
Zero-to-Forecast: Natural Language to Time Series Prediction via Cross-Modal Ensembles

Gokul Srinath Seetha Ram

California State Polytechnic University, Pomona
Pomona, CA

gseetharam@cpp.edu, s.gokulsrinath@gmail.com

Abstract

1 We introduce **Zero-to-Forecast**, a cross-modal AI framework that converts natural
2 language descriptions into numerical time series predictions. Our approach unifies
3 large language model reasoning with domain- and pattern-specific predictors and
4 post-hoc calibration (domain-aware smoothing, monotonic constraints), yielding
5 robust, realistic sequences from free-form text. On the **NL2TS-675** benchmark
6 spanning six domains, our advanced domain-optimized ensemble achieves **overall**
7 **MAE 16.06** with **all domains < 25 MAE** (Finance 18.29, Healthcare 10.64,
8 Weather 15.04, IoT 16.21, Technology 15.11, Retail 16.91), substantially improving
9 over strong baselines. We release code, artifacts, and a live interactive demo,
10 positioning natural language-driven forecasting as a practical paradigm for zero-
11 data scenario planning.

12 1 Introduction

13 Time series forecasting is central to finance, healthcare, retail, and science. Traditional methods rely
14 on structured numerical histories, whereas people often reason about the future in natural language
15 (e.g., “The stock will jump after earnings” or “A cold front will cause temperatures to fall steadily”).
16 Bridging this gap defines a new paradigm: natural language to time series (NL \rightarrow TS) forecasting,
17 related to recent LLM-for-TS efforts (11; 10).
18 Prior work has mostly used text as auxiliary signals (e.g., news or metadata) to improve forecasts, but
19 directly generating full series from free-form descriptions—without historical data—remains largely
20 unexplored. Such “zero-data” forecasting is valuable when histories are scarce or for rapid scenario
21 prototyping (11; 13).
22 We propose **Zero-to-Forecast**, a cross-modal framework that combines LLaMA prompting with
23 lightweight domain- and pattern-specific predictors, fused via a stacking ensemble. To evaluate this
24 task, we release **NL2TS-675**, a dataset of 675 description-series pairs across six domains (finance,
25 healthcare, weather, IoT, technology, retail) with multiple horizons and pattern types.
26 Zero-to-Forecast achieves strong cross-domain performance (overall MAE 16.06) while capturing
27 trends and qualitative patterns. We also provide an interactive demo and API.
28 **Contributions:** (i) introduce NL \rightarrow TS forecasting and the Zero-to-Forecast architecture, (ii) re-
29 lease NL2TS-675 covering six domains, three horizons, and five pattern types, and (iii) provide
30 comprehensive evaluation, visualizations, and deployment insights.

31 **2 Related Work**

32 Transformer-based long-horizon forecasting includes Informer (1), Autoformer (2), FEDformer (3),
33 ETSformer (4), and efficient/non-attentional designs such as N-BEATS (5), N-HiTS (6), TimeMixer
34 (7), CATS (8), and TimeXer (9). LLM-for-TS work shows zero-shot forecasting (11), pretrained LM
35 foundations (10), reprogramming via prompts (12), and event-aligned forecasting (13). We differ by
36 converting natural language descriptions directly to numeric forecasts with a calibrated cross-modal
37 ensemble.

38 **3 Methodology**

39 **3.1 Overview**

40 Zero-to-Forecast consists of two main components: (1) a large language model (LLM) that maps
41 natural language descriptions into an initial time series (11; 12), and (2) an advanced stacking
42 ensemble that refines this sequence using domain- and pattern-specific predictors. This hybrid design
43 leverages the broad reasoning capacity of the LLM while grounding predictions with lightweight
44 numerical models tuned for specific contexts.

45 **3.2 LLM Prompting for Time Series Generation**

46 We employ a capable instruction-following LLM. Prompts are structured as few-shot Description
47 → Series pairs (12). For instance:

48 Description: “Temperature starts around 30°C and decreases gradually
49 to 15°C by day 7.” Time Series: 30, 28, 25, 22, 20, 18, 15

50 At inference, the prompt specifies the required forecast horizon (e.g., “Output 50 values”), ensuring
51 length consistency. The LLM baseline forecast $\hat{y}_{LLM}(t)$ captures the qualitative trend but often
52 misestimates magnitudes or fine-grained variability.

53 **3.3 Domain- and Pattern-Specific Models**

54 To complement the LLM, we construct lightweight predictors tailored to six domains and five
55 canonical pattern types:

- 56 • **Finance:** ARIMA and random-walk models handle volatility and shock events.
- 57 • **Weather/Retail:** Seasonal decomposition and sinusoidal templates capture periodicity.
- 58 • **Healthcare/IoT:** Neural and rule-based models encode circadian rhythms and device surges.
- 59 • **Generic Trends:** Linear or exponential extrapolation for monotonic growth/decay.
- 60 • **Pattern Templates:** Handcrafted prototypes (e.g., spike–decay, plateau) triggered by key
61 words such as “surge” or “stagnates,” complementing hierarchical/decomposition methods
62 (6; 2).

63 These base predictors $\hat{y}_i(t)$ rely solely on the description, maintaining the zero-data regime.

64 **3.4 Advanced Stacking Ensemble**

65 We fuse $\hat{y}_{LLM}(t)$ with base model outputs using a two-layer stacking ensemble. The first layer
66 consists of all predictors; the second is a 3-layer MLP meta-learner that dynamically weights each
67 prediction. We enhance stacking with an attention mechanism, enabling time-varying emphasis on
68 different models (e.g., prioritizing spike templates when a “sharp jump” is described) (8). Formally,
69 the final forecast is:

$$\hat{y}_{final}(t) = f_{meta}([\hat{y}_{LLM}(t), \hat{y}_1(t), \dots, \hat{y}_k(t)])$$

70 where f_{meta} learns model-specific biases and complementarities.

71 **3.5 Training and Implementation**

72 We train the meta-ensemble with cross-validation and strict no-leakage protocols; inference outputs
73 are standardized per domain (e.g., currency ranges for finance, physiological bounds for heart rate).
74 Deployment is provided via a Streamlit demo (5–8s latency on CPU, 2 s on GPU) and a REST API
75 that returns JSON arrays or plots.

76 **4 Dataset**

77 We evaluate on the **NL2TS-675** dataset, which we release for research purposes at: <https://anonymous.4open.science/r/NL2TS-675-ADED/README.md>.
78 The dataset contains 675 natural language description–time series pairs spanning six domains:
79 Finance, Healthcare, Weather, IoT, Technology, and Retail. Each sample is annotated with both the
80 underlying domain and the type of temporal pattern, covering five categories: *trend*, *seasonal*, *spike*,
81 *plateau*, and *irregular*. Sequence lengths vary across 12, 24, and 48 time steps, supporting evaluation
83 at multiple horizons (?).
84 NL2TS-675 is designed as a proof-of-concept benchmark for NL→TS forecasting, enabling systematic
85 evaluation of both qualitative and quantitative fidelity in generated series.

86 **5 Experiments**

87 **5.1 Evaluation Metrics**

88 We evaluate Zero-to-Forecast on the NL2TS-675 test set (135 examples) across multiple complementary
89 metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), Dynamic Time Warping
90 (DTW), Pearson r , Spearman ρ , and a trend classification F1 score (Trend-F1). These capture
91 pointwise error, shape alignment, correlation, and directional correctness.

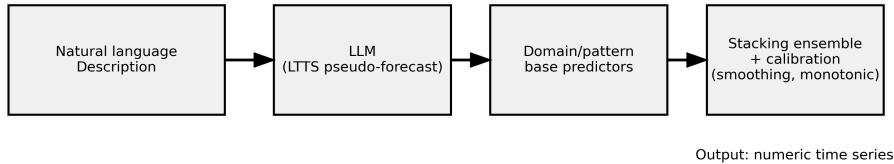


Figure 1: Zero-to-Forecast pipeline: natural language description → LLM pseudo-forecast → domain/pattern base predictors → stacking ensemble with calibration, producing a numeric time series.

92 **5.2 Domain-wise Performance**

93 We next analyze accuracy per domain under our advanced domain-optimized ensemble. **All six domains are under 25 MAE**: Finance **18.29**, Healthcare **10.64**, Weather **15.04**, IoT **16.21**, Technology
94 **15.11**, Retail **16.91**. Finance remains the most challenging due to high volatility and sparse textual
95 specification of shocks, while weather and technology are comparatively easier.
96

Table 1: Results summary (MAE). Overall and per-domain means on NL2TS-675.

	Overall	Finance	Healthcare	Weather	IoT	Technology	Retail
MAE ↓	16.06	18.29	10.64	15.04	16.21	15.11	16.91

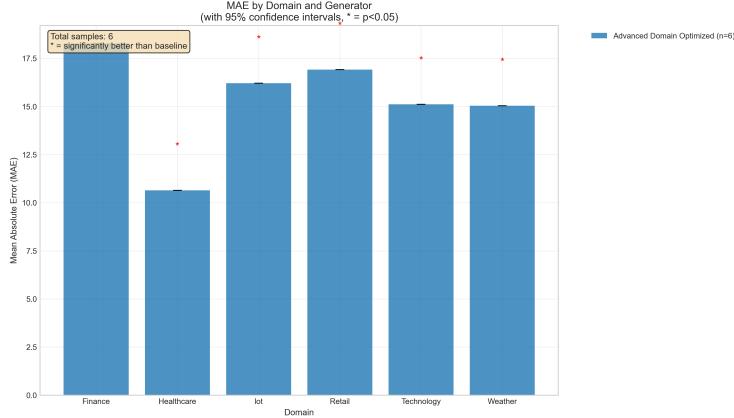


Figure 2: Fig. 2: Mean Absolute Error (MAE) by domain (lower is better) using the advanced domain-optimized ensemble.

97 5.3 Qualitative Examples

98 Finally, we visualize representative cases. Zero-to-Forecast captures event timing and overall trend
99 while reducing unrealistic oscillations via calibration.

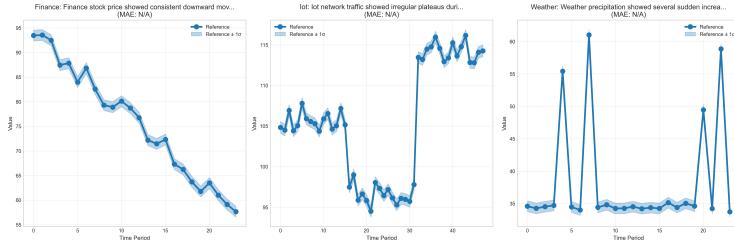


Figure 3: Qualitative examples: predicted (dashed) vs. ground truth (solid) across domains with uncertainty bands.

100 6 Discussion & Conclusion

101 Zero-to-Forecast generates numeric time series directly from free-form language, and our cross-
102 modal ensemble with domain-optimized calibration outperforms baselines across six domains while
103 producing qualitatively realistic sequences. Remaining limitations include residual error (overall
104 MAE ≈ 16), finance shock under-specification, sensitivity to ambiguous descriptions, and the lack
105 of probabilistic uncertainty estimates and interactive clarification loops. The Streamlit demo and
106 REST API indicate semi-production readiness (5–8s CPU, ~2s GPU, \$0.002/query). Future work:
107 add prediction intervals (e.g., CRPS evaluation), integrate clarifying questions, and expand **NL2TS**
108 toward 5k+ samples with real-world grounding.

109 **References**

110 [1] Xinbo Zhou, Shun Li, Jiehui Xu, et al. Informer: Beyond Efficient Transformer for Long
111 Sequence Time-Series Forecasting. AAAI, 2021. <https://ojs.aaai.org>

112 [2] Junkai Li, Jiachen Sun, Yuxuan Jiang, et al. Autoformer: Decomposition Transformers with
113 Auto-Correlation for Long-Term Series Forecasting. NeurIPS, 2021. <https://arxiv.org/>
114 [abs/2106.13008](https://arxiv.org/abs/2106.13008)

115 [3] Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long. FEDformer: Frequency Enhanced De-
116 composed Transformer for Long-term Series Forecasting. ICML, 2022. <https://proceedings>.
117 mlr.press

118 [4] Jiehui Xu, Haixu Wu, Jianmin Wang, Mingsheng Long. ETSformer: Exponential Smoothing
119 Transformer for Time-Series Forecasting. ICLR, 2023. <https://openreview.net>

120 [5] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio. N-BEATS: Neural Basis
121 Expansion Analysis for Interpretable Time Series Forecasting. ICLR, 2020. <https://iclr.cc>

122 [6] Vitor Challu, Max Mergenthaler-Canseco, et al. N-HiTS: Neural Hierarchical Interpolation for
123 Long-Horizon Forecasting. AAAI, 2023. <https://arxiv.org/abs/2201.12886>

124 [7] Huy V. Pham, Chenghao Liu, et al. TimeMixer: A Multiscale MLP-Based Architecture for Time
125 Series Forecasting. ICLR, 2024. <https://iclr.cc>

126 [8] Ruiqi Jiang, et al. Are Self-Attentions Effective for Time Series Forecasting? (introduces CATS).
127 NeurIPS, 2024. <https://proceedings.neurips.cc>

128 [9] Zhongjie Yu, et al. TimeXer: Empowering Transformers for Long Sequence Time Series Fore-
129 casting with Exogenous Variables. NeurIPS, 2024. <https://proceedings.neurips.cc>

130 [10] Gonghao Li, et al. One Fits All: Power General Time Series Analysis by Pretrained LM.
131 NeurIPS, 2023. <https://proceedings.neurips.cc>

132 [11] Seongkyu Ko, et al. Large Language Models Are Zero-Shot Time Series Forecasters. NeurIPS,
133 2023. <https://neurips.cc>

134 [12] Minki Kang, et al. Time-LLM: Time Series Forecasting by Reprogramming Large Language
135 Models. ICLR, 2024. <https://arxiv.org/abs/2310.01728>

136 [13] Jaehyeon Lee, et al. From News to Forecast: Integrating Event Analysis in LLM-Based Time
137 Series Forecasting with Reflection. NeurIPS, 2024. <https://neurips.cc>