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Abstract

Through past experiences deploying what we call usable ML (one step beyond
explainable ML, including both explanations and other augmenting information)
to real-world domains, we have learned three key lessons. First, many organiza-
tions are beginning to hire people who we call “bridges” because they bridge the
gap between ML developers and domain experts, and these people fill a valuable
role in developing usable ML applications. Second, a configurable system that
enables easily iterating on usable ML interfaces during collaborations with
bridges is key. Finally, there is a need for continuous, in-deployment evaluations
to quantify the real-world impact of usable ML. Throughout this paper, we
apply these lessons to the task of wind turbine monitoring, an essential task
in the renewable energy domain. Turbine engineers and data analysts must
decide whether to perform costly in-person investigations on turbines to prevent
potential cases of brakepad failure, and well-tuned usable ML interfaces can aid
with this decision-making process. Through the applications of our lessons to
this task, we hope to demonstrate the potential real-world impact of usable ML
in the renewable energy domain.

1 Introduction

Over the past few years, we have been developing a system we call Sibyl that will support the
use of machine learning (ML) model outputs in decision making even for those who are not
ML experts. Systems like Sibyl consist of an ML model combined with the ability to configure
ML explanations and interfaces tailored to augment decision-making workflows. We use the
term wusable ML in addition to the more commonly used term explainable Al (XAl) because
ML model outputs may require more than just explanations in order to be used effectively for
decision making, and fully explained ML models may nonetheless be difficult to use [12] [17] [24].
Configurability, continuous evaluation mechanisms, and iterative updates in collaboration with
key people are needed to develop effective usable ML interfaces.

We have learned that deploying ML model outputs in a real scenario — in other words, with
people working on the decision problem the model outputs are being used to solve — is the only
way to get good feedback. Relying on toy datasets (however realistic) and formal user studies
(however carefully chosen) cannot provide feedback with the necessary depth. To this end, when
working to deploy ML model outputs, we seek close collaborations with the people who are
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actually using them. As of when this paper was written, we have worked on two such real-world
deployments in two different domains: child welfare screening and wind turbine monitoring. In
this paper, we focus on the latter deployment, a current work-in-progress, and share lessons we
believe will apply to ML deployments in general.

Our case study. To keep turbines running effectively, operators analyze data to determine when
a potential failure may occur, in order to avoid unnecessary costs and downtime. One type of
failure is when a turbine brakepad prematurely wears out. This kind of failure can be prevented
by sending technicians up the turbines for investigation and repair, but this is an expensive and
potentially dangerous task. A deployed usable ML application could reduce downtime from such
failures by alerting the relevant personnel to potential brakepad failures and provide information
that enables them to make efficient decisions about brakepad replacement.

In order to develop an effective usable ML application for this problem, our team is working in paral-
lel on the two parts of this application: the ML model development and explanations/augmenting
interfaces for the ML model output. This paper focuses on the latter task. The ML model is an
XGBoost classifier [5] that predicts whether or not a brakepad is likely to fail in a given time
window and uses around 1,400 features to do so. The features include readings of the turbine,
such as temperatures of components and vibration data.

By combining this experience with our previous usable ML application in the domain of child
welfare screening, a project that has lasted several years [24], we have been able to synthesize
important transferable lessons. These are:

A new role is emerging: “Bridges”. Highlighting the various roles people play in deploying ML
model outputs (Section , we recognized that developing and evaluating usable ML interfaces are
context- and domain-dependent tasks that require collaboration with the right group of people
within the domain at hand [3] 10 1I]. We found that a new role is emerging and rapidly gaining
traction - that of people within companies who are tasked with connecting domain experts with
ML developers. We refer to people in this position as “bridges".

An easy-to-configure system for developing usable ML interfaces is key. Next, in Section
[3 we discuss our system Sibyl. To aid with the process of developing and tuning usable ML
interfaces for specific domains, we have developed a generalizable system called Sibyl. Sibyl
includes a Python library for generating understandable ML explanations, a generalizable back-end
layer accessed through a REST-API, and a “lightweight” front-end application built with Streamlit
that can be easily adapted for use in new domains. With this system, we can abstract out
common overhead code to focus on configuring usable ML interfaces to specific domains.

Continuous evaluation and crafting KPIs is essential. Finally, in Section , we discuss the
process of evaluating usable ML applications. Evaluating usable ML applications and XAl is
a notoriously difficult task due to the complexity of real-world domains [10, 14 19, 22]. We
identified through our past experiences that formal user studies fall short in assessing the real-world
impact of ML, and are often too time-consuming for users. We therefore devised an evaluation
plan built on tracking existing key performance indicators (KPIs) through a live deployment.

Through our improved understanding of the key roles, systems, and evaluation processes needed
to deploy usable ML in real-world domains, we hope to demonstrate ML's positive impact on
this decision-making problem, which can improve the efficiency of wind turbines.

2 Lesson 1: A new role is emerging: “Bridges”

The literature has defined a comprehensive set of people involved in XAl deployment. These
include developers who make ML models, ethicists who review the fairness and transparency of
ML models, users who use the ML model outputs to make decisions, and affected parties who
are impacted by decisions made using ML model outputs [3] [4} [13] [18].

In our previous deployment of a usable ML application for child welfare screening, we aimed to
collaborate directly with users (child welfare call screeners), as they are the ultimate audience for
the usable ML interfaces. We still believe users are essential to consider, but our experiences
have revealed practical issues with this approach. Users have their own jobs to do and often have
limited time to offer feedback and participate in evaluations. They generally lack experience with



ML, which can make it difficult for them to identify what explanations and interfaces would be
most helpful for them. At the same time, often we (the ML developers) lack the right domain
expertise to work directly with users. Each domain has its own intricate issues, workflows, and
language which are hard for us to master.

Luckily, many domains already have people who are well-positioned to bridge this gap between
ML developers and domain experts. Depending on the domain, their job title may vary. In this
paper, we will refer to these people more generally as bridges, as they bridge the gap between ML
and the domain at hand. Figure [I] summarizes this process. Bridges may or may not be technical
experts in ML, but they do have an understanding of how ML is used in their domain, as well
as its potential benefits and drawbacks. Additionally, they often act as test users before usable
ML interfaces are put in front of users. This makes it easier for them to imagine and suggest
potentially helpful changes, and to offer concrete feedback.

The jobs of bridges already involve working with both ML developers and domain experts, and
helping to vet and tune ML models for use within their domains; therefore, they are already
familiar with the ML evaluation processes used in the domain, which can be adapted to evaluate
usable ML interfaces as well. In the world of software development, there is an analogous role —
that of the product manager. Product managers bridge the gap between the needs of the end
consumers (via collecting feedback from them and creating product requirement documents)
and the core software development team. In the child welfare domain, we worked with social
scientists, who understand ML development and deployment as well as the child welfare domain
and all its associated intricacies. While we interacted with users (child welfare call screeners)
directly, these interactions were mediated and organized by the social scientists - the bridges.

Bridges in wind turbine monitoring: In the wind turbine domain, the Monitoring and Analysis
(M&A) team fills our defined bridge role, specializing in ML/data science applied to wind turbine
monitoring. This team kicks off the decision-making process at hand by identifying a problem in
the live data with help from the ML model. They then compile a summary of relevant information
and visualizations about the issue (for example, “turbine 50's brakepad is predicted to fail because
of an increase in the brake caliper temperature”). This summary includes the usable ML interfaces
that we are developing, as discussed in the next section.

The M&A team communicates their findings with the Operations and Maintenance (O&M) team,
providing them with the compiled summary and explanations. The O&M team, the main users
of the interface, then look through this information and make a decision about how to proceed.

If the issue is of significant risk, the O&M team informs the site teams at the wind farm(s) in
question about the issue and the suspected cause. The site teams may either fill the role of user
(if they also review the model prediction and usable ML interfaces) or affected party (if they
carry out the O&M team’s suggestions directly). They look into the issue on-site, potentially
reaching out to a contracted party to handle repairs.

3 Lesson 2: An easy-to-configure system for developing usable ML
interfaces is key

As we work with our collaborators who take on the bridge role (the M&A team) to develop a
usable ML interface for brakepad failure prediction, we are going through multiple iterations of
the interface design.

This process has reinforced our belief that there is no “one size fits all” when it comes to usable
ML interfaces, and therefore a system that makes this iteration process easier is needed. The
wind turbine monitoring use case put our system Sibyl — a generalizable system to enable the
development of usable ML interfaces — to the test. The Sibyl system has three parts. The
Pyreal library, implemented in Python, generates a variety of ML explanations in an immediately
interpretable form. Sibyl-API, a back-end REST-API, connects Pyreal to front-end applications.
Sibyl-API enables future developers working in different domains to easily configure explanations
for their own front-end. Finally, Sibylapp is a front-end application for explaining and augmenting
ML model outputdl]

!Code and documentation for Sibyl can be found at https://github.com/sibyl-dev
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Figure 1: Key roles in usable ML deployment. A new role is emerging, of individuals tasked
with bridging the gap between ML developers and users. Bridges enable smoother collaborations
throughout the multiple iterations of development required for a usable ML interface.

Sibyl enables making interfaces that show ML explanations and other augmenting information in
formats that are readily interpretable and understandable. Interpretable explanations avoid using
confounding ML transformations [12] 23], avoid overloading users with information [2] [0} [7], and
use positive framing [9].

Since multiple iterations are required to make an effective usable ML interface, we modified
Sibylapp’s Ul from a complex React-based one that required special front-end expertise to
Streamlit [1], which allows for easy modification to incorporate feedback. This simple change
enables us to iterate faster and creates a lightweight front-end integration.

Configuring usable ML interfaces for turbine brakepad monitoring: For the turbine brakepad
monitoring use case, we are iterating on five interfaces, which we summarize briefly here. We have
chosen these interfaces based either on previous findings or on direct requests from collaborators.
We will add or remove interfaces as needed as we receive further feedback.

Explore a Prediction: Local Feature Contributions. Our first explanatory interface shows the
relative positive or negative contribution each feature has made to the model output, calculated
using the SHAP algorithm [15]. This interface was chosen because it was found to be the most
useful in multiple past investigations [24] 21]. A section of this interface is shown in Figure [2]

Similar Turbines: Nearest Training-Set Neighbors. Per requests from collaborators, and
based on past findings of usefulness [20], our next interface shows information about the most
similar turbine readings from the historic dataset and their outcomes. This page helps users
leverage information about past cases that may be relevant to the current scenario. We will work
with our collaborators to tune the distance function so we find the most useful similar turbines.

Compare Timeframes/Turbines: Explaining Change over Time. Our next interface allows
users to compare a turbine’s features, the model prediction, and the model explanation at multiple
time points. This interface will allow users to track what changed between “normal” and “failure”
predictions, and understand which features specifically contributed to the change. For example,
users may see that the brake caliper temperature value decreased, and that the contribution of
this feature to the model's prediction increased significantly. This suggests that the temperature
change may be relevant to any changes in prediction.

Understand the Model: Global Explanations. In addition to understanding specific alerts,
users want to understand the broad trends of turbines so they can make long-term improvements.
Our next interface includes several explanation types for this purpose. The first is the feature
importance interface, which shows the overall relative importance of each feature to the model's
predictions, computed using XGBoost's gain algorithm. Past research [4] has suggested this is
one of the most popular explanation types among users. Per feedback from collaborators, we
also added an importance metric that retains information about whether a feature contributes
positively or negatively, using SHAP. Feature importance can help users better understand the
physics of the problem, such as when a failure mode in the brakepad is strongly linked with a
specific feature.

Explore a Feature: Feature-Level Plots. We also offer users a way to investigate the effects
of specific features on the model prediction, using two types of plots. The first is a scatter plot
that includes one point for each row in the database. The x-axis represents each row's value for
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Figure 2: Snippet from the Explore a Prediction Sibylapp interface. All Sibylapp interfaces enable
users to sort and filter through features by name or category, and offer dynamic sorting options
where applicable. On this page, we see the set of features (described in a language meaningful
to our end users) that most significantly contributed to the model's final prediction.

the selected feature, while the y-axis shows that feature's contribution for the model’s prediction
on that row. This can show trends in how the model uses individual features, which users can
investigate once they have used other interfaces to identify features of interest. An example of
one of these plots is shown in Figure [3] The second plot is a value-distribution plot. Using a
box-and-whiskers plot, this shows the minimum, maximum, median, and quartile values of the
feature across the dataset, allowing users to quickly understand how the feature is distributed.

As we develop this usable ML application, we continue to identify which interactions between
interfaces improve usability. Allowing different explanations to be used together through well-
planned interactions is essential to Sibyl's efficient use. For example, users can select a point on
the feature-level scatter plot to pull up the full set of feature contributions for that row in the
database. In the reverse direction, we plan to enable users to reveal feature-level explanations by
selecting rows on the feature contribution or importance tables. This will allow users to efficiently
switch between specific cases and the broader context.

4 Lesson 3: Continuous evaluation and crafting KPlIs is essential

In complex domains, evaluating the real-world impact of usable ML interfaces and XAl is a
challenge. Past work [8] [22] separates evaluations into application-grounded, human-grounded,
and functionality-grounded approaches. When working within a specific domain, application-
grounded approaches best represent the real-world impact of explainability. Markus et. al. [16]
builds on this by distinguishing between empirical and axiomatic evaluation, where the former
evaluates a specific metric and the latter evaluates the broader impact on the real-world domain.

We learned from our past study in child welfare that formal user studies (empirical evaluation),
while valuable for gaining general knowledge of a field, may be ineffective for evaluating the real-
world benefits of specific deployments. User studies held in a lab setting require additional time
and attention from users — time that often must be given outside of work hours. Additionally,
formal user studies cannot capture the full spectrum of complexity involved in real-world decision-
making. Therefore, we aim to evaluate the system with an axiomatic live-deployment approach.
A continuous evaluation with live deployment is perhaps the only way to gauge whether a usable
ML interface is making a difference in the end goal. This process requires identifying the key
performance indicators (KPIs) in the domain — a task bridges are well suited to help with.

Evaluation of the turbine breakpad monitoring interfaces: We are iterating on our usable
ML interfaces until we have a version approved by the M&A team who play the bridge role. They
will vet the system to ensure it meets the required quality threshold, using the company's existing
evaluation processes for new tools.
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Figure 3: Example of an explanation from the Explore-a-Feature interface. This interface
generally demonstrates how the model uses a feature, allowing users to dive deeper into feature
contributions.

Broadly, our goal is to improve the efficiency of wind turbines, but quantifying this metric requires
identifying more specific key performance indicators (KPIs). We have begun identifying existing
KPIs for the decision-making problem (preventing brakepad failure). We will then track the shift
in these KPIs with the deployment of Sibyl. A few examples of potential KPIs may include 1)
the total downtime of turbines during a set time frame, 2) the number of brakepad failures that
occurred during a set time frame, compared to the number of in-person investigations performed,
and 3) the portion of alerts sent to the O&M team that are further investigated.

Selecting the right KPIs requires choosing metrics as close as possible to the bottom-line
company goal (to improve turbine efficiency) while also ensuring they are practical to track
[I7]. For example, our ML model will improve turbine efficiency chiefly by minimizing downtime
and reducing maintenance costs, so Option 1 may be a good choice. However, this metric
encompasses so many factors that it may be difficult to isolate the real effects of the introduced
usable ML system. Option 2 also captures the benefit of the system; however, actual brakepad
failures are uncommon (around one occurs per month across all turbines) so it may not be
possible to achieve sufficient statistical power during a practical length of evaluation time. Option
3 strikes a promising balance, capturing the quality of decisions while still being practical to track.
We will continue considering other options until the evaluation begins.

Once the KPIs are chosen, we will collect data for one to three months. We will then compare
the KPI metrics computed to several historic time frames of the same length, chosen for their
similar conditions to the evaluation time frame. This method requires little additional effort from
our users beyond performing their usual jobs, and aligns with the existing tool-vetting system
used by the company.

5 Conclusion

We are working to deploy and evaluate usable ML interfaces for wind turbine monitoring, using
three key lessons from our past experiences. We have identified the team that fills the bridge role
by interfacing between ML development and the domain of turbine monitoring — the Monitoring
and Analysis team. Through collaborations with this team, we are using our system for usable
ML, called Sibyl, to develop appropriate usable ML interfaces for the problem at hand. We are
planning on executing a continuous evaluation based on tracking KPlIs after deploying the usable
ML interfaces to the decision-making process. By taking these steps carefully, we can improve the
effectiveness of wind turbines and offer support for the renewable energy industry as a whole.
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