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UniGraph2: Learning a Unified Embedding Space to Bind
Multimodal Graphs

Anonymous Author(s)

Abstract
Existing foundation models, such as CLIP, aim to learn a unified
embedding space for multimodal data, enabling a wide range of
downstream web-based applications like search, recommendation,
and content classification. However, these models often overlook
the inherent graph structures in multimodal datasets, where entities
and their relationships are crucial. For example, in social networks,
users are connected through friendships, follows, or interactions,
and share content in various modalities like text and images. Multi-
modal graphs (MMGs) represent such graphs where each node is
associated with features from different modalities, while the edges
capture the relationships between these entities. On the other hand,
existing graph foundation models primarily focus on text-attributed
graphs (TAGs) and are not designed to handle the complexities of
MMGs. To address these limitations, we propose UniGraph21, a
novel cross-domain graph foundation model that enables general
representation learning on MMGs, providing a unified embedding
space. UniGraph2 employs modality-specific encoders alongside a
graph neural network (GNN) to learn a unified low-dimensional em-
bedding space that captures both the multimodal information and
the underlying graph structure. We propose a new cross-domain
multi-graph pre-training algorithm at scale to ensure effective trans-
fer learning across diverse graph domains and modalities. Addi-
tionally, we introduce a new Mixture of Experts (MoE) component
to align features from different domains and modalities, ensuring
coherent and robust embeddings that unify the information across
modalities. Extensive experiments on a variety of multimodal graph
tasks demonstrate that UniGraph2 significantly outperforms state-
of-the-art models in tasks such as representation learning, transfer
learning, and multimodal generative tasks, offering a scalable and
flexible solution for learning on MMGs.

CCS Concepts
• Information systems → Data mining; Social networks; • Com-
puting methodologies→ Neural networks.

Keywords
Graph Pre-Training, Graph Foundation Models, Web Mining, Mul-
timodal Learning

1The code is available at https://anonymous.4open.science/r/UniGraph2/
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Figure 1: UniGraph2 binds multimodal graphs from differ-
ent graph domains to a unified embedding space, enabling
diverse downstream tasks.
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Relevance to the Web and to the track. UniGraph2 is a large
pre-trained model that processes and unifies multimodal graph data
from various web domains, making it applicable to web-based ap-
plications like search, recommendation, and content classification.

1 Introduction
Real-world web applications increasingly rely on multimodal data,
where information is derived from a variety of sources such as text,
images, and audio [2, 34]. Recent foundation models have focused
on learning a unified embedding space across different modali-
ties that allows for the seamless integration of multimodal data,
thereby enabling effective cross-modal interactions and supporting
downstream applications [13, 37].

Models such as CLIP [37] have demonstrated the power of learn-
ing frommultimodal data by mapping text and images into a shared
embedding space. However, CLIP and similar models are fundamen-
tally limited by their reliance on a 1-to-1 mapping between paired
modalities, such as text-to-image alignment, ignoringmore complex
structures where nodes can be connected through many-to-many
relationships and involve multiple modalities. These models fail
to account for the graph structure present in numerous web do-
mains, from social networks to e-commerce networks [9, 50, 56],
where entities and their interactions are crucial to understanding
the underlying relationships. For example, in e-commerce platforms,
recommendation systems rely on complex networks of products,
users, and their interactions [38]. Each node represents a a user or a
product, and edges represent interactions like purchases, views, or
reviews. Additionally, both users and products are associated with
rich multimodal data: product descriptions (text), images (visual),
and user reviews (text), and demonstration videos (audio and visual).
Integrating these diverse data types within the graph structure is
essential for accurate recommendations and personalized user ex-
periences [11]. To address these challenges, Multimodal Graphs

1

https://anonymous.4open.science/r/UniGraph2/
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(MMGs) have been introduced as a framework that combines graph
structures with multimodal data [9, 56]. On MMGs, nodes are en-
riched with information from multiple modalities, allowing for a
more comprehensive representation of entities and their relation-
ships. However, existing MMGs learning methods can only train
models individually for a specific graph and task [6, 50, 51], and
cannot achieve cross-graph and cross-task transfer like foundation
models do without retraining or fine-tuning.

Recently, there has been considerable progress in learning foun-
dation models for text-attributed graphs (TAGs) [7, 15, 17, 19],
which can be viewed as a special case of MMGs where the node fea-
tures are are exclusively in the text modality. One prominent effort
in this direction is UniGraph [19], which introduces a unified em-
bedding space that combines graph structure and node-level textual
information for all TAGs. UniGraph employs a masked prediction
framework [14, 28, 36], inspired by the success of masked language
models (MLMs) [28]. In this framework, UniGraph performs self-
supervised pre-training by masking node-level text attributes and
learning to predict the missing information based on the graph
context. Despite its effectiveness on TAGs, UniGraph faces two
significant limitations when extended to more complex settings.
First, it is limited in its ability to generalize to MMGs, where nodes
may contain features from diverse modalities such as images, in
addition to text. Second, UniGraph focuses on pre-training on a
single graph from one domain, which restricts its capacity to lever-
age knowledge across multiple domains. In training a foundation
model, it is essential to employ more diverse pre-training data from
different domains to enhance the model’s generalization [1, 13, 37].
Presented Work. In this work, we propose UniGraph2, a graph
foundation model for MMGs that provides a unified embedding
space across graph domains and modalities, as shown in Figure 1.
In UniGraph2, nodes are not restricted to textual attributes; instead,
they can incorporate features from any combination of modalities.
Similar to UniGraph, UniGraph2 adopts a masked prediction frame-
work, but generalizes the masked prediction task to accommodate
multimodal data. In this setup, the model is tasked with predicting
missing node attributes, which could be text, image features, or any
other modality, based on the graph structure and the available mul-
timodal information. This allows the model to learn rich, unified
representations that capture both the multimodal features of each
node and the relationships encoded in the graph.

Furthermore, while UniGraph focuses on pre-training within a
single graph domain, UniGraph2 introduces a more robust multi-
graph pre-training strategy. In real-world applications, data often
comes from multiple sources, each with different graph structures
and node modalities. To handle this, UniGraph2 proposes a cross-
domain multi-graph pre-training framework, which enables the
model to learn compact and transferable knowledge across a diverse
set of graph datasets with varying modality and domain distribu-
tions. A key component of this framework is the Mixture of Experts
(MoE) [39], which is specifically designed to align node features
from different domains and modalities. The MoE dynamically se-
lects the most appropriate experts for each input data, ensuring
that the diverse multimodal features are coherently integrated into
the unified embedding space.

In summary, our key contributions in UniGraph2 are:

• We generalize the masked prediction framework used in Uni-
Graph to support multimodal graphs, allowing nodes to include
a variety of modalities such as text and images.

• We introduce a cross-domain multi-graph pre-training strategy,
enabling UniGraph2 to learn unified and transferable represen-
tations across different graph domains and modalities.

• We incorporate an MoE component to align multimodal fea-
tures from different graph domains, ensuring that the model
dynamically selects and integrates the most compact and rele-
vant information.

• We demonstrate through extensive experimentation that Uni-
Graph2 outperforms state-of-the-art models in various multi-
modal graph learning tasks, including representation learning,
transfer learning, and multimodal generative tasks, particularly
when data is drawn from multiple graph domains.

2 Related Work
2.1 Multimodal Representation Learning
Building a general representation learning model for multimodal
data has received significant attention in recent years, with vari-
ous approaches aiming to unify learning across different modal-
ities such as vision, language, and audio. Early approaches like
Vision-Language Pre-training (VLP) models predominantly focus
on learning from image-text data using contrastive learning and
masked language modeling, leading to models such as CLIP [37]
and ALIGN [26]. With the development of unified architectures [8,
25, 42] and pretraining tasks [3, 14, 28, 36], more work begin to
explore effective alignment of representations for a wider range
of different modalities, with the potential to expand to unlimited
modalities [13, 47].

2.2 Multimodal Graph Learning
Most existing multimodal graph learning models primarily focus
on knowledge graphs [6, 51] and natural sciences, such as molec-
ular graphs [27] or brain graphs [46]. However, these models are
specifically designed for particular tasks on individual graphs using
domain knowledge and do not aim to learn a unified and general
representation. They also cannot be transferred across different
graphs, modalities, or tasks. Unlike these works, a recent work,
MMGL [50] explores the use of foundation models from different
modalities on MMGs, but it focuses solely on generative tasks.

2.3 Graph Foundation Models
Learning graph foundation models that can be transferred across
different graphs [18, 19, 21, 35] and tasks [18, 20, 29] has recently re-
ceived significant attention. Some works explore designing domain-
specific graph foundation models, such as those for knowledge
graphs [10] and molecular graphs [49]. Most existing research ef-
forts are dedicated to using LLMs with strong generalization ca-
pabilities to solve graph learning tasks [17, 29, 40, 44]. However,
how to effectively serialize graph data so that LLMs can understand
the graph structure and graph learning tasks remains a barrier to
further performance improvements [53]. Additionally, these models
typically use the generative capabilities of LLMs to directly gener-
ate predicted labels, thus addressing representation learning tasks

2
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on graphs. Due to the high computational cost, it is challenging to
scale them to web-scale large graphs [17, 44].

3 Preliminaries
3.1 Multimodal Graphs (MMGs)

Definition 1 (MultimodalGraphs). AMultimodal Graph (MMG)
is defined as a graph G = (V, E,M,Ω), whereV represents the set
of nodes and E represents the set of edges. The functionM : V → 2Ω
maps each node 𝑣 ∈ V to a subset of modalities Ω𝑣 ⊆ Ω, where
Ω denotes the set of all possible modalities, such as text, images, or
other data types. Each node 𝑣 inV can possess multiple features from
different modalities, but not all nodes are required to have features
from every modality.

For a Text-Attributed Graph GTAG = (V, E,M, {text}), where
each node has an associated text 𝑡𝑣 ∈ TV , we define the mapping
function for MMGs as follows:

M(𝑣) = {text}, for all 𝑣 ∈ V . (1)

Here, Ω = {text} is the set of possible modalities, limited to textual
data in this context.

3.2 General Representation Learning on MMGs
General representation learning [13, 33, 37, 47] on MMGs aims to
learn a self-supervised pre-trained model that can infer meaningful
representations for any new MMG, facilitating downstream tasks
without the need for additional training or fine-tuning on new data.

Problem 1 (General Representation Learning on MMGs).
Consider a collection of Multimodal Graphs (MMGs) in the pre-
training setDpretrain, where each graph G𝑘 = (V𝑘 , E𝑘 ,M𝑘 ) contains
nodes 𝑣𝑖𝑘 ∈ V𝑘 each associated with a set of modalities Ω𝑣𝑖𝑘 ⊆ Ω,
encompassing various data types such as text, images, and other fea-
ture modalities. The challenge in general representation learning on
MMGs involves self-supervised pre-training a function 𝑓 : V𝑘 → R𝑑

across this diverse dataset. The objective is to develop a model that
generalizes well to any new, unseen graph, enabling effective infer-
ence across various MMGs. For inference, the pre-trained model 𝑓 is
applied to a new, unseen graph Ginf = (V inf, Einf,Minf) to generate
embeddings for its nodes, thereby facilitating downstream tasks on
Ginf without further training.

UniGraph [19]. TAGs are a subset of MMGs where each node
is associated with textual features. As a general representation
learning model on TAGs, UniGraph unifies the learning process by
integrating LM and GNN into a single encoder.

In UniGraph’s pre-training, the masked prediction process can
be mathematically formulated in two key steps:
(1) Masked Encoding: For each node 𝑣 ∈ V has its textual feature

𝑡𝑣 partially masked and encoded by an LM 𝑓 LM
𝜃1

, producing
hidden representations 𝑬𝑣 = 𝑓 LM𝜃1 (Mask(𝑡𝑣)). The GNN 𝑓 GNN

𝜃2
propagates node embeddings across the graph, where the final
node embedding is:

𝑬 ′
CLS = 𝑓 GNN

𝜃2
(GTAG, 𝑬CLS), (2)

with 𝑬CLS representing the embeddings of all nodes’ [CLS]
tokens from 𝑓 𝐿𝑀

𝜃1
.

(2) Decoding: The MLP decoder 𝑓 Decoder
𝜃3

combines the masked
textual embeddings 𝑬𝑣 and the graph embeddings 𝑬 ′

CLS to re-
construct the masked tokens. The predicted probability distri-
bution 𝑃𝑣 over the vocabulary is obtained via:

𝑃𝑣 = 𝑓
Decoder
𝜃3

(concat(𝑬𝑣, 𝑬 ′
CLS)), (3)

and the model minimizes the masked language modeling loss
LMLM, formulated as:

LMLM = − 1
|V|

∑︁
𝑣∈V

∑︁
𝑖

𝐼 (𝑣, 𝑖) log 𝑃𝑣 [𝑖,𝑇𝑖 ], (4)

where 𝐼 (𝑣, 𝑖) indicates masked positions and 𝑇𝑖 are the true
tokens. The optimal parameters are obtained by:

𝜃∗1 , 𝜃
∗
2 , 𝜃

∗
3 = arg min

𝜃1,𝜃2,𝜃3
LMLM . (5)

In inference, the pre-trained model is used to generate embed-
dings for any unseen TAG Ginf

TAG = (V inf, Einf,T inf
V ) by processing

the graph structure and node texts through the same encoder:

𝑯 inf = 𝑓 GNN
𝜃 ∗2

(
Ginf
TAG,𝑿

inf
)
, where 𝑿 inf = 𝑓 LM

𝜃 ∗1
(T inf

V ) . (6)

This process allows the model to generalize to new data, capturing
both structural and textual graph attributes.

4 The UniGraph2 Framework
The overall framework of UniGraph2 is illustrated in Figure 2.
The UniGraph2 framework introduces a unified approach to learn-
ing representations of multimodal graphs (MMGs), which consist
of nodes with diverse modal features (such as text and images)
and edges representing relationships between these entities. The
framework comprises three key modules: the multimodal feature
encoders, which process multimodal features through modality-
specific encoders; the Mixture of Experts (MoE) module, which
selects specialized MLP to align features across domains and modal-
ities; and the decoders, whichmap the unified embeddings back into
domain-specific inputs. The GNNoperates as the central component
that propagates node embeddings based on both their multimodal
features and the underlying graph structure.

4.1 Multimodal Masking Strategies
In UniGraph2, masking strategies play a crucial role in the self-
supervised learning framework for MMGs. The objective is to mask
a portion of the node features and require the model to reconstruct
them, thereby encouraging the model to effectively capture both
the structural and multimodal information.
Modality-Specific Encoding. Before applying the masking pro-
cess, modality-specific encoders are used to map raw data from
different modalities into feature vectors. In the context of a mul-
timodal graph G = (V, E,M),Ω, where each node 𝑣 ∈ V can
have features from a subset of modalities Ω𝑣 ⊆ Ω, the raw features
are transformed using encoders specific to each modality (e.g., a
language model for text, and a Vision Transformer for images).

Let 𝐸𝜔 represent the encoder for a modality 𝜔 ∈ Ω, and let
𝒙 (𝜔 )
𝑖

∈ R𝑑in denote the feature vector for node 𝑣𝑖 obtained from
modality 𝜔 . The modality-specific encoding can be expressed as:

𝒙 (𝜔 )
𝑖

= 𝐸𝜔 (𝑣 (𝜔 )
𝑖

). (7)
3
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Figure 2: Overview of the UniGraph2 framework. In pre-training, 1) UniGraph2 uses frozen Modality-Specific Encoders to
encode raw multimodal data (e.g., text, images) into vector node features. Then, a portion of these node features is randomly
masked. 2) Considering the diversity of node features across different modalities and graph domains, a Mixture of Experts
(MoE) network is used to align the different node features, allowing the model to assign each node to one or more experts based
on its domain andmodality. 3) The aligned node features are fed into a GNN for learning and projected into a unified embedding
space. 4) The decoding involves two objectives: a. Each graph domain corresponds to a specific decoder for reconstructing the
node features. b. A shared shortest path distance decoder is used to reconstruct the graph structures.

The features 𝒙𝑖 ∈ R𝑑in for node 𝑣𝑖 are then obtained by averaging
the features from all modalities Ω𝑣 associated with the node:

𝒙𝑖 =
1

|Ω𝑣 |
∑︁
𝜔∈Ω𝑣

𝒙 (𝜔 )
𝑖

. (8)

Masking Node Features. Once the features of each node are
encoded, a masking strategy is applied. A subset of nodes Ṽ ⊆
V is selected uniformly without replacement, and their features
are replaced with a mask token 𝒙 [𝑀 ] , a learnable vector 𝒙 [𝑀 ] ∈
R𝑑in . This process is applied to approximately 75% of the nodes to
encourage robust learning by focusing on the graph context and
unmasked nodes. For each node 𝑣𝑖 ∈ V , the masked feature �̃� is
defined as:

�̃�𝑖 =

{
𝒙 [𝑀 ] if 𝑣𝑖 ∈ Ṽ,

𝒙𝑖 if 𝑣𝑖 ∉ Ṽ .
(9)

This masked feature �̃� serves as the input to the MoE, which
aligns the features from different graph domains and modalities.

4.2 Mixture of Experts (MoE) Alignment
The MoE module [39] in UniGraph2 is designed to achieve cross-
domain and cross-modality alignment by dynamically selecting
specialized experts for different types of data. In MMGs, nodes
may come from various domains (e.g., social networks, product
networks) and have features from different modalities (e.g., text,
images). A single expert network might struggle to learn appropri-
ate representations for such diverse data. However, with the MoE
architecture, the model can assign each node to one or more experts
based on its domain and modality. This enables the model to adap-
tively align and fuse heterogeneous node features by leveraging
specialized experts for specific data types. The result is a flexible

and powerful model that can learn and generalize across diverse
graph structures and modalities, even when there are significant
differences in feature types and distributions across domains.

Each node 𝑣𝑖 is assigned to one or more experts through a gating
mechanism. Each expert 𝐸𝑘 is an MLP that processes the feature
vector �̃�𝑖 . The final node embedding 𝒆𝑖 is computed as a weighted
combination of the outputs from the selected experts:

𝒆𝑖 =
𝐾∑︁
𝑘=1

𝛼𝑖,𝑘𝐸𝑘 (�̃�𝑖 ). (10)

Here, 𝐸𝑘 (�̃�𝑖 ) denotes the output of expert 𝑘 for the node’s feature
vector �̃�𝑖 , and 𝛼𝑖,𝑘 represents the weight assigned to the 𝑘-th expert
for node 𝑣𝑖 . The weights 𝛼𝑖,𝑘 are computed using a softmax gating
function, which assigns higher weights to the experts that are more
relevant for the node based on its transformed features:

𝛼𝑖,𝑘 =
exp(𝑔𝑘 (�̃�𝑖 ))∑𝐾
𝑘=1, exp(𝑔𝑘 (�̃�𝑖 ))

, (11)

where𝑔𝑘 (·) is the gating function that scores the relevance of expert
𝐸𝑘 for node 𝑣𝑖 . The gating function 𝑔𝑘 is also an MLP that computes
a scalar relevance score for each expert based on the input �̃�𝑖 :

𝑔𝑘 (�̃�𝑖 ) = MLP𝑔 (�̃�𝑖 )𝑘 . (12)

Here, the subscript 𝑘 denotes the 𝑘-th component of the gating
MLP output, corresponding to the relevance score for expert 𝐸𝑘 .

Thus, the MoE module adaptively routes each node’s features
to the most relevant experts, allowing for effective cross-domain
and multimodal alignment. The experts, being specialized MLPs,
capture domain-specific or modality-specific knowledge, enabling
UniGraph2 to generalize well across diverse data distributions.

4
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GNNEncoding.Once the aligned node embeddings 𝒆𝑖 are obtained
through the MoE module, they are passed through a GNN, denoted
as 𝑓GNN, to further refine the node representations by incorporating
the structural information of the graph G. The GNN takes 𝒆𝑖 as
input and propagates messages between neighboring nodes to learn
the final node embeddings 𝒉𝑖 :

𝒉𝑖 = 𝑓GNN (𝒆𝑖 ,G). (13)

Here, 𝑓GNN (·) represents the GNN, which updates the embedding
of each node by aggregating information from its neighbors.
Scaling to Web-Scale Graphs. To ensure the scalability of Uni-
Graph2 on web-scale graphs, we use the Personalized PageRank
(PPR) algorithm for subgraph sampling. By using PPR as the sam-
pling strategy, we can generate the most structurally significant
local subgraphs [4, 12]. Unlike other sampling methods, such as
neighbor sampling or k-hop neighbors, PPR can identify key nodes
and structures that hold importance in a wider context, making
them more broadly applicable [19, 31].

4.3 Multiple Decoders
Graphs from diverse domains exhibit distinct structural and feature
characteristics. A single, generic decoder would struggle to capture
the specific nuances and patterns of each domain, as different types
of graphs often require specialized approaches for feature recon-
struction. By incorporating multiple decoders, each tailored to a
specific graph domain, UniGraph2 is able to accurately reconstruct
features while preserving domain-specific details.
Feature Reconstruction. Each decoder is responsible for recon-
structing the original node features 𝒙𝑖 from the embeddings 𝒛𝑖
generated by the GNN encoder. Formally, for a domain-specific
GNN decoder 𝑓𝐷 , the reconstructed feature 𝒛𝑖 is obtained as:

𝒛𝑖 = 𝑓𝐷 (𝒉𝑖 ,G). (14)

To measure the reconstruction quality, UniGraph2 uses a cosine
similarity loss [20, 22], which is defined as follows:

Lfeat =
1
|Ṽ |

∑︁
𝑣𝑖 ∈Ṽ

(
1 −

𝒙𝑇
𝑖
𝒛𝑖

∥𝒙𝑖 ∥ · ∥𝒛𝑖 ∥

)𝛾
, 𝛾 ≥ 1, (15)

where 𝒙𝑖 represents the original feature for node 𝑣𝑖 , 𝒛𝑖 is the re-
constructed feature, and 𝛾 is a hyperparameter that controls the
sharpness of the loss. This loss ensures that the reconstructed fea-
tures 𝒛𝑖 maintain the same directional similarity as the original
features 𝒙𝑖 , encouraging accurate feature reconstruction.
Structural Reconstruction. In addition to reconstructing node
features, UniGraph2 incorporates a shared decoder across all do-
mains to capture structural information. Specifically, the model
performs an edge-level reconstruction task to predict the short-
est path distance (SPD) between node pairs, which encodes global
proximity and connectivity within the graph.

The shortest path distance SPD𝑖, 𝑗 between nodes 𝑣𝑖 and 𝑣 𝑗 is pre-
computed using Dijkstra’s algorithm. The loss function for shortest
path distance regression is defined as:

LSPD =
1

|V|2
∑︁

(𝑖, 𝑗 ) ∈V×V

𝑓𝑆𝑃𝐷 (𝒉𝑖 ∥ 𝒉 𝑗 ) − SPD𝑖, 𝑗
2 , (16)

where 𝒉𝑖 and 𝒉 𝑗 are the final GNN embeddings for nodes 𝑣𝑖 and 𝑣 𝑗 ,
respectively, ∥ denotes concatenation, and 𝑓𝑆𝑃𝐷 is a task-specific
head that predicts the shortest path distance between the two nodes.
By regressing the SPD, the model learns to reconstruct the under-
lying structure of the graph, allowing it to capture the global con-
nectivity between nodes, which is essential for tasks that depend
on the graph’s topology.

Then overall loss is obtained by combining the two losses with
a mixing coefficient 𝜆.

4.4 Inference
In the inference phase, the pre-trained UniGraph2model is deployed
to generate node embeddings for any unseen multimodal graph
Ginf = (V inf, Einf,Minf). The inference process follows a stream-
lined version of the training pipeline, leveraging the Modality-
Specific Encoders, the MoE module, and the GNN to produce high-
quality embeddings for downstream tasks such as classification,
transfer learning, or generative tasks.
Modality-Specific Encoding. For each node 𝑣𝑖 ∈ V inf, the raw
features from various modalities are first processed through the
respective modality-specific encoders. Let Ωinf

𝑣𝑖
⊆ Ω represent the

set of modalities associated with node 𝑣𝑖 in the inference graph.
The modality-specific features are transformed as follows: 𝒙 (𝜔 )

𝑖
=

𝐸𝜔 (𝑣 (𝜔 )
𝑖

), ∀𝜔 ∈ Ωinf
𝑣𝑖
. The node feature vector 𝒙 inf

𝑖
is obtained by

averaging the features from all availablemodalities: 𝒙𝑖 = 1
|Ω𝑣 |

∑
𝜔∈Ω𝑣

𝒙 (𝜔 )
𝑖

.

Feature Alignment. The modality-specific feature vectors are
passed through the MoE module to align and fuse information
across modalities and domains. The same gating mechanism used
during training is applied to select the relevant experts for each
node. For each node 𝑣𝑖 , the final fused embedding 𝒆inf

𝑖
is computed

as a weighted sum of the selected experts: 𝒆inf
𝑖

=
∑𝐾
𝑘=1 𝛼

inf
𝑖,𝑘
𝐸𝑘 (𝒙 inf𝑖 ),

where 𝒙 inf
𝑖

is the transformed feature of node 𝑣𝑖 , and 𝛼 inf𝑖,𝑘 represents
the weight assigned to expert 𝐸𝑘 for the given node, computed using
the softmax gating function.
GNN Encoding. Once the aligned node features are obtained,
they are passed through the GNN module to incorporate the struc-
tural information of the inference graph Ginf. The GNN refines
node embeddings by propagating messages between neighbor-
ing nodes. The output node embeddings 𝒉inf

𝑖
are computed as:

𝒉inf
𝑖

= 𝑓GNN (𝒆inf𝑖 ,Ginf), where 𝑓GNN is the pre-trained GNN.

5 Experiments
In this section, we evaluate our UniGraph2 framework on three dis-
tinct research problems: 1) Self-Supervised Representation Learn-
ing, 2) Few-Shot Transfer, and 3) Multimodal Generative Tasks.
Table 7 lists all 14 datasets used in the experiments.

5.1 Self-Supervised Representation Learning
Setup.We adopt the widely used linear probing protocol to evaluate
the representation learning capability of self-supervised pre-trained
models on unseen datasets. Specifically, we train a linear classifier
on top of the embeddings generated by a frozen pre-trained model.
Our model, along with all self-supervised learning baselines, is first
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Table 1: Experiment results in self-supervised representation learning. We report accuracy (%) for node/edge classification tasks
and MRR (%) for link prediction tasks. UniGraph2 and other self-supervised baselines (rows in white) are jointly pre-trained on
Products, Papers100M, Goodreads-LP and Amazon-Cloth, and then evaluated on the individual target dataset. "In-distribution"
refers to pre-training on multiple datasets and evaluating on the same datasets. "In-domain Generalization" involves testing on
target datasets from the same domain as one of the pre-training datasets. "Out-of-domain Generalization" evaluates on datasets
from domains not seen during pre-training. The performance of methods that are directly pre-trained on the individual target
dataset, is marked in gray . The methods highlighted in bold are the best-performing ones among the "rows in white" methods,
while those marked in red are the best-performing methods among all methods, including those in the gray rows.

In-distribution In-domain Generalization Out-of-domain Generalization

Products Papers100M Goodreads-LP Amazon-Cloth Arxiv Amazon-Sports Goodreads-NC Ele-fashion Wiki-CS FB15K237 WN18RR

Use CLIP to encode raw multimodal data as input features.
NoPretrain 68.01±0.15 54.99±0.04 9.61±0.21 19.01±0.04 62.01±0.14 26.01±0.14 68.12±0.13 75.11±0.12 68.12±0.06 89.42±0.20 74.00±0.02
BGRL 70.11±0.14 57.12±0.05 20.53±0.02 19.11±0.01 65.25±0.05 27.35±0.05 72.97±0.08 76.53±0.02 70.11±0.14 88.11±0.12 73.24±0.11
BGRL 75.86±0.11 60.35±0.11 26.42±0.15 20.11±0.45 70.15±0.14 30.11±0.12 80.53±0.35 81.94±0.10 73.11±0.09 92.22±0.14 76.15±0.16
GraphMAE2 72.25±0.16 60.25±0.01 24.11±0.14 19.55±0.22 69.18±0.02 28.94±0.02 76.18±0.05 77.04±0.05 72.15±0.14 90.54±0.04 74.11±0.13
GraphMAE2 77.34±0.15 61.97±0.10 26.89±0.14 19.87±0.21 70.46±0.07 30.83±0.11 80.24±0.14 82.11±0.01 76.01±0.24 92.96±0.14 76.97±0.14
GCOPE 78.01±0.13 62.34±0.11 23.11±0.13 18.72±0.25 70.24±0.11 26.18±0.12 79.11±0.14 78.97±0.10 73.57±0.12 91.25±0.15 75.68±0.10
Use raw text as input features.
GIANT-XRT 72.56±0.10 64.53±0.11 8.11±0.05 16.78±0.25 70.89±0.11 22.01±0.04 58.14±0.10 67.01±0.05 74.01±0.03 90.14±0.14 75.01±0.13
UniGraph 80.11±0.21 65.23±0.20 19.19±0.10 16.38±0.08 72.15±0.18 25.89±0.12 73.26±0.12 75.11±0.06 76.35±0.20 93.11±0.09 84.06±0.24
UniGraph 82.24±0.24 67.89±0.21 22.31±0.05 18.01±0.03 73.97±0.22 27.11±0.10 78.14±0.11 81.05±0.08 81.22±0.24 95.24±0.23 87.21±0.76
Use raw multimodal data as input features.
CLIP 65.28±0.12 50.21±0.09 9.24±0.01 18.24±0.21 61.56±0.02 25.91±0.08 66.48±0.11 82.18±0.03 67.53±0.05 88.65±0.13 72.68±0.14
ImageBind 45.11±0.02 42.53±0.11 6.89±0.04 19.10±0.10 42.11±0.03 27.11±0.04 55.71±0.04 83.14±0.06 49.28±0.03 68.20±0.10 64.38±0.12
NoPretrain 68.34±0.14 55.15±0.10 9.62±0.02 19.25±0.04 63.76±0.11 25.03±0.15 68.01±0.15 83.96±0.10 68.45±0.10 89.14±0.19 74.01±0.15
UniGraph2 82.79±0.02 67.95±0.11 28.98±0.11 24.64±0.09 72.56±0.15 30.95±0.11 81.15±0.12 85.71±0.11 78.15±0.09 94.38±0.05 85.47±0.11
UniGraph2 82.36±0.21 67.67±0.18 28.76±0.08 24.06±0.06 73.46±0.17 31.61±0.14 81.97±0.10 87.91±0.09 82.86±0.07 95.29±0.04 87.86±0.06

jointly pre-trained on ogbn-Product, ogbn-Papers100M, Goodreads-
LP, and Amazon-Cloth. We then evaluate the pre-trained models
on each individual dataset. Detailed settings and hyperparameters
are provided in Appendix B.

For the baselines, we compare UniGraph2 with state-of-the-art
generative graph self-supervised learningmethods, GraphMAE2 [20],
and contrastive methods, BGRL [41]. As these methods are not in-
herently designed for cross-domain tasks, we leverage CLIP [37]
to unify the input node features across different graphs. We also
include a comparison with a multi-graph pre-training method,
GCOPE [54]. UniGraph2 and all baseline methods utilize GAT [43]
as the backbone GNN. For baselines that use TAGs as input, we
select GIANT-XRT [55] and UniGraph [19]. Since these methods
cannot process image data, they rely solely on text from MMG as
node features, ignoring image inputs. For baseline approaches that
accept multimodal data, we choose widely used multimodal models,
CLIP [37] and ImageBind [13]. To maintain consistency with the
baselines, UniGraph2 also uses CLIP’s pre-trained vision and text
encoders as Modality-Specific Encoders.

Our objective is to develop a general embedding model capable
of generating high-quality representations for any MMG. To assess
this, we evaluate the performance of UniGraph2 and the baselines
in three different settings: (1) In-distribution, where models are
pre-trained on multiple datasets and evaluated on each correspond-
ing dataset individually; (2) In-domain Generalization, which tests
pre-trained models on target datasets from the same domain as
one of the pre-training datasets; and (3) Out-of-domain Generaliza-
tion, where models are evaluated on datasets from domains unseen
during pre-training.
Research Questions. In this subsection, we aim to answer the
following research questions:

• RQ1: Negative Transfer in Multi-Graph Pre-Training. How
do existing graph pre-training methods, which are primarily
designed for single-graph pre-training, perform when applied
to multi-graph pre-training, and how do they compare to our
proposed UniGraph2?

• RQ2: Comparison to Other Foundation Models. How does
UniGraph2, which takes both multimodal data and graph struc-
tures as input, perform compared to methods that consider only
multimodal data (CLIP, ImageBind) or only TAGs (UniGraph)?

• RQ3: Generalization Capability. How does UniGraph2, de-
signed as a foundation model, perform in terms of generalizing
to unseen graphs, and how does it compare to methods trained
directly on the target graphs?

Results. Table 1 presents the results. We interpret these results by
answering three research questions:
• RQ1: Negative Transfer in Multi-Graph Pre-Training. Exist-

ing graph pre-training methods exhibit negative transfer when
applied to multi-graph pre-training, whereas UniGraph2 shows
improvements in this context. The results in the In-distribution
setting demonstrate that both BGRL and GraphMAE2 experience
a significant performance dropwhen pre-trained onmulti-graphs
(rows in white), compared to pre-training on single graph only
(rows in gray). This suggests that pre-training on other datasets
negatively affects performance on the target dataset. However,
UniGraph2 shows improvement under multi-graph pre-training,
indicating that it successfully addresses the shortcomings of exist-
ing graph pre-training algorithms struggling with multi-graphs.

• RQ2: Comparison to Other Foundation Models. UniGraph2
outperforms methods that consider only multimodal data (CLIP,
ImageBind) or only TAGs (UniGraph). We observe that without
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Table 2: Experiment results in few-shot transfer. We report accuracy (%) for node/edge classification tasks. UniGraph2 and other
self-supervised baselines (rows in white) are jointly pre-trained on Product, Papers100M, Goodreads-NC and Amazon-Cloth,
and then evaluated on the individual target dataset. "In-domain Generalization" tests on target datasets from the same domain
as one of the pre-training datasets. "Out-of-domain Generalization" evaluates on datasets from domains not seen during
pre-training. The performance of methods that are direcly pre-trained on the individual target dataset, is marked in gray .

In-domain Generalization Out-of-domain Generalization

Cora-5-way PubMed-2-way Arxiv-5-way Goodreads-NC-5-way Ele-fashion-5-way Wiki-CS-5-way FB15K237-20-way WN18RR-5-way

5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot

Use CLIP to encode raw multimodal data as input features.
NoPretrain 41.09 27.05 59.81 55.28 63.78 41.10 41.64 40.01 31.04 63.96 58.32 47.48 52.29 32.94 72.97 47.01 50.75 30.11
BGRL 52.01 35.18 66.04 59.04 60.12 46.67 47.01 44.22 30.35 64.72 60.16 46.49 52.10 32.85 75.39 45.15 47.42 34.57
GraphMAE2 52.89 36.25 66.89 59.95 60.91 47.29 47.84 44.80 30.93 65.52 60.92 47.24 52.83 33.41 75.95 45.81 48.14 35.21
Prodigy 53.01 39.59 69.11 60.42 63.53 51.33 50.01 46.39 34.98 67.35 63.87 50.79 55.94 36.35 78.01 51.39 54.94 38.73
OFA 53.11 40.04 69.45 60.38 63.11 50.25 49.61 46.24 35.14 67.94 64.18 51.35 56.01 37.02 78.33 52.02 55.05 39.11
GCOPE 51.98 36.14 66.25 59.16 60.29 47.19 48.52 44.89 31.20 65.10 61.33 48.51 53.74 34.19 76.10 48.93 50.19 35.05

Use raw text as input features.
GIANT-XRT 50.11 37.85 68.19 58.78 62.01 49.01 46.01 43.86 30.01 62.97 61.21 47.76 54.01 35.04 76.09 50.25 53.01 35.19
UniGraph 54.23 40.45 70.21 60.19 64.76 50.63 46.19 44.01 33.53 66.21 62.04 50.17 56.16 37.19 78.21 52.19 55.18 39.18

Use raw multimodal data as input features.
CLIP 41.23 28.41 61.67 55.71 63.46 40.14 41.24 40.11 30.97 62.51 58.23 46.15 51.69 31.61 72.31 47.14 50.83 31.35
ImageBind 32.19 23.90 58.20 54.24 62.48 38.17 29.10 28.14 21.42 51.25 48.05 44.93 48.14 30.28 69.12 41.80 41.24 26.91
NoPretrain 42.41 28.39 60.78 55.90 64.29 41.98 42.21 41.20 31.14 64.15 58.91 47.90 52.90 33.14 74.10 48.11 51.92 31.84
UniGraph2 56.01 42.98 72.19 61.24 66.24 51.98 51.73 47.42 37.01 69.29 65.29 53.85 57.28 38.47 79.34 52.19 55.59 39.93

considering the graph structure, the performance of the acknowl-
edged powerful multimodal foundation models like CLIP is not
comparable to UniGraph2. Meanwhile, UniGraph, which cannot
process image data, also shows less ideal results due to the lack
of information. This further highlights the necessity of designing
foundation models specifically for multimodal graphs.

• RQ3: Generalization Capability. Compared to baseline meth-
ods, UniGraph2 demonstrates strong generalization capabilities.
The results in the In-domain Generalization and Out-of-domain
Generalization settings show that UniGraph2 effectively transfers
knowledge from pre-training to unseen graphs. Compared to the
NoPretrain method, UniGraph2 shows significant improvements.
The consistent performance gains indicate that UniGraph2 can
extract meaningful patterns during pre-training, which are bene-
ficial for tackling graph learning tasks. Furthermore, UniGraph2
is comparable to methods trained directly on the target datasets,
achieving similar accuracy while benefiting from greater effi-
ciency without requiring exhaustive task-specific training.

5.2 Few-Shot Transfer
Setup. In this part, we evaluate the ability of the pre-trained models
to perform few-shot in-context transfer without updating the model
parameters. For baseline methods, in addition to the pre-trained
models mentioned in Section 5.1, we also compare two recent
graph in-context learning methods: the self-supervised pre-training
method Prodigy [24] and the supervised pre-trainingmethodOFA [30].

For evaluation, we strictly follow the setting of Prodigy [24]. For
an N-way K-shot task, we adopt the original train/validation/test
splits in each downstream classification dataset, and construct a 𝐾-
shot prompt for test nodes (or edges) from the test split by randomly
selecting 𝐾 examples per way from the train split. By default in all
experiments, we sample 500 test tasks.

We adopt the few-shot classification strategy in UniGraph [19]
for UniGraph2. The model computes average embeddings for each

class and assigns a query sample to the class with the highest
similarity to its embedding.
Results. In Table 2, our UniGraph2 model consistently outper-
forms all the baselines. This further demonstrates the powerful
generalization capabilities of UniGraph2 as a foundation model.
In particular, compared to other graph few-shot learning methods
such as Prodigy, OFA, and GCOPE, UniGraph2 does not rely on
complex prompt graph designs, and its simple few-shot strategy is
both efficient and effective.

5.3 Multimodal Generative Tasks
Setup. UniGraph2 is designed as a general representation learning
model. The embeddings it generates can be utilized by various gen-
erative foundation models, such as LLMs, to empower downstream
generative tasks. To further demonstrate this, we select the section
summarization task on theWikiWeb2M dataset for our experiments.
The WikiWeb2M dataset [5] is designed for multimodal content
understanding, using many-to-many text and image relationships
from Wikipedia. It includes page titles, section titles, section text,
images, and indices for each section. In this work, we focus on
section summarization, where the task is to generate a summary
sentence from section content using both text and images.

For the experiments, we follow the MMGL [50] setup, using four
types of information: section text, section images, context text, and
page-level text/images. Consistent with MMGL, we fine-tune Open
Pre-trained Transformer (OPT-125m) [52] to read the input section
text/images and generate a summary. Multimodal neighbors are
first encoded using frozen vision/text encoders and then aligned
to the text-only LM space using 1-layer MLP mapper. In MMGL,
CLIP [37] encoders are used for text and image encoding, remaining
frozen during fine-tuning. In our experiments, we replace CLIP
embeddings with our UniGraph2 embeddings.
Results. Table 3 shows that under different input types and dif-
ferent neighbor encoding strategies, the embeddings generated by
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Table 3: Experiment results in multimodal generative tasks. We strictly follow the setting in MMGL [50]. The task is to generate
a single sentence that summarizing the content of a particular section. The summary is generated based on all images and
(non-summary) text present in the target and context sections. We provide different information of MMGs to the base LM:
(1) section all (text + image), (2) page text, and (3) page all (all texts and images). We encode multiple multimodal neighbor
information using three different neighbor encodings methods: Self-Attention with Text+Embeddings (SA-TE), Self-Attention
with Embeddings (SA-E), and Cross-Attention with Embeddings (CA-E).

BLEU-4 ROUGE-L CIDEr

Input Type Method SA-TE SA-E CA-E Avg. gain SA-TE SA-E CA-E Avg. gain SA-TE SA-E CA-E Avg. gain

Section all MMGL 8.03 7.56 8.35 - 40.41 39.89 39.98 - 77.45 74.33 75.12 -
+UniGraph2 9.24 9.01 9.39 15.57% 43.01 43.24 42.98 7.44% 81.15 80.39 81.91 7.32%

Page text MMGL 9.81 8.37 8.47 - 42.94 40.92 41.00 92.71 80.14 80.72 -
+UniGraph2 10.31 10.10 9.98 14.53% 43.19 43.08 42.75 3.38% 93.19 90.41 93.11 9.56%

Page all MMGL 9.96 8.58 8.51 - 43.32 41.01 41.55 - 96.01 82.28 80.31 -
+UniGraph2 10.12 10.05 10.33 13.38% 44.10 42.08 42.44 2.18% 96.32 91.24 94.15 9.49%

Table 4: Ablation studies on UniGraph2 key components.

Products Amazon-Cloth Goodreads-NC WN18RR

UniGraph2 82.79±0.02 24.64±0.09 81.15±0.12 85.47±0.11

w/o MoE 81.01±0.10 21.33±0.04 80.10±0.04 83.99±0.21
w/o feat loss 69.12±0.09 18.43±0.24 68.12±0.01 74.11±0.03
w/o SPD loss 82.42±0.11 23.39±0.05 80.24±0.02 85.24±0.11

Table 5: Ablation studies on Modality-Specific Encoders.

Products Amazon-Cloth Goodreads-NC WN18RR

CLIP 82.79±0.02 24.64±0.09 81.15±0.12 85.47±0.11

ImageBind 82.32±0.05 25.01±0.11 80.33±0.22 84.29±0.07
T5+ViT 82.99±0.04 24.38±0.28 81.28±0.11 84.16±0.04

Table 6: Comparison of GPU hours and performance on ogbn-
Arxiv and ogbn-Papers100M.

Method Pre-training Downstream Training Downstream Inference Test Accuracy

ogbn-Arxiv (169,343 nodes)
GAT - 0.39 h 5.5 mins 70.89 ± 0.43

GraphMAE2 - 5.1 h 5.4 mins 70.46 ± 0.07
UniGraph 28.1 h - 9.8 mins 72.15 ± 0.18
UniGraph2 5.2 h - 5.7 mins 72.56 ± 0.15

ogbn-Papers100M (111,059,956 nodes)
GAT - 6.8 h 23.1 mins 65.98 ± 0.23

GraphMAE2 - 23.2 h 23.0 mins 61.97 ± 0.24
UniGraph 28.1 h - 40.1 mins 67.89 ± 0.21
UniGraph2 5.2 h - 24.8 mins 67.95 ± 0.11

UniGraph2 bring significant improvements compared to MMGL’s
default CLIP embeddings. We also observe that UniGraph2’s em-
beddings are more robust to different neighbor encoding strategies
compared to CLIP and do not rely on a specific strategy.

5.4 Model Analysis
We select four datasets from different domains to conduct more
in-depth studies. We adopt self-supervised representation learning
for evaluation.
Ablation on Key Components. Table 4 shows the performance of
the UniGraph2 framework after removing some key designs. "W/o
MoE" represents that we use simple MLP instead MoE to align node
features. "W/o feat loss" represents that we only use the SPD loss

for pre-training, while "w/o SPD loss" refers to the opposite. The
overall results confirm that all key designs contribute positively to
the performance of UniGraph2.
Ablation on Modality-Specific Encoders In Table 5, we study
the influence of different Modality-Specific Encoders on the per-
formance of encoding raw multimodal data. CLIP and ImageBind
are feature encoders that map features from various modalities to a
shared embedding space, whereas T5+ViT employs SOTA embed-
ding methods for each modality independently, without specific
alignment. The results show that all methods achieve comparable
performance, indicating that UniGraph2 effectively aligns features
regardless of whether they have been pre-aligned or not.
Efficiency Analysis. UniGraph2, designed as a foundation model,
incurs significant computational costs primarily during the pre-
training phase. However, it offers the advantage of applicability
to new datasets in the inference phase without requiring retrain-
ing. We compare of the training and inference costs of our model
with other models. GAT [43] is a supervised trained GNN. Graph-
MAE2 [20] is a self-supervised learning method with GAT as the
backbone network. UniGraph [19] is a graph foundation model for
TAGs. We select ogbn-Arxiv and ogbn-Papers100M, two datasets
of different scales for experiments. From the results in the Table 6,
we observe that although UniGraph2 has a long pre-training time,
its inference time on downstream datasets is comparable or shorter
than the combined training and inference time of GNN-based meth-
ods. This advantage further increases with the size and potential
quantity of downstream datasets.

6 Conclusion
UniGraph2 addresses the limitations of existing foundation models
for multimodal graphs by introducing a novel unified embedding
space that effectively integrates both multimodal information and
graph structures. By employing modality-specific encoders, a graph
neural network, and a Mixture of Experts module, UniGraph2 out-
performs state-of-the-art models in tasks such as classification,
transfer learning, and multimodal generation. Extensive experi-
ments demonstrate the model’s generalization capabilities across
diverse graph domains and modalities, confirming its potential as a
scalable and flexible solution for learning on multimodal graphs.
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A Datasets
Cora [16]. The Cora dataset consists of 2708 scientific publications
classified into one of seven classes – case based, genetic algorithms,
neural networks, probabilistic methods, reinforcement learning,
rule learning, and theory. The citation network consists of 5429
links. We collect raw text from [16].
PubMed [16]. The Pubmed dataset consists of 19,717 scientific pub-
lications from PubMed database pertaining to diabetes classified
into one of three classes – Experimental induced diabetes, Type 1
diabetes, and Type 2 diabetes. As in [29], we ask ChatGPT to gen-
erate a detailed description of each category. The citation network
consists of 44,338 links. We collect raw text from [16].
ogbn-Arxiv [23]. The ogbn-arxiv dataset is a directed graph, rep-
resenting the citation network between all Computer Science (CS)
arXiv papers. Each node is an arXiv paper and each directed edge
indicates that one paper cites another one. The task is to predict
the 40 subject areas of arXiv CS papers, e.g.„ cs.AI, cs.LG, and cs.OS.
We collect raw text from [23].
ogbn-Papers100M [23]. The ogbn-papers100M dataset is a di-
rected citation graph of 111 million papers. We collect raw text
from [23].
ogbn-Products [23]. The ogbn-products dataset is an undirected
and unweighted graph, representing anAmazon product co-purchasing
network. Nodes represent products sold in Amazon, and edges
between two products indicate that the products are purchased
together. The task is to predict the category of a product in a multi-
class classification setup, where the 47 top-level categories are used
for target labels. We collect raw text from [23].
Wiki-CS [29]. Wiki-CS is a Internet link network with each node
represent a Wikipedia page and each edge represent the reference
link. Each node’s label corresponds to the category of the entry. We
collect raw text from [29].

FB15K237 [29]. FB15K237 is a kowledge graph that contains knowl-
edge base relation triples and textual mentions of Freebase entity
pairs. We collect raw text from [29]. Given that we propose a self-
supervised learning framework, and the edge text features are the
labels to be predicted, we solely utilized node text features and did
not employ edge text features.
WN18RR [29]. WN18RR is a knowledge graph, which is a subset
of WordNet that consists of 11 relations and 40943 entities. We
collect raw text from [29]. Given that we propose a self-supervised
learning framework, and the edge text features are the labels to be
predicted, we solely utilized node text features and did not employ
edge text features.
Amazon-Sports [56]. Amazon-Sports is a link prediction dataset
derived from the Amazon-Review dataset. In this dataset, each
node represents a product within the sports category on Amazon,
and the links signify whether two products are often purchased
together. The textual features consist of product titles, while the
visual features are raw high-resolution images of the products. We
collect raw text and images from [56].
Amazon-Cloth [56]. Amazon-Cloth follows a similar structure to
Amazon-Sports, but focuses on clothing products. The dataset uses
co-purchase information from the clothes category on Amazon. The
text features include product titles, such as "Nike Men’s Revolution
6 Road Running," and the visual features are the associated product
images. We collect raw text and images from [56].
Goodreads-LP [56]. Goodreads-LP is based on the Goodreads Book
Graph dataset. In this dataset, nodes correspond to books, and the
links represent whether users who like one book are likely to enjoy
another. Text features describe the books, and the visual features
are book cover images. Books without images are excluded from
the dataset. We collect raw text and images from [56].
Goodreads-NC [56]. Goodreads-NC is a node classification dataset
also based on the Goodreads dataset. Here, each node represents a
book, and the links signify whether users who liked one book will
like another. The textual features describe the books, and the visual
features are book cover images. Books lacking images are removed.
We collect raw text and images from [56].
Ele-Fashion [56]. Ele-Fashion is a node classification dataset de-
rived from the Amazon-Fashion dataset. In this dataset, each node
represents a fashion product, and links indicate that users who buy
one product are likely to purchase another. The textual features
are product titles, and the visual features consist of product images.
We collect raw text and images from [56].
WikiWeb2M [5]. The WikiWeb2M dataset is designed for multi-
modal content understanding, using many-to-many text and image
relationships from Wikipedia. It includes page titles, section titles,
section text, images, and indices for each section.

B Implementation Notes
Running environment. All experiments are conducted on Linux
machinewith 945G RAM, and 8NVIDIAA100with 40GBGPUmem-
ory. For software versions, we use Python 3.11, Pytorch 2.0.1, DGL
1.1.2, transformers 4.32.1 and CUDA 11.8. Our code and datasets
will be available.
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Table 7: Statistics of all 14 multimodal graph datasets.

Dataset Domain Task #Nodes #Edges Raw Features

Cora Citation Node 2,708 5,429 Paper Titles and Abstracts
PubMed Citation Node 19,717 44,338 Paper Titles and Abstracts
ogbn-Arxiv Citation Node 169,343 1,166,243 Paper Titles and Abstracts
ogbn-Papers100M Citation Node 111,059,956 1,615,685,872 Paper Titles and Abstracts
ogbn-Products Product Node 2,449,029 61,859,140 Product Descriptions
Wiki-CS Wikipedia Node 11,701 216,123 Wikipedia Entry Names and Contents
Ele-fashion Product Node 97,766 199,602 Fashion Titles and Fashion Images
Goodreads-NC Book Node 685,294 7,235,084 Book Descriptions and Book Images
FB15K237 Knowledge Edge 14,541 310,116 Entity Names and Descriptions
WN18RR Knowledge Edge 40,943 93,003 Entity Names and Descriptions
Amazon-Sports Product Edge 50,250 356,202 Product Titles and Product Images
Amazon-Cloth Product Edge 125,839 951,271 Product Titles and Product Images
Goodreads-LP Book Edge 636,502 3,437,017 Book Descriptions and Book Images
WikiWeb2M Wikipedia Generative 600,000 - Page Title, Section Titles, Section Text, Images

Table 8: Notation Table

Symbol Description

G = (V, E,M,Ω) A Multimodal Graph (MMG).
V Set of nodes in the graph.
E Set of edges in the graph.
Ω Set of possible modalities (e.g., text, images).

M(𝑣) Function that maps each node 𝑣 ∈ V to a subset of modalities Ω𝑣 ⊆ Ω.
GTAG = (V, E,M, {text}) Text-attributed graph where each node has an associated text feature.

𝑓 : V𝑘 → R𝑑 Pre-trained model for representation learning, mapping nodes to a 𝑑-dimensional embedding space.
𝑯inf Inference embeddings generated by applying the pre-trained model to a new graph.
𝒙 (𝜔 )
𝑖

Feature vector for node 𝑣𝑖 from modality 𝜔 .
Ginf = (Vinf, Einf,Minf) Inference graph where the pre-trained model generates embeddings for nodes.

Lfeature Feature reconstruction loss for reconstructing masked node features.
LSPD Shortest path distance reconstruction loss used for structural reconstruction.
𝜆 Mixing coefficient for combining feature and structure reconstruction losses.

Hyper-parameters. The detailed pre-training hyper-parameters
are listed in Table 9. For linear probing, we train the linear classifier
using adam optimizer with lr=0.01 for 5000 epochs, and report the
early-stopping results.
Baselines. To have a fair comparison, we download the public
source code. For methods can not scale, we adapt their code to
integrate with sampling algorithms to run on large-scale graphs.
The sources of the codes used are as follows:

• BRGL: https://github.com/Namkyeong/BGRL_Pytorch
• GraphMAE2: https://github.com/THUDM/GraphMAE2
• GIANT-XRT: https://github.com/amzn/pecos/tree/mainline/

examples/giant-xrt
• Prodigy: https://github.com/snap-stanford/prodigy
• OFA: https://github.com/LechengKong/OneForAll
• UniGraph: https://github.com/yf-he/UniGraph
• CLIP: https://github.com/openai/CLIP
• ImageBind: https://github.com/facebookresearch/ImageBind
• GCOPE: https://github.com/cshhzhao/gcope

• MMGL: https://github.com/minjiyoon/MMGL

Datasets splits. For Cora and PubMed, we follow commonly used
data splits, using 20 labeled nodes per class as the training set,
30 nodes per class as the validation set, and the rest as the test
set. We report the average accuracy on test set with 20 random
initialization.

For Arxiv and Products, we follow the official splits [23]. Follow-
ing the experimental procedure suggested by OGB, we repeat each
experiment for 10 times with random seeds and report the average
accuracy.

For Wiki-CS, we follow the official splits [32] with 20 different
training splits, we report the average accuracy on the 20 different
training splits with 20 random initialization. In each split, 5% of the
nodes in each class are used for training.

For FB15K237 and WN18RR, we follow splits in OFA [29]. For
FB15K237, training set has 272115 edges, validation set has 17535
edges and test set has 20466 edges. For WN18RR, training set has
86835 edges, validation set has 3034 edges and test set has 3134
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Table 9: Pre-training hyper-parameters for our framework.

mask rate hidden_size lr weight_decay dropout optimizer num_epochs num_gnn_layers ppr topk num_experts coefficient 𝜆

0.8 1024 1e-3 0.01 0.4 adamw 5 4 256 8 0.1

edges. We repeat each experiment for 10 times with random seeds
and report the average accuracy.

For Amazon-Sports, Amazon-Cloth, Goodreads-LP, Goodreads-
NC, and Ele-Fashion, we follow the official splits [56]. We repeat
each experiment for 10 times with random seeds and report the
average accuracy.

For WikiWeb2M, we follow the split and setting in MMGL [50].
Linear probing. The dataset D after generating embeddings, com-
prising embedding-label pairs (𝒉, 𝑦), is divided into training, val-
idation, and test sets. A linear classifier with weight matrix𝑾 ∈
R𝑑×|Y | is trained at top the embeddings from the frozen model,
aiming to minimize the loss function L, typically cross-entropy,
over the training set: min𝑾

∑
(𝒉,𝑦) ∈Dtrain L(𝑾 · 𝒉, 𝑦). The perfor-

mance of the model is evaluated based on a performance metricM,
which can be defined generically as M(Deval, 𝑓𝜃 ,𝑾 ), where Deval
refers to either the validation or test set.
Few-shot transfer. Our method follows in-context learning ap-
proach in UniGraph [19], and for baselines we either follow the
same approach or use their already proposed in-context learning
methods (Prodigy, OFA). We repeat each experiment for 10 times
with random seeds and report the average accuracy. All the other

experimental details (pre-training) follow those for the previous
experiment (i.e., linear probing).

C Mixture of Experts (MoE) in Graph Learning
Mixture of Experts (MoE) is a machine learning architecture that
distributes the learning task across several specialized expert mod-
els. In various implementations of MoE in graph neural networks
(GNNs), each expert model is typically responsible for learning
specific components of the data or task, and a gating model selects
which expert(s) to activate for each input, effectively combining
their outputs. As in MoE in NLP, most MoE in graph learning are de-
signed to improve efficiency in inference [45]. Other works also use
MoE to handle different challenges like distribution shifts. In Graph-
METRO [48], MoE addresses complex graph distribution shifts by
assigning each expert to deal with a specific shift type, while a
gating model selects the relevant experts to produce shift-invariant
representations. GraphAlign [21] uses a feature normalization step
and employs MoE at the input layer to assign nodes to experts,
ensuring a unified distribution across graphs before GNN training.
In this work, UniGraph2 employs MoE to align multimodal features
(e.g., text, images) from various graph domains, ensuring coherent
embeddings across modalities and domains.
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