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Abstract

Cyber-physical systems (CPS) designed in simulators behave differently in the real-world.
Once they are deployed in the real-world, we would hence like to predict system failures during
runtime. We propose robust predictive runtime verification (RPRV) algorithms under signal
temporal logic (STL) tasks for general stochastic CPS. The RPRV problem faces several chal-
lenges: (1) there may not be sufficient data of the behavior of the deployed CPS, (2) predictive
models are based on a distribution over system trajectories encountered during the design phase,
i.e., there may be a distribution shift during deployment. To address these challenges, we assume
to know an upper bound on the statistical distance (in terms of an f-divergence) between the dis-
tributions at deployment and design time, and we utilize techniques based on robust conformal
prediction. Motivated by our results in [1], we construct an accurate and an interpretable RPRV
algorithm. We use a trajectory prediction model to estimate the system behavior at runtime
and robust conformal prediction to obtain probabilistic guarantees by accounting for distribu-
tion shifts. We precisely quantify the relationship between calibration data, desired confidence,
and permissible distribution shift. To the best of our knowledge, these are the first statistically
valid algorithms under distribution shift in this setting. We empirically validate our algorithms
on a Franka manipulator within the NVIDIA Isaac sim environment.

Index terms— Predictive runtime verification, stochastic system verification, signal temporal
logic, conformal prediction.

1 Introduction

Cyber-physical Systems (CPS) operate in highly unpredictable environments and often have intrinsic
and extrinsic sources of stochasticity that affect their dynamic behavior. Many such CPSs can be
modeled simply as a distribution D over the space of system trajectories. In this paper, we are
interested in the predictive runtime verification of such a stochastic CPS against a specification ¢
expressed in signal temporal logic (STL). In other words, during the operation of the system we
would like to compute the probability that the system will satisfy (or violate) the specification ¢
using the already observed part of the system trajectory. System verification using formal languages
is of great interest for the safe design of many CPS applications, e.g., the responsibility sensitive
safety model can be encoded in STL for verification of safe behaviors in autonomous vehicles |2].
The use of high-fidelity models and simulators has resulted in statistical and data-driven paradigms

for the design, analysis, and test of many CPS. While previous approaches have formulated algo-
rithms for predictive runtime monitoring of CPSs |1}3], the guarantees that these approaches provide
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Figure 1: Left: A robotic arm manipulating a box in the presence of a human. Right: The robotic
arm performing the same task when the human behavior and the package location changed. We
propose predictive robust runtime verification algorithms to verify systems under such distribution
shift.

depend on the underlying distribution being the same at test and design time. However, when a CPS
is deployed in the real-world, the underlying distribution may be different — a phenomenon called
a distribution shift. Our focus is thus on designing robust predictive runtime verification (RPRV)
algorithms that provide valid verification results even when the test distribution D is different from
the training distribution Dy.

Specifically, we propose RPRV algorithms that account for all test distributions D that are
contained within a set of possible test distributions P(Dp). The set P(Dy) here denotes all distribu-
tions that are close to the training distribution Dy under a suitable distance measure. For instance,
P(Dy) may denote those distributions D whose f-divergence with respect to Dy is bounded by
e > 0, i.e., P(Dy) may be defined as {D|Ds(D,Dy) < e} where Dy is an f-divergence measure.
RPRYV algorithms are needed since test distributions are usually different from the training distri-
bution. Examples include varying conditions in the environment that the system operates in, e.g.,
weather conditions or traffic, or also when Dy models a high-fidelity simulator. To the best of our
knowledge, existing predictive runtime verification algorithms are not robust to distribution shift.
Furthermore, in this paper, we deal with the challenge of increasing data requirements for larger
distribution shifts. We make the following contributions.

e We present an accurate and an interpretable RPRV algorithms that i) use trajectory predictors
to predict future system behavior, and ii) leverage robust conformal prediction [4] to quantify
prediction uncertainty using calibration data from Dy. The algorithms are valid with a user-
defined probability for all test distributions D € P(Dy).

e We analyze data requirements and the interplay between confidence and permissible distribu-
tion shift. We make various algorithmic advancements of the interpretable method, originally
presented in [1], to improve accuracy and data efficiency for increasing distribution shifts.

e We empirically validate our algorithms on a stylized running example and a Franka manipu-
lator within NVIDIA Isaac sim. We illustrate the efficacy of our robust algorithms compared
to a non-robust version from [1].



1.1 Related Work.

(Offline) Verification of Stochastic Systems. Formal verification of general CPS models is
known to be an undecidable problem [5]. To address the computational cost and inefficiency of
abstraction-based verification algorithms, techniques such as statistical model checking have been
used to give statistical guarantees [6H8|. In [9], statistical hypothesis testing is performed with a set
of executions from a black-box system to verify continuous stochastic logic specifications. Statistical
verification under STL specifications was first considered in [10,{11]. The works in [8,12] consider
the problem of statistical verification of learning-enabled CPS with respect to STL specifications.
Recent work has also sought to combine model-based techniques and statistical, data-driven tech-
niques [13,/14]. For instance, in [15] surrogate Gaussian process models of the system are learned
and used to to obtain probabilistic guarantees on satisfying STL specifications. These works as-
sume that the distribution from which data is sampled is fixed. The authors in [16] propose an
active sampling approach using imprecise neural networks to promote distributional robustness in
statistical verification of neural networks. In another direction, recent frameworks train generative
models that capture distribution shifts [17.|18].

Runtime Verification of Stochastic Systems. In runtime verification (RV), we are instead
interested in verifying system properties during the operation of the system solely based on the cur-
rently observed system trajectory [19-22]. RV techniques complement offline verification techniques,
and there is a growing body of literature on RV approaches for STL specifications [23-26|. Predictive
RV is a special class of RV where we use a system model to predict the future system behavior from
the currently observed system trajectory to either check if (hidden) system states satisfy a given
specification [27,28] or if the system may violate system specifications in the future |29-34]. In our
prior work |1], we presented two predictive RV algorithms that use conformal prediction, a statistical
tool for uncertainty quantification |35|, by calibrating prediction errors of a trajectory predictor to
obtain valid probabilistic verification guarantees on the satisfaction of STL specifications. Similar in
spirit, the authors in |3] used a technique known as conformalized quantile regression [36] to design
predictive RV algorithms that also provide probabilistic verification guarantees on the satisfaction
of STL specifications. While statistical guarantees are provided in |1} 3|, these guarantees are not
valid when the trajectory distribution of the deployed system deviates from the distribution of the
design-time system. The authors in [37] take a first step in this direction with conformal prediction
by proposing robust evaluators that minimize distribution shifts in high-dimensional measurements.
However, to the best of our knowledge, no existing work provides statistically valid RV guarantees
under distribution shift as we do in this paper.

2 Problem Formulation

To describe stochastic systems, we consider an unknown test distribution D over system trajectories
X := (X0, X;...) ~D where X; € R" is the state of the system at time 7. We make no assumption
about D, e.g., D can describe Markov decision processes or hybrid stochastic systems. While the
distribution D is completely unknown, we assume that we have access to K calibration trajectories
(XM .., X5)) from a training distribution Dy that is close to D (as specified later)

!The distributions D and Dy are defined over the same probability space (2, F,P) where Q is the sample space,
F is a c-algebra of Q, and P : F — [0, 1] is a probability measure. For simplicity, we will mostly use the notation
Prob to be independent of the underlying probability space.



Assumption 1. We have access to a dataset S := (X(l), .. ,X(K)) wn which each of the K trajecto-
ries X () = (Xél), XY), ...) is independently drawn from a training distribution Dy, i.e., X0 < DO

Assumption |1 holds in many applications. An example would be a setting in which Dy describes
the motion of a robot within a high-fidelity simulator, while D describes a real robot operating in
a lab environment. To measure closeness of the distributions Dy and D, we use the f-divergence, a
statistical distance, that quantifies the similarity between Dy and D and thereby the distribution
shift. Specifically, the f-divergence D (D, Dy) is defined as

D4(D,Dy) = /X f(CjDD())dDO

where X is the support of Dy, D is absolutely continuous with respect to Dy, and % is the
Radon-Nikodym derivative of D with respect to Dy. The function f : [0,00) — R is convex and
satisfies f(1) = 0. If we set f(z) := 3|z — 1|, we obtain the total variation distance TV (D, Dy) :=
% [, |P(z) — Q(x)|dx where P and Q are probability density functions corresponding to D and Dy.

Assumption 2. The test and training distributions D and Dy are such that Dy(D,Dy) < € where
€ > 0. We hence assume that D € P(Dy) :={D' | D¢(D’, Dy) < €}.

We emphasize that the parameter € is a measure of the permissible distribution shift in terms
of the f-divergence Dy.

Challenges in Runtime Verification. Given a specification ¢ and a partial observation (Xo, ..., X;)
from the test trajectory X ~ D at runtime ¢, we are interested in computing the probability that
X satisfies ¢. The challenges are that we only have knowledge about the training distribution Dy
as per Assumption [I, and our knowledge about the test distribution D is limited to knowing that
Dy and D are e-close as per Assumption 2 We design RPRV algorithms that are predictive in the
sense that we use predictions Xﬂt of future states X, for 7 > ¢ and robust as we provide valid
probabilistic guarantees as long as D € P(Dy).

2.1 Signal Temporal Logic

We use signal temporal logic (STL) to express system specifications and define STL over discrete-
time trajectories x := (xg,x1,...), e.g., © can be a realization of the stochastic trajectory X. We
note that readers with limited background in temporal logics can, if they like to, skip the following
formal definitions of syntax and semantics of an STL formula ¢ and instead think of ¢ as a high-
level system specification that is imposed on the system at time 9. We let (x,79) | ¢ indicate
that  satisfies ¢ and we assume that bounded trajectories z of length L? are sufficient to compute
(z,70) = ¢. The notation p?(z,79) € R will indicate how well ¢ is satisfied by z at time 7o with
larger values indicating better satisfaction.

Formally, the atomic elements of STL are predicates that are functions 7 : R™ — {True, False}.
The predicate 7 is defined via a predicate function h : R” — R as w(x;) := True if h(z;) > 0 and
m(x;) := False otherwise. The syntax of STL is recursively defined as

¢ = True|n| ¢ | ¢ A" | dUP" (1)

2For instance, we can obtain such i.i.d. trajectories from a simulator that we can query repeatedly with a fixed
distribution over simulation parameters.




where ¢ and ¢” are STL formulas. The Boolean operators - and A encode negations (“not”) and
conjunctions (“and”), respectively. The until operator ¢/U;¢” encodes that ¢' has to be true from
now on until ¢” becomes true at some future time within the time interval I C R>o. We can further
derive the operators for disjunction (¢’ V ¢” := =(=¢’ A =¢")), eventually (Fj¢ := TU;¢), and
always (Gr¢ := —Fr—¢).

To determine if a trajectory x satisfies an STL formula ¢ that is enabled at time 79, we can
define the semantics as a relation =, i.e., (z,79) = ¢ means that ¢ is satisfied. While the STL
semantics are fairly standard [38], we recall them in Appendix . Additionally, we can define robust
semantics p?(z,79) € R that indicate how robustly the formula ¢ is satisfied or violated [39,40], see
Appendix . Larger and positive values of p?®(z, y) hence indicate that the specification is satisfied
more robustly. Importantly, it holds that (z,70) |= ¢ if p®(x,79) > 0 due to |40, Proposition 16].
We make the following assumption on the class of STL formulas in this paper.

Assumption 3. We consider bounded STL formulas ¢, i.e., all time intervals I within the formula
¢ are bounded.

Satisfaction of bounded STL formulas can be decided by finite length trajectories [41]. The
minimum length is given by the formula length L?, i.e., with knowledge of (2, ..., T, pe) We can
compute (z,79) = ¢, see again Appendix [A| for more details.

2.2 Robust Predictive Runtime Verification

Assume that we have observed the states Xops := (Xo, ..., X¢) at runtime t, i.e., all states up until
time ¢ are known, while future states Xy, := (X¢41, Xiq2,...) from X = (Xops, Xun) ~ D are not
known yet. In this paper, we are interested in solving the following problem.

Problem 1. Let Dy be a training distribution, S be a calibration dataset from Dy that satisfies
Assumption D be a test distribution from P(Dy) that satisfies Assumption @ and ¢ be an
STL formula imposed at time Ty that satisfies Assumption [3 Given the current time t, obser-
vations Xops from X ~ D, and a failure probability 6 € (0,1), compute a lower bound p* such that
Prob(p?(X,70) > p*) > 1—6.

Once we have computed the lower bound p*, we remark that Prob((X,m) F ¢) > 1 —4 if
p* > 0, see [40, Proposition 16]. We next introduce a running example that we use throughout this
paper to explain and illustrate our algorithms.

Example 1. We consider the F-16 aircraft from [42] with a hybrid controller modelled by 16 states.
We only consider the height h (given in ft) as the state to verify the specification ¢ := Gg 195/h > 60
and to find p* from Problem[]] for 6 := 0.2. To construct a simple academic example, we collect
a single trajectory x. from the simulator and then add independent noise to x. at each timeﬂ i.€.,
we let N'(z.(t),3%) and N(zc(t),3.5%) describe Dy and D, respectively. We assume that we have
K := 2000 calibration trajectories X O with i € {1,..., K} from Dy as per Assumption .

3 Robust Conformal Prediction

Our solution to Problem [I] will rely on trajectory predictors that predict future system states Xy
from observations X,ps. To quantify the accuracy of these predictions, we use the calibration dataset

3We note that it is possible to add noise directly to the dynamics of the F-16 aircraft and collect trajectory data
from there.



S from Dy along with robust conformal prediction as presented in [4] to account for the distribution
shift between Dy and D. Robust conformal prediction is an extension of conformal prediction which
is a statistical tool for uncertainty quantification [35,43-45|.

Conformal Prediction (CP). Let R, ... R ~ Ry be K + 1 independent and identically
distributed random variables following a training distribution Ro The variable R can be freely
defined and is referred to as the nonconformity score. In regression, a common choice for R® is
the prediction error |Z®) — p(U®)| where the predictor u attempts to predict Z() based on an
input U®. We note that a large nonconformity score indicates a large prediction error. Our goal is
thus to obtain an upper bound for R(*) (our test data) from R ... R¥) (our calibration data).
Formally, given a failure probability § € (0, 1), we want to compute a constant C' (which depends
on R, ..., R¥)) such that
Prob(R® <) >1-4.

The probability Prob(-) is defined over the product measure of RO .. RE¥). By a simple
statistical argument, one can obtain C' to be the 1/K corrected (1 — d)th quantile of the empirical
distribution of the values RV, ... R¥) je.,

C .= Quantile(1+1/K)(l_5) (R(l), ce ,R(K)) (2)
Formally, for 5 € [0, 1], the quantile function is defined as

Quantileﬂ(R(l), ..., R¥)) .= inf{z € R[Prob(Z < z) > 8}

where the random variable Z := ), dpu) /K where dpq) is a dirac distribution centered at R®.
Equation thus requires 0 < (1 +1/K)(1 —¢) < 1 and imposes the implicit lower bound (K +
1)(1 — §) < K on the number of data K. If this bound is satisfied and RV, ... RU) are sorted in
non-decreasing order, we obtain C' := R®) with p := [(K + 1)(1 — §)], i.e., C is the pth smallest
nonconformity score. We remark that we trivially have C' := oo if (K 4+ 1)(1 —4) > K.

Robust CP. In this paper, our test data is different from the training data. We thus use a robust
version of conformal prediction based on [4]. Assume that RO .. RE) are again independent,
but not identically distributed in the sense that R ~ R while R®, ..., R¥) ~ Ry where R is a
test distribution. Under the assumption that test and training distributions R and Rg are close,
the calibration data from the training distribution can still be used to bound R(®.

Lemma 1 (Corollary 2.2 in [4]). Let R©), ..., R be independent random variables with R©®) ~ R
and RW ..., RE) ~ Ry where the distributions R and Rg are such that D¢(R,Ro) < €. Fora
failure probability § € (0,1), it holds that

Prob(R?O <C)>1-46 (3)

where the constant C is computed as

C = Quantz’lelfg(R(l), ..., RE)) (4)
where the adjusted confidence level § is defined as

b:=1—g (1 —6,)
and obtained by solving a series of convex optimization problems as
6 =1-g((1+1/K)g (1 -19)),
9(B) :=nf{z € [0,1][8f(/8) + (1 = B)f(1 = 2)/(1 = B)) <€},

“In fact, exchangeability of R, ..., R would be sufficient which is a weaker requirement than being indepen-
dent and identically distributed.




g~ (r) = sup{B € [0,1]|g(B) < 7}.

We remark that equation requires 0 < 1 — 6 <1 and poses restrictions on the number of
data K, the failure probability §, and the distribution shift € as we elaborate on later in the paper.
Note further that g and g—! are both solutions to convex programs. The solution to g~!(7) can
thus be computed efficiently, e.g., using line search over § € (0,1). In some special cases, we can
even obtain closed-form solutions for g, e.g., for f(r) := %\r — 1], associated with the total variation
distance, we obtain g(f) = max(0, 8 — €).

Induced Distribution Shift. Note that in runtime verification we assume an e-bounded distri-
bution shift in terms of the f-divergence on the trajectory level, as described by D and Dy. In both
runtime verification algorithms, it will be necessary to quantify the induced distribution shift of
functions that are defined over X ~ D and Xy ~ Dy. The following result follows trivially by the
the data processing inequality.

Lemma 2 (Data processing inequality). Let D and Dy be distributions such that Dy(D,Dy) < €
and let R : X — R be a measurable function. For X ~ D and Xo ~ Dy, let R and Ro denote the
induced distributions of R(X) and R(Xy), respectively. Then, it holds that

Df(D,DQ) <e = Df(R,R()) <e

4 Predictive Runtime Verification under Distribution Shift

We propose two robust predictive runtime verification algorithms that account for the test distri-
bution D being different from the training distribution Dy. Our algorithms are inspired by our
prior work in [1], but are able to deal with bounded distribution shifts D¢(D,Dy) < €. The first
algorithm directly uses robust conformal prediction from Lemma [1| to obtain a probabilistic lower
bound p* for the robust semantics p®(X, 7). This direct algorithm will provide a non-conservative
verification result, but is lacking interpretability, i.e., if ¢ is violated no explanation is provided.
The second algorithm therefore uses robust conformal prediction from Lemma[I] to obtain a proba-
bilistic lower bound for the robust semantics p™ (X, 7) of each predicate 7 at each time 7, which are
subsequently used to obtain a probabilistic lower bound p* for p®(X, 7). Besides being able to deal
with distribution shifts, we remark that the indirect algorithm that we propose has significantly less
conservatism compared to [1].

Trajectory Predictor. Our algorithms use trajectory predictors p that map observations Xops
at time ¢ into predictions Xy, Xyqop ... of future states Xun. Therefore, we train a trajectory
predictor p on an additional training dataset from Dy that is independent of the calibration data
in S. Commonly used trajectory predictors range from recurrent neural networks (RNN) and long
short-term memory (LSTM) networks [46,/47] to support vector machines |48,/49] and autoregressive
integrated moving average models [50%/51].

Since we consider bounded STL formulas ¢ as per Assumption [3] only a finite prediction horizon
is needed. Therefore, we define H := 79+ L? —t as the prediction horizon needed for the computation
of satisfaction of ¢ imposed at 7y. To facilitate our discussion, we define the predicted trajectory

X = (Xobs, Xt+1\t7 IR Xt+H\t)
with predictions (X'H”t, . ,XHH”) := 1u(Xops). We use the same notation for trajectories X (%) :=
(X (EQS,Xuln)) from the calibration dataset S. Formally, we also define the predicted calibration
x® ) where (X(l) x® )= ,U,(X(EL)S).

; () . (x® %@
trajectory X0 .= (XObS,XH”t, o A H| 41t e H |t
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Figure 2: Running example: Histograms of nonconformity scores , , and , and empirical
coverage plots of p®(X,79) > p* for the direct and indirect (Variant I and II) methods.

4.1 Direct Robust Predictive Runtime Verification

We first apply robust conformal prediction directly to the robust semantics p?. To do so, we need
to account for prediction errors in X and the distribution shift between the calibration trajectories
X ~ Dy and the test trajectory X ~ D. Specifically, consider the nonconformity score
RY = p?(XD, 1) = p? (X, 70) (5)
for each calibration trajectory X (@) € S. Intuitively, this nonconformity score measures the difference
between the predicted robust semantics p?(X®, 79) and the true robust semantics p?(X@, 7). For
the test trajectory X, we analogously define the test nonconformity score
R:= :0¢(X7 TO) - p¢(X7 TO)

which we naturally cannot compute during runtime as X is unknown. We denote the induced
distribution of R and R by Rg and R, respectively, so that R ~ Ry and R ~ R, i.e., R is a
shifted version of the distribution Ry.

By this construction of R®) and R, it is easy to see from Lemmas andthat Prob((p?(X,79) —
p?(X, 1) < C) > 1—6 where C := Quantile, :(RW,..., R¥)) and 6 =1—g'(1-90,). We
summarize these results in Theorem [I], and provide a brief and formal proof in Appendix

Theorem 1. Let the conditions from Problem 1] hold. Then, it holds that Prob(p®(X, 7o) >



p?(X,70) — C) > 1 — 8 where C is computed as in with the nonconformity score R® in
defined for all calibration trajectories X € S.

Intuitively, this result says that the robust semantics p?(X, 79) is lower bounded by the predicted
robust semantics p¢’(X 79) adjusted by the value C, and that this holds with high probability. While
the construction of R®) and R for the direct method follows [1], the result in Theorem [1| accounts
for deviations between training and test distributions and is not limited to the case where D is
identical to Dy.

Example 2. Recall Ezample [l We set t :== 100 and train an LSTM on 500 trajectories from Dy
to predict the next H := 5 time steps. We then perform the following experiment 50 times: we
sample 2000 calibration trajectories from Dy and 100 test trajectories from D. For one of these
experiments, we show in Figure the histogram of nonconformity scores R® from (5) along with
the robust prediction region C' computed as in ). In this case, we computed C for the total
variation distance with € := 0.142, which is such that TV (R,Roy) < €. In Section @ we explain in
more detail how we estimate TV (R, Ro) in practice. For comparison, we also plot the non-robust
prediction region C from (1] which corresponds to the case where € = 0 and which is smaller than C
as it does not account for distribution shifts. This becomes evident in Figure [2] where we plot the
empirical coverage over all 50 experiments for both algorithms. In other words, for each experiment
we compute the ratio of how many of the 100 test trajectories satisfy p?(X D, 1) > p?(X D, 70) = C
(where C'is replaced by C for the non-robust version from [1]), and then plot the histogram over
these ratios. As we aim for 1 —§ = 0.8 coverage, we can observe that only the robust algorithm from
Theorem [1] achieves the desired coverage.

4.2 Interpretable Robust Predictive Runtime Verification

This direct algorithm provides a precise verification result, but lacks interpretability when the
specification is violated, i.e., no information for the cause of violation is provided. Therefore,
assume that the formula ¢ is in positive normal form, i.e., that ¢ contains no negations. Note that
every ¢ can be re-written in positive normal form, see e.g., [41]. Further, let the formula ¢ consists
of m predicates 7;, and define

Pi={(m,m)ic{l,...om},ref{t+1,...,t+H}}

as the set of all predicates and times. We now design an interpretable robust predictive runtime
verification algorithm, which we refer to as the robust indirect method, that uses probabilistic lower
bounds pj, ;- of the robust semantics p™ (X, 7) for all predicates and times (m,7) € P, i.e., such that
Prob(p™(X,7) > p} ., ¥Y(7,7) € P) > 1 - 6. (6)
Intuitively, p; - > 0 certifies that 7 is satisfied at time 7 with probability 1 — 4. We thus obtain
interpretable information via the lower bounds p7 . in the presence of distribution shifts. Before
we propose two ways of computing p - from the predicted trajectory X, we state our main results
upfront. Therefore, we recursively define the probabilistic robust semantics 5%, which provide the

desired probabilistic lower bound p* in Problem |1} starting from predicates as

F(Ror) = {h(XT) ifr<t

Prr otherwise
while the other Boolean and temporal operators follow standard semantics, as summarized in Ap-
pendix . We remark that the construction of p™ is again inspired by [1], but that we generalize
and provide two ways to compute bounds p7 . that are i) robust to distribution shift, and ii) less



conservative as we elaborate on more below. We next state our main results for which we provide
a proof in Appendix [B]

Theorem 2. Let the conditions from Problem 1 hold, and let ¢ further be in positive normal form.
If the lower bounds p . satisfy equation (B), then it holds that Prob(p®(X,10) > p?(X,m0)) > 1—0

where ﬁd)(X,To) is recursively constructed from py . as previously described.

Computing p; , on the state level (Variant I). We now present two ways to compute pj. -
that satisfy equation @ In the first method (called Variant I), we compute prediction regions
for trajectory predictions via robust conformal prediction. Therefore, we define the nonconformity
score
. |2 = X5
RW .= max i (7)
TE{t+1,..t+H} o

where o, > 0 are constants that normalize the prediction errors at times 7, following a similar idea
to [52]. In this work, however, we simply propose to compute o, := max; ||X7(-Z) - Xﬁi” over an

additional set of trajectories X from Dy that is independent from the dataset S, such as the set of
training trajectories used to train the predictor 4 on. Next, we define B, := {¢ € R"|[|( — X | <

C’aT} which is a norm ball of radius Ca; with center at )A(T|t. We then compute the worst case
value of p?(¢, ) over all ¢ € B, i.e., we let

e = inf h(O) (8)

Finally, we relate this construction to equation (@ and provide a proof for the following result
in Appendix [B]

Lemma 3. Let the conditions from Problem[1] hold. If cr > 0 for allT € {t+1,...,t+ H}, then
it holds that

Prob(| Xy — Xyl < Car,¥re{t+1,...,t+ H}) >1-6 (9)

where C is computed as in with the nonconformity score R® in defined for all calibration
trajectories X0 € S. Under the same conditions, it holds that Prr N0 satisfy @

Theorem [2] and Lemma [3] together present an interpretable predictive runtime monitor that can
account for distribution shifts between Dy and D via the values of py .. Finally, we emphasize that
the normalization via the constants a, greatly reduces the conservatism presented in |1| where the
confidence level 1 — § has to be adjusted to 1 —0/H.

Computing p; ; on the predicate level (Variant IT). While Variant I provides interpretability,
it may be the case that taking the infimum in equation is conservative, e.g., as we show later in
Figure |[5d|in our case study. We thus present a second method (called Variant IT) where we compute
prediction regions for each predicate 7 directly. Therefore, consider the nonconformity score
RO . ax p" (XD, 1) — p" (XD, 7)
(m,7)EP Qrn 1

(10)

where o, ; > 0 are again normalization constants. In this work, we use a; » := max; |p" (XD, 1) —
p™(X@ 7)| over an additional set of trajectories X9 from Dy that is independent from S. We
conclude with the following result for which we provide a proof in Appendix [B]

Lemma 4. Let the conditions from Problem hold. If ar+ >0 for allT € {t+1,...,t+ H}, then
it holds that

Prob(p™ (X, 1) — p"(X,7) < Capr,¥(m,7) €P) > 16 (11)
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Figure 3: Trajectories from Dy and D for the Franka robotic arm case study.

where C is computed as in with the nonconformity score R® in defined for all calibration
trajectories X0 € S. Under the same conditions, it holds that

Prri=p"(X,7) = Can,
satisfy @

Example 3. Recall Exzample [1. Similar as for the direct algorithm in Ezample [3, we perform
the same experiment of sampling 2000 calibration trajectories and 100 test trajectories 50 times.
For one of these experiments, we show in Figures and [2d the histograms of the nonconformity
scores R from and along with the robust prediction region C. As in Example @ we use
€ := 0.142 which is such that TV (R, Ro) < € where the induced distributions R and Ro are now with
respect to equations @ and . For comparison, we also plot the non-robust prediction region C
from [1] which corresponds to the the case where € = 0. In Figure we plot the histogram over
all 50 experiments of the empirical coverage for Prob(p®(X@ 7p) > ﬁ‘z’(f((i),n)) >1—20 on test
trajectories XO for Variants I and II. We achieve the desired coverage of 1 — 8§ = 0.8 and compare
to the non-robust versions (using C instead of C). In this case, these also achieve an empirical
coverage of 0.8 as the indirect algorithms are more conservative than the direct algorithm.

4.3 Data Requirements and Feasibility

The algorithms presented in Theorems |1 I and [2 I in combination with Lemmas I 3| and (4 ' 4)) provide
runtime verification guarantees when the prediction region C, which is computed according to
Lemma is finite and not unbounded (i.e., C' = o). For this to happen, we require that 1—0 € [0,1]
which is equivalent to the condition 1 — 5n =(1+1/K)g (1 —4) €]0,1] as the function g and its
inverse ¢! have domains [0, 1]. We note that the lower bound 0 < (14 1/K)g~1(1 — §) is trivially
satisfied for any K > 0. The upper bound (1 + 1/K)g=*(1 — ) < 1, on the other hand, poses a
lower bound on the number K of calibration trajectories as
g '(1-9)
K> { 2 ] (12)
1—g71(1-9)
This condition can be seen as a requirement on the number of calibration data K if g7!(1—4) < 1.
However, it is important to observe the case where g~!(1 — &) = 1. It is this condition that imposes
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additional conditions on the confidence 1 — § and the distribution shift € for a given f-divergence.
For instance, for f(t) = 3|t — 1|, associated with the total variation distance, we know that

g (1-0)= argsupgeo, max(0, 8 —€) <1-90
which is equivalent to 1 if € > §. More generally, the condition g=!(1 — §) = 1 will constrain the
permissible distribution shift € for a confidence of 1 — 4.

Corollary 1. Let the conditions from Problem hold. If equation is satisfied with g1 (1—9§) <
1, then the algorithms presented in Theorems and@ (in combination with Lemmas@ and provide
nontrivial (i.e., C' < 00) results.

The direct and the indirect RPRV algorithms consider the confidence level 1 —9. This is opposed
to the indirect method in |1] where the confidence level for the indirect method (Variant I) has to be
adjusted to 1 — 6/H, which in this setting would impose the condition € < §/H for f(t) = 3|t — 1.

Remark 1. Robust Locally Adaptive Predictive Runtime Verification: Observing that the
presented RPRV algorithms produce constant prediction regions C regardless of the observation X pps,
we remark that our RPRV algorithms can be generalized to be locally adaptive |44, Section 2].

In this case, C adapts to the observation X,ps and the confidence of the trajectory predictor p
via a transformation of the nonconformity score. Specifically, one can consider a locally adaptive

nonconformity score RY = R(i)/w(Xézl) where R is as in @), @, or and where w is a

adapt
predictor that estimates ]R(i)] from Xél?s with a trivial assumption on w generating a positive value.
At test time, it then holds that

Prob(Radapt < Cw(Xops)) > 1 — 6. (13)

where Rygapt ~ R is derived from the test trajectory X ~ D and where C = Quantilel_S(Rl(lgapt, ce szil?pt)'
Intuitively, a larger value of w(Xeps) indicates more uncertainty from the predictor u, thus increasing

the prediction region to accommodate for heteroskedascity within the test data.

5 Case Study: Franka Manipulator

To evaluate the proposed RPRV algorithms, we present a case study to verify the safety of a Franka
robotic manipulator within the NVIDIA Isaac Simulator.

System Description: The Franka, located at the origin of the workspace, is given the task to
pick up a cubic box of length 0.03 meters and place it at a target location X9 := [—0.5,—0.5,0].
We use the Pick & Place Controller from NVIDIA Isaac Sim [53]. We also describe the state of
the system at time t as X; := (X7, X;) where X/ € R? is the position of the box (controlled
by the Franka robot) and X/ is its linear speed (which is the norm of the linear velocity). We
describe the training and test distributions over trajectories X} as Dy := [U(0.4,0.6), U(0.4,0.6), 0]
and D := [U(0.41,0.61),U(0.41,0.61), 0], respectively, where U(a, b) denotes a uniform distribution
over the range [a,b]. We only consider trajectories X that successfully finish the placing task
||Xf+H — X9||2 < 0.3 (i.e., we do not consider unsuccessful grasps). We assume to have access to a
set of 1926 trajectories from Dy, which we denote by Zj, for predictor training and calibration, and
a set of 934 trajectories from D, denoted by Z, for validating our algorithms. For illustration, we
show five trajectories from Dy and five trajectories from D in solid lines along with the predictions
in dashed lines in Figures [3a] and respectively.

System Requirement: The robot should not only place the box at the desired location, but the
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robot should in the process also present the box to a human inspector located at X" :=
with a moderate speed. Formally, we impose the following STL specification
¢ b= Foupm (X7 = X7 ll2 < Q) A Foarm (1X7 = Xl2
< (3) A G ((1IXF — XMl < G3) = (X7 < ()
for constants ¢; := 0.2, (2 := 0.6, and (3 := 0.9. The formulas Fio (|| X7 — Xgll2 < ¢1) and
Fo 4+ (|1 XP — X"|| < ¢3) within ¢ are task completion requirements which specify that the robot
successfully places the box at the goal location and in this process also presents the box to the
inspector at X". The formula Gjo 4 p(([| X7 — XMy < G3) = (X7 < (2)) within ¢ uses the
implication operator = and expresses a safety requirement. Specifically, when the robot is close
to the human inspector, the box should not exceed the speed limit of (5. As we require ¢ to be in
positive normal form for the indirect methods, we emphasize that this last formula is equivalent to
Groa+m ((IXF — X"l >= ¢3) V (X§ < (2)), which we use in our implementation.

Distribution Shift Estimation: For validation, we estimate the distribution shift D (D, D).
Therefore, we randomly pick 800 trajectories from Zy and Z. For each of the nonconformity scores
R® from , , and , we perform the following procedure: we calculate R for the trajectories
sampled from Zy and Z to obtain the empirical distributions of Rg and R, respectively, where R
and R are the induced distributions using the nonconformity scores over D and Dy. Specifically, we
use kernel density estimators with Gaussian kernels to estimate the empirical probability density
functions (PDFs) of each distribution We then numerically evaluate the distribution shift by
computing TV (R, Ro) = 5 [ |q(z x)|dz where p(x) and g(z) are the estimated PDFs associated
with R and Ro We obtain the valueb €1, €2, and €3 that indicate the estimated distribution shifts
on , , and . Finally, we take € := max(e€1, €2, €3) so that € is greater than the estimated
distribution shift of D;(Ro,R) for all Ry and R in , , and . Intuitively, this allows us to
validate the statistical guarantees for all our verification algorithms. We note that we used the same
method to calculate the distribution shift in the running example (see Example , but with 1000
trajectories randomly generated from each distribution. We remark that e can be thought of as a
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tuning parameter in practice, as it is common practice in robust control [54], and that the purpose
of the estimation here is for validation of our algorithms.

Validation and Comparison of Direct Method: For this case study, we seek to find p* from
Problem [1] for a failure probability § := 0.2. We set t := 400 and predict the next H := 516 time
steps via an LSTM trajectory predictor trained on 192 trajectories sampled from Zy. We run the
following experiments 50 times: We sample K := 1500 calibration trajectories from Zy but separate
out the trajectories used for training the LSTM predictor. For one of these experiments, we show
the histogram of nonconformity scores R from and the robust prediction region C' from
in Figure [4a] with € := 0.051 based on the aforementioned method for distribution shift estimation.
For comparison, we also show the non-robust prediction region C' from the direct method in |1]
(where € = 0), which is smaller than C' and cannot deal with the distribution shift. In Figure
[ D] we plot the empirical coverage over the 50 experiments. Specifically, for each experiment, we
sample a set of 200 test trajectories from Z and compute the percentage of trajectories satisfying
p?(XD) > p?(X@D) — C and p?(XD) > p?(X @) — C for the non-robust and robust methods. For
one experiment, we show the true robust semantics p?(X, 7o) for the 200 ground truth test data
and the predicted worst-case robust semantics p* in Figure |dc| for the non-robust and robust RPRV
algorithms.

Validation and Comparison of Indirect Methods: For practical reasons, we first downsample
trajectories from 917 to 25 time steps in Zp and Z to reduce the computational overhead from solving
the optimization problem in for Variant I. We set t := 11 and predict the next H := 13 time
steps via an LSTM predictor trained on 192 trajectories from Zjy, and we again select § := 0.2. We
perform the same validation experiment as for the direct method for 50 times with € := 0.076, which
we computed following the aforementioned method for estimating distribution shifts. Variant I. For
one of these experiments, we show the histogram of the nonconformity scores R(®) := ||X.£i) — X9 I
from the indirect method in [1] for time 7 := 24 in Figure For comparison, we also plot Ca; and
Ca;, following our result in Lemmawhere C and C are computed from equations and with
ar and R® in (7). Noticeably, in Figure we see that Ca; is less conservative than C' from [1].
Variant I1. In Figure we show the histogram of R in equation over calibration data along
with C' from and C from . As expected, the indirect algorithms are more conservative than
the direct algorithm and all achieve an empirical coverage for p?(X (i),T()) > p* greater than the
desired coverage of 1 — § = 0.8. This is demonstrated in Figure [5c] where we plot the coverage over
the 50 experiments. For one experiment, we show the true robust semantics p?(X, ) for the 200
ground truth test data and the predicted worst-case robust semantics p* for Variants I and II in
Figure Finally, in comparison with the non-robust indirect method from [1], we see that p*
attained by Variant I (green) and Variant II (purple) are higher than that from [1] (orange) further
indicating a reduction in conservatism.

6 Conclusion

We presented two predictive runtime verification algorithms that can predict system failures even
when the test time system is different from the design time system. Specifically, our algorithms are
robust against distribution shifts that are measured in terms of the f-divergence of their system
trajectories. We first use trajectory predictors to predict the future motion of the system, and
we robustly quantify prediction uncertainty with respect to signal temporal logic (STL) system
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specifications using robust conformal prediction and calibration data from the design time system.
Our first algorithm (called direct algorithm) provides tight verification guarantees, while our second
algorithm (called indirect algorithm), which we present in two variants, provides more interpretable
runtime information. Finally, we quantify the relationship between calibration data, desired confi-
dence, and permissible distribution shift. Both algorithms make no assumption on the trajectory
predictor and only need to know an upper bound on the distribution shift. To the best of our
knowledge, these are the first results in this setting. We provide an exhaustive validation of our
algorithms on a Franka robot within NVIDIA Isaac Sim.
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Appendix
A Semantics of Signal Temporal Logic

For a trajectory x := (zg,z1,...), the semantics of an STL formula ¢ that is enabled at time 79,
denoted by (z,79) = ¢, can be recursively computed based on the structure of ¢ using the following
rules:

(z,7) = True iff True,
(x,7)Enm iff h(z:) >0,
(z,7) ¢ it (z,7) ¢,
(z,7) ¢ A" i (2,7) ¢ and (z,7) E ¢,
(x,7) EQUY" it I e(r®I)NNst. (x,7") ¢’
and V7' € (1,7") NN, (z,7") E ¢'.
The robust semantics p?(z, ) provide more information than the semantics (z,79) = ¢, and

indicate how robustly a specification is satisfied. We can again recursively calculate p?(x, 79) based
on the structure of ¢ using the following rules:

pTrue(:L‘, 7_) = 00,
p"(z,7) := h(z;)
p %z, 7) = —p?(z,7),
p? N (1, T) = min(p‘ﬁ/(x, ), p?" (2, 7)),
oV @7y = sup((min (o @7 e @)

Te(rdl)NN
The formula length L? of a bounded STL formula ¢ can be recursively calculated based on the
structure of ¢ using the following rules:

[Tue _ pm._ g
L :=1L°
LN .= max(LY, L")
LeUre" . max{I NN} + maX(L¢/, Ld’”).
The probabilistic robust semantics p?(X, To),AWhiCh are defined over the random trajectory

X ~ D and the predicted trajectory X := (Xobss Xegifty - - - ,Xt+H|t), are recursively defined based
on the structure of ¢ using the following rules:

ﬁTrue(X,T) 1= 00,

N h(X if 7 <t
pr(X,7) ::{ f o) frs :
Prr otherwise

P "X, 7) = min(p? (X, 7), 5 (X, 7)),
p¢/UI¢// (X’ 7—) = sup ( min (ﬁ(b” (X, T”), inf ﬁ¢/ (Xa 7-/)))

7"e(T®I)NN T'e(r, 7" )NN
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where the constant p7 . defines probabilistic prediction regions that can be computed as explained
in detail in Section [l

B Proofs for Technical Theorems and Lemmas

B.1 Proof of Theorem [1

Proof By the data processing inequality in Lemmal 2{and since D¢(D,Dy) < € holds by Assumption

. we know that D(R,Rp) < e. We can thus apply Lemma 1|and construct C' according to equation
with R®) as in (). We then know that ~Prob(,o¢(X 70) — p®(X,70) < C) > 1 — 4. Therefore, it
follows that Prob(p?(X,79) > p?(X,79) — C) > 1—4. O

B.2 Proof of Theorem [2

Proof. By assumption we know that equation @ holds, i.e., that Prob(p™(X,7) > p; .,¥(7,7) €
P) > 1 —6. Since we define p"(X,7) := h(X,) if 7 < t and p"(X,7) = Pr - otherwise, we
know that Prob(p™(X,7) > p"(X,7),V(m, 1) € 73) > 1— 0. Since ¢ is in positive normal form,

we further know that, for any two signals y,y’ : N — R"™, it holds that p™(y,7) > p"(y/,7) for
all (m,7) € P implies p?(y,70) > p®(y',70) |55 Corollary 1]. Consequently, we conclude that
Prob(p® (X, m0) > p¢(X 70)) > 1 — § since the Boolean and temporal operators for p® follow the
same semantics as for p?. O

B.3 Proof of Lemma 3l

Proof. By the data processing inequality in Lemma and since D¢ (D, Dy) < € holds by Assumption
I we know that D(R,Rg) < e. We can thus apply Lemma and construct C according to equation

with R® as in . We then know that Prob(max cgii1,. ¢+m} M <C)>1-4,

which implies that Prob(w <C\Vref{t+1,...,t+H}) >1-4. Since a, > 0, this is

equivalent to Prob(|| X, — X7|t|] <Co;,¥T€{t+1,...,t+ H}) >1—4. Finally, by the definition
of p7 ; in equation , which considers the worst case value of h(¢) over ¢ € B, it follows that
Prob(p™(X,7) > p5 ;,V(m,7) € P) > 1 -6 holds. O

B.4 Proof of Lemma 4

Proof. By the data processing inequality in Lemma and since D (D, Dy) < € holds by Assumption
I we know that D(R RO) < e. We can thus apply Lemma and construct C according to equation

with R® as in (10). We then know that Prob(max, ryep ) —p"(Xr) < ) >1 -4, which

(o % s
implies that Prob(w < C,Y(m,7) € P) > 1—4. Since ay, > 0, this is equivalent to
Prob(p™(X,7)—p™(X,7) < Caxr,¥(m,7) € P) > 1—4. From here, it follows that Prob(p™ (X, 7) >
p;kr;r?v(ﬂ'a T) €P) >1— 4 with p:r,f = pﬂ(XvT) - Caﬂ',T- 0
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