
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

Why Pruning and Conditional Computation Work: A
High-Dimensional Perspective

Erdem Koyuncu EKOYUNCU@UIC.EDU

University of Illinois Chicago

Abstract
We analyze the processes of pruning and conditional computation for the case of a single neuron
in the asymptotic learning regime of large input dimension and training set size. For this pur-
pose, we introduce conditional neurons, which implement an early exit strategy at the neuron level.
Specifically, a conditional neuron considers the local field induced by a subset of its inputs. If
this sub-local field is strong enough, then the rest of the inputs are ignored, saving computation.
Conditional neurons provide an archetype of the well-known early exit or conditional computation
architectures. As such, we formally analyze their generalization performance to understand why
conditional computation is so effective in preserving performance despite significantly reduced av-
erage amount of computation. In the process, we introduce a concentration theorem for one-shot
neuron-wise pruning, which is recently popularized in the context of large language models.

1. Introduction

In the context of neural networks, conditional computation refers to the idea of adapting the network
computations based on the inputs or intermediate features produced at different layers [3, 6, 8, 11].
A recent example is mixture of experts in transformers [13, 17, 19]. Of particular interest to this
work is one of the simplest cases of conditional computation, which is commonly referred to as early
exit networks [10, 14, 16, 22]. The concept of early exit involves the utilization of intermediate
classifiers, which are located in non-terminal layers of a neural network. When an intermediate
classifier exhibits sufficient confidence in its decisions, it can perform an “early exit,” bypassing the
the subsequent layers and thus conserving computational resources. Previous works have shown
that early exit architectures can significantly improve upon ordinary neural networks in terms of the
trade-off between computational complexity and accuracy. However, a theoretical justification as
to why early exit networks perform so well has remained elusive, which is the goal of the present
work. To the best of our knowledge, our work is the first to formally study a conditional computation
scheme. Thus, our results shed light into the performance of other conditional architectures as well.

The rest of this paper is organized as follows: In Section 2, we introduce the conditional percep-
tron. We prove a concentration theorem for pruning in Section 3. We provide our main generaliza-
tion bounds for the conditional perceptron in Section 4. The proofs are provided in the appendices.

2. Conditional Perceptrons

In this section, we begin by introducing conditional perceptrons, which implement the idea of early
exit at the neuron level. Conditional perceptrons thus serve as one of the simplest special cases of a
deep neural network with an early exit.

© E. Koyuncu.

PRUNING AND CONDITIONING

Consider inputs x1, . . . , xn to a neuron with corresponding weights w1, . . . , wn, respectively.
Let x = [x1 · · ·xn]T and w = [w1 · · ·wn]T be the corresponding input and weight vectors. The
Heaviside step function can be defined as σ(v) = 1 for v ≥ 0 and σ(v) = −1 for v < 0. We
recall that an ordinary, “unconditional” perceptron provides the output yuc , σ(v0), v0 , wTx,
where the subscript “uc” stands for unconditional. To construct the conditional perceptron, let
us order the weights w1, . . . , wn from the smallest to the largest in magnitude as |wi1 | ≤ · · · ≤
|win |, where i1, . . . , in is a permutation of 1, . . . , n. The largest n − k weights in magnitude,
where k ∈ {1, . . . , n} is a design parameter, are thus given by wik+1

, . . . , win . Ignoring the inputs
from the remaining weights, we consider the local field induced by a normalized version of these
weights. Namely, we define v1 , wT

eex, where wee , fkee(w) , ‖w‖
‖wp‖wp, and wp , fkp (w) ,

[(wp)1 · · · (wp)n]T with (wp)ij = 0, 1 ≤ j ≤ k, and (wp)ij = wij , k + 1 ≤ j ≤ n. The subscript
“ee” indicates that wee corresponds to the early exit weight vector of the conditional perceptron,
and “p” indicates a pruned (but unnormalized) version of the weight vector. The normalization
factor ‖w‖/‖wp‖ ensures that both v0 and v1 have the same variance of ‖w‖2 when the input x is
considered random with zero mean and identity covariance.

The input-output relationship of the conditional perceptron is then finally expressed as

yc ,

{
σ(v1), |v1| ≥ τ,
σ(v0), otherwise,

(1)

where τ > 0 is a threshold hyperparameter, and the subscript “c” stands for conditional. Ideally, the
conditional perceptron wishes to achieve the same class decision σ(v0) as the ordinary perceptron.
However, by definition, if the local field |v1| is large enough, then an “early exit” is performed
with the class decision σ(v1). We expect that the ignored weights, since they are relatively small
in magnitude, will be unable to sway this decision to the disagreement σ(v1) 6= σ(v0). Thus,
σ(v1) = σ(v0) holds for most inputs, at least when k and τ are both chosen to be large enough.

The motivation behind the early exit mechanism is to preserve computational resources. To
demonstrate this fact, let us calculate the total floating point operations (FLOPs) required to calcu-
late the conditional perceptron output v1. Since only n − k of the entries of wee are non-zero, v1

can be calculated using n − k multiplications and n − k − 1 additions, for a total of 2(n − k) − 1
floating point operations (FLOPs). Checking the condition |v1| ≥ τ in (1) is a mere extra FLOP.
Hence, if |v1| ≥ τ , the conditional perceptron consumes 2(n − k) + 1 FLOPs, where we have as-
sumed that another FLOP is spent on the activation function. Otherwise, 1 + 2k more FLOPs need
to be performed to obtain v0 out of v1 via the relationship v0 = (‖wp‖/‖w‖)v1 +

∑n−k
j=1 wijxij .

Hence, letting µuc and µc denote the FLOPs required to implement an ordinary perceptron and a
conditional perceptron, respectively, we have µuc , 2n, and

µc ,

{
2(n− k) + 1, |v1| ≥ τ,

2n+ 2, otherwise.
(2)

On average, we thus expect the FLOPs with a conditional perceptron to be notably less than the
FLOPs with an ordinary unconditional perceptron, without any significant penalty in terms of the
classification performance.

2

PRUNING AND CONDITIONING

3. A Concentration Theorem for Pruning

The operation of the conditional perceptron in (1) is intimately related to weight pruning in neural
networks. Indeed, wee is a pruned version of w, followed by normalization. Pruning is achieved
by retaining only the top k components of w with the highest magnitudes, while setting all other
components to zero. Hence, a conditional perceptron first evaluates the local field using a pruned
version of its weights. If this local field is confident enough, an early exit is performed. The main
difference between the conditional perceptron and pruning is the former’s switch to the unpruned
full set of weights whenever the local field provided by the pruned weights is not confident enough.

Regardless of the particular emphasis, whether it is the conditional perceptron or sole pruning,
the relationship between the original feature extracting vector w and its pruned counterpart wee be-
comes a crucial point of interest. In particular, there has been a lot of recent interest on neuron-wise
pruning for large language models [7, 21]. This line of work assumes that fine-tuning or retrain-
ing of models is not possible after pruning due to computational complexity, a condition we also
adopt in our setting. To understand the statistical properties of the similarity wT

eew, we assume w
is uniform on the unit hypersphere, and derive the corresponding statistics of wT

eew. We will con-
sider the regime where the dimension of w grows to infinity. In this regime of high dimensions, an
unexpected outcome emerges. Assuming that a positive fraction of the weights is retained during
pruning, we demonstrate that the similarity denoted as wT

eew tends to converge in probability to-
wards a non-zero constant. In other words, it essentially becomes deterministic. We will show that
a similar result holds for conventional pruning in the sense that wT

p w also concentrates to its mean.
Our results will follow from a concentration theorem related to order statistics of Gamma ran-

dom variables. Hence, we consider a general Gamma random variable G with PDF

fG(x) =
1

Γ(k)θs
xs−1e−x/θ, x ≥ 0, (3)

where s and θ are known as the shape and the scale parameters, respectively, and Γ(·) is the Gamma
function. Let G≤y denote the random variable G conditioned on G ≤ y, where y ∈ [0,∞). The
notation G≥y is defined similarly.

Theorem 1 Let G1, G2, . . . , Gn be independent and identically distributed Gamma random vari-
ables with shape s and scale θ. Denote the corresponding order statistics by G(1) ≤ · · · ≤ G(n).
For a given 0 < q < 1, let

Ξn ,
G(dqne+1) + · · ·+G(n)

G1 + · · ·+Gn
. (4)

Let ωq denote the unique real number such that P(G ≤ ωq) = q. Define the corresponding threshold

τq(s, θ) ,

(
1 +

qE
[
G≤ωq

]
(1− q)E

[
G≥ωq

])−1

∈ [0, 1]. (5)

Then, we have, Ξn → τq(s, θ) as d→∞.

Corollary 2 Suppose W is uniform on Sn. Given q ∈ (0, 1), let Wp = f
dnqe
p (W) and Wee =

f
dnqe
ee (W). As n→∞, we have WTWee →

√
τq, and WTWp → τq, where τq , τq(s= 1

2 , θ=2).

3

PRUNING AND CONDITIONING

We make two observations: First, both the pruned vector Wp and the early exit vector Wee

remain at a constant angle or similarity with respect to the original weight vector asymptotically
for large feature dimension. Second, as Fig. 1 shows, the similarity has a non-linear relationship
with respect to the pruning rate, and remains very high even for large pruning rates. For example,
even when 60% of the components of a unit norm weight vector are pruned, which corresponds to
q = 0.4, after normalizing the pruned vector to unit norm, the resulting vector will have a similarity
of roughly 0.982, or an angle of only 10.8◦.

The phenomenon of concentration towards large similarities, even at high pruning rates, ap-
pears to be fundamental. This helps explain why pruned networks often perform nearly as well as

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q

Si
m

ila
ri

ty

√
τq
τq

0

15

30

45

60

75

90

D
eg

re
es

arccos τq
arccos

√
τq

Figure 1: Concentrates for different sparsities.

their unpruned versions, a fact frequently noted in
existing research. To elaborate further, we shall
proceed in an informal fashion: Pruning a deep
neural network at a certain rate would be roughly
equivalent to pruning all its neurons at the same
rate. In the pruned network, all neurons would ap-
proximately operate in the same manner as if they
were in the unpruned network, provided that the
pruning rate is not very high. This is because the
weights of the pruned and unpruned networks then
have a high similarity as a result of Corollary 2.
Consequently, we anticipate the pruned network’s
performance to closely match that of the unpruned
network. Next, we turn our attention back to the case of a single neuron, and in particular, the
conditional perceptron, which is much easier to analyze in a formal fashion.

4. Generalization Performance of Conditional Perceptrons

In this section, we analyze the generalization error of the conditional perceptron in the classical
student-teacher framework of learning theory, building on the concentration results in Section 3. To
the best of our knowledge, this represents the first instance of a generalization analysis for a neural
conditional computation or early exit system in the literature.

4.1. Learning on the Unconditional Perceptron

We first provide an overview of learning on an ordinary, unconditional perceptron: Consider a
dataset of Nt training vectors {y1, . . . ,yNt} ⊂ Sn and a teacher t ∈ Sn. Given i ∈ {1, . . . , Nt}, let
zi ∈ {−1,+1} denote the desired output for training vector yi. The teacher determines the desired
outputs in the sense that we set zi = 1 whenever t†yi ≥ 0 and zi = −1 if t†yi < 0.

We consider now a student w ∈ Rn acquired through some learning algorithm, as a function
of only the input-output pairs (y1, z1), . . . , (yNt , zNt). The student weights coincide precisely with
the “main” weights of the conditional perceptron as defined in Section 1, and hence we used the
same notation. The specific learning algorithm to obtain w out of the training vectors is not vital for
our purposes. For example, the student can be chosen to be the vector that classifies the training data
with the maximal margin, i.e. w = arg maxw0∈Sn mini∈{1,...,Nt} ziw

T
0 yi. The generalization error

provided by the student is the probability P (σ(XTw) 6= σ(XT t)) of mismatch between the student

4

PRUNING AND CONDITIONING

and teacher decisions when the input X to the perceptron is assumed to uniform on Sn. For a fixed
student and teacher vectors, the generalization error can simply be evaluated to be 1

π arccoswtt.
We are often interested in the generalization error when averaged out over random datasets

and teachers. For this purpose, suppose Y1, . . . ,YNt ,T ∼ N(0d, Id) are mutually independent.
The student is then the random vector W = arg maxw0∈Sn mini∈{1,...,Nt} σ(TTYi)w

T
0 Yi, and

the generalization error is given by εuc , P(σ(XTW) 6= σ(XTT)) = 1
πE[arccosWTT]. It is

difficult to calculate the generalization error exactly except for a few special cases. A special case
is when both the number k of training vectors as well as the ambient dimension n grows to infinity.
In other words, we have n,Nt →∞. If α , limn→∞

Nt
n exists, then it is known [18, 20] that there

is a constant C > 0 such that εuc ∼ εuc = C
α as α→∞. Here, we used the notation εuc denote the

asymptotic n,Nt →∞ generalization error for the unconditional perceptron.

4.2. Analyzing the Conditional Perceptron

Let us now analyze the generalization performance of the conditional perceptron. Consider the
same learning formulation as in Section 4.1. Define the early exit vector Wee , f

dnqe
ee (W), where

0 < q < 1. We extend the definition in (1) to random variables via Yc = σ(WT
eeX) if |WT

eeX| ≥ τ ,
and Yc = σ(WTX) if |WT

eeX| < τ . The generalization error of the conditional perceptron is
εc , P(Yc 6= σ(XTT)). We expect εc ≥ εuc as the conditional perceptron often operates with
a pruned, normalized version Wee of the student vector W. We anticipate that any decrease in
accuracy will be offset by a reduction in computational demand. To determine the corresponding
tradeoff between the average computation and accuracy, we calculate the average FLOPs for the
conditional perceptron, by averaging out (2) over the random inputs X. This yields

µc , (2(n− k) + 1)P(|WT
eeX| ≥ τ) + (2n+ 2)(1− P(|WT

eeX| ≥ τ)). (6)

It is convenient to normalize the FLOPs with respect to the FLOPs 2n of the unconditional network
in the n → ∞ asymptotic regime. For this purpose, we define µ′c , limn→∞

µc
2n . Then, the

maximum FLOPs is 1, spent by the unconditional perceptron. The following theorem provides a set
of achievable pairs of FLOPs and generalization errors provided by the conditional perceptron.

Theorem 3 Let ε > 0. For a given computation constraint µ′c ≤ 1 − ε, a generalization error of

εuc + (ε/q)
1

2(1−ρ2) is achievable, where ρ = cos(arccos
√
τq + πεuc).

Now, fix some “reasonable” sparsity rate q so that ρ is not too far from zero, and imagine ε as the
only variable. Then, the theorem shows that near the full FLOPs of 1, the system performance
approaches the unconditional performance exponentially fast with rate O(εA) for some constant
A > 1. This helps explain why early exit networks do suffer significant performance loss despite
one cuts of a decent chunk of the computation budget, i.e. ε is not close to zero. In fact, the exponent
grows to infinity if ρ→ 0. Our analysis suggests this can happen if the sparsity rate nears zero and
the training rate is high, so that εuc → 0. A similar situation arises in the context of pruning and the
behavior of similarity scores in Fig. 1: They remain relatively unchanged up to pruning rates of 0.4,
and only then begin to decrease. General conditional computation networks, such as mixtures of
experts, exhibit a similar behavior: the network performance remains robust unless the computation
budget is overly restricted. The results presented in this paper also shed light on this phenomenon.

5

PRUNING AND CONDITIONING

Acknowledgments

This work was supported in part by the Army Research Lab (ARL) under Grant W911NF-21-2-
0272, in part by the Army Research Office (ARO) under Grant W911NF-24-1-0049, and in part by
the National Science Foundation (NSF) under Grant CNS-2148182.

References

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas,
graphs, and mathematical tables, volume 55. US Government printing office, 1948.

[2] Mohammad Ahsanullah, Valery B Nevzorov, Mohammad Shakil, Mohammad Ahsanullah,
Valery Nevzorov, and Mohammad Shakil. Conditional distributions of order statistics. An
Introduction to Order Statistics, pages 51–60, 2013.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432,
2013.

[4] Arnaud Buhot, Juan-Manuel Torres Moreno, and Mirta B Gordon. Finite size scaling of the
bayesian perceptron. Physical Review E, 55(6):7434, 1997.

[5] Seok-Ho Chang, Pamela C Cosman, and Laurence B Milstein. Chernoff-type bounds for the
gaussian error function. IEEE Transactions on Communications, 59(11):2939–2944, 2011.

[6] Andrew Davis and Itamar Arel. Low-rank approximations for conditional feedforward com-
putation in deep neural networks. arXiv preprint arXiv:1312.4461, 2013.

[7] Lucio Dery, Steven Kolawole, Jean-Francois Kagey, Virginia Smith, Graham Neubig, and
Ameet Talwalkar. Everybody prune now: Structured pruning of llms with only forward passes.
arXiv preprint arXiv:2402.05406, 2024.

[8] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in
a deep mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

[9] Carl-Gustav Esseen. On the liapunoff limit of error in the theory of probability. Arkiv för
Matematik, Astronomi och Fysik, A28:1–19, 1942. ISSN 0365-4133.

[10] Alperen Gormez, Venkat Dasari, and Erdem Koyuncu. Class means as an early exit decision
mechanism. In IJCNN, 2022.

[11] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic
neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(11):7436–7456, 2021.

[12] James J Heckman and Bo E Honore. The empirical content of the roy model. Econometrica:
Journal of the Econometric Society, pages 1121–1149, 1990.

[13] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

6

PRUNING AND CONDITIONING

[14] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding
and mitigating network overthinking. In International Conference on Machine Learning, June
2019.

[15] Erdem Koyuncu and Hamid Jafarkhani. Distributed beamforming in wireless multiuser relay-
interference networks with quantized feedback. IEEE Transactions on Information Theory, 58
(7):4538–4576, 2012. doi: 10.1109/TIT.2012.2191708.

[16] Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: Towards temporal
spiking early exit neural networks. Advances in Neural Information Processing Systems, 36,
2024.

[17] Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp
Dufter, Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods, analysis
& insights from multimodal llm pre-training. arXiv preprint arXiv:2403.09611, 2024.

[18] Manfred Opper. Statistical mechanics of learning: Generalization. The handbook of brain
theory and neural networks, pages 922–925, 1995.

[19] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. arXiv preprint arXiv:1701.06538, 2017.

[20] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond
neural scaling laws: beating power law scaling via data pruning. Advances in Neural Informa-
tion Processing Systems, 35:19523–19536, 2022.

[21] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. arXiv preprint arXiv:2306.11695, 2023.

[22] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast infer-
ence via early exiting from deep neural networks. In 2016 23rd international conference on
pattern recognition (ICPR), pages 2464–2469. IEEE, 2016.

[23] Shoufang Xu and Yu Miao. Limit behaviors of the deviation between the sample quantiles and
the quantile. Filomat, 25(2):197–206, 2011.

7

PRUNING AND CONDITIONING

Appendix A. Proof of Theorem 1

A.1. Some auxiliary results on Gamma random variables

We begin by presenting some auxiliary results concerning Gamma random variables that we will
need to prove the theorem. As defined in Section 3, a general Gamma random variable G has
PDF fG(x) = xs−1e−x/θ/Γ(k)/θs, x ≥ 0, where s and θ are known as the shape and the scale
parameters, respectively, and Γ(·) is the Gamma function. The lower and upper incomplete gamma
functions are defined as γ(s, x) ,

∫ x
0 t

s−1e−tdt and Γ(s, x) ,
∫∞
x ts−1e−tdt, respectively.

We note the asymptotic expressions [1, Eqs. 6.5.29 and 6.5.32]

γ(s, x) ∼ xs/s, x→ 0, (7)

γ(s, x)→ Γ(s), x→∞, (8)

Γ(s, x)→ Γ(s), x→ 0, (9)

Γ(s, x) ∼ xs−1e−x, x→∞. (10)

According to (7), we have

P(G ≤ y) =
1

Γ(s)
γ(s, y/θ) ∼ (y/θ)s

Γ(1 + s)
, y → 0, (11)

and by (10), we obtain,

P(G ≥ y) =
1

Γ(s)
Γ(s, y/θ) ∼ (y/θ)s−1e−y/θ

Γ(s)
, y →∞, (12)

Let G≤y denote a truncated Gamma random variable, obtained by conditioning G on the event
G ≤ y, where y ∈ [0,∞). The notation G≥y is defined similarly. A straightforward calculation
reveals that for a ≥ 0, we have

EGa≤y =

∫ y
0 x

afG(x)dx∫ y
0 fG(x)dx

=

∫ y
0 x

a+s−1e−x/θdx∫ y
0 x

s−1e−x/θdx
=

∫ y/θ
−∞ u

a+s−1θa+se−udu∫ y/θ
−∞ u

s−1θse−udu
=
θaγ(a+ s, y/θ)

γ(s, y/θ)
,

(13)

and similarly,

EGa≥y =
θaΓ(a+ s, y/θ)

Γ(s, y/θ)
. (14)

In (13), the first equality is by definition. To obtain the second equality, we substituted the PDF of
G. The third equality is by a change of variables u = x/θ. The final equality is by the definition of
the lower incomplete Gamma function. For a = 1, using (7), we can then obtain

EGa≤y ∼
θa(y/θ)a+s/(a+ s)

(y/θ)s/s
=

sya

a+ s
, y → 0, (15)

and using (8) yields

EGa≤y →
θaΓ(a+ s)

Γ(s)
, y →∞. (16)

8

PRUNING AND CONDITIONING

In a similar vein, using (9), we have

EGa≥y →
θaΓ(a+ s)

Γ(s)
, y → 0. (17)

and applying (10), we obtain

EGa≥y ∼
θa(y/θ)a+s−1e−y/θ

(y/θ)s−1e−y/θ
= ya, y →∞. (18)

We begin with a useful lemma on the expected values of truncated Gamma random variables.

Lemma 4 The derivative of the function

y 7→ E[G≤y]. (19)

is bounded.

Proof We have

E[G≤y] =

∫ y
0 xf(x)dx∫ y
0 f(x)dx

(20)

Hence, by the fundamental theorem of calculus,

dE[G≤y]

dy
=
yf(y)P (G ≤ y)− E[G≤y]P (G ≤ y)f(y)

P 2(G ≤ y)
(21)

=
f(y)

P (G ≤ y)
(y − E[G≤y]) (22)

As y → 0, according to (3), (11), and (15), we obtain

lim
y→0

dE[G≤y]

dy
=

s

1 + s
(23)

On the other hand, by (3) and (16), we have

lim
y→∞

dE[G≤y]

dy
= 0 (24)

The statement of the lemma then follows from the continuity of y 7→ E[G≤y].

The following useful lemma is a standard bound on powers of linear functions.

Lemma 5 ([15, Lemma 7]) For any real numbers x1, . . . , xn ≥ 0, we have

(
∑n

i=1 xi)
β ≤ nβ−1

∑n
i=1 x

β
i . (25)

Our main technical result, Theorem 1, shows that a certain ratio related to order statistics of
Gamma random variables converges in probability to a threshold given by (5). The following lemma
shows that the derivatives of a more general form of the threshold function is bounded from above.

9

PRUNING AND CONDITIONING

Lemma 6 Let q ∈ (0, 1), n ≥ 1 and k = dnqe. Define the function

h(x) ,
(n− k)E[G≥x]

kE[G≤x] + (n− k)E[G≥x]
. (26)

There is a constant C1 > 0 that is independent of n such that |dhdx | < C1, ∀x ∈ R and for all large
enough n.

Proof Let ν(x) = EG≤x/EG≥x. We can rewrite (80) as

h(x) =
(

1 +
k

n− k
ν(x)

)−1
, (27)

The derivative of (27) is calculated to be

dh

dx
= − k

n− k

(
1 +

k

n− k
ν(x)

)−2 dν

dx
(28)

It follows that ∣∣∣dh
dx

∣∣∣ ≤ k

n− k

∣∣∣dν
dx

∣∣∣ ≤ 2q

1− q

∣∣∣dν
dx

∣∣∣. (29)

The inequality follows since limn→∞
k

n−k = q
1−q . We used twice the limit as an upper bound,

which will be valid for every large enough n.
What is now left to show is that the derivative dν

dx is bounded. It is sufficient to prove that the
limits limx→0 dν/dx and limx→∞ dν/dx exist and they are finite, and that dν/dx is continuous on
(0,∞). First, we calculate the derivative. Let

N(x) ,
∫ x

0
yf(y)dy

∫ ∞
x

f(y)dy = [E[G≤x]P (G ≤ x)]P (G ≥ x), (30)

D(x) ,
∫ ∞
x

yf(y)dy

∫ x

0
f(y)dy = [E[G≥x]P (G ≥ x)]P (G ≤ x). (31)

We note the alternate representation ν(x) = N(x)
D(x) . By the fundamental theorem of calculus, we

obtain

dN

dx
= xf(x)P(G ≥ x)− E[G≤x]P (G ≤ x)f(x), (32)

dD

dy
= −xf(x)P(G ≤ x) + E[G≥x]P (G ≥ x)f(x). (33)

Using the division rule for derivatives, after some cumbersome but straightforward calculations, we
can obtain

dν

dx
= f(x)

xP(G ≥ x)E[G≥x] + xP(G ≤ x)E[G≤x]− E[G≥x]E[G≤x]
[
P(G ≤ x) + P(G ≥ x)

]
E2[G≥x]P(G ≤ x)P(G ≥ x)

(34)

=
f(x)

[
xE[G]− E[G≤x]E[G≥x]

]
E2[G≥x]P(G ≤ x)P(G ≥ x)

. (35)

10

PRUNING AND CONDITIONING

Since all functions involved in (35) are continuous, dν/dx is continuous except possibly at 0 and
∞. Using (3), (11), (15), (17), and noting that E[G] = kθ, we obtain

lim
x→0

dν

dx
=

1

θ(1 + s)
(36)

Also, substituting (3), (12), (16), and (18), to (35), we can show that the derivative at ∞ is zero.
Together with (36), this shows that the derivative is bounded. This concludes the proof.

Let us now derive upper and lower bounds on the variances of truncated Gamma random vari-
ables.

Lemma 7 For every x ≥ 0, the variances of truncated Gamma random variables follow the bounds

max{s, 1}θ2 ≥ var(G≥x) ≥ min{s, 1}θ2, (37)

C2 ≥ var(G≤x), (38)

where C2 is a constant that is independent of x.

Proof Assume that the shape parameter s of the Gamma random variable G satisfies s ∈ (0, 1].
Then, G is log-convex, and according to [12, Proposition 2], the function x 7→ var(G≥x) is mono-
tonically increasing. In particular, var(G≥x) ≥ var(G≥0) = var(G) = sθ2. On the other hand,
when s ∈ [1,∞), the density G is log-concave. In this case, [12, Proposition 1] shows that
x 7→ var(G≥x) is monotonically decreasing. Hence, we have var(G≥x) ≥ limx→∞ var(G≥x).
In what follows, we calculate the limit. We have

var(G≥x) = E[G2
≥x]− E2[G≥x] (39)

= θ2 Γ(2 + s, xθ)Γ(s, xθ)− Γ2(1 + s, xθ)

Γ2(s, xθ)
(40)

We have a 0
0 indeterminancy as x→∞. We can thus apply L’Hôpital’s rule to obtain

lim
x→∞

var(G≥x) = lim
x→∞

x2Γ(s, xθ)− 2θxΓ(1 + s, xθ) + θ2Γ(2 + s, xθ))

2Γ(s, xθ)
(41)

= lim
x→∞

θs
tΓ(1 + s, xθ)− xΓ(s, xθ)

e−
x
θ xs−1

(42)

= lim
x→∞

θ1+sΓ(s, xθ)

e−
x
θ x−2+s(θ − sθ + x)

(43)

= θ2 (44)

The second and the third equalities also follow from L’Hôpital’s rule. In order to obtain the final
equality, we have applied (10). Note that the derivatives of the upper incomplete Gamma function
can be evaluated via the formulae dΓ(s,x)

dx = d
dx

∫∞
x ts−1e−tdt = −xs−1e−x, by the fundamental

theorem of calculus. Therefore, for any s, we obtain var(G≥x) ≥ min{s, 1}θ2.
Since var(G≤x) = E[G2

≤x] − [EG≤x]2 ≤ E[G2
≤x], according to (15) and (16), the lower con-

ditional variance var(G≤x) is bounded by a constant that is independent of x from above. For the

11

PRUNING AND CONDITIONING

upper conditional variance var(G≥x), we consider the cases of s ∈ (0, 1) and s ∈ [1,∞) separately.
In the former scenario, the monotonically increasing nature of x 7→ var(G≥x), as established in [12,
Proposition 2], in conjunction with (44), demonstrates that var(G≥x) ≤ θ2 for every x. For s ≥ 1,
we obtain var(G≥x) ≤ var(G≥0) = sθ2, according to [12, Proposition 1]. Hence, for any s, we
have var(G≥x) ≤ θ2 max{1, s}. This concludes the proof of the lemma.

As a corollary, we obtain lower and upper bounds on a linear combination of variances truncated
Gamma random variables.

Corollary 8 Let q ∈ (0, 1), n ≥ 1 and k = dnqe. Let

σ2 , y2(k − 1)var(G≤x) + (1− y)2(n− k)var(G≥x). (45)

Then, for every τ ∈ (0, 1) and y ∈ (0, 1) with |y − τ | ≤ 1−τ
2 , we have

C3n ≤ σ2 ≤ C4n (46)

for all sufficiently large n, where C3 and C4 are constants.

Proof According to Lemma 7, for any s, we obtain

σ2 ≥ (1− y)2(n− k)var(G≥x) (47)

≥ (1− y)2(n− k) min{s, 1}θ2 (48)

The bound |y − τ | ≤ 1−τ
2 implies

σ2 ≥
(

1− τ
2

)2

(n− k) min{s, 1}θ2 (49)

Also, substituting k = dnqe, we obtain

σ2 ≥
(

1− τ
2

)2

(n− dnqe) min{s, 1}θ2 (50)

≥ 1− q
2

(
1− τ

2

)2

min{s, 1}θ2n, (51)

for sufficiently large n. This proves the lower estimate on the variance.
For the upper estimate, we can first obtain

σ2 ≤ y2︸︷︷︸
≤1

(k − 1)︸ ︷︷ ︸
≤n

var(G≤x) + (1− y)2︸ ︷︷ ︸
≤1

(n− k)︸ ︷︷ ︸
≤n

var(G≥x) = n[var(G≤x) + var(G≥x)], (52)

and applying Lemma 7 proves the upper estimate on σ2. This concludes the proof of the corollary.

The following lemma is utilized to bound the error terms resulting from the Berry-Esseen esti-
mates.

12

PRUNING AND CONDITIONING

Lemma 9 Let q, y ∈ (0, 1), n ≥ 1 and k = dnqe. Let σ2 be as defined in (45) of Corollary 8, and

ρ , y3(k − 1)E
∣∣G≤x − EG≤x

∣∣3 + (1− y)3(n− k)E
∣∣G≥x − EG≥x

∣∣3. (53)

For every large enough n, we have∫ ∞
0

ρ

σ3
fG(k)

(x)dx ≤ C6n
− 1

2 (54)

for some constant C6 > 0 that is independent of y, k, n.

Proof Using the inequalities y ≤ 1 and k ≤ n, we obtain

ρ ≤ nE|G≤x − EG≤x|3 + nE|G≥x − EG≥x|3. (55)

Applying Lemma 5 yields

ρ ≤ 4n(EG3
≤x + E3G≤x + EG3

≥x + E3G≥x) (56)

≤ 8n(EG3
≥x + E3G≥x) (57)

≤ C7n(1 + x3), (58)

where C7 is a constant that is independent of n and x. The last inequality is a consequence of (17)
and (18).

It is a standard result in probability theory that the exact PDF for the kth order statistic G(k) is
given by

fG(k)
(x) =

n!

(k − 1)!(n− k)!
fG(x)[FG(x)]k−1[1− FG(x)]n−k (59)

≤ n2n−1fG(x)[1− FG(x)]n−k (60)

Since FG(x) → 1, there exists x0 > 0 and c ∈ (0, 1) such that for every x ≥ x0, we have
n2n−1[1−FG(x)]n−dnqe ≤ c−n. As a result, we obtain fG(k)

(x) ≤ fG(x)c−n,∀x ≥ x0. Combining
this with (58) and the lower bound on σ in Corollary 8, we obtain∫ ∞

0

ρ

σ3
fG(k)

(x)dx =

∫ x0

0

ρ

σ3
fG(k)

(x)dx+

∫ ∞
x0

ρ

σ3
fG(k)

(x)dx (61)

≤
∫ x0

0

C7n(1 + x3
0)

(C3n)1.5
fG(k)

(x)dx+

∫ ∞
x0

C7n(1 + x3)

(C3n)1.5
fG(x)c−ndx (62)

≤ C7(1 + x3
0)

C1.5
3

n−
1
2 +

C7(1 + x3
0)

C1.5
3

(EG+ EG3)o(n−
1
2). (63)

The proof is now complete since the moments of a Gamma random variable are also finite.

13

PRUNING AND CONDITIONING

A.2. Other auxiliary results

As the first result, we recall the central limit theorem for quantiles.

Proposition 10 ([23]) Let X1, X2, . . . , Xn be IID copies of a random variable X . Given p ∈
(0, 1), let ξp = inf{x : FX(x) ≥ 1 − p}. Suppose FX has a continuous first derivative fX in the
neighborhood of ξp and f(ξp) > 0. Then,

√
nfX(ξp)√
p(1− p)

(
X(dn(1−p)e) − ξp

)
∼ N(0, 1) as n→∞. (64)

We then present the general form of Berry-Esseen theorem for non-identically distributed ran-
dom variables.

Proposition 11 (Berry-Esseen Theorem [9]) Let X1, X2, . . . , be independent random variables
with E[Xi] = 0 and E[|Xi|3] < ∞ for every i ∈ Z>0. Let Φ denote the CDF of the standard
normal distribution. For all n, we have

sup
x∈R

∣∣∣∣P(X1 +X2 + . . .+Xn√
σ2

1 + σ2
2 + . . .+ σ2

n

≤ x
)
− Φ(x)

∣∣∣∣ ≤ 8

(
n∑
i=1

varXi

)−3/2 n∑
i=1

E|Xi|3. (65)

A.3. Proof of the theorem

We are now ready to prove Theorem 1. We organize the proof in four steps.
Step-1: In the first step, we approximate the cumulative distribution function of Ξn via a normal

random variable using the Berry-Esseen theorem. Let y ∈ [0, 1] and k = dnqe. We have

P
(

Ξn ≤ y
)

= P
(
G(k+1) + · · ·+G(n) ≤ y(G(1) + · · ·+G(n))

)
(66)

=

∫ ∞
0

P

(
(1− y)

n∑
j=k+1

G(j) − y
k−1∑
j=1

G(j) ≤ yx
∣∣∣∣G(k) = x

)
fG(k)

(x)dx. (67)

According to [2], the two sets of order statistics (G(k+1), . . . , G(n)) and (G(1), . . . , G(k−1)) that
appear in (67) are conditionally independent given G(k) = x. Moreover, we have[

n∑
j=k+1

G(j)

∣∣∣∣G(k) = x

]
∼

n−k∑
j=1

G≥x,j , (68)

and [
k−1∑
j=1

G(j)

∣∣∣∣G(k) = x

]
∼

k−1∑
j=1

G≤x,j , (69)

where G≤x,1, G≥x,1, G≤x,2, G≥x,2, . . . is a sequence of IID random variables with

G≤x,j ∼ G≤x, (70)

14

PRUNING AND CONDITIONING

and

G≥x,j ∼ G≥x (71)

for every j ∈ Z>0.
Let us now normalize the mean of (70) and (71) as

G′≤x,j , G≤x,j − E[G≤x,j] = G≤x,j − E[G≤x], (72)

G′≥x,j , G≥x,j − E[G≥x,j] = G≥x,j − E[G≥x], (73)

where j ∈ Z>0. We have

P
(

Ξn ≤ y
)

=

∫ ∞
0

P

(
(1− y)

n−k∑
j=1

G′≥x,j − y
k−1∑
j=1

G′≤x,j ≤ y′
)
fG(k)

(x)dx, (74)

where

y′ , yx+ y(k − 1)E[G≤x]− (1− y)(n− k)E[G≥x]. (75)

By definition. the random variables G′≤x,j and G′≥x,j have zero mean. According to Lemma 7, they
also have finite normalized moments. Hence, Proposition 11 is applicable, and we have

P
(

Ξn ≤ y
)
≤
∫ ∞

0
Φ(y′/σ)fG(k)

(x)dx+ 8

∫ ∞
0

ρ

σ3
fG(k)

(x)dx, (76)

where Φ is the CDF of the standard normal random variable with zero mean and unit variance,

σ2 , y2(k − 1)var(G≤x) + (1− y)2(n− k)var(G≥x), (77)

and

ρ , y3(k − 1)E

[∣∣∣G≤x − E[G≤x]
∣∣∣3]+ (1− y)3(n− k)E

[∣∣∣G≥x − E[G≥x]
∣∣∣3]. (78)

Let us now rewrite the mean-normalized threshold y′ defined in (75) as

y′ = yx− yE[G≤x]−
[
kE[G≤x] + (n− k)E[G≥x]

](
h(x)− y

)
, (79)

where

h(x) ,
(n− k)E[G≥x]

kE[G≤x] + (n− k)E[G≥x]
. (80)

Step-2: Let ωq = inf{x : FG(x) ≥ q} be as defined in the theorem statement. Let us also
recall the threshold

τ , τq(s, θ) =

(
1 +

qE
[
G≤ωq

]
(1− q)E

[
G≥ωq

])−1

=
(1− q)E[G≥ωq]

qE[G≤ωq] + (1− q)E[G≥ωq]
. (81)

15

PRUNING AND CONDITIONING

from the theorem statement. In this step, we find an upper bound on y′ for y = τ − ε and |x−ωq| ∈
O(ε).

According to Lemma 6, we have

sup
x∈R

∣∣∣∣ d

dx
h(x)

∣∣∣∣ ≤ C1, (82)

for some constant C1 > 0 that is independent of n. As a result, if |x− ωq| ≤ δ , ε
2C1

, we have∣∣∣h(x)− h(ωq)
∣∣∣ < C1δ =

ε

2
. (83)

In comparison with

h(ωq) =
(n− dnqe)E[G≥ωq]

dnqeE[G≤ωq] + (n− dnqe)E[G≥ωq]
, (84)

it follows that

lim
n→∞

h(ξq) = τ (85)

Hence, for large enough n, we can argue that |h(ωq)− τ | ≤ ε
4 . Combining with (83), for y = τ − ε,

we can thus obtain

h(x)− y ≥ h(ωq)−
ε

2
− y (86)

= h(ωq)− τ +
ε

2
(87)

≥ ε

4
. (88)

On the other hand, we have the lower bounds

kE[G≤x] + (n− k) E[G≥x]︸ ︷︷ ︸
≥E[G≤x]

≥ nE[G≤x] (89)

≥ nE[G≤ωq−δ] (90)

≥ n
(

E[G≤ωq]− C8δ
)

(91)

≥ n
E[G≤ωq]

2
, (92)

where C8 > 0 is a constant. In the above derivation, (90) follows since x 7→ E[G≤x] is monotoni-
cally increasing. Inequality (91) is a consequence of Lemma 4, and the final inequality holds for all
small enough ε. Substituting (88) and (92) to (79), we obtain

y′ ≤ yx−
E[G≤ωq]

8
nε (93)

≤ (τ − ε)(ωq + δ)−
E[G≤ωq]

8
nε (94)

≤ 2τωq −
E[G≤ωq]

8
nε, (95)

16

PRUNING AND CONDITIONING

where the last inequality holds for all small enough ε.
Step-3: Let y = τ − ε as in Step 2. We decompose the first integral in the upper bound in (76)

as

P
(

Ξn ≤ y
)
≤
∫
|x−ωq |≤δ

Φ(y′/σ)fG(k)
(x)dx+

∫
|x−ωq |≥δ

Φ(y′/σ)︸ ︷︷ ︸
≤1

fG(k)
(x)dx+ 8

∫ ∞
0

ρ

σ3
fG(k)

(x)dx.

(96)

For the first term, we implement the upper limit on y′ specified in (95), which holds a negative value
for sufficiently large n. In this regime, we can apply the upper bound on σ as provided by Corollary
8 to obtain a valid upper limit for the first term in (96). Furthermore, an upper bound for the final
term of (96) is obtained in Lemma 9. These estimates yield

P
(

Ξn ≤ y
)
≤
∫
|x−ωq |≤δ

Φ

[
1√
C4n

(
2τωq −

E[G≤ωq]

8
nε
)]
fG(k)

(x)dx+

∫
|x−ωq |≥δ

fG(k)
(x)dx+ 8C6n

− 1
2 .

(97)

In (97), the Φ[·]-term decays to zero as n → ∞. Moreover, the second integral also vanishes as
n→∞ as a result of Proposition 10. Therefore, we obtain

P
(

Ξn ≤ y
)
≤ o(1)

∫
|x−ωq |≤δ

fG(k)
(x)dx+ o(1) (98)

≤ o(1). (99)

This shows that for any ε > 0, we have P(Ξn ≤ τ − ε)→ 0.
Step-4: Now, let y = τ + ε. We will show for any ε > 0, we have P(Ξn ≤ τ + ε)→ 1.
As in Step-2, for large enough n, we can argue that |h(ξq)− τ | ≤ ε

4 . Combining with (83), for
y = τ + ε, we obtain

h(x)− y ≤ h(ξq) +
ε

2
− y (100)

= h(ξq)− τ −
ε

2
(101)

≤ − ε
4
. (102)

Combining with (92) and substituting to (79), we obtain

y′ ≥ yx− yE[G≤x]︸ ︷︷ ︸
≤x

+
E[G≤ωq]

8
nε (103)

=
E[G≤ωq]

8
nε (104)

17

PRUNING AND CONDITIONING

Analogous to the upper bound in (76), applying Proposition 11 yields the lower estimate

P
(

Ξn ≤ y
)
≥
∫ ∞

0
Φ(y′/σ)fG(k)

(x)dx− 8

∫ ∞
0

ρ

σ3
fG(k)

(x)dx (105)

≥
∫
|x−ωq |≤δ

Φ(y′/σ)fG(k)
(x)dx− o(1) (106)

≥
∫
|x−ωq |≤δ

Φ

(
1√
C4n

E[G≤ωq]

8
nε

)
fG(k)

(x)dx− o(1) (107)

= (1− o(1))

∫
|x−ωq |≤δ

fG(k)
(x)dx− o(1) (108)

= (1− o(1))(1− o(1))− o(1) (109)

= 1− o(1). (110)

The third inequality follows from (104) and Corollary 8. This shows that for any ε > 0, we have
P(Ξn ≤ τ+ε). Combining with the conclusion of Step-3, the proof of the theorem is now complete.

Appendix B. Proof of Corollary 2

Let N1, . . . , Nn be independent and identically distributed N(0, 1) random variables. We can set
W = [N1 · · ·Nn]T /(

∑n
i=1N

2
i)1/2. Let |Ni1 | ≤ · · · ≤ |Nin |, where i1, . . . , in is a permutation of

1, . . . , n. By definition, the random vector Wp is zero at all indices except at {ij : j = dnqe +
1, . . . , n} where it equals W. This implies WTWp =

∑n
j=dnqe+1N

2
ij
/
∑n

i=1N
2
i . The statement

for WTWp now follows from Theorem 1 since N(0, 1)2 is a Gamma random variable with shape
1
2 and scale 2. The convergence of WTWee is proved similarly.

Appendix C. Proof of Theorem 3

Let us first calculate and upper bound on the normalized FLOPs. It is easily seen that |WT
eeX|2

is a Chi-squared random variable with 1 degree of freedom. We thus obtain P(|WT
eeX| ≥ τ) =

Γ(1
2 ,

τ2

2), where Γ(·, ·) is the upper incomplete Gamma function. The normalized FLOPs is thus

µ′c = (1− q)Γ
(

1

2
,
τ2

2

)
+ γ

(
1

2
,
τ2

2

)
, (111)

18

PRUNING AND CONDITIONING

where γ(·, ·) is the lower incomplete Gamma function. Further, we obtain

µ′c = (1− q) + qγ

(
1

2
,
τ2

2

)
(112)

= 1− q + qerf

(√
τ2

2

)
(113)

≤ 1− q + q

(
1−

√
2e

π︸ ︷︷ ︸
>1

√
β − 1

β
e−βτ

2/2

)
(114)

≤ 1− q
√
β − 1

β
e−βτ

2/2 (115)

≤ 1− qe−τ2 (116)

The upper bound on the error function in (114) follows from [5], and is valid for any β > 1. In
(116), we substituted β = 2.

We now analyze the generalization error εc. We consider the following events:

• Let E0 be the event where the decisions of the conditional perceptron and the teacher do not
match so that εc = P(E0).

• We let E1 denote the event that the student W and the teacher T are at least δ1-close with
respect to the angular distance. In other words, let E1 denote the event that arccosWTT ≤
δ1, where δ1 ∈ [0, π2].

• Let E2 be the event that the student and the early exit vector (which are derived from the
student weights) are δ2-close. In other words, letE2 represent the event arccosW†Wee ≤ δ2,
where δ2 ∈ [0, π2].

• Finally, let E3 be the event that |XTWee| ≥ τ , encoding the criterion of early exit in the
definition of the conditional perceptron in Section 4.2.

We have

εc = P(E0E1E2) + P(E0|Ec1 or Ec2)︸ ︷︷ ︸
≤1

P(Ec1 or Ec2)︸ ︷︷ ︸
≤P(Ec1)+P(Ec2)

(117)

= P(E0E1E2E3) + P(E0E1E2E
c
3)︸ ︷︷ ︸

≤P(E0Ec3)≤εuc

+P(Ec1) + P(Ec2) (118)

= εuc + P(Ec1) + P(Ec2) + P(E0E1E2E3) (119)

Let εuc denote the asymptotic n,Nt → ∞ generalization error for the unconditional perceptron so
that εuc = 1

πE[arccosWTT] → εuc as n → ∞. Due to the self-averaging property learning [4],
we have, in addition, the convergence in mean 1

π arccosWTT → εuc. Hence, if δ1 > πεuc, we
have P (Ec1)→ 0. With a similar argument, provided that δ2 > arccos

√
τq, we have P (Ec2)→ 0 as

a result of Corollary 2. What is left to analyze is the final term. By symmetry, we have

P(E0E1E2E3) = 2P(XTT < 0, arccosW†T ≤ δ1, arccosWTWee ≤ δ2,X
TWee ≥ τ). (120)

19

PRUNING AND CONDITIONING

Let us recall the triangle inequality for angular distances: For unit norm vectors a1, a2, a3, we have
arccos a†1a2 ≤ arccos a†1a3 + arccos a†3a2. Therefore,

P(E0E1E2E3) ≤ 2P(XTT < 0, arccosTTWee ≤ δ1 + δ2,X
TWee ≥ τ) (121)

= 2P(XTT < 0,TTWee ≥ cos(δ1 + δ2),XTWee ≥ τ) (122)

≤ 2P(XTa < 0,XTb ≥ τ) (123)

where a and b are arbitrary unit-norm deterministic vectors with aTb = cos(δ1 + δ2). The random
variables XTa and XTb are jointly Gaussian with zero mean, unit variance, and covariance ρ ,
cos(δ1 + δ2). We can thus evaluate the joint probability as

P(XTa < 0,XTb ≥ τ) =

∫ ∞
τ

∫ 0

−∞

1

2π
√

1− ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
dxdy (124)

=
1

2
√

2π

∫ ∞
τ

e−y
2/2erfc

(
ρy√

2(1− ρ2)

)
dy (125)

Using the upper bound erfcx ≤ e−x2 , we obtain

P(XTa < 0,XTb ≥ τ) ≤ 1

2
√

2π

∫ ∞
τ

e−y
2/2e

− ρ2y2

2(1−ρ2) dy (126)

=
1

2
√

2π

∫ ∞
τ

e
− y2

2(1−ρ2) dy (127)

=
1

4

√
1− ρ2erfc

(
τ√

2(1− ρ2)

)
(128)

≤ 1

2
e
− τ2

2(1−ρ2) . (129)

A joint consideration with the previous bounds concludes the proof of the theorem.

20

	Introduction
	 Conditional Perceptrons
	A Concentration Theorem for Pruning
	Generalization Performance of Conditional Perceptrons
	Learning on the Unconditional Perceptron
	Analyzing the Conditional Perceptron

	Proof of Theorem 1
	Some auxiliary results on Gamma random variables
	Other auxiliary results
	Proof of the theorem

	Proof of Corollary 2
	Proof of Theorem 3

