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Abstract

We introduce Zero-to-Forecast, a cross-modal AI framework that converts natural1

language descriptions into numerical time series predictions. Our approach unifies2

large language model reasoning with domain- and pattern-specific predictors and3

post-hoc calibration (domain-aware smoothing, monotonic constraints), yielding4

robust, realistic sequences from free-form text. On the NL2TS-675 benchmark5

spanning six domains, our advanced domain-optimized ensemble achieves overall6

MAE 16.06 with all domains < 25 MAE (Finance 18.29, Healthcare 10.64,7

Weather 15.04, IoT 16.21, Technology 15.11, Retail 16.91), substantially improving8

over strong baselines. We release code, artifacts, and a live interactive demo,9

positioning natural language-driven forecasting as a practical paradigm for zero-10

data scenario planning.11

1 Introduction12

Time series forecasting is central to finance, healthcare, retail, and science. Traditional methods rely13

on structured numerical histories, whereas people often reason about the future in natural language14

(e.g., “The stock will jump after earnings” or “A cold front will cause temperatures to fall steadily”).15

Bridging this gap defines a new paradigm: natural language to time series (NL→TS) forecasting,16

related to recent LLM-for-TS efforts (11; 10).17

Prior work has mostly used text as auxiliary signals (e.g., news or metadata) to improve forecasts, but18

directly generating full series from free-form descriptions—without historical data—remains largely19

unexplored. Such “zero-data” forecasting is valuable when histories are scarce or for rapid scenario20

prototyping (11; 13).21

We propose Zero-to-Forecast, a cross-modal framework that combines LLaMA prompting with22

lightweight domain- and pattern-specific predictors, fused via a stacking ensemble. To evaluate this23

task, we release NL2TS-675, a dataset of 675 description–series pairs across six domains (finance,24

healthcare, weather, IoT, technology, retail) with multiple horizons and pattern types.25

Zero-to-Forecast achieves strong cross-domain performance (overall MAE 16.06) while capturing26

trends and qualitative patterns. We also provide an interactive demo and API.27

Contributions: (i) introduce NL→TS forecasting and the Zero-to-Forecast architecture, (ii) re-28

lease NL2TS-675 covering six domains, three horizons, and five pattern types, and (iii) provide29

comprehensive evaluation, visualizations, and deployment insights.30

2 Related Work31

Transformer-based long-horizon forecasting includes Informer (1), Autoformer (2), FEDformer (3),32

ETSformer (4), and efficient/non-attentional designs such as N-BEATS (5), N-HiTS (6), TimeMixer33

(7), CATS (8), and TimeXer (9). LLM-for-TS work shows zero-shot forecasting (11), pretrained LM34

foundations (10), reprogramming via prompts (12), and event-aligned forecasting (13). We differ by35

converting natural language descriptions directly to numeric forecasts with a calibrated cross-modal36

ensemble.37
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3 Methodology38

3.1 Overview39

Zero-to-Forecast consists of two main components: (1) a large language model (LLM) that maps40

natural language descriptions into an initial time series (11; 12), and (2) an advanced stacking41

ensemble that refines this sequence using domain- and pattern-specific predictors. This hybrid design42

leverages the broad reasoning capacity of the LLM while grounding predictions with lightweight43

numerical models tuned for specific contexts.44

3.2 LLM Prompting for Time Series Generation45

We employ a capable instruction-following LLM. Prompts are structured as few-shot Description46

→ Series pairs (12). For instance:47

Description: “Temperature starts around 30◦C and decreases gradually48

to 15◦C by day 7.” Time Series: 30, 28, 25, 22, 20, 18, 1549

At inference, the prompt specifies the required forecast horizon (e.g., “Output 50 values”), ensuring50

length consistency. The LLM baseline forecast ŷLLM (t) captures the qualitative trend but often51

misestimates magnitudes or fine-grained variability.52

3.3 Domain- and Pattern-Specific Models53

To complement the LLM, we construct lightweight predictors tailored to six domains and five54

canonical pattern types:55

• Finance: ARIMA and random-walk models handle volatility and shock events.56

• Weather/Retail: Seasonal decomposition and sinusoidal templates capture periodicity.57

• Healthcare/IoT: Neural and rule-based models encode circadian rhythms and device surges.58

• Generic Trends: Linear or exponential extrapolation for monotonic growth/decay.59

• Pattern Templates: Handcrafted prototypes (e.g., spike–decay, plateau) triggered by key-60

words such as “surge” or “stagnates,” complementing hierarchical/decomposition methods61

(6; 2).62

These base predictors ŷi(t) rely solely on the description, maintaining the zero-data regime.63

3.4 Advanced Stacking Ensemble64

We fuse ŷLLM (t) with base model outputs using a two-layer stacking ensemble. The first layer65

consists of all predictors; the second is a 3-layer MLP meta-learner that dynamically weights each66

prediction. We enhance stacking with an attention mechanism, enabling time-varying emphasis on67

different models (e.g., prioritizing spike templates when a “sharp jump” is described) (8). Formally,68

the final forecast is:69

ŷfinal(t) = fmeta

(
[ŷLLM (t), ŷ1(t), . . . , ŷk(t)]

)
where fmeta learns model-specific biases and complementarities.70

3.5 Training and Implementation71

We train the meta-ensemble with cross-validation and strict no-leakage protocols; inference outputs72

are standardized per domain (e.g., currency ranges for finance, physiological bounds for heart rate).73

Deployment is provided via a Streamlit demo (5–8s latency on CPU, 2 s on GPU) and a REST API74

that returns JSON arrays or plots.75

4 Dataset76

We evaluate on the NL2TS-675 dataset, which we release for research purposes at: https://77

anonymous.4open.science/r/NL2TS-675-ADED/README.md.78
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The dataset contains 675 natural language description–time series pairs spanning six domains:79

Finance, Healthcare, Weather, IoT, Technology, and Retail. Each sample is annotated with both the80

underlying domain and the type of temporal pattern, covering five categories: trend, seasonal, spike,81

plateau, and irregular. Sequence lengths vary across 12, 24, and 48 time steps, supporting evaluation82

at multiple horizons (? ).83

NL2TS-675 is designed as a proof-of-concept benchmark for NL→TS forecasting, enabling system-84

atic evaluation of both qualitative and quantitative fidelity in generated series.85

5 Experiments86

5.1 Evaluation Metrics87

We evaluate Zero-to-Forecast on the NL2TS-675 test set (135 examples) across multiple complemen-88

tary metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), Dynamic Time Warping89

(DTW), Pearson r, Spearman ρ, and a trend classification F1 score (Trend-F1). These capture90

pointwise error, shape alignment, correlation, and directional correctness.91

Figure 1: Zero-to-Forecast pipeline: natural language description → LLM pseudo-forecast →
domain/pattern base predictors → stacking ensemble with calibration, producing a numeric time
series.

5.2 Domain-wise Performance92

We next analyze accuracy per domain under our advanced domain-optimized ensemble. All six do-93

mains are under 25 MAE: Finance 18.29, Healthcare 10.64, Weather 15.04, IoT 16.21, Technology94

15.11, Retail 16.91. Finance remains the most challenging due to high volatility and sparse textual95

specification of shocks, while weather and technology are comparatively easier.96

Figure 2: Fig. 2: Mean Absolute Error (MAE) by domain (lower is better) using the advanced
domain-optimized ensemble.
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Table 1: Results summary (MAE). Overall and per-domain means on NL2TS-675.

Overall Finance Healthcare Weather IoT Technology Retail

MAE ↓ 16.06 18.29 10.64 15.04 16.21 15.11 16.91

5.3 Qualitative Examples97

Finally, we visualize representative cases. Zero-to-Forecast captures event timing and overall trend98

while reducing unrealistic oscillations via calibration.99

Figure 3: Qualitative examples: predicted (dashed) vs. ground truth (solid) across domains with
uncertainty bands.

6 Discussion & Conclusion100

Zero-to-Forecast generates numeric time series directly from free-form language, and our cross-101

modal ensemble with domain-optimized calibration outperforms baselines across six domains while102

producing qualitatively realistic sequences. Remaining limitations include residual error (overall103

MAE ≈ 16), finance shock under-specification, sensitivity to ambiguous descriptions, and the lack104

of probabilistic uncertainty estimates and interactive clarification loops. The Streamlit demo and105

REST API indicate semi-production readiness (5–8s CPU, ∼2s GPU, $0.002/query). Future work:106

add prediction intervals (e.g., CRPS evaluation), integrate clarifying questions, and expand NL2TS107

toward 5k+ samples with real-world grounding.108
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