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Abstract

We introduce Zero-to-Forecast, a cross-modal Al framework that converts natural
language descriptions into numerical time series predictions. Our approach unifies
large language model reasoning with domain- and pattern-specific predictors and
post-hoc calibration (domain-aware smoothing, monotonic constraints), yielding
robust, realistic sequences from free-form text. On the NL2TS-675 benchmark
spanning six domains, our advanced domain-optimized ensemble achieves overall
MAE 16.06 with all domains < 25 MAE (Finance 18.29, Healthcare 10.64,
Weather 15.04, IoT 16.21, Technology 15.11, Retail 16.91), substantially improving
over strong baselines. We release code, artifacts, and a live interactive demo,
positioning natural language-driven forecasting as a practical paradigm for zero-
data scenario planning.

1 Introduction

Time series forecasting is central to finance, healthcare, retail, and science. Traditional methods rely
on structured numerical histories, whereas people often reason about the future in natural language
(e.g., “The stock will jump after earnings” or “A cold front will cause temperatures to fall steadily™).
Bridging this gap defines a new paradigm: natural language to time series (NL—TS) forecasting,
related to recent LLM-for-TS efforts (115 [10).

Prior work has mostly used text as auxiliary signals (e.g., news or metadata) to improve forecasts, but
directly generating full series from free-form descriptions—without historical data—remains largely
unexplored. Such “zero-data” forecasting is valuable when histories are scarce or for rapid scenario
prototyping (115 [13)).

We propose Zero-to-Forecast, a cross-modal framework that combines LLaMA prompting with
lightweight domain- and pattern-specific predictors, fused via a stacking ensemble. To evaluate this
task, we release NL2TS-675, a dataset of 675 description—series pairs across six domains (finance,
healthcare, weather, 10T, technology, retail) with multiple horizons and pattern types.

Zero-to-Forecast achieves strong cross-domain performance (overall MAE 16.06) while capturing
trends and qualitative patterns. We also provide an interactive demo and API.

Contributions: (i) introduce NL—TS forecasting and the Zero-to-Forecast architecture, (ii) re-
lease NL2TS-675 covering six domains, three horizons, and five pattern types, and (iii) provide
comprehensive evaluation, visualizations, and deployment insights.
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2 Related Work

Transformer-based long-horizon forecasting includes Informer (1), Autoformer (2)), FEDformer (3)),
ETSformer (4), and efficient/non-attentional designs such as N-BEATS (5), N-HiTS (6), TimeMixer
(7), CATS (8)), and TimeXer (9). LLM-for-TS work shows zero-shot forecasting (11), pretrained LM
foundations (10), reprogramming via prompts (12), and event-aligned forecasting (13)). We differ by
converting natural language descriptions directly to numeric forecasts with a calibrated cross-modal
ensemble.

3 Methodology

3.1 Overview

Zero-to-Forecast consists of two main components: (1) a large language model (LLM) that maps
natural language descriptions into an initial time series (11; [12), and (2) an advanced stacking
ensemble that refines this sequence using domain- and pattern-specific predictors. This hybrid design
leverages the broad reasoning capacity of the LLM while grounding predictions with lightweight
numerical models tuned for specific contexts.

3.2 LLM Prompting for Time Series Generation

We employ a capable instruction-following LLM. Prompts are structured as few-shot Description
— Series pairs (12). For instance:

Description: ‘Temperature starts around 30°C and decreases gradually
to 15°C by day 7.’’ Time Series: 30, 28, 25, 22, 20, 18, 15

At inference, the prompt specifies the required forecast horizon (e.g., “Output 50 values”), ensuring
length consistency. The LLM baseline forecast ¢z, (t) captures the qualitative trend but often
misestimates magnitudes or fine-grained variability.

3.3 Domain- and Pattern-Specific Models

To complement the LLM, we construct lightweight predictors tailored to six domains and five
canonical pattern types:
* Finance: ARIMA and random-walk models handle volatility and shock events.
* Weather/Retail: Seasonal decomposition and sinusoidal templates capture periodicity.
* Healthcare/IoT: Neural and rule-based models encode circadian rhythms and device surges.
* Generic Trends: Linear or exponential extrapolation for monotonic growth/decay.

* Pattern Templates: Handcrafted prototypes (e.g., spike—decay, plateau) triggered by key-
words such as “surge” or “stagnates,” complementing hierarchical/decomposition methods
(65 12).

These base predictors ¢, (¢) rely solely on the description, maintaining the zero-data regime.

3.4 Advanced Stacking Ensemble

We fuse §,1a(t) with base model outputs using a two-layer stacking ensemble. The first layer
consists of all predictors; the second is a 3-layer MLP meta-learner that dynamically weights each
prediction. We enhance stacking with an attention mechanism, enabling time-varying emphasis on
different models (e.g., prioritizing spike templates when a “sharp jump” is described) (8)). Formally,
the final forecast is:

Gfinal(t) = fmeta ([00La (@), 91(2), ..., 9k(1)])

where f,,tq learns model-specific biases and complementarities.
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3.5 Training and Implementation

We train the meta-ensemble with cross-validation and strict no-leakage protocols; inference outputs
are standardized per domain (e.g., currency ranges for finance, physiological bounds for heart rate).
Deployment is provided via a Streamlit demo (5-8s latency on CPU, 2 s on GPU) and a REST API
that returns JSON arrays or plots.

4 Dataset

We evaluate on the NL2TS-675 dataset, which we release for research purposes at: https://
anonymous .4open.science/r/NL2TS-675- ADED/README . md.

The dataset contains 675 natural language description—time series pairs spanning six domains:
Finance, Healthcare, Weather, 10T, Technology, and Retail. Each sample is annotated with both the
underlying domain and the type of temporal pattern, covering five categories: trend, seasonal, spike,
plateau, and irregular. Sequence lengths vary across 12, 24, and 48 time steps, supporting evaluation
at multiple horizons (? ).

NL2TS-675 is designed as a proof-of-concept benchmark for NL—TS forecasting, enabling system-
atic evaluation of both qualitative and quantitative fidelity in generated series.

S Experiments

5.1 Evaluation Metrics

We evaluate Zero-to-Forecast on the NL2TS-675 test set (135 examples) across multiple complemen-
tary metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), Dynamic Time Warping
(DTW), Pearson r, Spearman p, and a trend classification F1 score (Trend-F1). These capture
pointwise error, shape alignment, correlation, and directional correctness.

Natural language Domain/pattern Stacking ensemble

o LLM g it
U P A P calibration
Description P71 (LTTS pseudo-forecast) base predictors (smoothing, monotonic)

Output: numeric time series

Figure 1: Zero-to-Forecast pipeline: natural language description — LLM pseudo-forecast —
domain/pattern base predictors — stacking ensemble with calibration, producing a numeric time
series.

5.2 Domain-wise Performance

We next analyze accuracy per domain under our advanced domain-optimized ensemble. All six do-
mains are under 25 MAE: Finance 18.29, Healthcare 10.64, Weather 15.04, IoT 16.21, Technology
15.11, Retail 16.91. Finance remains the most challenging due to high volatility and sparse textual
specification of shocks, while weather and technology are comparatively easier.

Table 1: Results summary (MAE). Overall and per-domain means on NL2TS-675.

Overall Finance Healthcare Weather IoT  Technology Retail
MAE | 16.06 18.29 10.64 15.04 16.21 15.11 16.91
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Figure 2: Fig. 2: Mean Absolute Error (MAE) by domain (lower is better) using the advanced
domain-optimized ensemble.

5.3 Qualitative Examples

Finally, we visualize representative cases. Zero-to-Forecast captures event timing and overall trend
while reducing unrealistic oscillations via calibration.

showed
(MAENIA)

Figure 3: Qualitative examples: predicted (dashed) vs. ground truth (solid) across domains with
uncertainty bands.

6 Discussion & Conclusion

Zero-to-Forecast generates numeric time series directly from free-form language, and our cross-
modal ensemble with domain-optimized calibration outperforms baselines across six domains while
producing qualitatively realistic sequences. Remaining limitations include residual error (overall
MAE = 16), finance shock under-specification, sensitivity to ambiguous descriptions, and the lack
of probabilistic uncertainty estimates and interactive clarification loops. The Streamlit demo and
REST API indicate semi-production readiness (5-8s CPU, ~2s GPU, $0.002/query). Future work:
add prediction intervals (e.g., CRPS evaluation), integrate clarifying questions, and expand NL2TS
toward S5k+ samples with real-world grounding.
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