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Abstract

A major direction in differentially private (DP) machine learning is DP fine-tuning:1

pretraining a model on a source of public data and transferring the extracted2

features to downstream tasks. This is an important setting because many industry3

deployments fine-tune publicly available feature extractors on proprietary data4

for downstream tasks. In this paper we propose a new linear scaling rule, a5

hyperparameter optimization algorithm that privately selects hyperparameters to6

optimize the privacy-utility tradeoff. A key insight into the design of our method7

is that our new linear scaling rule jointly increases the step size and number of8

steps as ε increases. Our work is the first to obtain state-of-the-art performance9

on a suite of 20 benchmark tasks across computer vision and natural language10

processing for a wide range of ε ∈ [0.01, 8.0] while accounting for the privacy cost11

of hyperparameter tuning.12

1 Introduction13
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We estimate the best hyper-
parameters for the final run
with low privacy cost trials.

small  trial
final large  run
linear scaling

Figure 1: Our new linear scaling rule first does a
small number of trials with a very small privacy
budget, then does a small number of trials with
a slightly larger privacy budget, and finally does
linear interpolation through the optimal hyperpa-
rameters from these low-cost runs up to the final
privacy cost

Industry deployments make use of pretrained14

models [79] by fine-tuning on task-specific15

datasets [35; 6; 69] and serving consumer ap-16

plications that span the range of modalities from17

portraiture [65] to chatbots [44]. A crucial com-18

ponent of interfacing machine learning models19

closely with user data is ensuring that the pro-20

cess remains private [74], and Differential Pri-21

vacy (DP) is the gold standard for quantifying22

privacy risks and providing provable guarantees23

against attacks [20]. DP implies that the output24

of an algorithm e.g., the final weights trained by25

stochastic gradient descent (SGD) do not change26

much if a single datapoint in the dataset changes.27

Definition 1.1 (Differential Privacy). A random-28

ized mechanismMwith domainD and rangeR29

preserves (ε, δ)-differential privacy iff for any30

two neighboring datasets D,D′ ∈ D and for31

any subset S ⊆ R we have Pr[M(D) ∈ S] ≤32

eε Pr[M(D′) ∈ S] + δ33

where D and D′ are neighboring datasets if they differ in a single entry, ε is the privacy budget and δ34

is the failure probability.35
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Differentially Private Stochastic Gradient Descent (DP-SGD) [72; 1] is the standard privacy-36

preserving training algorithm for training neural networks on private data, with an update rule37

given by w(t+1) = w(t) − ηt

|Bt|
(∑

i∈Bt

1
C clipC(∇ℓ(xi, w

(t))) + σξ
)

where the changes to SGD are38

the per-sample gradient clipping clipC(∇ℓ(xi, w
(t))) = C×∇ℓ(xi,w

(t))
max(C,||∇ℓ(xi,w(t))||2) , and addition of noise39

sampled from a d-dimensional Gaussian distribution ξ ∼ N (0, 1) with standard deviation σ. These40

steps alter the bias-variance tradeoff of SGD and degrade utility, creating a challenging privacy-utility41

tradeoff. Recent work has made significant progress in closing the gap in performance between42

private and non-private fine-tuning of transformer-scale models [46; 52; 7; 51], but a key problem43

presents a concrete obstacle to implementing DP algorithms to power real-world consumer-facing44

machine learning applications.45

Figure 2: We compare the best private
and best non-private test accuracy per-
formances of our method to prior work
using models pretrained on ImageNet-
21k and fine-tuned on CIFAR10 and CI-
FAR100 datasets. Our results at ε = 1
include the cost of hyperparameter tun-
ing via applying the linear scaling rule
at ε ∈ [0.01, 0.1].
Dataset Approach ε = 1 ε = ∞

CIFAR10

Ours 99.00 99.00
[51] 96.30 96.60
[7] 96.70 97.40
[9] 95.00 96.40
[15] 94.80 96.60

CIFAR100

Ours 89.62 91.57
[51] 82.70 85.29
[7] 83.00 88.40
[9] 73.70 82.10
[15] 67.40 81.80

The privacy analysis of current approaches for private46

training does not account for the cost of hyperparameter47

tuning, and DP-SGD additionally increases the hyperpa-48

rameter tuning burden compared to vanilla SGD. These49

hyperparameters include the learning rate schedule, the50

clipping bound, the batch size, and the amount of noise to51

add at each iteration. Because private training introduces52

additional hyperparameters, biases optimization by clip-53

ping the gradient, and imposes privacy-utility tradeoffs for54

existing hyperparameters, it is challenging to apply hyper-55

parameter selection strategies from non-private training,56

even on the same dataset. Furthermore prior SOTA work57

in private training does not use similar hyperparameters as58

non-private training so hyperparameter search algorithms59

cannot be leveraged from the broader literature. More60

specifically, conventional non-private training uses SGD61

with momentum [61] or AdamW [36] to train for hundreds62

of epochs. However, training for additional iterations in63

DP-SGD requires adding additional noise [27], and taking64

large step sizes (such as with momentum) with low signal-65

to-noise ratio (SNR) can destabilize training [3]. Prior66

work aims to minimize the amount of noise that is added during training by utilizing early stopping,67

training for as little as a single iteration [51]. Prior work has either fixed these hyperparameters68

without explanation [7] or performed an extensive search to find the best values [15], but the hundreds69

of trials of hyperparameter tuning [51] go unaccounted for in the privacy analysis.70

We propose a new linear scaling rule (Alg. 1, Fig. 1) that automatically selects hyperparameters71

to optimize the privacy-utility tradeoff of private fine-tuning. In particular, as our privacy budget72

increases from ε = 0→∞, we increase the step size and number of steps. Our method accounts for73

the privacy cost of hyperparameter selection by allotting a small portion of the budget to find the best74

hyperparameters at ε≪ 1 and scaling these up to ε = 1. We summarize our contributions:75

• We demonstrate that our new linear scaling rule reduces the computation and privacy cost of76

hyperparameter optimization by an order of magnitude without sacrificing performance77

• Linear scaling can obtain new SOTAs for both full fine-tuning and linear probing of both78

convolutional and transformer architectures across 20 vision and language tasks79

• We compare four model architectures for a set of five vision benchmarks and find that the private-80

non private utility gap decreases as models improve, with the best model across all five tasks81

obtaining lossless performance of 99% accuracy for ε = 1 on CIFAR1082

• We find that linear scaling is robust to domain shifts between private training and test data83

• We find that models trained with our method can provide good performance even when there is a84

large shift between public and private data85

• We validate that models trained with our method can perform well for zero-shot classification86

• We provide our code as a part of our empirical evaluation.87
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Algorithm 1 DP-SGD with Linear Scaling
Inputs: Private dataset D, open source feature extractor F, number of classes C, privacy budget ε,
momentum ρ = 0.9, first search privacy budget ε0, second search privacy budget ε1
Perform first hyperparameter search to obtain the best possible value of r0 within the first privacy
budget ε0
Perform second hyperparameter search initialized at r∗1 = ε1

ε0
· r0 to obtain the best possible value

of r1 within the second overall privacy budget ε1
Perform linear interpolation to estimate the slope α and bias b of the line r = αε + b given
(r0, ε0), (r1, ε1)
Set r∗ = αεf + b given the estimated linear interpolation
Extract features from D using F: X = F(D)
Zero-initialize classifier w ← 0C×d

Decompose the total step size r given by linear scaling into r = η × T
Use privacy loss variable accounting to calibrate noise parameter σ given ε
for i = 1, 2, . . . , T do

Compute full-batch gradient according to Eq. 1 ∇(i) = 1
|D|

(∑
i∈D clip1(∇ℓ(xi, w

(i))) + σξ
)

Take a step with momentum: v(i) ← ρ · v(i−1) +∇(i), w(i) ← w(i−1) − ηv(i)

end for
Output: (εf + ε0 + ε1)-Private linear model w

2 A New Linear Scaling Rule88

In this section we detail how our method chooses each hyperparameter in DP-SGD, prove the privacy89

guarantee of the overall hyperparameter selection process, and provide a theoretical analysis.90

A new linear scaling rule The well-known linear scaling rule [29] proposes increasing the learning91

rate with the batch size. We propose a new linear scaling rule that details how to select all hyperpa-92

rameters in DP-SGD. Our method first fixes full-batch, unit clipping norm, zero initialization and93

use SGD with momentum, and then jointly scales the learning rate and number of steps with ε. We94

provide extensive ablations of each design choice in our hyperparameter optimization algorithm95

in Appendix A.2. Prior work has exclusively taken small step sizes [51; 52; 7; 15; 9] on the order96

of {10−5, 10−3} and works that train transformers have also trained for a small number of epochs97

{1, 3} [51; 7]. While this works well to recover the bulk of the non-private performance when ε is98

very small, it is natural to expect that as ε→∞ we should increase the parameters of training to more99

closely resemble that of non-private training. In line with this insight, we propose a linear scaling100

rule: jointly increase the step size and number of steps linearly with ε. We make use of this simple101

yet powerful heuristic in the hyperparameter selection strategy that we use in all our experiments,102

outlined in Algorithm 1. Given a total privacy budget ε, we use an initial portion of this budget to do103

binary search (random search and grid search are also valid) on the meta-hyperparameter r = η × T104

for a small value of ε, and use this to estimate the best value of r for the desired overall privacy105

budget. We provide a privacy guarantee in 2. We note that linear scaling does not hold up forever: we106

are primarily interested with analyzing ε ≤ 1, and show that in this range it holds (Fig. 3).107

Linear Scaling is intuitive. Applying the linear scaling rule improves the cosine similarity between108

noisy weight updates and the optimal solution without degrading accuracy. First note that the109

classification accuracy of a linear model is scale-invariant; the optimal solution of Gradient Descent110

with total step size r is w′ = w∗/ ∥w∗∥ × r: the projection of w∗ onto Br, the ball of radius r,111

and for linear models, the performance (top-1 accuracy) of w′ is the same as the performance of112

w∗: Pred(w′(x)) = Pred(w∗(x))∀x ∈ D. An important factor in the success of optimization is113

the angle between the gradient update∇i and w′: if all our updates point in the same direction, we114

can expect fast convergence. Let similarity(i) = ∇i·w′

∥∇i∥·∥w′∥ . Suppose that ∥wi∥ = ∥w′∥ ≪ 1, then115

adding Gaussian noise σξ where ξ ∼ N (0, 1) to the update will significantly decrease the cosine116

similarity of the updated model and w′. If we decrease σ, it is easy to see that this mitigates the117

impact on the trajectory. However, we can equivalently keep σ constant and increase the scale of118

the parameters, and also decrease the impact of noise on the trajectory: similarity(wi + σξ, w′) <119

similarity(α · wi + σξ, α · w′),∀α > 1. Note that by increasing r we scale the optimal solution120
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while keeping its performance identical, and thus optimize the cosine similarity of the noisy update.121

Increasing the number of iterations and the learning rate linearly increases r but does not linearly122

increase σ due to the composition of Gaussian differential privacy [27], therefore the impact on the123

optimization trajectory is minimized.124

Theory We introduce two theoretical results. We first analyze the privacy cost including hyperpa-125

rameter tuning of DP-RAFT under Gaussian DP (GDP). In Thm. 2.3 we analyze the performance126

gap between hyperparameters for noisy gradient descent in terms of an upper bound in expectation127

on the distance between private and non-private iterates, and find that applying the linear scaling rule128

improves the upper bound on this distance. Proofs of all results are in Appendix A.5.129

Proposition 2.1. Algorithm 1 is (
√
T/σ)-GDP. Moreover, repeating Algorithm 1 for n times for130

hyper parameter search would be (
√
T · n/σ)-GDP.131

Corollary 2.2. Algorithm 1 is (ϵ,Φ(−ϵ·σ/
√
T+
√
T/2σ))−eϵ ·Φ(−ϵ·σ/

√
T−
√
T/2σ))-DP. Also,132

for n-fold repetition, the algorithm is (ϵ,Φ(−ϵ · σ/
√
n · T +

√
n · T/2σ))− eϵ ·Φ(−ϵ · σ/

√
n · T −133 √

n · T/2σ))-DP134

Theorem 2.3. Let f be gradient descent that minimizes a α-strongly convex and β-smooth function135

ℓ with constant learning rate η ∈ (0, 2
β ) over T iterations. Then we can bound the ”noisy radius”136

distance between the noisy iterate wT and the benign iterate wT
b at iteration T in expectation:137

E[|wT − wT
b |] ≤ ρη × (

∑T−1
i max(|1− ηα|, |1− ηβ|)i).138

Thm. 2.3 indicates that the distance between the noisy and non-noisy weights grows in a very139

controlled manner; at each iteration the divergence from the previous iteration is decreased by a factor140

strictly less than 1, and then we add some noise. The main idea of the proof is similar to the main141

result in Fang et al. [23] but is simpler because we only prove the result for linear models.142

We apply this theorem to logistic regression (fine-tuning a linear model on extracted features). In this143

setting our theorem provides an upper bound on the radius of the range of solutions that DP-SGD144

produces. For linear models, this radius converts directly into an upper bound on the generalization145

error. If we use the linear scaling rule to scale r = η × T with ε, we expect that η remains146

appropriately bounded and T does not grow so large that the resulting noise creates significant model147

drift. Therefore, we find that increasing the quantity r = η × T improves this upper bound.148

While our theorem only holds for linear models, we will show that it holds empirically for the deep149

GPT2 and RoBERTa models, in line with Li et al. [47] who find that even the updates of a large150

model lie in a low-dimensional space during fine-tuning.151

3 Evaluation152

We provide results on a range of image classification, distribution shift, and natural language process-153

ing tasks. Full results for all datasets and models can be found in Appendix A, including ablations on154

all steps of our method( A.2) and key hyperparameters( A.4).155

Datasets. We evaluate the performance of our method on 20 benchmark tasks spanning the data156

modalities of CV and NLP. Image classification: ImageNet [16], CIFAR10, CIFAR100 [40], Fashion-157

MNIST [80], STL10 [11], EMNIST [12]. Because these image classification datasets are generally158

considered in-distribution of the pretraining data, we also provide results on a number of distribu-159

tion shift datasets from the WILDS suite [38] that have been used to evaluate various fine-tuning160

techniques. CIFAR10→ STL, CIFAR10p1, CIFAR10C, CIFAR100→ CIFAR100C [31], Water-161

birds [67], FMoW [10], and Camelyon17 [8]. These datasets are considered benchmark tasks for162

distribution shifts [42; 43; 53] and include data that is not in-distribution of the training data, making163

for a more realistic evaluation of the capabilities of our method to solve challenging tasks. We are164

the first to show that DP-SGD is capable of learning to handle distribution shifts without using any165

techniques from the distributionally robust optimization (DRO) literature [64]. For NLP tasks we166

consider text classification tasks from the GLUE benchmark [76]: SST-2, QNLI, QQP, MNLI(m/mm)167

and for next word generation we use PersonaChat [84], WikiText-2 [54], and Enron Emails [37].168
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3.1 Linear Scaling finds near-optimal hyperparameters with low privacy cost169

We first provide a concrete example of the hyperparameter search with ε0 on CIFAR10. Note that170

regardless of what strategy we use for hyperparameter search here, our total privacy cost as given171

by Proposition 2 must be strictly less than ε0. Binary search, random search, Bayesian optimization172

and grid search are all methods that we can use for the initial hyperparameter search. For this173

example, for the sake of simplicity we will use random search with 3 trials, with ε0 = 0.01 ·
√
3, ε1 =174

0.05 ·
√
3, εf = 0.9, ε0 + ε1 + εf = 1.0. For ε0 = 0.01, we randomly sample r uniformly in the175

range [1,100]=2,20,100 and then randomly decompose this into (approximate) (η, T ) pairs of [0.2,176

10], [0.5, 40], [1, 100]. These in turn evaluate to accuracies of [91.79, 73.68, 67.21], so the best value177

of r at ε0 = 0.01 is 2. We do a similar process at ε1 = 0.05 and get a best r-value of 5. We do linear178

interpolation and obtain the line of best fit as r = 75 · ε+ 1.25. Approximating this to r = 75, we179

apply the linear scaling rule r = η × T and randomly decomposing this value of r into an (η, T ) pair180

of [0.75, 100], we produce a final accuracy of 99.00 at εf = 0.9.181
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Figure 3: Training the beit architecture on CIFAR100, the linear scaling rule produces values for
r = η × T close to that of grid search, and the performance drop is only apparent at ε > 0.2 because
the cost of tuning is ε = 0.1, and vanishingly small for larger ε.

Linear Scaling outperforms prior hyperparameter search techniques. We validate the effec-182

tiveness of linear scaling against the grid search baseline. In Fig. 3 (right) we compare Alg. 1 to183

grid search. To avoid scale mismatch on the x-axis we do not account for the privacy cost of grid184

search, that does n = 100 trials (on the same scale as prior work [51]). It is trivial that linear scaling185

outperforms a naive grid search, but we also compare the effectiveness of linear scaling against186

the hyperparameter selection strategies used in prior work [51]. We apply linear scaling to the ViT187

model used in [51] on CIFAR100. Although [51] do not directly state the hyperparameters for188

their best results, they specify that they use 200 hyperparameter trials with Bayesian optimization.189

While they obtain RDP guarantees, these guarantees do not include the privacy cost of non-privately190

tuning hyperparameters. We apply the linear scaling rule to extrapolate a value of r from ε = 0.1191

to ε = 1, obtaining r = 20 = η(0.2) × T (100). We recover performance of 82.7% for ε = 1, a192

2% improvement over the best result for DP-Adam in [51] while accounting for the privacy cost193

of hyperparameter tuning. They obtain their best result for DP-Adam at T = 10, but we cannot194

compute the corresponding value of r because they do not provide η. However, because they use a195

clipping norm of 0.005 we can reasonably infer that their value of r is ≈ 1000× smaller than ours.196

This is farther from the optimal non-private training, as evidenced by the performance gap.197

Figure 4: Linear Scaling on ImageNet is com-
petitive with prior SOTA [52] (Jan. 2023) and
current SOTA [51](within last month).
ε [52] [51] Ours r = η × T

0.25 75.6 - 79.0 250
0.50 79.4 86.1 81.6 750
1.00 81.1 86.8 83.2 1100
2.00 81.5 87.4 84.2 2000
10.0 81.7 - 85.4 2000
∞ 86.9 88.9 85.7 2000

Linear Scaling scales to ImageNet In Table 4198

we do a granular comparison between our method199

and [52; 51]. We observe that our method is compet-200

itive with [51] even when accounting for the privacy201

cost of hyperparameter search, and that the linear202

scaling rule holds up at the scale of ImageNet for203

very large values of r = η × T . The non-private ac-204

curacy of their closed-source model is 3.2% higher205

than our open-source model, and so the private ac-206

curacy at ε = 2 is also 3.2% higher.207
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However, ultimately our method and the method of Mehta et al. [51] are complementary, because208

their method introduces new hyperparameters that we intuit our linear scaling rule can optimize. We209

attempted to validate this intuition empirically but were unable to reproduce the results of Mehta et al.210

[51] because they and Mehta et al. [52] pretrain on the closed-source JFT dataset with billions of211

images. We note that all numbers we report for models pretrained on ImageNet-21k using first-order212

methods surpass those in [51], but for sufficiently small values of ε on harder datasets the second-213

order methods they propose provide better performance. We note that the method in Mehta et al. [51]214

only works for vision tasks, whereas our approach works for both vision and language tasks.215

Linear Scaling produces robust results. In Fig. 3 we report that following Algorithm 1 produces216

new state-of-the-art results for all values of ε, shown in Table 5. In Appendix A.1 we provide detailed217

computations of the linear interpolation for multiple datasets and in Appendix A.4 we provide full218

results across the entire hyperparameter search space. Our results validate that this rule is robust: we219

can move from one set of hyperparameters to another similarly performing set of hyperparameters by220

increasing the number of iterations T by a constant factor and decreasing the learning rate η by the221

same factor (or vice versa). We find that any inaccuracy incurred by estimating the best value of r222

with the linear scaling rule will not reduce accuracy by much compared to doing grid search for the223

optimal value of r, but does reduce the privacy cost of hyperparameter tuning immensely.224

3.2 Linear Scaling enables empirical analysis225

Many interesting questions in DP fine-tuning remain unanswered because of the immense compu-226

tational overhead of evaluating hundreds of hyperparameter trials for each privacy budget, model227

architecture and dataset [51]. We now employ the linear scaling rule to efficiently answer key228

questions in DP fine-tuning for vision tasks.229

Figure 5: We compare the best private and best non-
private performances of all models on all datasets.
We use the linear scaling rule to scale hyperparame-
ters from ε = 0.1 to ε = 1, so our privacy analysis
includes the cost of hyperparameter tuning.

Model Dataset ε = 1 ε = ∞ Gap

beitv2 CIFAR10 99.00 99.00 0.00
CIFAR100 89.62 91.57 1.95
FMNIST 91.02 91.53 0.51
STL10 99.69 99.81 0.12

EMNIST 81.77 82.00 0.23
convnext CIFAR10 96.75 97.22 0.47

CIFAR100 83.47 86.59 3.12
FMNIST 90.23 91.13 0.9
STL10 99.61 99.71 0.10

EMNIST 78.38 79.05 0.67
beit CIFAR10 98.19 98.51 0.32

CIFAR100 87.1 90.08 2.98
FMNIST 90.55 91.6 1.05
STL10 99.62 99.78 0.16

EMNIST 81.48 83.25 1.77
vit-L CIFAR10 98.29 98.44 0.40

CIFAR100 86.18 89.72 3.54
FMNIST 90.58 91.37 0.79
STL10 99.62 99.76 0.14

Impact of model architectures on differential230

privacy Many pretrained model architectures231

are available [79] but prior work has generally232

engaged with a single architecture, e.g. beit [7]233

or ViT [52]. We leverage our method to answer234

three questions:235

• What model architectures can provide good236

DP classifiers?237

• Is the best model task-specific, e.g., is an238

architecture search required?239

• Does the private-non private utility gap de-240

pend on the model architecture?241

We report our findings in Tab. 5. We evaluate242

multiple transformer architectures in ViT [19],243

beitv1 [4] and beitv2 [58], as well as the purely244

convolutional architecture Convnext [48]. We245

find that all architectures can serve as good back-246

bones for high-accuracy DP classification. This247

is somewhat surprising because the different in-248

ductive biases of transformers and purely convo-249

lutional architectures tend to produce differently250

structured features, but we reason that the noise added by DP will ‘smooth out’ these decision251

boundaries regardless of architecture. We note that one architecture, beitv2, performs the best on all252

benchmarks and also has the highest non-private ImageNet accuracy [78]. We therefore recommend253

that practitioners do not worry about architecture search when fine-tuning as this can incur further254

privacy costs, and instead pick the best model available. We are encouraged to report that the255

private-non private utility gap diminishes with model accuracy, enabling us to report for the first time256

lossless privacy of 99.0% on CIFAR10 at ε = 1. We expect that as pretrained models become even257

better, future works may even be able to attain lossless privacy on CIFAR100, that we note remains258

somewhat challenging for private fine-tuning. We harness these insights for our next analyses.259
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Figure 6: In-distribution (ID) and out-of-distribution (OOD)
performance on benchmark distribution shift datasets. Prior
work is non-private (citations are in Appendix A.1). We
use the linear scaling rule to scale hyperparameters from
ε = 0.1 to ε = 1, so our privacy analysis includes the cost
of hyperparameter tuning.

Dataset ε = 1.0 ID(OOD) Prior (ε =∞)

Waterbirds 92.31 (91.59) 98.3(80.4)
fMoW 45.44 (35.31) 49.1 (36.6)

Camelyon 93.91 (93.55) 99.5 (96.5)
C10→ STL 99.0 (98.82) 97.5 (90.7)

C10→ C10p1 99.0 (97.85) 97.5 (93.5)
C10→ C10C 99.0 (89.98) 96.56 (92.78)

C100→ C100C 89.65 (68.69) 81.16 (72.06)

Linear Scaling is robust to distri-260

bution shifts. Benchmarking per-261

formance on datasets with distri-262

bution shifts is increasingly impor-263

tant because real-world problems al-264

most always contain distribution shift265

between model training and infer-266

ence [64]. Prior work in distribution-267

ally robust optimization (DRO) has ad-268

dressed this problem by using knowl-269

edge of the relative imbalances be-270

tween groups, but recent work with271

vision transformers has shown that272

linear probing can perform well on273

datasets with distribution shifts [53;274

41; 43]. However there is no work275

that evaluates the robustness of private models to distribution shifts. We leverage our method to276

answer three questions:277

• Can DP help when there is a domain shift from private fine-tuning to test?278

• Can DP help when there is a domain shift from public data to private fine-tuning?279

• Can DP fine-tuned models perform well in the zero-shot setting?280

In Table 6 we compare the performance of our method across 8 benchmarks and find that the answer281

to all three of these questions is yes.282

The Waterbirds dataset is a well-known benchmark for evaluating the robustness of models to spurious283

correlations. There is a domain shift between the private training data and the private test data created284

by class imbalance. We are surprised to find that in the absence of any other regularization methods,285

DP fine-tuning actually improves performance on the OOD split. We hypothesize that the lackluster286

OOD non-private performance is caused by the model overfitting to the spurious correlation in the287

training data, and that the inherent regularization of DP prevents the model from memorizing this288

spurious correlation. By comparing our results to Mehta et al. [53] we determine that this robustness289

is unique to DP rather than an artifact of the pretrained model. Although DP does significantly290

degrade the ID performance, in situations where minimizing OOD error is more important, we believe291

that DP by itself can mitigate the domain shift from private fine-tuning to test.292

Because our central assumption in DP fine-tuning is that there is no privacy leakage from the293

pretraining data to the private training data, it is important to understand how DP fine-tuning294

performs when there is a distribution shift between public data and private data. fMoW [10] and295

Camelyon17 [8] are two datasets that represent a signficant distribution from the pretraining data296

(ImageNet). We observe a similar relationship between ID and OOD degradation as above, where the297

OOD degradation is somewhat mitigated by DP. If we compare our results on Camelyon to the best298

results in Ghalebikesabi et al. [25] we find that we can improve their best performance from 91.1% at299

ε = 10 to 93.91% at ε = 1. Although performance on fMoW remains quite poor, we note that it is300

not significantly worse than in the non-private setting. We believe that DP fine-tuning from pretrained301

models remains a viable strategy even when the publicly available pretraining data has a very large302

distribution shift from the private target data.303

We finally consider the zero-shot setting, where we fine-tune a model on CIFAR and then transfer it304

without updating any parameters to private test datasets that once again represent a distribution shift305

from CIFAR. We report the performance in the OOD column. For the more minute distribution shifts306

of STL and CIFAR10p1 we find that the fine-tuned classifier can achieve remarkable performance307

without ever updating parameters on these datasets; that is, we just remap the labels as per [42].308

CIFAR10C and CIFAR100C represent larger distribution shifts and are used to benchmark the309

robustness of models to commonly reported image corruptions [31]. Our OOD performance on310

these larger distribution shifts is much worse, particularly for CIFAR100 where there is a > 20%311

degradation. Although this is lower than the top result on the RobustBench leaderboard [13] obtains312

85% accuracy, we note that once again we used no additional methods beyond DP to ensure robustness313

but managed to achieve reasonable performance to distribution shifts in zero-shot classification.314
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3.3 Linear Scaling for language modeling315 Figure 7: Linear scaling holds for GLUE tasks
when training the full RoBERTa-base model

Task ε Acc r = η × T

SST-2
0.1 90.60 0.975
0.2 90.83 1.95
1.0 91.51 9.75

QNLI
0.1 82.54 3.9
0.2 84.00 4.68
1.0 86.25 26.52

QQP
0.1 81.07 11.7
0.2 82.21 17.55
1.0 84.69 64.35

MNLI(m/mm)
0.1 77.52(78.24) 11.7
0.2 79.40(79.98) 17.55
1.0 81.86(82.76) 64.35

Prior work has generally focused on either316

CV or NLP because the methods used in DP317

fine-tuning differ greatly across data modali-318

ties [46; 51]; here we show that our method319

extends to NLP by validating on text classifi-320

cation and language modeling tasks. We also321

update all parameters when fine-tuning, dis-322

playing that our method works for both lin-323

ear probing and full fine-tuning. We fine-tune324

GPT-2 [63] with our method for three language325

modeling tasks that have been benchmarked in326

prior works [46; 70; 30] on private fine-tuning:327

Persona-Chat [85], WikiText-2 [54] and Enron328

Emails [37]. We also fine-tune RoBERTa-base329

on four tasks in the GLUE benchmark: SST-330

2, QNLI, QQP and MNLI(m/mm) in Table 7.331

While prior works mainly focus on ε in {3, 8}, in this work we are also interested in smaller εs like332

0.1. Appendix B.1 includes the details for the experimental set-up.333

Linear scaling holds for NLP tasks We analyze the performance gap between estimated total334

step size and optimal total step size by grid search to understand how well linear scaling performs335

on language modeling tasks. Fig. 8 plots the optimal perplexity and perplexity by estimated total336

step size at different values of ε on Enron emails. We can see that the linear scaling rule generalizes337

well for reported values of ε and the perplexity by the estimated total step size is close to the optimal338

perplexity. From Table 7 we can see that linear scaling also holds across a range of tasks in the GLUE339

benchmark. We also have the result for WikiText-2 in Appendix B.3.340
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Figure 8: The linear scaling rule (accounting for the privacy cost of hyperparameter tuning) is
competitive with grid search (non-private, doing N trials each with the given ε) on the Enron Emails
dataset. Left: y-axis is Perplexity (lower is better).

The linear scaling rule outperforms prior results on differentially private language model-341

ing tasks. We first run a qualitative evaluation on the previous benchmark SOTA [46] on Per-342

sonaChat trained with DP-SGD by following the linear scaling rule to increase the number of epochs.343

Figure 9: Linear scaling holds when fine-
tuning all layers of GPT2 on PersonaChat
and outperforms Li et al. [46]

ε (δ = 1
2|Dtrain| ) 1 3 ∞

Li et al. [46] - 24.59 18.52
Our Work 21.25 - 17.69

We can see in Table 9 that we can push the per-344

plexity under 18 for ε = 3 and ε = 8; this345

performance is competitive with the non-private346

baseline. Furthermore, even when pushing for a347

stricter privacy guarantee ε = 0.5, we can still348

get perplexity of 21.25, that is better than the re-349

sult of ε = 8 in [46]. We also report the re-350

sults of ablating these hyper-parameters and vary-351

ing the number of layers trained in Appendix B.2.352

We quantitatively validate the linear scaling rule on WikiText-2 and Enron email dataset and report353

the result in Table 10 respectively. We select training parameters and the total step size with Alg. 1.354
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Figure 10: Finetuning GPT-2 on WikiText-2 (δ = 10−6) and
Enron (δ = 1

2|Dtrain| ) with DP-SGD. Ppl is perplexity and TSS
is Total Step Size. (∗ means estimated). Previously reported
best perplexity of GPT-2 on WikiText-2 at ε = 3 is 28.84 in
[70].

Dataset ε 0.1 0.2 0.5 1.0 2.0 3.0

WikiText-2 Ppl - 28.81 28.37 28.15 27.98 27.69
TSS - 0.008 0.02 0.04∗ 0.08∗ 0.12∗

Enron Ppl 14.35 12.50 11.56 10.91 10.45 10.14
TSS 0.10 0.58 2.02∗ 4.41∗ 9.19∗ 13.98∗

For WikiText-2, a key observation is355

that when we compare our results to356

the best prior reported results in [70],357

for the same number of passes over358

the training data (20), we obtain lower359

perplexity for ε = 0.2 than they re-360

port for ε = 3. That is, by just in-361

creasing the effective step size from362

∼ 8 × 10−6 to ∼ 8 × 10−3 we can363

strengthen the privacy guarantee with-364

out degrading performance.365

4 Related Work and Discussion366

De et al. [15] and Cattan et al. [9] propose the use of large batch sizes and initializing the weights to367

small values near-zero to standardize training. However, they use ResNet architectures rather than368

modern vision transformers, and in Appendix A.2 we find that other techniques that they use such as369

data augmentation, fine-tuning the embedding layer, and weight averaging do not always improve370

performance. [7] do end-to-end training of the same beit architecture we use, but we crucially371

observe that updating all parameters incurs the curse of dimensionality and therefore it is better to372

only update the last layer. Besides vision tasks, Li et al. [46] and Yu et al. [82] provide methods for373

fine-tuning large language models under DP-SGD by proposing new clipping methods to mitigate374

the memory burden of per-sample gradient clipping. However, they do not achieve performance375

comparable to non-private models when fine-tuning a pretrained model on the PersonaChat dataset.376

We adapt their techniques to the hyperparameter settings that we show are optimal for DP fine-tuning,377

and produce similar performance to non-private fine-tuning on the PersonaChat dataset. Yu et al.378

[83] report compelling results by only updating a sparse subset of the LLMs with LoRA [33]. We379

fine-tune GPT2 and RoBeRTA; Basu et al. [5] also fine-tune BERT models.380

Papernot and Steinke [57] propose an RDP hyperparameter optimization algorithm that requires381

selecting the number of trials at random with a random variable, and exhibits the greatest savings382

when the number of hyperparameter trials is large. By contrast our linear scaling rule needs only a383

small fraction of the overall privacy budget for hyperparameter search. Their evaluation only tunes384

the learning rate of a 3-layer CNN on MNIST. Our rule accounts for multiple hyperparameters (batch385

size, clipping norm, momentum, learning rate, number of iterations) and produces SOTA results.386

Golatkar et al. [26]; Nasr et al. [55]; Amid et al. [2] treat < 10% of the private training dataset and387

public and use it to improve DP-SGD. Although we do not use any private data during pretraining,388

future work can tackle applying linear scaling to this alternate threat model.389

An open challenge in DP training is how to privately and efficiently do hyperparameter tuning. We390

complement the existing body of work by introducing a new linear scaling rule to privately optimize391

hyperparameters. Our key insight is that we can interpolate between the early-stopping regime that392

is best for small ε and the regime of many iterations that is best for ε → ∞ as ε increases. We393

provide find that our method attains new state-of-the-art accuracy across 20 tasks, on benchmark394

image classification tasks, distribution shift datasets, and natural language modeling tasks.395

5 Limitations396

Assumptions. The key assumption in DP fine-tuning is that there is no privacy leakage between397

public data and private data. We take steps towards qualifying this assumption by evaluating on398

datasets with distribution shifts between public and private data. Scope of Claims. We evaluate 20399

datasets across multiple data modalities with multiple model architectures for two types of fine-tuning400

methods, linear probing and end-to-end training of deep (> 100M param) transformers. Key Factors401

that Influence the Performance of Our Approach. The key parameter in the linear scaling rule402

is how to allocate privacy budget to the initial hyperparameter search. We find that with privacy403

budgets as small as ε = 0.01 we can still effectively forecast the linear trend to determine the best404

hyperparameters for the main privacy budget we consider ε = 1. However, if we need to consider405

even smaller privacy budgets, it may be challenging to accurately extrapolate hyperparameters.406
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