−
√
3
6

1
6 0

0 0 1

 T4 =

 1
3 0 2

3
0 1

3 0
0 0 1


(1)

1.2. IFS Inverse Problem

Now that I have defined IFS fractals, I am ready to introduce
the inverse IFS problem. Simply put, this is the problem

1



Differentiable IFS Fractals

Figure 1. From left to right: First row: The first iteration of the
Koch IFS fractal; the second iteration, showing its composition as
several scaled and rotated copies of the first iteration. Second row:
As in the second image, but without bounding boxes; the attractor
of this process.

of finding a set of affine transformations having a specific
image as their attractor. This problem is also called the
“fractal image compression” problem, motivated by storing
a set of affine transformations instead of the pixels of the
original image. The inverse IFS problem is a classic prob-
lem, and a wide variety of approaches have been proposed.
An early approach due to Barnsley et. al [9] proposed opti-
mizing a loss function that measured distortion of the target
region under the Hausdorff metric (“the Collage Theorem”).
Other approaches have been proposed which utilize the con-
vex hull of the target region [10]; genetic algorithms [11];
wavelet transforms [12]; EM-like algorithms [13]; and in
some cases, neural networks [14], [15]. However, no gen-
eral solution is known to exist. Prior work by Melnik et. al
[16], similar to this paper, uses gradient descent to optimize
IFS fractals. Those authors train a recurrent neural network
R(X) to iteratively transform a set of points X , with the
Hausdorff metric between X and R(X) as the loss func-
tion. In contrast to this paper, Melnik et. al’s work does not
generate an explicit set of affine transformations. Smooth
representations of IFS fractals (and fitting IFS fractals to
images) have also been considered as one application of
differentiable programming by Petersen et al. [17]. Poli et
al. [18] consider neural networks that learn affine transfor-
mations, which they call a “neural collage”, after Barnsley’s
approach. I stress here that I do not claim to have solved
the inverse IFS problem in this paper; As in Petersen et.
al, I am using this problem to demonstrate the utility of
differentiating through fractal rasterization.

1.3. Signed Distance Functions

Signed distance functions are a way to represent the geome-
try of a region in Euclidean space. An SDF is the distance
between a point in space and the boundary of a shape; points
inside the shape are assigned the negative of this distance.
SDFs have several properties that make them attractive in a

rendering context: 1) for many geometric primitives exact
SDF formulae are known [19]; 2) in Euclidean space, the
SDF of a region is differentiable almost everywhere; and
3) SDFs compose nicely with each other (for example, in
Boolean operations) and with affine transformations. These
properties (amongst others) have lead to widespread integra-
tion of SDFs into a variety of machine learning approaches
in recent years [20]–[25].

One specific characteristic of SDFs that will be necessary
later in this paper is how a SDF behaves under affine trans-
formation. Let dS(x) be a SDF for a region S , and let T (x)
be an affine transformation with scale parameter s. Then

dT (S)(x) =
1

s
d(T−1(x)) (2)

In other words, one can easily calculate a new SDF that rep-
resents an affinely transformed version of S by evaluating
d on x but with the inverse transform of T . Note that this
only holds when T scales space uniformly - this equation
does not hold for shear deformations.

1.4. Differentiable Rendering

Automatic Differentiation (“autodiff” or AD) is a program-
ming paradigm that has aided in the explosive growth of
deep learning. The basic idea of autodiff is that all basic op-
erations in the programming language are defined in a way
that includes their derivative. This means that it is possible
to use the chain rule to compute the derivative of an entire
program with respect to its inputs, enabling optimization
via gradient descent. Recent work has successfully used
autodiff to write full rasterization pipelines which are differ-
entiable. Mihai et al. [1] detail how to (differentiably) turn
an implicit line segment into a pixelated picture of a line
segment; in the next section I take the ability to do this as a
given, and use it to produce fractal images.

Some recent work has successfully used autodiff and signed
distance functions to write full rasterization and render-
ing pipelines which are differentiable. The key insight
is that a geometric primitive P can be drawn by color-
ing pixels according to their distance from the primitive
[1]. To render the pixel at location (i, j), I take the ex-
ponential of the distance between the point (i, j) and the
primitive: pixeli,j = exp(−d((i, j), P )2/σ2). Because this
pixel value function is a differentiable function of distance,
and distance is a differentiable function of the parameters of
P , I can tune these parameters using gradient descent. This
allows fitting geometric primitives to images.

2. Rendering Process
The components of my proposed differentiable fractal are

• Control points: a set of variables P = {p1, p2 . . . pn},

2



Differentiable IFS Fractals

where all pi ∈ R2.

• Symmetry pattern: a sequence L of pairs of subsets
of P: L = {(P1, R1), (P2, R2), . . . (Pm, Rm)} with
all Pi, Ri ⊂ P .

• SDFs: A set D of SDFs d1 . . . dl, which may or may
not also be defined in terms of the points pi.

Each of these components could be specified in advance,
or could be learned. For the remainder of this paper I will
assume both the symmetry pattern and the SDFs are pre-
specified, and that the elements of P are parameters (tunable
via gradient descent). However, it may be possible to also
learn the symmetry pattern, or to use neural SDFs [20]. See
Supplementary Material Section C for details.

To make the above more specific, the Koch curve could
be parametrized with a set of 5 control points P =
{p0, p1, p2, p3, p4}. To get the same self-similar behavior
as the Koch curve, I would take the symmetry pattern as:

L = {({p0, p4}, {p0, p1}), ({p0, p4}, {p1, p2}),
({p0, p4}, {p2, p3}), ({p0, p4}, {p3, p4})}

In other words, L is specifying that the line segment
{p0, p4} should be transformed into the line segment
{pi, pi+1} via an affine transformation Ti, for each of
i = 0, 1, 2, 3. The SDFs di would be functions representing
the distance to each of these line segments (a closed formula
for this distance is defined in terms of the endpoints of each
segment). This choice of (P, L,D) has the same replace-
ment logic as the Koch curve, making it possible (assuming
all intermediate operations are differentiable) to optimize
the locations of the pi so that the linear transformations Tk

match those in Equation 1. Specifying the self-similarity
of the fractal in terms of which line segments get mapped
to other line segments is general enough to describe a wide
variety of fractal images; for another example (the symme-
try pattern for a Sierpiński carpet), see Section B of the
supplementary material.

Once the above components are defined, the process in
generating a fractal figure is as follows:

1. For each i in 1 . . .m, find the linear transformation Ti

which (possibly approximately) maps Pi to Ri.

2. Up to a set maximum number of recursions K, re-
place the SDFs in D with the result of applying each
transformation Ti to all of the current elements of D.

3. Compute the distance d((i, j)) from each pixel (i, j)
to each SDF d ∈ D. Color the pixel (i, j) with the
value exp(−(mind∈D d((i, j)))2/σ2). σ is a scale pa-
rameter that determines the ratio of pixel coordinates
to the coordinates of the pi.

4. (If optimizing) compare to target and compute loss.

To get an IFS fractal image that looks like a source image,
I implemented the above steps in Pytorch. The position of
the control points was tuned with Adam [26] to minimize
the loss, i.e. so that the rendered image matches some target
image. The maximum recursion depth, K, was set to be as
deep as possible within GPU memory constraints. I will
now discuss some of the details of the rendering pipeline;
readers who want to recreate the images in this paper should
refer to the Github repository. Figure 2 demonstrates the re-
sult of optimizing with different symmetry patterns, such as
the replacement rule that yields the Sierpiński carpet. Figure
2 also includes the result of applying this optimization pro-
cedure to images that have the “wrong” symmetry pattern;
that is, where L does not actually match any symmetries in
the target image.

2.1. Implementation Details

In this section I describe several of the specific design
choices I made in my fractal renderer.

Initial Conditions. As described, this system is extremely
sensitive to initial conditions, which limits its applicability.
For the Koch curve, I was able to consistently get optimiza-
tion to converge by initializing the control points pi along a
best-fit line of the black pixels in the target image.

Calculating Transformations. An important ingredient
in the above process is the calculation of the linear trans-
formation which takes the endpoints to each line segment.
To do this for two line segments (e1, e2) and (p1, p2), I: a)
find the translation that takes e1 to p1, b) find the rotation
that aligns the two vectors, and then c) scale (e1, e2) to have
the same length as (p1, p2). The composition of these three
linear transformations is the one I want.

Loss Function. Following the example of [1], I used Mul-
tiscale Mean Squared Error (MMSE) as the loss function.
MMSE is identical to mean-squared error, but is summed
over multiple pooled copies of the image. I experimented
with two variants of loss function: computing MMSE over
the pixel values in rasterized images, versus the MMSE be-
tween the raw distance values calculated by the SDF. Both of
these loss functions worked reasonably well, but tended to
get stuck in local optima (see Figure 4 for examples). Figure
3 illustrates why this might be happening: even arbitrarily
close to the boundary of the fractal figure, the gradient of
the loss (in this case, pixel loss) can point away from the
location of the true optimum. Note in this image that the
green arrows, representing MMSE, point toward the true
optimum slightly more often than MSE at only the finest
scale (in blue).

3



Differentiable IFS Fractals

Target Image Initial State Converged State

MMSE: 2.47× 10−2 MMSE: 4.0× 10−3

MMSE: 1.86× 10−2 MMSE: 2.84× 10−6

MMSE: 5.71× 10−2 MMSE: 2.0× 10−4

MMSE: 1.34× 10−1 MMSE: 3.70× 10−3

Figure 2. Multiple examples of learning IFS attractors. In each
row from top to bottom: the Koch curve; the Sierpiński carpet; an
apple from the MPEG-7 shape dataset; a flower from the MPEG-7
shape dataset. MMSE values are given between each generated
image and the target images.

Figure 3. Vector fields illustrating the gradient of error as p2 is
varied in the Koch curve construction, while all other points are
held constant at their optimal positions: a) always pointing toward
the optimal location (orange); b) the gradient of the fine-scale
loss only; and c) the gradient of the multiscale loss. While both
gradient vector fields are divergent, the multiscale loss is slightly
more aligned with the always-optimal field.

Figure 4. Examples of local optima encountered while optimizing
a set of affine transformations to fit the Koch curve.

Code Repository All code for the operations described
in this paper is available at https://github.com/
cory-b-scott/diff_ifs.

3. Conclusion and Future Work
This paper presents initial evidence that it is possible to find
the parameters of IFS fractals and self-similar curves using
automatic differentiation and gradient descent. However,
there are many open questions that still need to be addressed
in order to make this a viable technique for solving the IFS
inverse problem. In Figure 2, the Sierpiński and Koch exam-
ples both use the known, correct symmetry pattern for these
IFSs. This is somewhat unfair, since learning the symmetry
pattern in a domain is a harder problem than finding an
affine transformation between point sets. Initial attempts at
learning a symmetry pattern as a weighted combination of
control points proved unsuccessful (optimization diverged
in every case). One of the other IFS solving approaches
may help here, as might recent machine learning work in
automated discovery of symmetry in geometric objects [27].

Additionally, it is currently unclear what determines whether
optimization will converge, diverge, or converge to a local
minimum. Very careful initialization of control point lo-
cations is necessary to get results that resemble the target
image. Developing a procedure for appropriately initializing
control points given a target image is necessary to apply this
technique to arbitrary images. The examples in Figure 4
seem to indicate that local minima are related to times when
the figure crosses itself; a barrier function that prevents self-
crossings could keep the optimization from getting trapped
in these local optima.

Finally, there are also several modifications that could be
made to make the process more efficient, such as the ren-
dering tricks mentioned in [7]. One major area for future
work is investigating the viability of coarse-to-fine optimiza-
tion procedures, which are a mainstay of many graphics
algorithms and optimization procedures.

Overall, this paper represents a proof-of-concept of differen-
tiating through fractal rasterization. More work is necessary
to quantitatively evaluate the proposed approach.

4

https://github.com/cory-b-scott/diff_ifs
https://github.com/cory-b-scott/diff_ifs


Differentiable IFS Fractals

References
[1] D. Mihai and J. Hare, “Differentiable drawing and sketch-

ing,” arXiv preprint arXiv:2103.16194, 2021.
[2] M. H. Christensen, “Distance estimated 3d fractals,” 2011.

[Online]. Available: http://blog.hvidtfeldts.
net / index . php / 2011 / 06 / distance -
estimated-3d-fractals-part-i/ (visited on
01/12/2022).

[3] J. C. Hart, D. J. Sandin, and L. H. Kauffman, “Ray trac-
ing deterministic 3-d fractals,” in Proceedings of the 16th
annual conference on Computer graphics and interactive
techniques, 1989, pp. 289–296.

[4] M. McGuire, “Numerical methods for ray tracing implicitly
defined surfaces,” Williams College, 2014.

[5] H. Koch, “Sur une courbe continue sans tangente, obtenue
par une construction géométrique élémentaire,” Arkiv for
Matematik, Astronomi och Fysik, vol. 1, pp. 681–704, 1904.

[6] M. Barnsley and H. Rising, Fractals Everywhere. Else-
vier Science, 1993, ISBN: 9780120790692. [Online]. Avail-
able: https://books.google.com/books?id=
oh7NoePgmOIC.

[7] D. Hepting, P. Prusinkiewicz, and D. Saupe, “Rendering
methods for iterated function systems,” in North-Holland,
1991.

[8] J. Hutchinson, “Fractals and self-similarity,” Indiana Univ.
Math. J., vol. 30, pp. 713–747, 5 1981, ISSN: 0022-2518.

[9] M. F. Barnsley, V. Ervin, D. Hardin, and J. Lancaster, “So-
lution of an inverse problem for fractals and other sets,”
Proceedings of the National Academy of Sciences, vol. 83,
no. 7, pp. 1975–1977, 1986.

[10] E. Hocevar, “An algorithm to solve the inverse ifs-problem,”
Jan. 2002. DOI: 10.1007/978- 1- 4612- 0089-
5_40.

[11] E. Lutton, J. L. Véhel, G. Cretin, P. Glevarec, and C. Roll,
“Mixed ifs: Resolution of the inverse problem using genetic
programming,” Ph.D. dissertation, INRIA, 1995.

[12] R. Rinaldo and A. Zakhor, “Inverse and approximation
problem for two-dimensional fractal sets,” IEEE Trans-
actions on Image Processing, vol. 3, no. 6, pp. 802–820,
1994.

[13] P. Bloem and S. de Rooij, “An expectation-maximization
algorithm for the fractal inverse problem,” arXiv preprint
arXiv:1706.03149, 2017.

[14] D. La Torre, E. Maki, F. Mendivil, and E. Vrscay, “Iter-
ated function systems with place-dependent probabilities
and the inverse problem of measure approximation using
moments,” Fractals, vol. 26, no. 05, p. 1 850 076, 2018.

[15] L. Graham and M. Demers, “Applying neural networks
to a fractal inverse problem,” in Recent Developments in
Mathematical, Statistical and Computational Sciences: The
V AMMCS International Conference, Waterloo, Canada,
August 18–23, 2019, Springer, 2021, pp. 157–165.

[16] O. Melnik and J. Pollack, “A gradient descent method
for a neural fractal memory,” in 1998 IEEE International
Joint Conference on Neural Networks Proceedings. IEEE
World Congress on Computational Intelligence (Cat. No.
98CH36227), IEEE, vol. 2, 1998, pp. 1069–1073.

[17] F. Petersen, C. Borgelt, and O. Deussen, “Algonet: C∞

Smooth algorithmic neural networks,” arXiv preprint
arXiv:1905.06886, 2019.

[18] M. Poli, W. Xu, S. Massaroli, C. Meng, K. Kim, and S.
Ermon, “Self-similarity priors: Neural collages as differ-
entiable fractal representations,” Advances in Neural In-
formation Processing Systems, vol. 35, pp. 30 393–30 405,
2022.

[19] I. Quilez, Distance functions, https://iquilezles.
org/articles/distfunctions/, Accessed: 2024-
06-02.

[20] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S.
Lovegrove, “Deepsdf: Learning continuous signed distance
functions for shape representation,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, 2019, pp. 165–174.

[21] D. Vicini, S. Speierer, and W. Jakob, “Differentiable signed
distance function rendering,” ACM Transactions on Graph-
ics (TOG), vol. 41, no. 4, pp. 1–18, 2022.

[22] S. Osher, R. Fedkiw, S. Osher, and R. Fedkiw, “Construct-
ing signed distance functions,” Level set methods and dy-
namic implicit surfaces, pp. 63–74, 2003.

[23] V. Sitzmann, E. Chan, R. Tucker, N. Snavely, and G.
Wetzstein, “Metasdf: Meta-learning signed distance func-
tions,” Advances in Neural Information Processing Systems,
vol. 33, pp. 10 136–10 147, 2020.

[24] E. R. Chan, K. Nagano, M. A. Chan, et al., “Generative
novel view synthesis with 3d-aware diffusion models,” in
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023, pp. 4217–4229.

[25] Y. Chen, S. Liu, and X. Wang, “Learning continuous image
representation with local implicit image function,” in Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2021, pp. 8628–8638.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[27] Y. Shi, J. Huang, H. Zhang, X. Xu, S. Rusinkiewicz, and
K. Xu, “Symmetrynet: Learning to predict reflectional and
rotational symmetries of 3d shapes from single-view rgb-d
images,” ACM Transactions on Graphics (TOG), vol. 39,
no. 6, pp. 1–14, 2020.

5

http://blog.hvidtfeldts.net/index.php/2011/06/distance-estimated-3d-fractals-part-i/
http://blog.hvidtfeldts.net/index.php/2011/06/distance-estimated-3d-fractals-part-i/
http://blog.hvidtfeldts.net/index.php/2011/06/distance-estimated-3d-fractals-part-i/
https://books.google.com/books?id=oh7NoePgmOIC
https://books.google.com/books?id=oh7NoePgmOIC
https://doi.org/10.1007/978-1-4612-0089-5_40
https://doi.org/10.1007/978-1-4612-0089-5_40
https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/distfunctions/


Differentiable IFS Fractals

Figure 5. Additional example fractals generated with the method outlined in this paper.

A. Additional Examples
See Figure 5 for additional examples of fractals generated by the approach suggested in this paper. All of these fractals were
generated with the same symmetry pattern as the Koch curve, but with the unit square as target image.

B. Sierpiński Carpet Symmetry Pattern
For both the Sierpiński and the apple examples in Figure 2, the symmetry patten used to train the model was as follows.
p0, p1, . . . p15 are the tunable parameters of the model. As a reminder, the quadruplet ({s, t}, {u, v}) means that the model
includes a linear transformation that maps the line segment {s, t} into the segment {u,v}.

L = {({p1,1, p4,4}, {p1,1, p2,2}) , ({p1,1, p4,4}, {p1,2, p2,3}) , ({p1,1, p4,4}, {p1,3, p2,4}) , ({p1,1, p4,4}, {p2,1, p3,2}) ,
({p1,1, p4,4}, {p2,3, p3,4}) , ({p1,1, p4,4}, {p3,1, p4,2}) , ({p1,1, p4,4}, {p3,2, p4,3}) , ({p1,1, p4,4}, {p3,3, p4,4})}

This symmetry pattern is illustrated in Figure 6. As with the Koch example, the pi,j are initialized in arbitrary positions and
optimized so that the SDF of the generated figure matches the SDF of the target image.

C. Learning Symmetry Patterns
The symmetry patterns discussed in Sections 2 and B are all pre-specified. That is, the symmetry pattern is known ahead
of time and the optimization occurs over the location of the control points P . I also consider the problem of learning the
symmetry pattern. This can be done by replacing each of the pairs of points in the symmetry pattern with a weighted
combination of all of the points. Each element li of L is then:

li = {f1,i(P), f2,i(P)}, {f3,i(P), f4,i(P)}

Where each of the fj,i represent weighted combinations of the points in P , so for example fj,i =
∑

p∈P wj,i,pp. Convex
combinations could be enforced by requiring the weights for a given output sum to 1:

∑
p∈P wj,i,p = 1 for any i, j.

In practice this approach seems to be even more susceptible to getting stuck in local maxima than the approach outlined in
the main paper. See Figure 7 for examples.

6



Differentiable IFS Fractals

Figure 6. The symmetry pattern used to generate both the Apple and Sierpiński patterns in Figure 2. The orange line is mapped to each of
the blue lines via learned linear transformations controlled by the location of the control points pi,j .

Figure 7. Some examples of local optima encountered when trying to learn the symmetry pattern of the Koch curve.

7


