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Abstract

We study the task of automatically finding evidence relevant to hypothe-
ses in biomedical papers. Finding relevant evidence is an important
step when researchers investigate scientific hypotheses. We introduce
EvidenceBench to measure models performance on this task, which is
created by a novel pipeline that consists of hypothesis generation and
sentence-by-sentence annotation of biomedical papers for relevant evi-
dence, completely guided by and faithfully following existing human ex-
perts judgment. We demonstrate the pipeline’s validity and accuracy with
multiple sets of human-expert annotations. We evaluated a diverse set of
language models and retrieval systems on the benchmark and found that
model performances still fall significantly short of the expert level on this
task. To show the scalability of our proposed pipeline, we create a larger
EvidenceBench-100k with 107,461 fully annotated papers with hypotheses
to facilitate model training and development. Both datasets are available at
https://github.com/EvidenceBench/EvidenceBench.

1 Introduction

There are more than 1 million biomedical papers currently published per year, and more
than 35 million papers collected in the PubMed database of biomedical literature González-
Márquez et al. (2024). The scale of the literature has made it increasingly labor-intensive
to determine what is known about a research question. Systems such as OpenAI Deep
Research and Elicit aim to automate large-scale analysis of the scientific literature. Notably,
it is not enough for these systems to merely produce high-level summaries or restate an
article’s claims. To accurately assess what a paper contributes to a research question, such
systems should identify the supporting evidence – the experimental or observational data
that underpin the claims.

We focus on this critical step of evidence retrieval: given a hypothesis, a system must locate
the key parts of a paper that provide pertinent experimental details, numerical findings,
or other forms of evidence that address that hypothesis. This step provides grounding
to the judgments of an automated system, allowing researchers to quickly judge whether
a specific claim is supported by empirical evidence. However, creating and evaluating
such systems remain non-trivial. On the one hand, few annotated benchmarks exist in the
biomedical domain to measure how effectively models can identify and extract evidence.
On the other hand, curating such a dataset is time-consuming and expensive, especially if
such annotations need to be performed by experts.
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To address these challenges, we present EvidenceBench and its large-scale extension
EvidenceBench-100k, a new benchmark for sentence-level evidence retrieval in biomedical
research papers. Our proposed datasets are fully open-sourced under the CC-BY license
and encompass a comprehensive range of biomedical topics.

We introduce a novel pipeline for creating EvidenceBench and EvidenceBench-100k, pow-
ered by Large Language Models (LLMs). The pipeline has two main components: hypothesis
generation and an alignment annotator that matches hypotheses with sentences from pa-
pers. Informally, we use existing evidence summary from review papers to generate a
hypothesis and use the same evidence summary to find sentences that provide evidence for
the generated hypothesis. See Section 3 and Figure 2 3 for details.

Our pipeline is highly scalable, reducing the construction time of EvidenceBench from over
3,000 human hours and $120,000 in wages to just 3 API hours and $5,000 in API costs, using
state-of-the-art LLMs at the time of data creation, Claude3-Opus for hypothesis generation
and GPT4-0125 for alignment annotation. During the construction of EvidenceBench-100k,
we used GPT4-o-mini for alignment annotation and kept the construction time and cost
under 24 hours and $5000. For details about human cost estimate, see Section 3.4.

Table 6b demonstrates EvidenceBench-100k is suitable for fine-tuning LLMs and embedding
models as we observed significant improvements of fine-tuned models over their pretrained
baselines.

We conduct a benchmarking study on a variety of large language models (LLMs) and
embedding models, which provide several insights. First, although LLMs still fall short
of expert-level performance on this task, indicating that they cannot replace humans, they
have the potential to assist them. Second, embedding models consistently underperform
compared to large language models due to lack of global context from research papers.
Third, we report that current LLMs trained for long document understanding still get "Lost
in the Middle" (Liu et al., 2024). See Appendix K for details of our analyses.

We highlight some important sections in the paper:

• Section 2.1 explains two critical concepts: Study Aspect and Source of Information.

• Section 2.3 presents Aspect Recall, the evaluation metric for our experiments.

• Figure 2 illustrates our key methodological contribution: leveraging expert-written
evidence summaries from review papers to guide an LLM-based alignment annota-
tion process (Figure 3), ensuring our pipeline adheres to human expert judgments.

• Section 3.3.1 shows experts confirm the scientific value of our generated hypotheses.

• Section 3.4 and Table 2 provide statistical evidence that our alignment annotation
procedure achieves comparable performance to biomedical PhD students.

2 Task Formulation

The EvidenceBench task is to identify the most important pieces of evidence relevant to
a hypothesis. This is formulated as a sentence retrieval task. Given a paper, the task is to
retrieve a set of sentences that jointly provide the most important pieces of evidence. See
Figure 1 for an example.
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2.1 Definitions

Candidate Pool: The full-text of a research paper is presented as a list of sentences 1. This
ordered list of sentences is the Candidate Pool. Very importantly, research papers and
review papers are completely different.

Evidence Summary: An evidence summary is written by human experts. It is included
in open-sourced review papers, such as surveys, monographs and systematic reviews. An
evidence summary is directly linked to one single research paper. It contains all pieces
of evidence (from this research paper) that the human experts believe are important and
relevant to a hypothesis. Evidence summary could take the form of a normal paper summary,
or a bulleted list, or even tabular format.

Study Aspect: A study aspect, denoted as fi, is a single piece of information. For instance,
an experimental outcome or a detail from study design. Note, study aspects are decomposed
from a evidence summary written by experts. Each study aspect is identified by human
experts and represent an important detail relevant for a hypothesis. Therefore, study aspects
are considered to be human experts’ judgment. See Figure 1 for example study aspects.

Source of Information: A sentence in a research paper is considered a source of information
for a study aspect if it satisfies the following two criteria.

1. The content of the sentence implies most of the study aspect.
2. For any part of the study aspect that the sentence does not cover, the information

must be easily deducible from the surrounding context.

Given a sentence sj and a study aspect fi, define the source-of-information indicator function
S( fi, sj):

S( fi, sj) =

{
1 if sj is a the source of information for fi
0 otherwise

Note, if a sentence is a source of information for a study aspect, we informally say the
sentence covers this aspect. Note, since study aspect is decomposed and only represent one
piece of information, one single sentence is enough to cover it.

Hypothesis: A hypothesis is a scientific generalization, usually expressible in one line (less
than 50 words). It should not be tied to specific details of an experiment. See Figure 1 for an
example and Section 3.3 for the generation and validation process.

Evidence Set: The evidence set is the set of study aspects which provides evidence relevant
to a hypothesis, according to human expert judgments. Very importantly, we use an
Evidence Summary to derive an evidence set, see Figure 2 right side. A study aspect in this
set may provide evidence on its own, or only in combination with other study aspects.

2.2 Task Definition

We now introduce our primary task, Evidence Retrieval @K (ER@K). Informally, the task
is to find K sentences in a research paper which provide the greatest amount of evidence
relevant to a hypothesis. This is operationalized as finding sentences in the research paper
which cover the most study aspects from the evidence set.

Formally, given a hypothesis and a candidate pool, the task for a system is to retrieve K
sentences from the candidate pool which provide evidence relevant to the hypothesis. The
retrieved sentences are then evaluated against the evidence set, which contains ground-truth
study aspects (i.e. pieces of evidence relevant to the hypothesis identified by human experts).

1Figures and tables are excluded for two reasons. First, EvidenceBench is designed to evaluate
textual models. Second, important information from figures and tables is often restated in the paper’s
text. In the rare case where an evidence summary is largely based on figures or tables from a paper,
it means most study aspects cannot be covered by sentences from the paper. Such cases will be
discovered at the alignment annotation stage and filtered from EvidenceBench. Specifically, we filter
out cases where less than 70% of study aspects from the evidence summary are covered by sentences.
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Figure 1: In the task of ER@3, a model sees a hypothesis and the full sequence of sentences from a
paper as candidate pool and must select up to 3 sentences. The model selects S9, S69, and S106 as the
set of retrieved sentences. When compared against the ground-truth evidence set which contains 4
aspects, these 3 sentences only cover Aspect 1, 3, and 4, since S9 and S69 are repetitive and cover the
same Aspect 1. Aspect 2 is missed, resulting in 75% Aspect Recall.

The goal is for the K retrieved sentences to be sources of information for as many of the
study aspects in the evidence set as possible. During the retrieval task, the system does not
have access to the ground-truth evidence set; the evidence set is only used for evaluation.

In the second version of the task, only study aspects related to the results and analyses
are considered. Study aspects related to background and methods are filtered out of the
evidence set. This task is called Result-ER@K, and focus on system’s ability to identify
numerical and experimental results.

2.3 Evaluation Metrics

To determine the quality of a system’s retrieved sentences, we use Aspect Recall. Let
{s1, . . . , sk} be the set of retrieved sentences, and { f1, . . . , fm} be the set of study aspects in
the evidence set. The Aspect Recall is defined as

∑ f j
1(

∑si
S(si , f j)

)
≥1

m
(1)

This measures the fraction of study aspects that can be covered by a retrieved set of k
sentences. See Figure 1 for an example calculation of Aspect Recall 2.

3 Dataset Construction Pipeline

3.1 Data Sources

There are two data sources for EvidenceBench and EvidenceBench-100k. First, a collection
of 107,887 CC-BY open-sourced biomedical research papers where each research paper
represents a datapoint. Second, a collection of 44,772 review papers from PubMed Central.

2Our objective is to find the smallest amount of sentences to cover the maximum amount of study
aspects. We choose Aspect Recall over precision metrics because precision metrics could inadvertently
encourage models to select redundant sentences, which is counterproductive to our objective.
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Figure 2: The highlighted paragraph in the review paper is the evidence summary. The left side
shows how a hypothesis is generated (extracted) from the evidence summary and its surrounding
context in the review paper. The right side shows the evidence summary being decomposed into
study aspects.

Each biomedical research paper has a corresponding evidence summary included in a
review paper. Specifically, EvidenceBench has 426 datapoints and EvidenceBench-100k has
107,461 datapoints. Our datasets cover a wide range of biomedical topics, see Appendix A.3
for details.

3.1.1 Train/Test Split

We use a random train/test split of 133/ 293 task instances for the original EvidenceBench.
We use a random train/test split of 87,461/20,000 for EvidenceBench-100k. All of the prompt
optimization is performed on the train sets and all of the few-shot examples used in the
prompts are selected from the train sets. All datasets have CC-BY licenses.

Table 1: EvidenceBench Test Set. Optimal Number of Sentences refers to the smallest number of
sentences that are sources of information for the most of study aspects in an evidence set.

Candidate Tokens Sentences Study Aspects Optimal Number of Sentences
Dataset n min avg max min avg max min avg max min avg max

Test Set 293 1691 5578 23980 48 168.1 794 2 9.5 36 1 4.6 18
Test Set (Result Retrieval) 288 1691 5582 23980 48 168.4 794 1 4.2 18 1 2.1 7

3.2 Dataset Pipeline Overview

A task instance (i.e. a datapoint) is constructed as follows. After we harvest an expert-
written evidence summary from a review paper, we generate a hypothesis from it. Since
the evidence summary was written to summarize a research paper, we take the sentences
from this research paper as the candidate pool for the task instance. We then decompose the
expert-written evidence summary into a set of study aspects, also known as the evidence
set. Each study aspect is used to annotate each sentence in the candidate pool. This is the
alignment annotation process, which determines sentences in the research paper that are
sources of information for the study aspect, and consequently, are relevant for the hypothesis.
In the next sections, we explain the procedures of harvesting evidence summary from review
papers, hypothesis generation, aspect decomposition, and alignment annotation.

Harvesting the Evidence Summary: The highlighted portion in the review paper in Figure
2 is an evidence summary. Evidence summary has an XML citation embedded in it, so it
can be identified and harvested by a deterministic algorithm. See Appendix H for details.

Aspect Decomposition: For each evidence summary, we decompose it into study aspects.
These study aspects comprise the evidence set for the research paper. Table 1 shows a
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summary on average contains 10 study aspects and half of them are results aspects. In
EvidenceBench, decomposition is done by GPT4-0125 and inspected by human researchers.
In EvidenceBench-100k, the decomposition is done by GPT-4o-mini-0718 and 200 randomly
sampled instances are inspected by human researchers and are found to be of high quality.

3.3 Hypothesis Generation

A review paper focuses on a specific hypothesis and survey a number of research papers,
summarizing the evidence that each provides for the hypothesis. For each evidence sum-
mary, our goal is to extract the hypothesis that it is providing relevant evidence to. Think of a
hypothesis as an explicit or implicit question waiting to be recovered. In order to do this, we
provide an LLM (Claude3-Opus) with the evidence summary as well as surrounding para-
graphs. The model is then prompted to recover the hypothesis being discussed in the review
paper. See Figure 2 left side. To ensure high quality hypotheses for EvidenceBench-100k,
Claude3-Opus is also used.

3.3.1 Expert Validation of Hypotheses

We perform an expert evaluation of the hypotheses extracted from review papers in Evi-
denceBench, focusing on two questions:

1. Does the hypothesis have sufficient scientific value?

2. Does the corresponding evidence summary provide evidence which is relevant to
the hypothesis?

The annotation team for this task consisted of three medical doctors. The first expert defined
the annotation guidelines and provided feedback on an initial set of 20 extracted hypotheses.
This feedback was also used to perform prompt optimization for Claude3-Opus.

After finalizing the guidelines and prompt, a separate set of 50 hypotheses was generated.
The two other annotators each evaluated 25 hypotheses. Annotation guidelines are in
Appendix B.

For Question 1, 50/50 hypotheses were judged to have sufficient scientific value. For
Question 2, 47/50 hypotheses were judged to be relevant to the corresponding evidence
summaries. This demonstrates that hypotheses were correctly extracted from review papers.

3.4 Alignment Annotation of Study Aspects and Sentences

We have so far described the procedure for decomposing study aspects and recovering
hypotheses from the review papers. A list of study aspects describes the evidence that
a specific research paper provides relevant to a hypothesis. The final step is to identify
which sentences of the original research paper serve as sources of information for each study
aspect. Because study aspects can, in general, come from any part of the research paper, this
requires annotating every sentence in the research paper according to whether it matches
each study aspect.

Table 1 shows that each paper has approximately 168 sentences and 10 study aspects on
average. EvidenceBench contains more than 400 research papers. Sentence-by-sentence
annotation requires approximately 700,000 sentence annotations, which is infeasible given
the use of expert annotators; we estimate that it would require more than 3000 hours of
annotation 3. We therefore develop a pipeline for automating the annotation process, and
perform human evaluation of its reliability. We observe that the task of labeling a sentence

3Our experiments showed that a single bioinformatics PhD student cannot reliably annotate one
paper for one aspect in less than 20 minutes. Reliable annotation requires two Bio PhD students
collaborating, taking 20-30 minutes per aspect. Only with this collaborative approach did annotations
show high inter-annotator agreement across different teams. The calculation breaks down as follows:
2 PhD students * 25 minutes/aspect * 10 aspects/paper * 400 papers = 3,333 human hours. Each PhD
level expert has an expected hourly wage between $40 to $95 (see wage standard in Rein et al. (2024)).
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according to whether it is a source of information for a study aspect is considerably simpler
than the benchmark’s full sentence retrieval task. It only requires a judgment of whether a
single sentence from the research paper contains most of the same information as a study
aspect.

Figure 3: The process for matching sentences with study aspects. In this example, GPT4 sees the
study aspect, one candidate sentence from the research paper with the context, and is prompted to
determine whether the candidate is a source of information for the study aspect.

For the annotation pipeline, GPT-4 is shown a target sentence from the research paper and a
study aspect (as well as some additional context: the 10 surrounding sentences from the
research paper, and the evidence summary from the review paper). It is then asked to
evaluate whether the target sentence implies most of the information contained in the study
aspect. See Figure 3.

The optimization and evaluation of the pipeline were performed using a development
set/test set split. The prompt and annotation methodology were optimized on a develop-
ment set of 37 research papers. The prompt and optimization procedure is provided in
Appendix C.

After the pipeline was finalized, it was evaluated on a test set of 50 randomly sampled
research papers. For each research paper, a single study aspect was selected, and every
sentence in the paper was annotated for this study aspect. The labeling was performed by
four annotators, who are Ph.D. researchers in bioinformatics. The annotators were split into
two teams. Each annotator first performed the annotation task independently. The pairs
within each team then consulted with each other to reach consensus judgments. Finally,
inter-annotator agreement was calculated by comparing the judgments of the two teams.
Full annotation guidelines are provided in Appendix B.

Each team labeled 8111 (sentence, study aspect) pairs in total. Table 2 shows inter-annotator
agreement between the two human teams, and between the human teams and GPT-4.
Human and GPT-4 judgments match each other more than 98% of the time. Because of class
imbalance (positive labels are rare, around 150 out of 8111), other measures of agreement
such as Cohen’s κ are in the mid 60’s, indicating substantial agreement between the human
teams and between the human teams and GPT-4. Bootstrapped hypothesis tests find no
significant difference between the human/human agreement rate and the human/GPT-4
agreement rate. To account for potential correlations among annotations from the same
research paper, we additionally computed confidence intervals using hierarchical bootstrap
sampling, and found similar results, shown in Appendix D.

For the larger EvidenceBench-100k, over 150 million sentence-aspect pair judgements would
need to be made. We switch the annotator to GPT-4o-mini-0718. We validated the quality of
its annotation by re-running the hypothesis test on the same 50 randomly sampled papers,
and found very similar Human & GPT agreement. See Appendix D for 4o-mini’s results.
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Table 2: Hypothesis Testing Results for Automatic Alignment Annotation

Metrics Human & Human Average Human & GPT Average p-value

Exact Accuracy 98.8 ± 0.3 98.7 ± 0.2 0.21 ✓
F1 Binary 66.0 ± 6.5 64.6 ± 5.6 0.64 ✓
Cohen’s κ 65.4 ± 6.6 63.9 ± 5.6 0.63 ✓
Spearman’s ρ 65.4 ± 6.6 64.0 ± 5.6 0.65 ✓

4 Experiment Setup

EvidenceBench Tasks: we consider four evidence retrieval tasks with different settings.

Evidence Retrieval @Optimal: denoted as ER@optimal. The smallest number of sentences
to cover all aspects is denoted as Optimal. The average optimal number is only 4.6. The task
is for a model to retrieve no more than the Optimal number of sentences to form the best
evidence set relevant to the hypothesis. Evidence Retrieval @10 is denoted as ER@10. See
Appendix E.1 for the prompt.

Result Evidence Retrieval @Optimal: denoted as Result-ER@Optimal. The task restricts
the model to retrieve no more than the optimal number of sentences, which is calculated by
the minimum number of sentences required to cover all study aspects labeled as "Results".
This labeling is done by GPT4-0125. Empirically, half of the aspects are labeled as "Results’,
see Table 1. Result Evidence Retrieval @5 is denoted as Result-ER@5. See Appendix E.2 for
the prompt.

Experiment Models We test the following models Claude3-Opus (Anthropic, 2024), Gemini
1.5 (Google, 2024), GPT-4o (OpenAI, 2024), Llama3-70B, Llama3-8B (AI, 2024), E5-v2 (Wang
et al., 2022), OpenAI Embedding v3 (OpenAI, 2024), VoyageAI v2 (Voyage AI, 2024), GritLM-
7B (Muennighoff et al., 2024), E5-Mistral-7B (Wang et al., 2023), NV-Embed-v2(Lee et al.,
2024) which is the leader of the Massive Text Embedding Benchmark MTEB (Muennighoff
et al., 2022).

4.1 Evaluation strategies

We implement three standard practices for evaluating LLMs on long-context benchmarks
(Bai et al., 2023; Zhang et al., 2024). Chain-of-Thought (CoT): our default evaluation
strategy, optimized from our train set. In-Context-Learning (ICL): From the train set,
we randomly sample 8 example hypotheses and their corresponding ground-truth set of
retrieved sentences, as per standard ICL practices (Wei et al., 2022; Min et al., 2022), in
addition to our default CoT prompt. Section-by-Section (Sec-by-Sec): We divide a research
paper by its natural sections. In the first stage, LLM only retrieves from each section one
at a time. In the second stage, all retrieved sentences are presented to the LLM and final
selections are made.

Our evaluation metric is Aspect Recall, defined in Section 2.3. In Appendix E, we presented
all prompts used in our experimental evaluation for LLMs, instructions for embedding
models as well as standard errors for model evaluations.

Table 3: Four tasks are reported on EvidenceBench test set. For each model, the highest number is
reported if multiple strategies are used.

GPT-4o Claude3 Gemini LLama3-70B OpenAI Voyage GritLM E5-Mistral NV-Embed

ER@Optimal 51.4 47.6 48.3 46.7 25.1 22.7 27.0 22.7 25.2
ER@10 71.6 66.4 65.4 65.4 42.2 42.0 46.4 41.9 44.7

Result-ER@Opt 52.6 51.7 46.7 46.2 19.1 18.3 18.9 19.3 20.1
Result-ER@5 70.8 68.7 65.4 63.7 33.1 31.9 39.1 33.6 35.6
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5 Results

From Table 3, we list the best performance for each model (LLM or embedding model)
on the four constrained Evidence Retrieval tasks in the original EvidenceBench. GPT-4o
consistently outperforms others across all tasks, while Gemini, Claude3-Opus, and Llama3-
70B closely trail behind. Llama3-70B can only be evaluated using the Sec-by-Sec strategy due
to its limited context window, but it shows robust performance across all tasks. There is a
qualitative difference between LLMs and embedding models, partially because embedding
models are not context-aware when calculating sentence embeddings. This invites future
work on general-purposed context-aware embedding models.

In-context learning: From Table 4, we see an 8-shot ICL does not significantly alter perfor-
mances for LLMs. In particular, GPT-4o and Gemini-1.5 slightly improve, while Claude3-
Opus slightly degrades. This indicates the primary difficulty is context-length and not a
failure to understand task requirement, suggesting that ICL is less effective on long-context
benchmarks.

Section-by-Section Processing: On the other hand, from Table 4, Sec-by-Sec considerably
improves Gemini and Claude’s performances, suggesting that the default longer-context
version of the task hinders their retrieval abilities. Section-by-section is by far the most
robust strategy observed here. We performed further analyses in Appendix K.

Reasoning-based LLMs: We tested two reasoning-based LLMs, Gemini 2.5 Pro (Google,
2025) and Claude 4 Sonnet (Anthropic, 2025), using the baseline prompt for ER@Optimal.
As we see in Table 5, they scored 52.5 and 49.1 on ER@Optimal, respectively, numerically
higher than GPT-4o’s performance. We leave a more extensive evaluation of reasoning
models on EvidenceBench for future work.

Table 4: Comparison of different strategies for LLMs on the EvidenceBench test set.

Baseline ICL Sec-by-Sec

Model ER @
Optimal

ER@
10

ER @
Optimal

ER@
10

ER @
Optimal

ER@
10

GPT-4o 48.1 69.6 51.4 68.7 50.9 71.6
Claude3 41.1 53.6 38.3 55.4 47.6 66.4
Gemini 42.7 63.0 43.2 62.4 48.3 65.4
Llama3-70B - - - - 46.7 65.4

Table 5: Evaluation for reasoning-based LLMs using baseline prompt

Model Gemini 2.5 Pro Claude 4 Sonnet GPT-4o Claude 3 Opus Gemini 1.5

ER@Optimal 52.5 49.1 48.1 41.1 42.7

5.1 Fine-tuning and Evaluation on EvidenceBench-100k

EvidenceBench-100k is split into a 80k train set and a 20k test set. For cost reasons,
we randomly sample 3000 datapoints from the 20k test set to evaluate. Table 6a shows
EvidenceBench-100k test set can be used to evaluate and clearly differentiate various models’
performance.

Furthermore, we fine-tune two models: E5-v2 335M and Llama3-8B (sec-by-sec strategy)
using the 80k training datapoints. We test them on the original EvidenceBench test set
for the task of Result-ER@Optimal. We notice both fine-tuned models show significant
improvements over their baselines as shown in Table 6b. This shows the EvidenceBench-
100k train set can be used for model developments. See full details of fine-tuning at
Appendix I.
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Table 6: Comparison of Model Performances on EvidenceBench Datasets

(a) EvidenceBench-100k test set

Model Result-ER@Optimal
GPT-4o 42.84%
Claude3 35.12%
GritLM 14.59%
OpenAI 10.95%

(b) EvidenceBench test set.

Model Result-ER@Optimal
Pretrained Llama3-8B 35.8%
Finetuned Llama3-8B 41.0%
Pretrained E5-v2 15.2%
Finetuned E5-v2 32.9%

5.2 Effect of Hypothesis Negation

In EvidenceBench, most of the sentences which are annotated as relevant to a hypothesis
provide evidence in support of the hypothesis, rather than against it. To evaluate whether
models are able to identify information which provides evidence against a hypothesis, we
created a negated version of EvidenceBench by negating each hypothesis. See Appendix E.8
for the prompt and some examples of negated hypotheses. By negating each hypothesis, we
have transformed the support relationships into refutation relationships.

Using the baseline prompt, we evaluated GPT-4o and Claude3-Opus on this negated version
of the original EvidenceBench test set. In Table 4, the ER@Optimal for GPT-4o is 48.1 on the
original set, the new experiment shows the ER@Optimal drops to 46.7 on the negated set.
The ER@Optimal for Claude3 is 41.1 on the original set and the ER@Optimal drops to 36.7
on the negated set. The results demonstrate that both models show decreased performance
when evaluating negated hypotheses, indicating that the task becomes more challenging
when models must identify evidence that refutes rather than supports a claim. However,
the decrease in performance is small for GPT-4o.

6 Related Work

Hypothesis Generation Recent works explore using LLMs to generate scientific hypotheses
(O’Brien et al., 2024; Tong et al., 2023; Park et al., 2024; Baek et al., 2024; Abdel-Rehim
et al., 2024). Qi et al. (2023) fine-tune LLMs on biomedical literature that pairs background
knowledge with corresponding hypotheses, and then use the LLMs to generate hypotheses
when prompted with background knowledge.

Evidence Retrieval Claim-based retrieval (Chen et al., 2023) retrieve evidence by breaking
down a complex claim into specific aspects and retrieving each aspect. On the other hand,
our pipeline uses a novel approach, by decomposing summarized evidence from review
papers into study aspects (instead of claims), which serves as ground-truth human domain
experts knowledge that would guide our LLM-annotator to match sentences from research
papers to these study aspects.

LLM in Biomedicine Researchers have shown strong performance of LLMs in BioNLP
tasks, including relation extraction, question answering, document classification, name
entity recognition, and summarization (Luo et al., 2022; Chen et al., 2024; Monajatipoor et al.,
2024; Jahan et al., 2023; 2024; Munnangi et al., 2024). LLMs are also being used to extract
specific information from report, e.g. Interventions, Outcomes, and Findings by Wadhwa
et al. (2023).

7 Conclusion

We introduced EvidenceBench and EvidenceBench-100k, a benchmark for retrieving evi-
dence for scientific hypotheses from biomedical literature. EvidenceBench was constructed
using an automated, scalable pipeline that transforms expert-written summaries into fine-
grained annotations linked to specific sentences in research papers.
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A Dataset

A.1 Dataset License and Code License

The EvidenceBench dataset uses the following licenses:

• Test set: Provided under CC-BY license.

• Train set: Provided under CC-BY-NC-SA license.

• Dev set: Provided under CC-BY-NC-SA license.
The EvidenceBench-100 dataset uses CC-BY license.

A copy of the full license can be found at https://github.com/EvidenceBench/EvidenceBench/blob/main/LICENSE.md.
Note that the test set has the most permissive license.

All code is released under the MIT License. The full license can be found at
https://github.com/EvidenceBench/EvidenceBench/blob/main/LICENSE.md.

A.2 Dataset Hosting, Accessibility and Maintenance

The EvidenceBench and EvidenceBench-100k datasets can be accessed at
(https://github.com/EvidenceBench/EvidenceBench).

A.3 Dataset Coverage Analysis

In this paper, we introduce EvidenceBench with 426 papers and EvidenceBench-100k with
107,461 papers. Our two datasets are fully open-sourced under the CC-BY license and
encompass a comprehensive range of biomedical topics. Specifically, we quantified topical
diversity for the 100k papers using 2025 MeSH headings to demonstrate representativeness.
The dataset covers all 16 top-level MeSH branches (A–N, V, Z), confirming coverage of every
major biomedical domain. With 17,505 distinct MeSH descriptors representing 56.5% of the
entire 2025 vocabulary (30,956 terms), the breadth matches that of a full-year MEDLINE slice.
The branch-level distribution shows a Gini-Simpson diversity of 0.81 (where 1 indicates
perfect evenness), demonstrating that no single area dominates the corpus. Additionally,
MeSH tree numbers reach a median depth of 5 and 90th-percentile of 7, indicating the
benchmark encompasses both fine-grained molecular and procedural topics alongside
high-level concepts.

A.4 A Motivating Example

Aristolochic Acid (AA) is a toxin that is naturally occurring in traditional Chinese herbal
medicines and has been known to cause many types of cancer in animals and humans
Hoang et al. (2016). However, 20 years ago, the causal relationship between AA and kidney
cancer was not yet confirmed. In this section, we present an example data instance related
to AA.

Hypothesis:

Aristolochic Acid (AA) induced DNA mutation is causal for renal carcinoma (RCC).

Evidence Summary

Results from Hoang et al. (2016) showed that a cumulative ingestion of more than 250 mg of
AA increased the risk of ccRCC with an odds ratio (OR) of 1.25. A distinctive AA mutational
signature was evident in 6/10 sequenced ccRCC exomes from AA-exposed patients. Among
these tumors, VHL, the most frequently mutated gene, mutated in 7 out of 10 samples.

Study Aspect Decomposition:

1. Cumulative ingestion of more than 250 mg of AA increased the risk of ccRCC (OR,
1.25). [Sentences 9 and 69 are sources of information for Aspect 1].
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2. A distinctive AA mutational signature was evident in six of the 10 sequenced ccRCC
exomes from AA-exposed patients. [Sentence 163 is the source of information for
Aspect 2]

3. The most frequently mutated driver gene was VHL. [Sentence 106 is the source of
information for Aspect 3].

4. VHL was mutated in 7 out of 10 tumors. [Sentence 106 is the source of information
for Aspect 4]

Full Paper:

All 216 sentences from Hoang et al. (2016) are indexed, starting from 0 to 215. For brevity,
we will not reproduce the entire paper here. Figure 1 shows sentences 9, 69, 106 from the
full list of sentences are retrieved by a model.

Selected Sentences from Full Paper:

• Sentence 9: Cumulative ingestion of more than 250 mg of AA increased risk of
ccRCC (OR, 1.25), and we detected dA-AL-I adducts in 76% of Taiwanese ccRCC
patients.

• Sentence 69: The results (Table 1) indicate an adjusted OR of 1.25 (1.004–1.547) for
ccRCC in persons consuming more than 250 mg of AA during the period of 1997 to
2003.

• Sentence 106: VHL was the most frequently mutated driver gene (7/10 tumors) in
our AA-exposed ccRCCs (Table 2).

• Sentence 163: Whole-exome sequencing confirmed that the AA mutational signature
was present in 6 of 10 ccRCC patients studied.

A.5 Dataset Collection and Processing

We use BioC API to download biomedical papers which are available in the PMC database.
Papers unavailable in PMC are manually downloaded. We use GROBID to parse papers
from PDF format to XML format. We use Stanza to split paragraphs of text into sentences.
We manually copied and pasted all required open-access review paper sections, and do not
distribute any contents of these review papers.

A.6 EvidenceBench and EvidenceBench-100k Datasets Structure

EvidenceBench uses a train, dev, test split. EvidenceBench-100k uses a train and test split.
All datasets have the same structure. Each data instance (stored in a JSON) has the following
features:

- hypothesis: the biomedical hypothesis in string format.
- paper_as_candidate_pool: an ordered tuple of strings. Each string is one sentence

from the paper. This serves as the candidate pool for all of the evidence retrieval
tasks.

- aspect_list_ids: a list of strings. Each string is an id for a study aspect.
- results_aspect_list_ids: a list of strings. Each string is an id for an aspect related

to the study’s results.
- aspect2sentence_indices: a mapping (i.e. dictionary) from each aspect to all

sentence indices that are sources of information for that aspect.
- sentence_index2aspects: a mapping (i.e. dictionary) from each sentence index to

all aspects that this sentence is a source of information for.
- evidence_retrieval_at_optimal_evaluation: A dictionary that contains informa-

tion for evaluating a model’s performance on the task Evidence Retrieval @Optimal.
• optimal: A positive integer, which is the smallest number of sentences needed

to cover all study aspects.
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• one_selection_of_sentences: a list of sentence indices, containing the smallest
number of sentences needed to cover all aspects. Note, there are potentially
other lists of sentences of the same size which cover all aspects.

• covered_aspects: the list of aspects that are covered, which is all aspects in
this case.

- evidence_retrieval_at_10_evaluation: A dictionary that contains information for
evaluating a model’s performance on the task Evidence Retrieval @10.

• one_selection_of_sentences: a list of 10 sentence indices. This list covers the
maximum number of aspects which can be covered by 10 sentences.

• covered_aspects: the list of aspects that are covered, which may be fewer than
all aspects.

- results_evidence_retrieval_at_optimal_evaluation: A dictionary that
contains the information for evaluating a model’s performance on the
task Results Evidence Retrieval @Optimal. The structure is similar to
evidence_retrieval_at_optimal_evaluation.

- results_evidence_retrieval_at_5_evaluation: A dictionary that con-
tains the necessary information for evaluating a model’s performance
on the task Results Evidence Retrieval @5. The structure is similar to
evidence_retrieval_at_10_evaluation.

- sentence_types_in_candidate_pool: a tuple of strings. Each string is a sentence
type. There are three possible sentence types: section_name, abstract, and nor-
mal_paragraph. For example, if the third string is ’abstract’, that means the third
sentence comes from the abstract.

- paper_id: the id of the paper used as the candidate pool.

B Annotation Guidelines

B.1 Guidelines for Hypothesis Validation

Below, we show the annotation guidelines for evaluating the hypotheses extracted from the
review papers. These guidelines were co-designed and approved by a medical doctor who
did not see the 50 hypotheses which were evaluated.

Overall:

IARC is a WHO organization that invites field experts to write a review about
the potential carcinogenicity of a certain chemical/compound/product/substance,
where they survey many relevant papers.

A review is typically organized into the following sections:

• Exposure Data (e.g., how humans and animals come into contact with the
substance).

• Animal Study.

• Human Study.

• Mechanistic Evidence (e.g., the mechanism for carcinogenicity).

• Others.

For each relevant paper, the field experts will extract certain information from
the paper, for a specific purpose, which does not have to align with the original
goal of the paper.

Annotation Task:
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Each task is in a docx file. In each docx file, you will see:

• A hypothesis.

• A paragraph of extracted information from paper.

• A reference page (For reference only).

– Potentially more context for the hypothesis (i.e., a potential
connection between the hypothesis and the extracted information from
paper.

– The review that contains the extracted information from the paper.

– Link for the paper.

You have two tasks.

• Determine if the hypothesis is a reasonable hypothesis, given your
understanding of the hypothesis and your external knowledge and experience.

– The hypothesis might be about the carcinogenicity of a substance (for
human or animal), or might be about how humans get exposed to a
substance, or might be about experimental procedure, or something
else.

– Determine if the hypothesis is a valid statement with scientific
value, it could be a false statement, but disproving it would have
scientific value. In other words, you should not judge the accuracy
of the hypothesis. You should only judge if the hypothesis contains
scientific value.

– Determine if the hypothesis looks like a hypothesis, i.e., has the
format of a real hypothesis.

– Make your judgment based only on the contents of the hypothesis, which
is usually just one sentence. Your decision should not be influenced
by the other task or other materials you see, though for better
comprehension, you can refer to the links on the reference page.

– Record your decision(Yes or No), and leave any optional comment if
you want. If you think the answer is not binary, then you do not have
to write yes or no, but you have to give an explanation.

• Determine if the extracted information from the paper contains evidence
that can potentially help support or refute the hypothesis.

– Answer Yes or No, followed by a brief explanation. One or two sentences.
If you think the answer is not binary, then you do not have to write
yes or no, but you have to give an explanation.

Notes:

You have to pledge the following conditions are met during annotation for each
task packet.

• No consulting with AI and LLM.

• For words or concepts that you are not familiar with and believe are
important for comprehension, search for them and understand their meaning.

• If you do not understand the hypothesis or the extracted information
from the paper, you should read the IARC review to better understand
the hypothesis and read the full paper to better understand the concepts
mentioned in the hypothesis and extracted information from the paper.

• You are not required to read the whole paper nor the full IARC review, just
to the point when you believe you understand the hypothesis and extracted
information from the paper well enough.
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B.2 Annotation Guidelines for Alignment of Study Aspects and Sentences

B.2.1 First Annotation Stage

This section shows the annotation guidelines for the first stage of aspect-sentence alignment.
In this stage, each annotator had to independently annotate 50 papers.

You have a total of 50 annotation task packets. Each task packet is a docx. file
that contains the following information.

• An aspect (one piece of important information/detail).

• The context for the Aspect (summary or a collection of extracted details
from a paper).

• The URL for the paper (pmc or pubmed link).

• The list of indexed text elements of the paper (a text element could be a
sentence or a section title).

You have to pledge the following conditions are met during annotation for each
task packet.

• No consulting with AI or LLM.

• For words you are not familiar with and believe are important for
comprehension, conduct a search and understand its meaning.

• Click on the paper URL and find full contents either in HTML, XML, or PDF
format, and read through it from start to finish, at least once.

• For every text element in the list, you must look at it and read it at
least once.

• You cannot talk to other annotators about anything related to your task,
including progress and insights.

• You have to take a mandatory 5-minute break after every 1 hour of performing
annotation.

• You cannot exceed 8 hours of annotation per day.

Below is the recommended procedure for annotating each packet.

• Read and understand the aspect, and the context of the aspect.

• Decide what details in the aspect count as information, and what details
count as context. At least one detail needs to be identified as information,
but an aspect can do without context if it is self-contained and very clear.

– You can decide what information is, but geographical, temporal, and
numerical data are all information.

– Typically, context is recurring and ubiquitous information throughout
the paper.

• For each text element, you decide if a very significant amount of
information identified in the aspect is also explicitly present in the
text element. Note, information has to be explicitly present, it cannot
be from inference or allusion. Acronyms, abbreviations, and different
presentation formats of the same information (e.g., rounding of numbers)
are acceptable, as long as it is clear to you.

– Even if you find significant information overlap, you have to make
sure the sentence is in the same context as the aspect.

* Same context typically refers to the same study or experiment.

* Check if the sentence refers to the same experiment as the aspect,
since different experiments could be in one paper.
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• Do not do complicated mental inference. Once you have a clear understanding
of the aspect and sentence, do not try to invent a spurious connection
between sentence and aspect.

– Specifically, do not do complex computations of numbers.

B.2.2 Second Annotation Stage

Below we show the annotation guidelines for the second stage of the aspect-sentence
alignment. In this stage, two annotators from the same team come to a consensus on any
disagreements from the first stage.

• Go through task 0-49.

• Resolve your difference, check if you made a mistake, or if you missed
something. If you made a conceptual error (e.g. you failed to understand
some terminology), you may have to go through the paper again quickly.

– For sentences that you cannot resolve your difference after discussion,
i.e., one person says yes, and the other person says no, you should
include them as well.

C Automated Alignment Procedure

This section describes prompt optimization for the LLM alignment of study aspects and
sentences.

Prompt optimization was performed with GPT4-0125 on an independent development set
of 37 (aspect, paper) pairs, i.e., 37 tasks. There was no overlap with the papers labeled by
the two teams of human annotators.

Figure 4: Prompt for aligning a sliding window of consecutive text elements with a study
aspect.

In order to reduce the frequency of GPT-4 forgetting information from the papers, we use a
sliding window (window-length = 10 sentences) with an overlap of 5 text elements across
windows. GPT-4 sees a sliding window of sentences and annotates each sentence according
to whether it is a source of information for the aspect.
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Since the sliding windows are overlapping, each text element (except for the first 5) is
considered twice by GPT-4. A sentence is labeled as positive if it is selected in either sliding
window.

Figure 4 shows the final prompt template used for aligning text elements with aspects. Each
template uses one aspect, 10 text elements in a sliding window, and the context around the
one aspect (i.e., the evidence summary of the paper).
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C.1 Study Aspect Decomposition

There are two steps in aspect decomposition.
The first step is decomposing a evidence summary into a list of study aspects where each
aspect represents a single piece of information. The granularity of the decomposition is
determined by the following rule:
Each decomposed study aspect must be able to align with at least one sentence from the
paper. If a study aspect contains so much information that no one sentence can cover a
significant portion of these details, then this study aspect is considered too coarse-grained
and must be further decomposed.

See Figure 5 for the prompt template that achieves the first step of aspect decomposition.

Figure 5: Step 1 of decomposing a evidence summary into aspects, using the granularity
condition.

The second step is checking if the decomposed list of study aspects only contains informa-
tion from the evidence summary, and if no other paper-specific information leaked into the
decomposed list. See Figure 6 for the prompt template. Any datapoint whose decomposed
list of aspects did not pass the second step verification is filtered out. Fewer than 10% of
datapoints are filtered at this step. Empirically we noticed those filtered datapoints have
evidence summaries that are not self-contained. Therefore, we did not attempt to recover
these datapoints.

Figure 6: Step 2 of decomposing a evidence summary into aspects. This step confirms that
aspects only contain information from the evidence summary.
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D Hypothesis Testing Results

During hypothesis testing for automatic alignment annotation, although only 50 papers
were annotated, each paper contains roughly 160 (sentence, aspect) pairs, totaling 8,111
pairs. In the paper, correlation and agreement metrics are calculated based on these 8,111
pairs and not on the 50 papers. Because annotations for sentences in the same paper are
partially correlated, the effective sample size therefore lies between 50 and 8,111. In order
to account for this correlation structure, we can use hierarchical bootstrap sampling (first
sampling papers, then sampling sentences within papers) to compute confidence intervals
and p-values. We provide results for GPT-4o and GPT-4o-mini on standard bootstrap
sampling and hierarchical bootstrap sampling in Tables 7, 8, 9. 10.

Metrics Human & Human Average Human & GPT Average p-value

Exact Accuracy 98.8 ± 0.3 98.7 ± 0.2 0.21 ✓
F1 Binary 66.0 ± 6.5 64.6 ± 5.6 0.64 ✓
Cohen’s κ 65.4 ± 6.6 63.9 ± 5.6 0.63 ✓
Spearman’s ρ 65.4 ± 6.6 64.0 ± 5.6 0.65 ✓

Table 7: hypothesis testing result for GPT-4o on 8,111 pairs using standard bootstrap sampling

Metrics Human & Human Average Human & GPT Average p-value

Exact Accuracy 98.7 ± 0.5 98.6 ± 0.5 0.46 ✓
F1 Binary 66.5 ± 9.9 65.8 ± 8.8 0.91 ✓
Cohen’s κ 65.8 ± 10.1 65.1 ± 9.0 0.90 ✓
Spearman’s ρ 65.9 ± 10.0 65.3 ± 8.9 0.91 ✓

Table 8: Hypothesis testing result for GPT-4o using hierarchical bootstrap sampling.

Metrics Human & Human Average Human & GPT Average p-value

Exact Accuracy 98.7 ± 0.5 98.6 ± 0.5 0.134 ✓
F1 Binary 66.5 ± 12.3 64.0 ± 9.9 0.362 ✓
Cohen’s κ 65.8 ± 12.6 63.3 ± 9.9 0.356 ✓
Spearman’s ρ 65.9 ± 12.6 63.4 ± 9.9 0.360 ✓

Table 9: Hypothesis testing result for GPT-4o-mini on 8,111 pairs using standard bootstrap sampling.

Metrics Human & Human Average Human & GPT Average p-value

Exact Accuracy 98.7 ± 0.6 98.6 ± 0.6 0.339 ✓
F1 Binary 66.5 ± 9.9 64.0 ± 7.4 0.541 ✓
Cohen’s κ 65.8 ± 10.1 63.3 ± 7.6 0.536 ✓
Spearman’s ρ 65.9 ± 10.0 63.4 ± 7.6 0.533 ✓

Table 10: Hypothesis testing result for GPT-4o-mini using hierarchical bootstrap sampling.
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E Experiment Details

There are several prompt templates used for experimental evaluation, which are variations
on a default template.

E.1 Default Prompt Template for Evidence Retrieval

The default prompt template asks an LLM to retrieve no more than K sentences for the
Evidence Retrieval tasks. Figure 7 shows the default prompt template for ER @Optimal or
ER @K.

Figure 7: Default prompt template for evaluating LLMs on tasks Evidence Retrieval @Opti-
mal and Evidence Retrieval @10.

E.2 Prompt Template for Results Evidence Retrieval @Optimal or @5

Figure 8: Step 1: Prompt template for evaluating LLMs on tasks Results Evidence Retrieval
@Optimal and Evidence Retrieval @10. Here, the number of allowed text elements denotes
Optimal or 10. This prompt uses a mixture of one-shot ICL and Section-by-Section.
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Step 1 of Prompt template with one-shot ICL and Section-by-Section

Figure 8 shows the prompt template for any tasks that only focus on retrieving sentences
related to experiment results or analyses based on experiment outcomes. Note, this prompt
uses a mixture of two strategies: one-shot ICL (in-context-learning) and section-by-section
processing. These two strategies are proven effective in the other two tasks, Evidence
Retrieval @Optimal and @K. Due to budget limitations, we can only provide this mixture
strategy, which proves to be the best strategy on the training set. Note, for fairness, for each
section, we can only instruct the LLM to retrieve no more than K sentences, even though
a paper could have 10 sections. Consequently, the total number of retrieved sentences
for all sections combined sometimes exceed to maximally allowed number of sentences K.
Therefore, we have the second step of processing.

Step 2 of Prompt template with one-shot ICL and Section-by-Section:

In step 2, we show the LLM all its retrieved sentences and ask it to select the top K sentences.
See Figure 9 for its prompt template.

Figure 9: Step 2: Prompt template for evaluating LLMs on tasks Results Evidence Retrieval
@Optimal and Evidence Retrieval @10.
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E.3 ICL Prompt for Evidence Retrieval @Optimal and @10

We randomly selected 8 pairs of examples from the development set, which was completely
disjointed from the test set. We experimented with different versions of in-context learning.
In one attempt, we gave the full paper for each example pair (i.e., sample hypothesis, sample
full paper, sample optimal number of or 10 sentences that cover the most amount of study
aspects.). However, no LLM improved on the training set using N-shot with full paper, even
when N =1 or 2. Therefore, we decided to not use the full paper. Instead, for each example
pair, we give only the sample hypothesis and the sample list of sentences that cover the
maximum amount of aspects (size = Optimal or 10). See Figure 10 for its prompt template.

Figure 10: 8-shot In-context Learning Prompt template for evaluating LLMs on tasks Evi-
dence Retrieval @Optimal and Evidence Retrieval @10.
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E.4 Section-by-Section Prompt for Evidence Retrieval @Optimal and @10

Section-by-section is a strategy to counter the long-context difficulty posed by Evi-
denceBench. Instead of processing the full paper at once (typically consisting of more
than 5000 tokens), each paper is divided into its naturally defined sections, i.e. introduction,
methodology, results, etc. Each time, an LLM only retrieves sentences from one single
section. Note, for fairness, for each section, we can only instruct the LLM to retrieve no
more than K sentences, even though a paper could have 10 sections. Consequently, the total
number of retrieved sentences for all sections combined sometimes exceeds the maximally
allowed number of sentences K. Therefore, we have the second step of processing where we
ask the model to select the best K sentences from all sentences retrieved from all sections.
See Figure 11 for the prompt template of the first step. See Figure 12 for the prompt template
that asks the LLM to choose the best K sentences from all its retrieved sentences from all
sections.

Figure 11: Step 1: Section-by-section Prompt template for evaluating LLMs on tasks Evi-
dence Retrieval @Optimal and Evidence Retrieval @10.

Figure 12: Step 2: Section-by-section Prompt template for evaluating LLMs on tasks Evi-
dence Retrieval @Optimal and Evidence Retrieval @10. The LLM is asked to choose the best
K number of sentences.
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E.5 Regeneration Prompt

If an LLM retrieved more than allowed despite explicit instructions, it will be sent a regener-
ation prompt, with the following format in Figure 13.

Figure 13: Regeneration prompt template if LLM exceeds the maximally allowed number of
text elements.

E.6 Instructions for Embedding Model

For Evidence Retrieval @Optimal and @10, for embedding models, there are two strategies,
with instruction or without instruction. The instruction is:

"From a biomedical experiment, find important and representative details that
would form the most effective set of evidence relevant to the hypothesis"

Recall, "with instruction strategy" means concatenating the instruction with the hypothesis
and creating an embedding for the concatenated text as a new hypothesis vector. Each text
element in the candidate pool (i.e. the paper) is still independently embedded as its own
vector.

See Table 11 for embedding models’ performance with instruction and without instruction,
on the tasks of Evidence Retrieval @Optimal and @10.

Table 11: Embedding Models Comparison. Standard Error calculated by bootstrapping.

No Instruction Instruction

Model ER @ optimal ER @ 10 ER @ optimal ER @ 10

BM25 16.5 ± 1.1 34.4 ± 1.7 - -
OpenAI 25.1 ± 1.4 42.2 ± 1.7 23.8 ± 1.4 41.3 ± 1.7
VoyageAI 21.6 ± 1.3 42.0 ± 1.8 22.7 ± 1.3 41.9 ± 1.8
GritLM 21.5 ± 1.2 39.7 ± 1.7 27.0 ± 1.3 46.4 ± 1.7
E5-Mistral 22.7 ± 1.4 41.9 ± 1.8 21.9 ± 1.3 40.8 ± 1.8

For tasks such as Results Evidence Retrieval @Optimal and @10, embedding models will
take in task-specific instruction. Instruction has the following format:

From a biomedical paper, find important and representative details about
experiment outcomes, results and analyses that would form the most effective
set of evidence relevant to the hypothesis.

Note, in the instruction, we have concisely and explicitly informed the embedding model
that the embedding of the hypothesis should only have high cosine similarity with text
elements related to results or analyses. Since we are not changing the embedding for the
results and analyses related text elements, we only change the embedding for the hypothesis
to fit this purpose. This is an emergent and specially fine-tuned ability of some of the
newer and more powerful embedding models, such as GritLM. See Table 12 lower right
quadrant for the performance of embedding models with instruction on tasks such as
Results Evidence Retrieval (ER) @Optimal and @5.
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E.7 Standard Errors for Model Evaluations

In this section, we reproduce the main results from the paper, showing standard errors for
all estimates.

In table 12, we show overall results for model performance on the 4 tasks. For Evidence
Retrieval Tasks, three strategies are considered: default, in-context learning, and section-by-
section for each LLM. Default refers to Figure 7 prompt. ICL refers to Figure 10. Section-
by-Section refers to Figure 11 and 12. For each model, the strategy that achieved the best
performance is selected, and that result is reported as the model’s performance. For example,
for the task ER @optimal, gpt-4o achieves the best aspect recall using ICL, whereas for the
task ER @10, gpt-4o achieves the best aspect recall using section-by-section. Note, for
embedding models, there are two strategies: with instruction or without instruction. The
best performance for each embedding model is recorded.

Note, for the two tasks Results Evidence Retrieval (ER) @Optimal and @5, only one strategy
is considered for LLM, which is one-shot ICL with section-by-section processing, see Figure
8 and Figure 9.

For Results Evidence Retrieval (ER) tasks, embedding models must only have one strategy,
i.e. the strategy with instruction. Since the task is about retrieving sentences related to
results and analyses, an embedding model must understand this constraint through its
instructions.

Table 12: Aspect Recall for the full retrieval task (top) and the result retrieval task (bottom).
For each model, the highest number is reported if multiple strategies are used. Standard
Error calculated by bootstrapping.

Max Random GPT-4o Claude3-Opus Gemini-1.5 LLaMA3-70b OpenAI Emb VoyageAI GritLM E5-Mistral

ER @ optimal 100.0 9.6 51.4 ± 1.4 47.6 ± 1.5 48.3 ± 1.4 46.7 ± 1.4 25.1 ± 1.4 22.7 ± 1.3 27.0 ± 1.3 22.7± 1.4
ER @ 10 99.3 22.3 71.6 ± 1.5 66.4 ± 1.6 65.4 ± 1.6 65.4 ± 1.6 42.2 ± 1.7 42.0 ± 1.8 46.4 ± 1.7 41.9 ± 1.8

Result ER @ optimal 100.0 4.4 52.6± 2.1 51.7± 2.1 46.7± 2.0 46.2 ± 2.2 19.1 ± 1.8 18.3 ± 1.8 18.9 ± 1.7 19.3 ± 1.8
Result ER @ 5 99.8 11.4 70.8± 1.9 68.7± 2.0 65.4± 2.0 63.7± 2.1 33.1 ± 2.2 31.9 ± 2.2 39.1 ± 2.2 33.6 ± 2.2

Table 13: Comparison of prompting strategies for LLMs. Baseline refers to Figure 7 prompt.
ICL refers to Figure 10. Sec-by-Sec refers to Figure 11 and 12. Standard errors are calculated
by bootstrapping.

Baseline ICL Sec-by-Sec

Model ER @
optimal

ER@
10

ER @
optimal

ER@
10

ER @
optimal

ER@
10

GPT-4o 48.1 ± 1.5 69.6 ± 1.5 51.4 ± 1.4 68.7 ± 1.6 50.9 ± 1.4 71.6 ± 1.5
Claude3-opus 41.1 ± 1.6 53.6 ± 1.6 38.3 ± 1.4 55.4 ± 1.7 47.6 ± 1.5 66.4 ± 1.6
Gemini-1.5 42.7 ± 1.5 63.0 ± 1.6 43.2 ± 1.5 62.4 ± 1.7 48.3 ± 1.4 65.4 ± 1.6
LLaMA3-70b - - - - 46.7 ± 1.4 65.4 ± 1.6

Table 13 shows model performance for the three prompting strategies.

We observe that all standard errors are less than 2%, indicating we have a sufficiently large
test set size to effectively distinguish different models and prompting strategies.
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E.8 Negation Prompt

We evaluate models on negated hypotheses using prompt in Figure 14. We give two example
pairs of original hypothesis and negated hypothesis:

• Original Hypothesis: Glucocorticoids cause cleft palate by inhibiting growth of the
palatal shelves, preventing shelf contact and fusion.
Negated Hypothesis: Glucocorticoids prevent cleft palate by promoting growth of
the palatal shelves, facilitating shelf contact and fusion.

• Original Hypothesis: The mortality rate from bladder cancer is higher among
painters than in the general population.
Negated Hypothesis: The mortality rate from bladder cancer is lower among
painters than in the general population.

Figure 14: The prompt to negate a hypothesis

F Model Sensitivity to Paraphrased Hypothesis

We test models’ sensitivity to different paraphrased versions of the hypothesis. We use
a variety of LLMs to paraphrase a hypothesis. Note, a paraphrase would still keep the
scientific terminology to make sure it is still the same hypothesis. As shown in Figure 14,
GPT-4o and the two embedding models are less sensitive to paraphrased hypotheses, while
Claude3-Opus is more sensitive to them.

Table 14: Models evaluated under paraphrased versions of the hypothesis. All experiments are under
task Results ER @ optimal.

Model Original GPT-4o Claude Llama3-70B Llama3-8B
Hypothesis Paraphrased Paraphrased Paraphrased Paraphrased

GPT-4o 52.6 49.9 51.7 50.8 50.3
Claude3-Opus 51.7 44.6 41.9 43.3 43.9
GritLM 18.9 22.8 19.4 20.8 19.1
OpenAI Emb 19.1 19.1 18.1 19.7 18.3
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G Hypothesis Collection

There are two steps for collecting hypotheses from the review papers.
Step 1:
See Figure 15 for the prompt template. Note that Claude3-Opus is used for this step. The
model is instructed to answer, "What is the motivation for the expert reviewer to extract
these pieces of information from the paper and summarize them?".

Figure 15: First step of hypothesis collection from review papers

Step 2:
In order to make sure the hypotheses have the correct format and do not have any sum-
marized evidence, we perform a second step where we trim the first-step output off any
unnecessary details and specifications and only preserve the central biomedical question.
See Figure 16 for the prompt template.

Figure 16: Second step of hypothesis collection, trimming the output of step 1.
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H Data Preprocessing

H.1 Harvesting Evidence Summary

We extract expert-written evidence summaries from review papers using an algorithmic
procedure. Summaries that cite multiple papers are excluded. We also exclude any paper
that is not licensed under Creative Commons or is not in the public domain. Finally, we
remove any paper that is cited twice in one section of a review paper, ensuring that the
extracted evidence summaries are complete.

H.2 Further Processing Evidence Summary

The primary difficulty in ensuring the high quality of evidence summary extracted by the
algorithm lies in the variability in the placement of the citation (e.g., Hoang et al. (2016)).
Since review papers sometimes have hundreds of papers cited in one section, each with a
evidence summary surrounding the citation, it is challenging to heuristically delineate the
boundaries of the evidence summaries, and motivates the use of an LLM for this step. See
Figure 17 for prompt template

Figure 17: Prompte for extracting evidence summary for a cited paper

H.3 Identifying Suitable evidence summaries

An evidence summary that is suitable for EvidenceBench contains experimental outcomes,
results, analyses, or methodology. However, some evidence summaries only have high-level
information about a paper and do not have the desired level of specificity. We use an LLM to
determine if a evidence summary suits EvidenceBench. See Figure 18 for prompt template.

Figure 18: Prompt template to determine if a evidence summary is suitable for Evi-
denceBench. Here, "both" or "results" is acceptable.

H.4 Human Verification

We randomly sampled 50 extracted evidence summary using the entire harvesting procedure
and LLM preprocessing. Only in 1 case did we notice where the extracted evidence summary
includes a sentence that does not belong to this specific paper. This ensures the high quality
and accuracy of the harvesting procedure and LLM preprocessing.
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I Fine-tuning and Evaluation on EvidenceBench-100k

EvidenceBench-100k also split into a 80k train set and a 20k test set. For cost reasons, we
random sample 300 datapoints from the 20k test set. We evaluated various representative
LLMs and embedding models on the Task of Result ER@Optimal on this new 300 points
test set from EvidenceBench-100k. From table 6a, we clearly see LLMs dominate over
embedding models, while GritLM-7B outperforms other embedding models. This shows
EvidenceBench-100k test set can also be used to evaluate and differentiate various models’
performance.

Furthermore, to demonstrate the quality of EvidenceBench-100k’s training set, we fine-
tuned two models. E5-v2 335M is a light-weight embedding model. Since there are over 100
million sentence-aspect pair judgments from the train set, we randomly sampled 1 million
triplets, where each triplet contains an anchor (the study aspect), a positive (a sentence that
is considered as source of information for the study aspect), a negative (a sentence that is
not considered as source of information for the aspect). Using a margin-based triplet-loss
with margin=0.05, AdamW optimizer (weight decay =0.01), peak learning rate of 5e-4, 10%
linear warmup then cosine-annealing, batch size =256, we trained E5-v2 with full-parameter
tuning for one epoch. We also fine-tuned Llama3-8B using all 80k training datapoints.
Llama3-8B is trained with LoRA rank=8, alpha =16, a batch size of 16, AdamW optimizer
(weight decay =0.01), and the same learning rate scheduler, we fine-tuned the model for
one epoch. Note, during inference time we trained LLama3-8B to only output sentence
indices, during training, we trained it to output both sentence indices, sentence texts and
the summarized list of study aspects. This has shown to be more effective than only training
it on sentence indices.

We made sure none of the papers in the original EvidenceBench is used in any way in the
EvidenceBench-100k to avoid contamination. Our fine-tuned E5 and Llama3-8B are tested
on the original EvidenceBench test set for the task of Result ER@Optimal.

Notice that the fine-tuned E5 model has dramatically improved its performance on the
original test set, surpassing all larger embedding models, see Table 6b. It only trails behind
the performance of large language models. The fine-tuned Llama3-8B has a performance of
41.0% which trails behind much larger SoTA LLMs. This shows that EvidenceBench-100k is
suitable for developing and training both embedding-based information retrieval systems
as well as large language models.

J Qualitative Analysis for GPT-4o on the Original EvidenceBench

For the task Result ER@ Optimal, there are a total of 1228 results study aspects that the
review papers identified.

Out of these 1228, GPT-4o’s retrieved sentences fail to cover 583 study aspects, from which
50 pairs (missed "Result" aspect, set of GPT-4o retrieved sentences) are randomly sampled
and manually inspected by two researchers. Out of the 50 cases, 10 cases should not be
considered GPT-4o errors. In 7 cases, GPT-4o retrieved an almost sufficient set of sentences
but missed one aspect due to the upper limit on the number of sentences. This issue arose
from a failure in the optimization step during retrieval, not from a reasoning or retrieval
error. In 1 case, our alignment annotation procedure missed one of the GPT-4o retrieved
sentences as the source of information for a study aspect. In 1 case, a parsing error occurred
where our algorithm did not extract the full summary from the review paper. Finally, in 1
case, one method-related study aspect is mistakenly labeled as a result-related study aspect.

33



Published as a conference paper at COLM 2025

K Further Analyses

Effectiveness of Current LLM Solutions: Table 3 clearly indicates that current embedding
models are inadequate for assisting or replacing human experts in identifying relevant
evidence for biomedical hypotheses. We now examine the best-performing LLM solution,
GPT-4o. In the task ER@Optimal, GPT-4o retrieves an average of 4-5 sentences per hypoth-
esis, according to Table 1. In this setting, GPT-4o achieves a 50% Aspect Recall, covering
half of the study aspects identified by human experts. This demonstrates that current LLMs
cannot fully replace human experts in finding relevant evidence for hypotheses.

Conversely, per the task definition for ER@10, models retrieve 10 sentences. In this setting,
GPT-4o achieves an aspect recall of 70%. According to Table 1, a typical research paper
contains 168 sentences. Therefore, instead of reviewing the entire research paper, humans
can use the 10 sentences retrieved by GPT-4o as an efficient starting point, while searching
for additional sentences that cover potentially missing aspects. This demonstrates that,
in this setting, GPT-4o can meaningfully assist human experts in locating and presenting
evidence from research papers for hypotheses, a crucial step in writing review papers.

Embedding Models Underperform Generative Models: From Table 3, we observe that the
performance of embedding models falls significantly short of the performance of similar-
sized generative models. The embedding models GritLM-7B, E5-Mistral-7B and the state-
of-the-art NV-Embed-7B cover at most 20.1% of aspects, while the pretrained LLama3-8B
covers 35.8% of aspects. The shortcomings of GritLM-7B and NV-Embed-7B suggest that a
naive local embedding of sentences, without contextual awareness, is insufficient for this
task. Our empirical observations confirm that reasoning beyond individual sentences is
necessary to solve this task effectively. For instance, in Figure 1, Sentence 9 and Sentence
69 convey the same information and both address study aspect 1. Only by comparing
them together (i.e., reasoning beyond a single sentence) can models eliminate one of these
sentences to reduce redundancy.

Section-level Reasoning is Sufficient: Table 4 shows that retrieving evidence section-by-
section (Sec-by-Sec) achieves strong performance on the task. With Sec-by-Sec, a model can
only read one section at a time, preventing it from reasoning across multiple sections. The
strong performance of this method indicates that global reasoning across the entire research
paper is not essential for retrieving evidence. This can be explained by the structure and
organization of biomedical research papers, where the content of each section is relatively
self-contained, and interaction across sections is sparse. This suggests that LLMs trained for
much longer contexts (e.g., over 10,000 tokens) may not be necessary for this task.

LLMs Still Get "Lost in the Middle". We observed that some papers have most of their
important sentences concentrated at the beginning and end of the document, as shown in
Figure 19. We categorize these papers into two groups. In the first category, the first 10 and
last 10 sentences of a paper cover over 80% of the study’s aspects. In the second category,
these sentences cover less than 20% of the aspects. Out of 3,000 randomly sampled points
from the EvidenceBench-100k test set, 1,115 papers fall into the first category, while 1,111
papers fall into the second category. GPT-4o’s aspect recall performance is 51.6% in the first
category and 34.9% in the second category. Claude3-Opus aspect recall is 42.8% in the first
category and 28.2% in the second category. Note, during evaluation, we neither explicitly
nor implicitly instruct LLMs to focus on any specific parts of the paper.

This indicates that LLMs perform significantly better when the important tokens are not
located in the middle of the document. Our manual inspection also reveals that LLMs
tend to focus on the beginning and end of the document. The "Lost in the Middle" phe-
nomenon, as reported in previous LLMs (Liu et al., 2024), seems to persist in current LLMs
on EvidenceBench.
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Figure 19: Original EvidenceBench. Left figure shows the distribution for the relative position in
the candidate pool of all sentences that are considered as source of information for at least one study
aspect. Right figure shows the same but for aspects labeled as ’Results’. Abstract sentences have
much higher chance to be matched with aspects. However, all abstract sentences (around 10 sentences
per research paper) only cover around 50% of all aspects, indicating no heuristic algorithm can cheat
EvidenceBench.
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