
Inverse Optimization via Learning Feasible Regions

Ke Ren 1 Peyman Mohajerin Esfahani 2 Angelos Georghiou 3

Abstract
We study inverse optimization (IO) where the
goal is to use a parametric optimization program
as the hypothesis class to infer relationships be-
tween input-decision pairs. Most of the literature
focuses on learning only the objective function,
as learning the constraint function (i.e., feasible
regions) leads to nonconvex training programs.
Motivated by this, we focus on learning feasible
regions for known linear objectives and introduce
two training losses along with a hypothesis class
to parameterize the constraint function. Our hy-
pothesis class surpasses the previous objective-
only method by naturally capturing discontinuous
behaviors in input-decision pairs. We introduce
a customized block coordinate descent algorithm
with a smoothing technique to solve the training
problems, while for further restricted hypothe-
sis classes, we reformulate the training optimiza-
tion as a tractable convex program or mixed in-
teger linear program. Synthetic experiments and
two power system applications, including compar-
isons with state-of-the-art approaches, showcase
and validate the proposed approach.

1. Introduction
Inverse optimization (IO) reverses traditional optimization.
While classical optimization finds optimal decisions based
on predefined objectives and constraints, IO takes decisions
as inputs and identifies the objective and/or constraints that
make these decisions either approximately or precisely op-
timal. Interest in IO has surged in recent years, leading to
advancements in learning theory (Aswani et al., 2018; Moha-
jerin Esfahani et al., 2018; Chan & Kaw, 2020) and recently
in reinforcement learning (Zattoni Scroccaro et al., 2025), as
well as applications such as transportation (Zhang & Pascha-
lidis, 2017; Chen et al., 2021), system control (Akhtar et al.,

1Amazon 2University of Toronto and Delft University of Tech-
nology 3University of Cyprus. Correspondence to: Ke Ren
<renkea@amazon.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2021), robotics (Dimanidis et al., 2025), healthcare (Ayer,
2015; Ajayi et al., 2022), and finance (Li, 2021). More
recently, the IO framework has also been successfully ap-
plied to the Amazon Last Mile Routing Research Challenge,
where the goal is to learn and replicate human drivers’ rout-
ing preferences (Zattoni Scroccaro et al., 2025).

The IO model builds on a parametric forward optimiza-
tion model that represents the decision-generating process.
Given an input signal s ∈ Rk, the following optimization
problem defined through f, g : Rk ×Rn → R, generates an
optimal solution x ∈ Rn which is observed, however, it is
possible that the observation is contaminated by noise.

min
x∈Rn

f(x, s) s.t. g(x, s) ≤ 0 (1)

In the most general case, decision makers have no knowl-
edge of f and g but have access to N independent pairs of
input/decisions {si,xi}Ni=1 from problem (1). As the space
of all possible objective and constraint functions is vast, the
decision-maker seeks to approximate f and g by candidates
from some parametric hypothesis spaces fθ and gθ , θ ∈ Θ,
where Θ represents a finite-dimensional parameter set. Cor-
respondingly, in IO, decision-makers aim to learn θ such
that for each signal sn, xn is optimal (or approximately
optimal) in the following problem:

min
x∈Rn

fθ(x, s) s.t. gθ(x, s) ≤ 0. (2)

Through a supervised learning lens, the parameterized
model (2) can be viewed as a hypothesis class for learning
the mapping between the input s and the output decision x
generated by the forward optimization (1).

1.1. Contributions

This paper studies the learning problem of IO where, unlike
the majority of the literature that focuses on a parametric
form for the objective function fθ, the main objective is to
learn the constraints function gθ. In this context, the paper
has three main contributions:

Loss functions compatible with IO data: Generalizing
existing literature, we introduce two loss functions `θ(x, s)
to evaluate model fit (2) with parameter θ on the input-
output data pair (x, s) from (1) (Proposition 2.1). Regarding
performance on unseen (test) data, we argue that the IO

1

Inverse Optimization via Learning Feasible Regions

setting encompasses a “true” counterpart of these losses,
unlike general supervised learning problems; see Figure 2
(bottom) for their geometric representation.

Hypothesis Classes with Convex and MILP Reformula-
tions: We propose a new hypothesis class to parameterize
the constraint function gθ , which is significantly richer than
existing IO approaches (Example 3.2). However, it results
in non-convex training problems. We demonstrate that spe-
cial cases of this hypothesis class allow the optimization of
the training loss `θ to be exactly reformulated into tractable
convex optimization (Theorem 3.3) and mixed-integer linear
programs (MILP) (Proposition D.1), which can be solved
efficiently with off-the-shelf solvers.

Smoothed block-coordinate descent algorithm: We fur-
ther exploit the structure of the proposed losses and devise a
tailored block coordinate descent algorithm together with a
smoothing technique to train our IO setting in for the generic
hypothesis class (Algorithm 2). The smoothing technique
provides an interesting insight into the relation between
the two proposed loss functions, justifying why one often
presents better computation results when optimized using
vanilla gradient descent (Algorithm 1); see Remark 3.4.

The paper is organized as follows: Section 2 introduces
two losses and explores their properties. Section 3 presents
the hypothesis class together with the proposed coordinate
descent algorithm with a smoothing technique to solve the
general problem, along with convex and MILP reformu-
lations for specific cases. Section 4 covers computational
studies. Limitations and future work are discussed in Sec-
tion 5. Proofs and additional computational studies are in
the appendix.

1.2. Related Works

Extensive studies have been carried out to estimate the ob-
jective functions in data-driven IO. The various approaches
primarily diverge in terms of the loss functions utilized
to capture the disparity between predictions and observa-
tions. These include the KKT loss (Keshavarz et al., 2011),
first-order loss (Bertsimas et al., 2015), predictability loss
(Aswani et al., 2018), and suboptimality loss (Mohajerin Es-
fahani et al., 2018). The properties and relationships of
these approaches are summarized (Mohajerin Esfahani et al.,
2018). Other methodologies are also proposed under dif-
ferent settings including online settings (Bärmann et al.,
2017; Dong et al., 2018). In the landscape of IO for feasi-
ble regions, the majority of existing works have tradition-
ally concentrated on right-hand side parameters (Dempe &
Lohse, 2006; Güler & Hamacher, 2010; Xu et al., 2016;
Saez-Gallego et al., 2016; Lu et al., 2018). However, re-
cent endeavors by (Aswani et al., 2018; Tan et al., 2020;
Ghobadi & Mahmoudzadeh, 2020) have expanded the scope
by considering various aspects of constraint parameters.

The work (Aswani et al., 2018) incorporates general con-
straint parameters into their model, departing from the main-
stream. However, their model encounters intractability is-
sues, relying on enumerations to evaluate the problem. Sim-
ilarly, (Tan et al., 2020) faces tractability challenges, em-
ploying sequential quadratic programming within a bi-level
optimization framework for solving constraint parameters
in linear programming. While (Chan & Kaw, 2020) and
(Ghobadi & Mahmoudzadeh, 2020) propose tractable solu-
tions, their settings impose some restrictions: (Chan & Kaw,
2020) does not consider a data-driven setting and confines
their analysis to a single observation in linear programming.
The paper (Ghobadi & Mahmoudzadeh, 2020) extends this
limitation to multi-point scenarios, but only for the linear
programming case where the multiple points are merely
feasible solutions, not necessarily optimal.

2. Learning Frameworks
Inverse optimization as supervised learning. From a ma-
chine learning perspective, the IO problem can be cate-
gorized as a supervised learning problem, where s repre-
sents the independent variable and x represents the response.
Therefore, it is natural to define a loss minimization proce-
dure (as shown in (3)) to find the unknown parameters θ.

min
θ∈Θ

1

N

N∑
i=1

`θ(xi, si). (3)

An appropriate loss is required to measure both the feasibil-
ity and optimality of any given solution x.

2.1. Loss Function

In this section, we introduce two loss functions that relax
feasibility and optimality in problem (2) while penalizing
deviations. Two potential reasons why problem (2) might
fail to replicate the feasibility and optimality of problem
(1) are: (i) the hypothesis class used for the constraints gθ
and/or the objective fθ may lack the complexity to capture
the behavior of (1), and (ii) the training data could be noisy,
meaning the signal s and/or the decisions x may be influ-
enced by unaccounted measurement noise. Typically, the
degree of infeasibility of a data point can be quantified by
gθ(x, s), with positive values indicating infeasibility, while
suboptimality can be assessed via

Jθ(x, s) := fθ(x, s)−

[
min
y∈Rn

fθ(y, s)

s.t. gθ(y, s) ≤ 0

]
. (4)

For a fixed θ, Jθ(x, s) quantifies the difference between
the objective value achieved by data point (x, s) under the
hypothesized objective fθ(x, s) and the optimal value of
(2) with signal s. In noise-free scenarios, negative Jθ(x, s)

2

Inverse Optimization via Learning Feasible Regions

suggest over-constraint in (2), while positive values imply
overly relaxed feasibility, rendering (x, s) suboptimal.

The loss functions are termed predictability and suboptimal-
ity loss, respectively.

`p
θ(x, s) :=

min ‖γ‖
s.t. γ ∈ Rn

gθ(x+ γ, s) ≤ 0
Jθ(x+ γ, s) ≤ 0

 , (5a)

`sub
θ (x, s) :=

min ‖(γf , γo)‖
s.t. γo, γf ∈ R+

gθ(x, s) ≤ γf
Jθ(x, s) ≤ γo

 . (5b)

Figure 1 illustrates the two loss functions. The γ variable
(red) in the predictability loss `p

θ(x, s) allows for reposi-
tioning the observed x to achieve feasibility and optimality
while penalizing the extent of adjustment. Note that γ
doesn’t merely project x into the feasible region gθ(·, s)
but balances between infeasibility and suboptimality. In
the suboptimality loss `sub

θ (x, s), γf and γo (light blue) act
as slack variables, regulating the levels of infeasibility and
suboptimality independently.

Figure 1. Pictorial representation of the predictability and subopti-
mality loss functions.

The predictability loss was first proposed in (Aswani et al.,
2018) using a slightly different formulation. The nam-
ing convention can be explained by defining variable y =
x + γ, where γ shifts x, leading to the objective func-
tion miny∈X (s), ‖y − x‖. Here, X (s) denotes the set of
optimal solutions of problem (2). Consequently, the loss
penalizes the discrepancy between the observed decision x
and the potential predicted decision y. Unlike the loss pro-
posed in (Mohajerin Esfahani et al., 2018) which assumed
known constraints, the suboptimality loss extends the loss
to unknown constraints penalizing both infeasibility and
suboptimality.

The following proposition shows that the proposed loss
functions (5) are well defined, in the sense that for any

θ ∈ Θ and (x, s) in the training dataset, the loss `θ(x, s)
is zero if and only if x is also an optimal solution of (2).
In other words, given a rich enough hypothesis class for gθ
and fθ, the set of optimal solutions of (2) coincides with
the set of observed optimal solutions of (1). Moreover, the
statement implies that if the optimizer θ∗ of (3) does not
achieve a zero loss, i.e., there exists (x, s) in the training
data such that `θ∗(x, s) > 0, then there is no other θ in the
hypothesis class that perfectly describes the measured pair
(x, s). We term this property as full characterization.

Proposition 2.1 (Full characterization). For any θ ∈ Θ and
the IO data pair (x, s) generated by the forward model (1),
both predictability `p

θ(x, s) and suboptimality `sub
θ (x, s)

loss defined in (5) satisfy

`θ(x, s) = 0 ⇐⇒ x ∈

[
arg min
y∈Rn

fθ(y, s)

s.t. gθ(y, s) ≤ 0

]
.

2.2. Measuring Performance

In this subsection, we define metrics for the goodness of fit
in an out-of-sample evaluation. In general, there are two
ways to measure the performance. The first method is to
directly measure the feasibility and optimality of the opti-
mal solutions generated by learned optimization problems.
To this end, for fixed θ′ ∈ Θ, define x∗θ′(s) to be an op-
timizer from problem (2). Thus we evaluate the true loss∑Nout
i=1 `(x

∗
θ′(si), si) using the true predictability loss

`p(x, s) :=

min ‖γ‖
s.t. γ ∈ Rn

g(x+ γ, s) ≤ 0
J(x+ γ, s) ≤ 0

 (6a)

and true suboptimality loss

`sub(x, s) :=

min ‖(γf , γo)‖
s.t. γo ∈ R+, γf ∈ R+

g(x, s) ≤ γf
J(x, s) ≤ γo

 . (6b)

In most practical scenarios, we do not have access to the
forward problem (1), preventing a direct evaluation of the
true performance of θ. Nevertheless, we often have addi-
tional data {(xi, si)}Nout

i=1 that was not utilized during the
training phase. As an alternative, we can straightforwardly
compute

∑Nout
i=1 `θ′(xi, si) for a selected θ′ ∈ Θ for both

the predictability and suboptimality loss functions. We il-
lustrate the relationships between these four metrics below
in Figures 2. From Figure 2 (bottom), it can be seen that
if the recovered optimal solution xθ(s) coincide with the
observed optimal x, all losses become zero. Additionally,
the true predictability loss `p and sample-based loss `p

θ are
equivalent when optimal solutions are unique for both true

3

Inverse Optimization via Learning Feasible Regions

and recovered problems. It is also worth noting that the
true suboptimality loss coincides with the “Smart Predict,
then Optimize” (SPO) loss in (Elmachtoub & Grigas, 2022);
see Remark 4.4 in (Zattoni Scroccaro et al., 2024) for more
details.

Figure 2. Top: Pictorial representation of true predictability and
suboptimality losses. Bottom: relationship between estimated
out-of-sample loss (`p

θ, `
sub
θ) and true out-of-sample loss (`p, `sub).

3. Hypothesis Class for gθ and Reformulations
In this section, we restrict the admissible constraint func-
tion gθ to a specific hypothesis class and reformulate the
predictability and suboptimality losses. For the remainder
of the paper, we assume the objective function is known and
focus on the unknown constraints.

LetAθ(s) and bθ(s) be a matrix and vector with appropri-
ate dimensions, and restrict the constraint to

gθ(x, s) = min
z∈Z
‖x−Aθ(s)z − bθ(s)‖. (7a)

The function uses a latent variable z, which resides in the
predetermined conic primitive set

Z = {z ∈ Rp : Hz − h ∈ K} (7b)

where matrices H ∈ Rl×p and h ∈ Rl and the proper
convex cone K are given.

Intuitively, the hypothesis class (7) controls the feasible
region of x by manipulating the primitive set Z . Indeed, we

can see that the constraint gθ(x, s) ≤ 0 can be reformulated
to x = Aθ(s)z + bθ(s), z ∈ Z . In other words, for each
pair (x, s) there exists a z ∈ Z that maps to x through the
linear mapAθ(s)z+bθ(s). Hence, through the choice of θ,
the matrixAθ(s) can scale, rotate and project the primitive
set Z , while vector bθ(s) is responsible for translating the
set. An alternative way to view the hypothesis is that the
learning model induces the policy x(s) = Aθ(s)z(s) +
bθ(s) for some z(s) ∈ Z , hence problem (2) aims to learn
the policy that best fits the training data. The choice of
the primitive set Z plays a crucial role in approximation
highlighted in the next remark.

Remark 3.1 (Choice of primitive sets). When the primitive
set Z is a p-dimensional simplex, the resulting policy can
be seen as a switched version of p different policies, each
represented by a column ofAθ(s). The latent variable zi(s)
acts as the switching mechanism. More broadly, the matrix
Aθ(s) projects the high-dimensional simplex (or any other
polytopic primitive set) onto the space of x. Increasing
the dimensions of the primitive set enhances the flexibility
of the hypothesis class. Conversely, if the constraints of
the forward problem (1) are believed to be ellipsoidal, an
appropriate choice is Z = {z ∈ Rn | ‖z‖2 ≤ 1}, with
Aθ(s) rotating and scaling the set accordingly.

The following example illustrates the richness of the IO
models with the constraint class (7) by demonstrating (i)
how it can learn a forward problem with a discontinuous
policy, and (ii) why no IO model with only objective learn-
ing (e.g., (Mohajerin Esfahani et al., 2018)) is sufficient to
achieve the same.

Example 3.2 (Constraint vs. objective learning in IO). Mo-
tivated by power systems, consider

min
x∈[0,2]2

sx1 + (1− s)x2 s.t. x1 + x2 = 1, (8)

where x1 and x2 represent two generators output aiming
to meet the demand x1 + x2 = 1 at the lowest possible
cost. The signal s ∈ [0, 1] indicates the per-unit production
cost of the first generator, while the cost of the other is
proportional to 1− s. The optimal policy of (8) is

(x∗1(s), x∗2(s)) =

(1, 0) if s < 0.5,

([0, 1], [0, 1]) if s = 0.5,

(0, 1) if s > 0.5,

(9)

such that x∗1(0.5) + x∗2(0.5) = 1. The hypothesis class
(7) can recover the optimal policy by defining Z = {z ∈
[0, 1]2 : e>z = 1} as the two-dimensional unit simplex,
and selecting Aθ(s) = I (the 2× 2 identity) and bθ(s) = 0
such that the resulting policy yields x1(s) = z1(s) and
x2(s) = z2(s). Selecting z1(s) and z2(s) as in (9) sat-
isfies Z by construction, and recovers the optimal pol-
icy. However, attempting to learn a quadratic function

4

Inverse Optimization via Learning Feasible Regions

fθ(x, s) = x>Qθx + x>Aθs results in the linear policy
x(s) = Q−1

θ Aθs for any s ∈ (0, 1) while saturating at the
boundary for any s = 0 or s = 1, indicating that learning
a quadratic cost is indeed insufficient to capture the optimal
policy.

3.1. Reformulation for Linear Objective Functions

For the remainder of the paper, and without loss of gener-
ality, we make the assumption that we can express Aθ(s)
and bθ(s) as affine functions of s through Aθ(s) = A0 +
A1s1 + . . .+AKsK and bθ(s) = b0 +b1s1 + . . .+bKsK
where Ak ∈ Rn×p and bk ∈ Rn for k = 0, . . . ,K, i.e.,
θ = ({Ak, bk}Kk=0). The following theorem provides the
reformulation for the learning problem (3).

Theorem 3.3 (Exact reformulation). Let fθ(x, s) =
c(s)>x and gθ given in (7). The learning problems can
be reformulated as follows, using the predictability loss

min
1

N

N∑
i=1

‖γi‖

s.t.Ak ∈ Rn×p, bk ∈ Rn, ∀k ≤ K,
γi ∈ Rn, zi ∈ Rp, λi ∈ K∗
xi + γi = Aθ(si)zi + bθ(si)
Hzi − h ∈ K
c(si)

>Aθ(si)− λ>i H = 0
c(si)

>(xi + γi − bθ(si))− λ>i h ≤ 0

∀i ≤ N
(10a)

and using the suboptimality loss

min
1

N

N∑
i=1

‖(γf,i, γo,i)‖

s.t.Ak ∈ Rn×p, bk ∈ Rn, ∀k ≤ K,
γf,i, γo,i ∈ R+,γi ∈ Rn, zi ∈ Rp
xi + γi = Aθ(si)zi + bθ(si)
‖γi‖ ≤ γf,i
Hzi − h ∈ K,λi ∈ K∗
c(si)

>Aθ(si)− λ>i H = 0
c(si)

>(xi − bθ(si))− λ>i h ≤ γo,i

∀i ≤ N

(10b)

Both problems (10) share similar complexity in the sense
that the constraints are linear except for the bilinear term
Aθ(si)zi. The problem can be efficiently approximated
in practice by performing block coordinate descent (Bert-
sekas, 1999) on matrices {Ak}Kk=0 and vectors {zi}Ni=1

sequentially until convergence. The gradient descent-based
algorithm for the predictability loss in (10) is outlined in
Algorithm 1. A similar algorithm can be derived for the sub-
optimality loss. It updates {Ak}Kk=1 with gradient descent
and solves (10) to compute {zi}Ni=1 for fixed {Ak}Kk=1.
The gradient of the predictability loss (10) with respect to
{Ak}Kk=0 is as follows: For some (x, s), denote z∗ as the
optimal latent variables, β∗ as the optimal dual multipliers

of constraint x+ γ = Aθ(s)z+ bθ(s), and µ∗ as the opti-
mal dual multipliers of constraint c(s)>Aθ(s)+λ>H = 0.
The gradient of the loss function is

∂

∂Ak
`p
θ(x, s) = sk(c(s)µ∗>−β∗z∗>), ∀k = 0, . . . ,K ,

(11)
where s0 = 1. In practice, the step size η of the gradient
descent can by dynamically updated at each iteration by
performing backtracking such as Armijo’s rule or other
criteria.

Algorithm 1 Gradient descent based algorithm for (10) us-
ing predictability loss

1: Initialization: {A1
k}Kk=0, T , η, t = 1;

2: while t ≤ T do
3: Solve (10) and denote by {z∗i ,β∗i ,µ∗i)}Ni=1 the opti-

mal solution and dual multipliers.
4: At+1

k = At
k − η

∑N
i=1 sk(c(si)µ

>
i − β∗i z∗>i).

5: t = t+ 1.
6: end while

3.2. Adaptive Smoothing

One can inspect that the optimum of these programs (10) is
typically a nonsmooth function in the variable {Ak}Kk=0 due
to the inner optimization over the multiplicative decision
variable {zi}Ni=1. This observation motivates us to deploy
smoothing techniques (e.g., Nesterov’s smoothing (Nesterov
et al., 2018)) to improve our algorithm performance. With
this in mind, the next remark provides a connection between
the two optimization programs (10) (i.e., predictability vs
suboptimality loss), which intuitively sheds light on why the
suboptimality loss has often better numerical performance
from a computational viewpoint, see numerical experiments
in Table 1 and more details in Appendix H.2.

Remark 3.4 (Suboptimality loss as smoothed predictabil-
ity loss). Consider the suboptimality problem (10b). The
feasibility variable γf,i of (10b) coincides with Nesterov’s
smoothing counterpart (Nesterov, 2005) of the predictability
objective function in (10a) when the distance function is con-
sistent with the underlying norm in these programs with an
appropriate smoothness parameter. We refer to Appendix E
for the details to formalize this discussion.

Inspired by Remark 3.4, we define smoothed predictability
by relaxing the hard constraint involving {Ak}Kk=0 and pe-
nalizing them in the loss function. This is formally defined
in the next definition (suboptimality loss follows the same
logic and will be presented in Appendix E). For clarity, we
assume fθ(x, s) = c(s)>x and gθ as given in (7).

Definition 3.5 (Smoothed predictability loss). The ε-
smoothed counterpart of the predictability loss (10a) is de-

5

Inverse Optimization via Learning Feasible Regions

fined through the optimization program

min
1

N

n∑
i=1

‖γi‖+ ε1

n∑
i=1

‖γs1‖+ ε2

n∑
i=1

‖γs2‖

s.t.Ak ∈ Rn×p, bk ∈ Rn, ∀k = 1, . . . ,K,
γi ∈ Rn, zi ∈ Rp, λi ∈ K∗
xi + γi = Aθ(si)zi + bθ(si) + γs1
Hzi − h ∈ K
c(si)

>(xi + γi − bθ(si))− λ>i h ≤ 0
c(si)

>Aθ(si)− λ>i H + γs2 = 0

 ∀i ≤ N.
(12)

In order to optimize the smoothed losses (12), we choose to
adaptively increase the penalizing coefficients ε = (ε1, ε2).
This allows the magnitude of the slack variables γs1 and γs2
to diminish to zero, thus solving the original predictability
loss in (10). With this in mind, we present the final algorithm
in Algorithm 2.

Algorithm 2 Adaptive smoothing algorithm

1: Initialization: {A1
k}Kk=0, T , η, t = 1, ε1 and ε2 for

predictability loss;
2: while t ≤ T do
3: Solve (12) and denote by {z∗i ,β∗i ,µ∗i ,γ∗s1,γ∗s2}Ni=1

the optimal solution, dual multipliers, and smoothing
variables.

4: At+1
k = At

k − η
∑N
i=1 sk(c(si)µ

>
i − β∗i z∗>i).

5: Re-solve problem (12) to get new values of
{γ∗s1,γ∗s2}Ni=1

6: If the change in
∑N
i=1 ‖γs1∗‖ or

∑N
i=1 ‖γs2∗‖ is

small enough, increase the value of ε1or ε2.
7: t = t+ 1.
8: end while

We use simple updating rules for adjusting (ε1, ε2) in Algo-
rithm 2: The initial values are ε1 = ε2 = 1, and every time
the change in the values of

∑N
i=1 ‖γs1‖2 and

∑N
i=1 ‖γs2‖2

are less than 0.01/10(log2(ε1)+1), we multiply the parame-
ters ε1 and ε2 by 2.

The convergence property of Algorithms 1 and 2 is formally
summarized in the following proposition.

Proposition 3.6 (Convergence). Let θt = {At
k}Kk=0 where

{At
k}Kk=0 is the outcome of Algorithm 1 (Algorithm 2, re-

spectively) after t iterations with the Armijo rule step-
size, and {btk}Kk=0 be the solution of the proposed pre-
dictability or suboptimality loss function defined in (10)
(the smoothed version (27) in Section E.1 in the supplemen-
tary, respectively) when the matricesAk are set to the pro-
posed algorithm outcome. Then, the loss function value is
monotonically decreasing, i.e., for any pair (x, s) we have
`θt(x, s) ≥ `θt+1(x, s) ≥ 0, and hence, it convergences to
a finite nonnegative value (local optimal).

We illustrate the difference between Algorithms 1 and 2
through a noiseless example where the true hypothesis class
is covered by the primitive set. The final results are reported
in Table 1; see also Appendix H.2 for further related details.
It is worth mentioning that when using the vanilla gradient
decent Algorithm 1, the suboptimality loss has much bet-
ter performance (since it has better smoothness), whereas
leveraging the smooth counterpart of Algorithm 2 achieves
competitive performance with both loss functions (see also
Figure 5 for more details concerning the relevant statistics).

Table 1. Training loss of Algorithms 1 and 2 on different losses,
where the global optimal is zero.

loss Alg 1 Alg 2
Predictability 1.90± 0.36 (2.5± 7.2)× 10−4

Suboptimality 0.03± 0.05 (8.6± 2.1)× 10−4

3.3. Convex and Mixed-integer Reformulations

In this section, we discuss choices of gθ for which prob-
lems (10) can be cast as convex or mixed-integer programs
which can be solved using off-the-shelf solvers. Restricting
Aθ(s) = α ∈ R+, i.e., θ = (α, {bk}Kk=0) will achieve a
convex reformulation. This approximation only allows for
scaling and translation of the primitive set Z and does not
permit rotation or projection. The following proposition
provides the convex reformulation of the predictability loss.
The suboptimality loss can be reformulated in a similar way.

Proposition 3.7 (Tractable convex reformulation). Let
fθ(x, s) = c(s)>x and gθ defined in (7) with Aθ(s) =
α ∈ R+ and θ = (α, {bk}Kk=0). Then, the predictability
loss (10) can be reformulated as the convex optimization

min
1

N

N∑
i=1

‖γi‖

s.t. α ∈ R+, bk ∈ Rn, ∀k ≤ K,
γi ∈ Rn, ζi ∈ Rp, λi ∈ K∗
xi + γi = ζi + bθ(si)
Hζi − αh ∈ K
αc(si)

> − λ>i H = 0
c(si)

>(xi + γi − bθ(si))− λ>i h ≤ 0

∀i ≤ N.
(13)

The auxiliary variable ζ replaces αz in constraints x+γ =
αz + b(s) and Hαz − αh ∈ K, where the latter stems
from multiplying Hz − h ∈ K by α ∈ R+. Despite its
limitations, this choice of hypothesis class can enhance
computational efficiency for large-scale problems.

Restricting either z orAθ(s) to be binary, allows to refor-
mulate the bilinear term Aθ(s)z using linear inequalities
(McCormick inequalities) and formulating the problem as

6

Inverse Optimization via Learning Feasible Regions

a mixed-interger linear program. The application domain
will dictate which of the two will be binary, with two inter-
esting examples emerging. For the first, notice that setting
Zbin := Z ∩ {0, 1}p constitutes a restriction to the hypoth-
esis class. The next observation provides conditions under
which the restriction to the integer Z is done without loss
of optimality.

Observation 3.8 (Discrete vs. continuous primitive sets).
Let fθ(x, s) = c(s)>x and gθ given in (7) with Zbin =
{z ∈ {0, 1}p : e>z = 1}, and let θ∗ be the optimal
value of problem (10) using the predictability loss. If
c(s)>Aθ∗(s) is not parallel to any of the facets of the
simplex for all s, then the optimal value of the problem will
coincide with the optimal value of the predictability loss
problem (10) where Z = {z ∈ Rp+ : e>z = 1}.

For the second case, assume that gθ given in (7) with
Aθ(s) = A ∈ {−1, 0, 1}n×p and bθ(s) : Θ 7→ Rn for
all s. This choice of the hypothesis class can be useful for
learning equality constraints, for example, learning the phys-
ical links in a network where A dictates the connectivity
of the network. Notice that the number of binary variables
needed for the reformulation of the problem is independent
to the size of the dataset. We will see an example of this
hypothesis class used in Section 4.2 to learn the structure of
a power network.

4. Numerical Experiments
We apply our methods on an instance of a power system de-
scribed in (Bampou & Kuhn, 2011). Both problems have the
same forward problem, i.e., a network flow problem with
the following formulation. We consider a power system
consists of a set of regionsR = {1, · · · , 5} with electricity
demands sdemand

r , r ∈ R. Demands are satisfied by a set
N = {1, 2, 3} of power plans, where each plant n ∈ N
produces xn units of energy at costs scost

n . Regions are con-
nected by a setM = {1, · · · , 5} of directed transmission
lines. Each line m ∈ M has a capacity of f̄m units of
energy. A pictorial representation of the network is given in
Figure 3 (top).

The forward problem is formulated as follows where N (r)
denotes the set of generators in node r, withM+(r) and
M−(r) denoting the sets of incoming and outgoing flows
from node r, respectively.

min scost>x
s.t. xn ∈ R+, xn ≤ Cn, ∀n ∈ N ,

fm ∈ R, |fm| ≤ f̄m, ∀m ∈M,∑
n∈N (r) xn +

∑
m∈M+(r) fm

=
∑
m∈M−(r) fm + sdemand

r , ∀r ∈ R.

(14)

We set Cn = 3.5 for all n ∈ N and f̄m = 3.5 for all
m ∈ M. We generate Ntrain = 100 data points for train-

ing and Ntest = 200 data points for testing, by generating
signals uniformly at random from scost

1 ∈ [0.2, 1], scost
2 ∈

[0.2, 0.5], scost
3 ∈ [1, 2] and sdemand

1 ∈ [0.3, 1.5], sdemand
2 ∈

[0.36, 1.8], sdemand
3 ∈ [0.42, 2.1], sdemand

4 ∈ [0.48, 2.4] and
sdemand

5 ∈ [0.54, 2.7], and solving problem (14) to obtain
pairs {si,xi}N=100

i=1 . Notice that the flow decisions fm are
treated as lurking variables and are not observed.

4.1. Problem 1: Inferring Generation Policy without
Knowing Constraints

In the first experiment, we assume the decision-maker is
aware of the objective function of the forward problem but
lacks knowledge of the constraint’s structure. This scenario
intuitively represents a situation where decision-makers aim
to minimize total costs without being aware of any spe-
cific business rules. We compare four policies: (i) We
use the hypothesis (7) where Z is the unit simplex of di-
mension p ∈ {3, 6, 9} using the Adaptive Smoothing Al-
gorithm 2 with a limit of 3000 iterations, (ii) we use the
convex formulation discussed in Section 3.3 using the unit
simplex of dimension p = 3, (iii) we compare against
the linear policy induced by learning the quadratic func-
tion fθ(x, s) = x>Qθx+ x>Aθs, see Example 3.2, and
(iv) we use the hypothesis (7) where Z is the unit sim-
plex of dimension p ∈ {3, 6, 9} and solve problems (10)
using the non-convex quadratic solver of Gurobi v11.0.3
with a time limit of 1800 seconds. We note that pol-
icy (iii) will coincide with the linear regression policy
minθ∈Θ

∑Ntrain
i=1 ‖xi − (Aθ(si)− bθ(si))‖22 since the con-

straints of the problem are assumed unknown. For all meth-
ods, we solve both the corresponding predictability and sub-
optimality loss problems. Table 2 shows the out-of-sample
performance of each method using the predictability `p

θ and
suboptimality `sub

θ losses, as well as the true predictability `p

and suboptimality `sub losses. As discussed in Section 2.2,
by definition `p

θ = `p. We observe the following: (i) The
convex formulation is the most computationally efficient but
may yield lower quality solutions compared to other meth-
ods. (ii) Learning a quadratic cost is significantly inferior to
other methods. (iii) Increasing the dimension p of the unit
simplex enhances the hypothesis class flexibility, improving
out-of-sample performance for both the predictability and
suboptimality loss. (iv) Algorithm 2 performs significantly
better compared to using Gurobi in almost all cases, par-
ticularly the most complex ones. We further investigate
the performance of the proposed approach using the larger
IEEE 14-bus system (Leon et al., 2020). The results are
presented in Appendix F.

4.2. Problem 2: Learning Power Network Structures

In the second experiment, we assume the decision-maker
knows the capacity constraints and demand locations but

7

Inverse Optimization via Learning Feasible Regions

Table 2. Summary of out-of-sample performances.

Hypothesis Class and Loss Evaluation method
loss `pθ/`

p `sub
θ `sub time

Alg 2, p = 3
predict. 3.20 0.17 0.83 569.0s
subopt. 5.50 0.18 2.45 430.8s

Alg 2, p = 6
predict. 1.91 0.05 0.51 1159.6s
subopt. 1.50 0.03 0.42 754.1s

Alg 2, p = 9
predict. 1.58 0.05 0.69 591.7s
subopt. 1.61 0.04 0.50 590.6s

Convex, p = 3
predict. 3.36 2.07 0.34 0.31s
subopt. 10.75 0.31 7.72 0.15s

quadratic cost predict. 2.58 2.56 0.63 2.54s

Gurobi p = 3
predict. 6.32 4.44 0.49 1800s
subopt. 3.36 0.05 1.30 1800s

Gurobi p = 6
predict. 6.54 4.31 0.76 1800s
subopt. 7.76 0.15 4.96 1800s

Gurobi p = 9
predict. 6.66 4.25 0.77 1800s
subopt. 11.00 4.63 5.19 1800s

is unaware of the transmission line positions. The goal is
to recover the network structure using inverse optimization,
in effect learning the last constraint of problem (14). In a
network with 5 nodes, there are 10 possible transmission
line connections, and we aim to identify the configuration
that best fits the data. Using the same experimental setup as
the previous example, we treat the flow decisions as latent
variables. Leveraging the structure of (7), we can re-express
the policy x(s) = Aθ(s)z(s) + bθ(s), z(s) ∈ Z as the
following 5 constraints, each corresponding to a node in the
network

x̂(s) = Az(s) + sdemand, z(s) ∈ Z = [−f̄m, f̄m]10,

where x̂(s) = [x1(s), 0, x2(s), 0, x3(s)]> denotes the in-
jection of energy at in the network. Notice that generators
exist in nodes 1, 3 and 5, see Figure 3 (top). The decision
matrixA ∈ {0, 1}5×10 controls the connectivity of the net-
work, e.g., if A1,2 = 1, transmission line 2 emanates from
node 1. Note thatA is subject to additional constraints to en-
sure that there are only C2

5 = 10 potential line connections.
The auxiliary vector z(s) represents the energy flow in the
transmission lines. Therefore, we define the primitive set
as a hyper-rectangle Z = [−f̄m, f̄m]10, which mirrors the
transmission capacities. Since we assume that the locations
of the generators are known, the given matrix G dictates
their position in the system. The inverse optimization prob-
lem is presented in Appendix G and optimizes over matrices
A . As discussed in Section 3.3, the problem can be cast as a
mixed-integer linear program for both the predictability and
suboptimality losses. Both approaches achieved zero loss
indicating that the recovered problem is able to exactly de-
scribe the training data. The recovered network is presented
in Figure 3 (bottom) in the appendix. It is interesting to
note that the two networks have different transmission line
configuration, with the recovered network having 4 lines
instead of 5 that the original network has. Nevertheless,

Figure 3. Top: Power network topology used in the forward prob-
lem in Section 4. Bottom: Recovered network from inverse opti-
mization in Section 4.2.

even with 4 lines, the recovered problem is able exactly
match the observed data and achieve zero loss. Finally, we
compare our approach with the state-of-the-art method for
learning problem constraints proposed by (Aswani et al.,
2018), which also utilizes predictability loss. Their method
involves enumerating all potential solutions, assessing the
loss for each configuration. It is worth noting that there are
10 potential line connections, each of which can either be
absent or present, resulting in 210 configurations. We esti-
mated that evaluating each configuration takes on average
of 2.64 seconds, thus enumerating all possibilities would
take approximately 2.64×210 seconds to find the global op-
timum. In contrast, our proposed method solves the training
problem in just 23.5 seconds.

5. Limitations and Future Work
In closing, we acknowledge several limitations: (i) Our
method supports only known linear objectives, excluding
more complex structures like quadratic objectives which
will be interesting to examine further. However, as shown
in Example 3.2, the proposed approach does creates com-
plex policy structures, unlike the linear policy induced from
learning a quadratic objective. (ii) It is worth exploring
further cases where the hypothesis class leads to convex
and MILP formulations (similar to Section 3.3), reducing
reliance on local search algorithms. (iii) Our hypothesis
class induces a non-trivial relationship between the choice

8

Inverse Optimization via Learning Feasible Regions

of the primitive set and resulting policy behavior. Future
work will focus on understanding the impact of the primitive
set on the policies it generates, akin to the choice of basis
functions in classical linear regression.

Acknowledgements
This work was partly supported by the European Research
Council (ERC) project TRUST-949796.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ajayi, T., Lee, T., and Schaefer, A. J. Objective selection

for cancer treatment: An inverse optimization approach.
Operations Research, 70(3):1717–1738, 2022.

Akhtar, S. A., Kolarijani, A. S., and Mohajerin Esfahani, P.
Learning for control: An inverse optimization approach.
IEEE Control Systems Letters, 6:187–192, 2021.

Aswani, A., Shen, Z.-J., and Siddiq, A. Inverse optimization
with noisy data. Operations Research, 66(3):870–892,
2018.

Ayer, T. Inverse optimization for assessing emerging tech-
nologies in breast cancer screening. Annals of Operations
Research, 230:57–85, 2015.

Bampou, D. and Kuhn, D. Scenario-free stochastic pro-
gramming with polynomial decision rules. In 2011 50th
IEEE Conference on Decision and Control and European
Control Conference, pp. 7806–7812, 2011.

Bärmann, A., Pokutta, S., and Schneider, O. Emulating
the expert: inverse optimization through online learning.
In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 400–410, 2017.

Bertsekas, D. Convex optimization algorithms. Athena
Scientific, 2015.

Bertsekas, D. P. Nonlinear programming. Athena Scientific
Optimization and Computation Series. Athena Scientific,
Belmont, MA, second edition, 1999.

Bertsimas, D., Gupta, V., and Paschalidis, I. C. Data-
driven estimation in equilibrium using inverse optimiza-
tion. Mathematical Programming, 153:595–633, 2015.

Chan, T. C. and Kaw, N. Inverse optimization for the re-
covery of constraint parameters. European Journal of
Operational Research, 282(2):415–427, 2020.

Chen, L., Chen, Y., and Langevin, A. An inverse optimiza-
tion approach for a capacitated vehicle routing problem.
European Journal of Operational Research, 295(3):1087–
1098, 2021.

Dempe, S. and Lohse, S. Inverse linear programming. In
Recent Advances in Optimization, pp. 19–28. Springer,
2006.

Dimanidis, I., Ok, T., and Mohajerin Esfahani, P. Offline
reinforcement learning via inverse optimization. preprint
available at arXiv:2502.20030, 2025.

Dong, C., Chen, Y., and Zeng, B. Generalized inverse
optimization through online learning. Advances in Neural
Information Processing Systems, 31, 2018.

Elmachtoub, A. N. and Grigas, P. Smart “predict, then
optimize”. Management Science, 68(1):9–26, 2022.

Ghobadi, K. and Mahmoudzadeh, H. Inferring linear feasi-
ble regions using inverse optimization. European Journal
of Operational Research, 2020.

Güler, c. and Hamacher, H. W. Capacity inverse minimum
cost flow problem. Journal of Combinatorial Optimiza-
tion, 19(1):43–59, 2010.

Keshavarz, A., Wang, Y., and Boyd, S. Imputing a convex
objective function. In 2011 IEEE international sympo-
sium on intelligent control, pp. 613–619, 2011.

Leon, L. M., Bretas, A. S., and Rivera, S. Quadratically con-
strained quadratic programming formulation of contin-
gency constrained optimal power flow with photovoltaic
generation. Energies, 13(13):3310, 2020.

Li, J. Y.-M. Inverse optimization of convex risk functions.
Management Science, 67(11):7113–7141, 2021.

Lu, T., Wang, Z., Wang, J., Ai, Q., and Wang, C. A data-
driven stackelberg market strategy for demand response-
enabled distribution systems. IEEE Transactions on
Smart Grid, 10(3):2345–2357, 2018.

Mohajerin Esfahani, P., Shafieezadeh-Abadeh, S., Hana-
susanto, G. A., and Kuhn, D. Data-driven inverse op-
timization with imperfect information. Mathematical
Programming, 167:191–234, 2018.

Nesterov, Y. Smooth minimization of non-smooth functions.
Mathematical programming, 103:127–152, 2005.

Nesterov, Y. et al. Lectures on Convex Optimization, volume
137. Springer, 2018.

9

Inverse Optimization via Learning Feasible Regions

Saez-Gallego, J., Morales, J. M., Zugno, M., and Madsen,
H. A data-driven bidding model for a cluster of price-
responsive consumers of electricity. IEEE Transactions
on Power Systems, 31(6):5001–5011, 2016.

Tan, Y., Terekhov, D., and Delong, A. Learning linear
programs from optimal decisions. Advances in Neural
Information Processing Systems, 33:19738–19749, 2020.

Xu, Z., Deng, T., Hu, Z., Song, Y., and Wang, J. Data-driven
pricing strategy for demand-side resource aggregators.
IEEE Transactions on Smart Grid, 9(1):57–66, 2016.

Zattoni Scroccaro, P., Atasoy, B., and Mohajerin Esfahani,
P. Learning in inverse optimization: Incenter cost, aug-
mented suboptimality loss, and algorithms. Operations
Research, 2024.

Zattoni Scroccaro, P., van Beek, P., Mohajerin Esfahani, P.,
and Atasoy, B. Inverse optimization for routing problems.
Transportation Science, 59(2):301–321, 2025.

Zhang, J. and Paschalidis, I. C. Data-driven estimation of
travel latency cost functions via inverse optimization in
multi-class transportation networks. In 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), pp.
6295–6300, 2017.

10

Inverse Optimization via Learning Feasible Regions

A. Proof of Proposition 2.1
Proof. We first prove the statement for the predictabilily loss. Assume that there exists θ ∈ Θ and (x, s) in the training
dataset such that `p

θ(x, s) = 0. This implies that there exists γ = 0 since the objective of the predictability loss in (5) is
‖γ‖. Thus, the constraints are satisfied with gθ(x, s) ≤ 0 which implies that x is feasible in (2). Moreover, by construction
it implies that

fθ(x, s) ≥

[
min
y∈Rn

fθ(y, s)

s.t. gθ(y, s) ≤ 0

]
. (15)

In addition, since γ = 0 it implies that Jθ(x, s) ≤ 0, which combined with (15) imply that indeed x is an optimizer of (2).

To prove the reverse implication, consider any optimal x from (2). Since x is feasible and optimal in (2) it implies that
γ = 0 is feasible in (5). Moreover, since the objective function in (5) is ‖γ‖, there does not exist another γ ∈ Rn that
achieves a lower objective, thus γ = 0 is also optimal, hence `p

θ(x, s) = 0, which concludes the proof. The proof for the
suboptimality loss follows similar arguments.

B. Proof of Theorem 3.3
The proof of Theorem 3.3 can be obtained from the following lemma.

Lemma B.1. Let fθ(x, s) = c(s)>x. The constraints of the predictability loss in (5) can be reformulated as follows

gθ(x+ γ, s) ≤ 0 ⇐⇒
{
∃z ∈ Z
x+ γ = Aθ(s)z + bθ(s)

Jθ(x+ γ, s) ≤ 0 ⇐⇒

∃λ ∈ K∗
c(s)>(x+ γ − bθ(s))− λ>h ≤ 0
c(s)>Aθ(s)− λ>H = 0

(16a)

and the constraints of the suboptimality loss in (5) can be reformulated as follows

gθ(x, s) ≤ γf ⇐⇒

 ∃z ∈ Z, γ ∈ Rn
x+ γ = Aθ(s)z + bθ(s)
‖γ‖ ≤ γf

Jθ(x, s) ≤ γo ⇐⇒

∃λ ∈ K∗
c(s)>(x− bθ(s))− λ>h ≤ γo
c(s)>Aθ(s)− λ>H = 0

(16b)

where the norm used is the same as in the definition of gθ.

Proof. Recall that the definition of gθ(x, s) is

gθ(x, s) = min
z∈Z
‖x−Aθ(s)z − bθ(s)‖. (17a)

The function uses a latent variable z, which resides in the predetermined conic primitive set

Z = {z ∈ Rp : Hz − h ∈ K} (17b)

Plug the above definition into gθ(x+ γ, s) ≤ 0 gives:

∃z ∈ Z, γ ∈ Rn

x+ γ = Aθ(s)z + bθ(s).

The reformulation of Jθ is done via the dualization.

Jθ(x+ γ, s) ≤ 0

11

Inverse Optimization via Learning Feasible Regions

is equivalent to

c(s)>(x+ γ)−

min c(s)>y
s.t. y ∈ Rn,

y = Aθ(s)z + bθ(s)
Hz − h ∈ K, γ ∈ Rn

 ≤ 0

After dualizing the second term, we obtain:

c(s)>(x+ γ)− c(s)>bθ − λ>h ≤ 0 (18)

c(s)>Aθ(s)− λ>H = 0 (19)

The proof of suboptimality follows the same procedure.

C. Proof of Proposition 3.6
Proof. The proof for both Algorithms 1 and 2 follows the same arguments. First, note that the monotonicity of the proposed
algorithms’ outcome is a straightforward consequence of its coordinate descent nature; see (Bertsekas, 2015, Section 6.5)
for similar techniques. More specifically, a classical result of gradient decent algorithms with several popular stepsizes,
including the Armijo rule used in this work, ensures that the desired loss function is monotonically decreasing over the
iterations (Bertsekas, 2015, Section 2.1). This observation of the gradient descent over the coordinateA of θ , along with
solving the convex optimization in (10) over the coordinate b and the fact that the loss function is uniformly nonnegative
(bounded from below), concludes that the loss function remains monotonically non-increasing across the iterations.

D. MILP formulation and Proposition D.1
Proposition D.1 (MILP reformuation). Let fθ(x, s) = c(s)>x and gθ given in (7) with Z = {z ∈ {0, 1}p : e>z = 1}.
The predictability loss in (5) can be reformulated as

min ‖γ‖
s.t. γ ∈ Rn, z ∈ {0, 1}p, λ ∈ R

x+ γ = Aθ(s)z + b(s)
e>z = 1
c(s)>(x+ γ)− c(s)>b(s) + λ ≤ 0
c(s)>Aθ(s) + λe> = 0

(20)

Proof. The predictability loss with fθ(x, s) = c(s)>x and gθ given in (7) with Z = {z ∈ Rp+ : e>z = 1} can be written
as

min ‖γ‖
s.t. γ ∈ Rn, z ∈ Rp+

x+ γ = A(s)z + b(s), e>z = 1

c(s)>(x+ γ) ≤

min c(s)>y
s.t. y ∈ Rn, z ∈ Rp+

y = A(s)z + b(s)
e>z = 1

(21)

It is clear that the optimal value of (20) constitutes an upper bound on the optimal value of (21) since z ∈ {0, 1}p is a
restriction to z ∈ Rp+. Let γ∗ be an optimal solution of problem (21). We next show that γ∗ is feasible in (20) which will
conclude the proof.

From problem (21), since x+ γ∗ is a feasible solution in x+ γ∗ = A(s)z+ b(s), e>z = 1, it implies that x+ γ∗ is also
feasible in

Vθ(s) = min c(s)>y
s.t. y ∈ Rn, z ∈ Rp+

y = A(s)z + b(s)
e>z = 1

(22)

12

Inverse Optimization via Learning Feasible Regions

The last constraint in (21) also implies that x+ γ∗ is optimal in (22). Additionally, notice that since (22) is a linear program
and c(s)>A(s) is not parallel to any of the facets of the simplex, there exists a unique corner point in the simplex e>z = 1,
i.e., z′ ∈ {0, 1}p, such that y = A(s)z′ + b(s) achieves the optimal value. Hence, constraint c(s)>(x + γ) ≤ Vθ(s)
ensures that only z′ is feasible, thus x+ γ∗ is feasible in problem (21), which concludes the proof.

E. Smoothing
Despite that both the predictability and suboptimality loss are non-convex for the hypothesis class gθ given in (7) with and
arbitrary choice of Z , Algorithm 1 tends to be trapped in local minima much more often for the predictability than the
suboptimality loss. In this section, we explain this fact by showing that suboptimality loss can be viewed as a smoothed
version of predictability loss in the sense of the so-called Nesterov’s smoothing. Inspired by this technique, we propose an
adaptive smoothing algorithm to potentially escape the local optimum, hence improving the performance.

Definition E.1 (Nesterov’s smoothing (Nesterov et al., 2018)). Consider the function in the form of J(x) = maxy∈Y〈Ax+
b,y〉 − φ(y) where φ is a convex function. We define the smooth counterpart of fε as

Jε(x) := max
y∈Y
〈Ax+ b,y〉 − φ(y)− εd(y),

where ε > 0 is the smoothing parameter, and d(y) is called a prox function that (i) is continuous and 1-strongly convex
on Y and (ii) miny∈Y d(y) = 0. Then, Jε(x) is 1/ε-smooth (i.e., its gradient ∇Jε(x) is 1/ε-Lipschitz continuous), and
Jε(x) ≤ J(x) ≤ Jε(x) + ε/2 for all x ∈ Y .

Suboptimality loss as smoothed predictability loss.

Considering the optimization problems (10), we define βi as the dual multiplier of the equality constraints xi + γi =
Aθ(si)zi + bθ(si), and the respective penalization Lagrangian function

J(θ,Z) := max
βi

n∑
i=1

β>i
(
xi + γi −Aθ(si)zi − bθ(si)

)
where Z = {γi, zi}i≤N . (23)

Dualizing this linear constraint in the predictability loss program (10a) reformulates the program to

min
1

N

N∑
i=1

‖γi‖+ J(θ,Z)

s.t.Ak ∈ Rn×p, bk ∈ Rn, ∀k ≤ K,
γi ∈ Rn, zi ∈ Rp, λi ∈ K∗
Hzi − h ∈ K
c(si)

>Aθ(si)− λ>i H = 0
c(si)

>(xi + γi − bθ(si))− λ>i h ≤ 0

∀i ≤ N
(24)

Considering the prox function d(β) = 1
2‖β + γi/ε‖2, the smoothed version of the function J is

Jε(θ,Z) =

N∑
i=1

1

2ε
‖xi −Aθ(si)zi − bθ(si)‖2 −

1

2ε
‖γ2

i ‖. (25)

Replacing the above smoothed term in the predictability loss (24) yields the objective function

N∑
i=1

1

2ε
‖xi −Aθ(si)zi − bθ(si)‖2 +

(
1

N
− 1

2ε

)
‖γi‖. (26)

If the smoothing level is ε = N/2, and the norm in the objective (10b) is separable (i.e., ‖(γf,i, γo,i)‖ = |γf,i| + |γo,i|),
one can then see that the second term in (26) is cancelled and the first term coincides with the optimal solution γf,i in
the objective of the suboptimality loss in (10b). In other words, the variable penalizing the feasibility of each data point
effectively is a smoothed version of the corresponding term in the predictability loss.

13

Inverse Optimization via Learning Feasible Regions

E.1. Adaptive smoothing

We presented the complete version with suboptimality loss in the following.

Definition E.2. Inspired by the results above , we define smoothed predictability and suboptimality loss in the following.
Again, for clarity, we assume fθ(x, s) = c(s)>x and gθ given in (7). The learning problem using the predictability loss
can be reformulated as follows

min
1

N

n∑
i=1

‖γi‖+ ε1

n∑
i=1

‖γs1‖+ ε2

n∑
i=1

‖γs2‖

s.t. Ak ∈ Rn×p, bk ∈ Rn, ∀k = 1, . . . ,K,
γi ∈ Rn, zi ∈ Rp, λi ∈ K∗
xi + γi = Aθ(si)zi + bθ(si) + γs1
Hzi − h ∈ K
c(si)

>(xi + γi − bθ(si))− λ>i h ≤ 0
c(si)

>Aθ(si)− λ>i H + γs2 = 0

∀i ≤ N
(27a)

while the learning problem using the suboptimality loss can be reformulated as follows

min
1

N

n∑
i=1

‖(γf,i, γo,i)‖+ ε1

n∑
i=1

‖γs1‖

s.t. Ak ∈ Rn×p, bk ∈ Rn, ∀k = 1, . . . ,K,
γf,i, γo,i ∈ R+

γi ∈ Rn, zi ∈ Rp, λi ∈ K∗
xi + γi = Aθ(si)zi + bθ(si)
‖γi‖ ≤ γf,i
Hzi − h ∈ K
c(si)

>(xi − bθ(si))− λ>i h ≤ γo,i
c(si)

>Aθ(si)− λ>i H + γs1 = 0

∀i ≤ N

(27b)

E.2. Convergence behavior of adaptive smoothing

In this section, we study the convergence behavior of Algorithm 2 using the experiment setting described in Section H.2.
We plot the values of training loss and the four metrics defined in 2.2 to validate that the proposed method improves the
performance of the solution. The plots are shown in Figure 4, where the training loss increases as more regularization is
added to the optimization. However, the true losses keep decreasing implying better optimal solutions are being found each
time.

Finally, it is worth noting that utilizing the algorithm without smoothing leads to inconsistent outcomes, particularly
concerning predictability losses. Conversely, employing an adaptive smoothing algorithm here ensures consistent results are
obtained. We record this behavior via an example in Figure 5. The experiment settings follow the descriptions introduced in
Appendix H.2, where p = 5.

F. Problem 1: IEEE 14-Bus System
We also apply our methods on IEEE 14-bus system. This power system consists of a set of regionsR = {1, · · · , 14} with
electricity demands sdemand

r , r ∈ R. Demands are satisfied by a set three power plans attached to node 2, node 8, and node
13 respectively. Each plant n ∈ N produces xn units of energy at costs scost

n .

We set Cn = 3.6 for all generators and f̄m = 3 for all transmission lines. We generate Ntrain = 100 data points
for training and Ntest = 200 data points for testing, by generating signals uniformly at random from scost

13 ∈ [0.2, 1],
scost

2 ∈ [0.2, 0.5], scost
8 ∈ [1, 2], and sdemand

1 ∈ [0.14, 0.7], sdemand
2 ∈ [0.14, 0.7], sdemand

3 ∈ [0.16, 0.8], sdemand
4 ∈ [0.16, 0.8],

sdemand
5 ∈ [0.14, 0.7], sdemand

6 ∈ [0.1, 0.5], sdemand
7 ∈ [0.16, 0.8], sdemand

8 ∈ [0.54, 2.7], sdemand
9 ∈ [0.1, 0.2], sdemand

10 ∈
[0.12, 0.6], sdemand

11 ∈ [0.12, 0.6], sdemand
12 ∈ [0.1, 0.5], sdemand

13 ∈ [0.1, 0.5], and sdemand
14 ∈ [0.12, 0.6], solving problem (14) to

obtain pairs {si,xi}N=100
i=1 .

We apply the same method introduced in Section 4.1 and summarize the results in Table 3.

14

Inverse Optimization via Learning Feasible Regions

Figure 4. Training loss and test metrics. Blue: Training
loss (predictability). Red: Out-of-sample predictability loss.
Cyan: True predictability loss. Green: True suboptimality
loss. Yellow: Out-of-sample suboptimality loss.

Figure 5. Comparison between convergence behaviors of pre-
dictability and suboptimality losses via both Algorithm 1 and
2. The y-axis represents the achieved training loss. Each box
plot is based on the same 10 randomly generated datasets.

Figure 6. IEEE 14-bus system (Leon et al., 2020). Rectangles denote nodes, arrows denote loads, and circles denotes generators.

Table 3. Summary of out-of-sample performances on IEEE 14-bus system
Hypothesis Class and Loss Evaluation method

loss `pθ/`
p `sub

θ `sub time
Algo 2, p = 1 predictability 0.83 0.68 0.12 3.5s
Algo 2, p = 2 predictability 0.43 0.06 0.20 148.8s
Algo 2, p = 3 predictability 0.51 0.06 0.24 157.8s
quadratic cost predictability 2.58 2.56 0.63 2.54s

15

Inverse Optimization via Learning Feasible Regions

G. Reformulation of Problem 2
Recall that the primitive set is chosen as a box, i.e., Z = {z ∈ RM | − f̄m ≤ zm ≤ f̄m,∀m ∈ M}, where M =
{1, · · · , |R| = 5} (|R| is the total number of the demand locations). For the hypothesis class, we useAθ ∈ {0, 1}5×10 and
bθ = δ. Matrix Aθ are binary matrices indicating the connections of power networks (C2

5 = 10 power lines at most). We
useGx− g ∈ G to denote the capacity constraints of the power plants. For clarity, we denote the power generation plan
and costs by two 5-dimensional vectors x and c. Each dimension corresponds to one node in the graph. For nodes that have
no power plant, we simply set its value to zero. Then, the forward problem can be written as:

min
x

c>x

s.t. x = Aθz + sdemand,

Hz − h ∈ K, (equivalently Z = {z ∈ RM | − f̄m ≤ zm ≤ f̄m,∀m ∈M})
Gx− g ∈ G, (equivalently 0 ≤ x ≤ 3.5).

(28)

Then, the predictability loss can be formulated as a binary problem as shown in (29).

min
γi,zi,Aθ,βi,λi

1

n

N∑
i=1

‖γi‖22

s.t. xi + γi = Aθzi + sdemand
i ,∀i,

Hzi − h ∈ K,∀i,
G(xi + γi)− g ∈ G,∀i,
c>i (si)(xi + γi)− c>(si)s

demand
i − λ>i h+ β>i g − β>i Gsdemand

i ≤ 0,∀i,
λi ∈ K∗,βi ∈ G∗,∀i,
c>i Aθ − λ>i H − β>i GAθ = 0,∀i,
Aθ ∈ {0, 1}5×10.

(29)

H. Further Numerical Experiments
In this section, we conduct experiments on synthetic optimization problems to validate the proposed reformulations under
both noiseless and noisy scenarios. We consider the following forward problem.

min
x

c>x, s.t. ‖x− e‖1 ≤ h. (30)

We assume the objective coefficients c are input signals, which follow uniform distributions. The goal is to recover the
feasible region based on the observed values of c and x. Notice that choices of distance metrics of the objective functions
for both predictability and suboptimality loss do not affect any of the reformulations or algorithms proposed. Throughout
the subsequent experiments, square loss will be employed for the sake of simplicity.

H.1. Convex Reformulations

In this part, we assume ci ∼ U [−1, 1], 1 ≤ i ≤ n = 2, and we set tje primitive set: Z = {z ∈ R2
∣∣‖z‖1 ≤ 1} in the

hypothesis class. For the training data, we randomly generate N cost coefficients and calculate the corresponding optimal
solutions of the forward problem. Experiments under noise or no noise are both conducted. If the training set contains noise,
we add a Gaussian noise N(0, 0.2) to each of its dimensions. The performance is evaluated based on a test set that also
contains 500 randomly generated coefficients and solutions.

When there is no noise, we achieved zero loss for all metrics. The performance summary for the noisy case is summarized
in Table 4. It can be seen that the performance for predictability loss improves with the increasing number of training data
under i.i.d. noises. This phenomenon arises due to the statistically consistent nature of estimates generated by predictability
loss, as also highlighted in (Aswani et al., 2018).

16

Inverse Optimization via Learning Feasible Regions

Table 4. Out-of-sample Performance of Convex formulation with Gaussian noise.
loss `pθ `p `sub

θ `sub

N = 100
predictability 0.54 0.03 0.29 0.05
suboptimality 0.66 0.14 0.35 0.28

N = 500
predictability 0.52 1.7e−3 0.31 3.3e−3

suboptimality 0.61 0.09 0.34 0.17

N = 1000
predictability 0.51 0 0.32 0
suboptimality 0.59 0.07 0.34 0.13

H.2. Bilinear Reformulations with Simplex Primitive Set

In this section, we showcase the performance of our bilinear reformulation, where the primitive set is defined in a high-
dimensional space. More specifically, we assume , i.e, ci ∼ U [0, 1], 1 ≤ i ≤ n = 5, and we consider the following simplex
Z =

{
z > 0

∣∣ ∑p
i=1 zi = 1

}
in a p-dimensional space as the primitive set. For this bilinear reformulation, we can both

apply Algorithm 2 or MILP reformulation to find the optimal solutions.

Experiment setting: We randomly generate N cost coefficients and calculate the corresponding optimal solutions. We
consider both predictability loss and suboptimality loss. We use backtracking to adjust the step length according to the
Armijo rule.

We first apply Algorithm 2 to optimize the predictability and suboptimality loss. The optimization is stopped after 500
iterations. We record the performance of the proposed two losses under noiseless and noisy scenarios. For noisy cases, a
Gaussian noise N(0, 0.2) is added to each of the dimensions of the original solutions. We also vary the number of observed
samples under noisy cases to check the changes in performances. In noiseless cases, we also apply MILP reformulation to
obtain the optimal solutions.

Table 5. Noiseless
n=5 N=100 train `pθ `p `sub

θ `sub time

p = 4
Predictability 0.32 1.04 1.04 0.44 0.10 174.6s
Suboptimality 0.33 1.04 1.04 0.44 0.10 48.3s

MILP 0.25 0.99 0.99 0.45 0.07 901.2s

p = 5
Predictability 0 0 0 0 0 49s
Suboptimality 0 0 0 0 0 52.3s

MILP 0 0 0 0 0 902.7s

p = 6
Predictability 0 0 0 0 0 21.6s
Suboptimality 0 0 0 0 0 42.3s

MILP 0 0 0 0 0 543.5s

Table 6. Noisy case with 100 training samples.
n = 5 N = 100 train `pθ `p `sub

θ `sub time

p = 4
Predictability 0.52 1.17 0.97 0.60 0.10 87.4s
Suboptimality 0.43 1.42 1.22 0.57 0.91 85.0s

p = 5
Predictability 0.14 0.42 0.24 0.18 0.11 110.9s
Suboptimality 0.11 0.68 0.49 0.14 0.84 101.2s

p = 6
Predictability 0.13 0.50 0.31 0.19 0.07 131.0s
Suboptimality 0.11 0.65 0.46 0.14 0.72 121.9s

Table 7. Noisy case with 200 training samples.
n = 5 N = 200 train `pθ `p `sub

θ `sub time

p = 4
Predictability 0.52 1.17 0.97 0.58 0.10 170.4s
Suboptimality 0.44 1.46 1.26 0.56 0.97 208.3s

p = 5
Predictability 0.16 0.37 0.18 0.17 0.05 259.2s
Suboptimality 0.11 0.78 0.58 0.14 0.89 222.4s

p = 6
Predictability 0.14 0.37 0.19 0.16 0.10 257.2s
Suboptimality 0.11 0.74 0.54 0.13 0.84 236.2s

17

Inverse Optimization via Learning Feasible Regions

Results. The results are summarized in Table 5, 6, and 7. In scenarios without noise, the forward problem is accurately
restored when the hypothesis class encompasses the true feasible region. In such instances, this requirement is equivalent to
having p ≥ 5 since the original feasible region comprises five extreme points. In noisy scenarios, we noticed enhanced
performance with an enlarged sample size for predictability loss, with no corresponding improvement observed for
suboptimality loss. It was also noted that the MILP reformulation exhibited superior overall performance in contrast
to the gradient-descent-based algorithm. Nonetheless, in instances characterized by noise, the inherent complexity of
MILP formulations renders them challenging (number of binary variables proportional to data size) to resolve within a
one-hour timeframe. Finally, a visual representation of feasible region gθt(x, s) ≤ 0 as the parameters θt are updated using
Algorithm 2 is presented in Figure 7 for the noiseless case. We observe that the hypothesis class is able to rotate, scale,
project and translate the primitive set by updating θt = (At, bt).

Figure 7. Visualization of gθt(x, s) ≤ 0 for Algorithm 2. The feasible region of the forward problem is given by ‖x− e‖ ≤ 1, and the
learning algorithm recovers it by iteration 200.

18

