
Under review as a conference paper at ICLR 2022

DATA-EFFICIENT CONTRASTIVE LEARNING BY DIF-
FERENTIABLE HARD SAMPLE AND HARD POSITIVE
PAIR GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Contrastive learning (CL), a self-supervised learning approach, can effectively
learn visual representations from unlabeled data. However, CL requires learning
on vast quantities of diverse data to achieve good performance, without which the
performance of CL will greatly degrade. To tackle this problem, we propose a
framework with two approaches to improve the data efficiency of CL training by
generating beneficial samples. The first approach generates hard samples for the
main model. In the training process, hard samples are dynamically customized
to the training state of the main model, rather than fixed throughout the whole
training process. With the progressively growing knowledge of the main model,
the generated samples also become harder to constantly encourage the main model
to learn better representations. Besides, a pair of data generators are proposed to
generate similar but distinct samples as positive pairs. The hardness of positive
pair is progressively increased by decreasing the similarity between a positive
pair. In this way, the main model learns to cluster hard positives by pulling the
representations of similar yet distinct samples together, by which the representations
of similar samples are well-clustered and better representations can be learned.
Comprehensive experiments show superior accuracy of the proposed approaches
over the state-of-the-art on multiple datasets. For example, about 5% and 6%
improvements are achieved on CIFAR-10/100 and ImageNet-100/10 with limited
training data, respectively. Besides, about 2× data efficiency is achieved when
reaching a similar accuracy as other methods.

1 INTRODUCTION

Contrastive learning (CL), a highly effective self-supervised learning approach (Chen et al., 2020; He
et al., 2020; Kalantidis et al., 2020), has recently shown great promise to learn visual representations
from unlabeled data. CL performs a proxy task of instance discrimination to learn data representations
without requiring labels, leading to well-clustered and transferable representations for downstream
tasks. In the proxy task, the representations of two transformations of one image (a positive pair) are
pulled close to each other and pushed away from the representations of other samples (negatives), by
which high-quality representations are learned (Kalantidis et al., 2020).

Most state-of-the-art CL methods focus on designing variants of the proxy task (Caron et al., 2020;
Zbontar et al., 2021; Chen & He, 2020; Grill et al., 2020), while the underlying data availability
for training CL has received less emphasis. CL heavily relies on vast quantities of diverse and
high-quality training examples. CL models are usually trained on large-scale datasets with millions
of samples (He et al., 2020; Chen et al., 2020; Caron et al., 2020). For example, the ImageNet dataset
(Russakovsky et al., 2015) of general natural images widely used in CL has more than a million
images with various object categories. Collecting such large-scale datasets require months or even
years of considerable human efforts (Zhao et al., 2020). Besides, for many application domains,
collecting a sufficiently large-scale dataset could be prohibitive and even infeasible due to imaging
cost, privacy, and copyright constraints. Examples of such domains include medical images, images
from scientific experiments, or images from rare natural phenomenons (Chen et al., 2021).

Training CL with scarce samples leads to drastic degradation in the quality of learned representations
because of insufficient contrast between diverse samples. More specifically, CL is trained by
performing a proxy task to discriminate two transformations of one image from other images (Caron

1

Under review as a conference paper at ICLR 2022

et al., 2020). Without diverse samples to discriminate from, the proxy task becomes relatively easy
and the model can achieve high accuracy on this simple task without the need to learn high-quality
discriminative representations (Kalantidis et al., 2020). The poor quality of learned representations
will further degrade the performance of downstream tasks. For example, when training CL on the
CIFAR-10 dataset without using labels and then fine-tuning the trained model on 1% labeled data
(500 samples), the classification accuracy reaches 84.99%. However, training CL with only 10%
of the CIFAR-10 dataset without labels, and then also fine-tuning with 500 labeled samples, the
accuracy dramatically decreases to 68.77%, which is substantially lower than training CL on the full
dataset. Therefore, it is crucial to achieving data-efficient CL training in the absence of large datasets
to make CL applicable to more scenarios.

Towards this goal, we propose a framework to generate effective data for CL training based on small
datasets. The framework consists of two approaches. The first approach generates hard samples for
the main model. The generated samples are dynamically adapted to the training state of the main
model, rather than fixed throughout the whole training process. With the progressively growing
knowledge of the main model, the generated samples also become harder to encourage the main
model to learn better representations. The generated samples adversarially explore the weakness
of the main model, which forces it to learn discriminative features from these hard samples and
improves the generalization of learned features.

The second approach generates two similar but distinct images as hard positive pairs. Existing CL
frameworks form a positive pair by applying two data transformations (e.g. cropping and color
distortions) to one image to generate two transformed images. While the two transformed images
look different, they still share the same identity since they originate from one image. Only clustering
these positive pairs will limit the quality of learned representation since other similar objects are not
considered in the clustering process. We form positive pairs by generating two images of distinct but
similar objects without using labels, which is achieved by using a generator and its slowly evolving
version. In this way, the main model has to learn to cluster hard positives when minimizing the
contrastive loss. By pulling the representations of similar but distinct (hard) objects together, better
clustering of the representation space can be learned (Khosla et al., 2020). With better representations,
the performance of downstream tasks will also be improved.

In summary, the main contributions of the paper include:

• Data-efficient contrastive learning framework. We propose a framework with two approaches
for data-efficient contrastive learning by jointly optimizing contrastive learning and hard samples
generation. The first approach generates hard samples and the second approach generates hard
positive pairs without using labels.

• Dynamic hard samples generation. We propose an approach to generate hard samples by
dynamically tracking the training state of the main model. In the training process, hard samples
are customized on-the-fly to the progressive knowledge of the main model, which are fed into the
main model to constantly encourage the main model to learn better representations.

• Hard positive pair generation without using labels. We propose an approach to further generate
hard positive pairs without leveraging labels. The generator and its slowly evolving version
generate a pair of similar but distinctive objects as positive pairs. The hardness of positive pair is
further increased by decreasing the similarity between a positive pair. In this way, similar objects
are well-clustered and better representations can be learned.

2 BACKGROUND AND RELATED WORK

Revisiting Contrastive Learning. Contrastive learning is a self-supervised approach to learn an
encoder for extracting visual representations from the unlabeled images by performing a proxy task
of instance discrimination (Chen et al., 2020; He et al., 2020; Wu et al., 2018).

Our work in this paper is built upon SimCLR (Chen et al., 2020), which is a simple yet powerful
contrastive learning approach for unsupervised representation learning. For an input image x, its
representation vector v is obtained by v = f(x, θ), z ∈ Rd, where f(·, θ) is the encoder with
parameters θ. In the training process of CL, a raw batch of N samples {xk}k=1...N are first randomly
sampled from the dataset. Then for each raw sample xk, two transformations (t ∼ T and t′ ∼ T)
sampled from a family of augmentations T (e.g. cropping, color distortion, etc.) are applied to xk to

2

Under review as a conference paper at ICLR 2022

generate two transformed samples (a.k.a. two views). x̃2k−1 = t(xk) and x̃2k = t′(xk) are a positive
pair, and all of the generated pairs form the batch for training {x̃l}l=1...2N , consisting of 2N samples
(Khosla et al., 2020). In the remainder of this paper, we will refer to the set of N samples as a raw
batch and the set of 2N transformed samples as a multiviewed batch.

In the multiviewed batch, let i ∈ I = {1...2N} be the index of a transformed sample, and let j(i) be
the index of the sample originating from the same raw sample as i. The contrastive loss is as follows.

LCL =
∑
i∈I
Li = −

∑
i∈I

log
exp (vi · vj(i)/τ)∑
a∈A(i) exp(vi · va/τ)

(1)

where vi = f(x̃i, θ), the operator · is the inner product to compute the cosine similarity of two
vectors, τ is the temperature. The index i is the anchor. A(i) = I\{i} is the set of indices excluding
i. For each anchor i, there is one positive and 2N − 2 negatives. The index j(i) is the positive to i
(i.e. a positive pair (i, j(i))), while other 2N − 2 indices {k ∈ A(i)\ {j(i)}} are the negatives.

Existing works focus on developing contrastive learning methods while assuming vast quantities of
training data is available, without which the performance will drastically degrade. Different from
these works, we aim to achieve data-efficient CL on scare samples by dynamically customizing hard
samples based on the training state of the main model in the whole learning cycle.

Adversarial Samples for Improving Accuracy and Robustness of CL. To improve the quality of
learned representations, adversarial attacks can be used to create additional training samples by adding
pixel-level perturbations to clean samples (Ho & Vasconcelos, 2020). While adversarial samples are
more challenging and can generate a higher loss than the original samples, the perturbed samples
still have the same identities as the original ones, which provide limited additional information for
learning. Besides, training with adversarial samples is originally designed for the robustness of
models against attacks, instead of improving model performance on clean samples (Kurakin et al.,
2016; Madry et al., 2017; Goodfellow et al., 2014). As a result, only marginal improvement (Ho &
Vasconcelos, 2020) or even degraded performance (Kim et al., 2020; Jiang et al., 2020) of the learned
CL model is observed. Different from these works, we generate hard images as a whole, instead
of adding pixel-level noises to the existing images, which are more informative for improving the
learned representations of CL.

GAN for Data Augmentation. (Zhang et al., 2019; Bowles et al., 2018; Antoniou et al., 2017; Perez
& Wang, 2017) employ supervised class-conditional GAN to augment the training data to improve
classification performance. However, these works require fully labeled datasets for training GAN.
When labels are not available, the quality of images generated by GAN will greatly degrade (Miyato
et al., 2018; Zhao et al., 2020) and hence the trained CL model. Besides, either GAN and the target
model are isolated and the generated data are not adapted to the training state of the main model
(Zhang et al., 2019; Bowles et al., 2018; Antoniou et al., 2017), or both GAN and the classification
model aim to minimize the classification loss (Perez & Wang, 2017). Different from these works, our
approaches do not rely on labels. Besides, the generator and main model are jointly optimized, in the
way that the generator aims to maximize the CL loss while the CL model aims to minimize the CL
loss. Also, we generate hard positive pairs for unsupervised representation learning by CL, which is
unexplored in these works on conventional supervised learning.

3 DIFFERENTIABLE HARD SAMPLE GENERATION

Framework overview. We propose a framework DiffHard to generate individually hard samples
and pairs of hard positives for contrastive learning, such that better representations can be learned
with limited data. The framework is shown in Figure 1. As shown in the figure, there are two major
components: the hard sample generator (pink) and the main model (blue).

Algorithm 1 shows the process of DiffHard. We formulate DiffHard as a Min-Max game, where
the generator maximizes the contrastive loss by generating hard samples, while the main model
minimizes the contrastive loss by learning representations from both the generated and real samples.
The sample generator consists of two components, the generator G and its slowly-evolving version
Gema (by exponential moving average). G and Gema are first pre-trained on the available unlabeled
dataset to generate data following the real data distribution. Meanwhile,G is jointly pre-trained with a
discriminator D based on the GAN objective (Brock et al., 2018). Then the contrastive learning of the
main model starts, which consists of 3 steps. First, G generates individually hard samples, and G and

3

Under review as a conference paper at ICLR 2022

G

Gema

Hard sample
generator

Main
model

z

T(x)

T(x)

T(x)

T(x)

Dataset
Real

sample

T(x)

T(x)

Multiviewed Batch

Hard
sample

Pull

Pull

Push
away

Partially pseudo-labeled
contrastive loss (PPCL)

Grad
Grad

Grad

Tr
ai

n
in

g
p

ro
gr

es
s

Progressively harder positives

G Gema
Epoch

n

n+20

n+40

n+60

n+80

n+100

Maximize
Contrastive Loss

Minimize
Contrastive Loss

A hard
positive pair

Raw Batch

D

Figure 1: (Left) Generation of hard samples and pairs of hard positives, and the training of the main
model and generator. We generate two similar but distinct raw samples, and use two views of each
raw sample (four views in total) as positives. No labels are used in the generation of these two
similar raw samples. (Right) The generated positive pair becomes progressively harder by tracking
the training state of the main model.

Algorithm 1 Differential Hard Sample Generation (DiffHard)

Input: Main model f(·, θ), generators {G(·, w), Gema(·, wema)}, discriminator D(·, φ); dataset S
Output: Trained main model f(·, θ)
Pre-train G and D by Eq.(5) and Gema by Eq.(7) for m iterations with limited training data S
for iteration t = 1 to T do

Step 1: Forming batch
Sample generated batch Bgen with N hard samples of N2 positive pairs following Eq.(6)
Sample real batch Breal with N samples from S
Form multiviewed batch Bmv from {Bgen ∪Breal} by applying transformations
Step 2: Training main model
Compute loss LPPCL (Eq.(8)) with Bmv and optimize f by Eq.(4) to minimize LPPCL
Step 3: Updating generator
In every n iterations, update G by Eq.(4) to maximize LPPCL, update Gema by Eq.(7); optimize
both G and D by Eq.(5)

end for

Gema collaboratively generate pairs of hard positives. The hard samples, hard positives, together with
real samples from the dataset form a batch and are fed into the main model to compute the contrastive
loss. After that, main model f is updated to minimize the contrastive loss. Finally, G is updated to
maximize the contrastive loss to generate harder samples for the main model based on the current
training state of the main model. Momentum update is applied to Gema to follow G. Meanwhile, we
are using D to force G to generate meaningful data following real data distributions. In this way, the
generator and the main model are jointly optimized, such that we can generate progressively harder
samples and adapt to the training progress of the main model as shown in Figure 1. The details of
each step will be discussed in the following subsections.

3.1 DIFFERENTIABLE HARD SAMPLE GENERATION

In this subsection, we first introduce the details of the hard sample generator. G generates synthetic
data to augment the training data for a higher data diversity and the objective is:

Lgen+real =
∑

i∈{Igen∪Ireal}

Li (2)

where Li is the contrastive loss of multiviewed sample i defined in Eq.(1). Igen is the set of indices
of generated and then transformed (multiviewed) samples {x̃igen}i∈Igen , and Ireal is the set of indices
of multiviewed real samples. The generated raw samples {xkgen} = {G(zk)} are from the generator
G by taking a set of vectors {zk} ∼ p(z), drawn from a Gaussian distribution p(z) = N (0, I), as
input. Two transformations are then applied to each xkgen to get two views x̃2k−1gen and x̃2kgen to form
mutltviewed samples {x̃igen}i∈Igen .

4

Under review as a conference paper at ICLR 2022

Challenge: Low quality of generated samples. Simply pre-training G and D on the dataset
and providing additional synthetic data to the main model cannot effectively improve the learned
representation since the synthetic data has intrinsically lower quality than the real data (Brock
et al., 2018; Heusel et al., 2017; Salimans et al., 2016) even if labels were available to train a
class-conditional generator. When the dataset is unlabeled and the generator is trained in a non
class-conditional way, the quality of synthetic data becomes worse (Zhao et al., 2020; Miyato et al.,
2018), which degrades the performance of the main model or only provides marginal benefits.

To solve this problem, instead of using the isolated generator and main model, we jointly optimize
them by formulating a Min-Max game such that they compete with each other. The generator
dynamically adapts to the training progress of the main model and generates hard samples for
the main model (i.e. high-quality samples from the perspective of training the main model). The
dynamically customized hard samples in each training state of the main model will explore the main
model’s weakness and encourage it to learn better representations to compete with the generator.
Formally, the game is defined as follows.

min
θ

max
w
Lgen+real (3)

where θ and w are the parameters of the main model and the generator, respectively. To solve the
Min-Max game, a pair of gradient descent and ascent are applied to the main model and the generator
to update their parameters, respectively. The details of the update are shown as follows.

θ ← θ − ηθ
∂Lgen+real

∂θ
, w ← w + ηw

∂Lgen+real

∂w
, (4)

where ηθ and ηw are learning rates for the main model and generator, respectively.

Updating w requires gradients to be propagated from the main model through the data transformations
of generated samples to G. Therefore, the transformations T must be differentiable as depicted in
Figure 1, which is unexplored in existing CL frameworks (Chen et al., 2020; He et al., 2020) since
they only need gradient propagation within the main model to update it. Different from this, we adopt
differentiable T (E. Riba & Bradski, 2020) to propagate the gradients through the input of the main
model to the generator for harder samples.

In this way, G can be trained to generate hard samples for the main model.

Avoiding trivial solutions. Optimizing Eq.(3) is much easier for G than for the main model, which
can result in trivial solutions of G, and thus degrade the performance of the learned main model. To
avoid trivial solutions of G, we will update discriminator D to differentiate between the generated
data distribution by G and real data distribution from the dataset. In this way, trivial solutions (e.g.
random noises) can be detected by D, which forces G to generate meaningful and hard samples to
maximize Eq.(3) while following real data distributions. To learn D and G, we employ the GAN
objectives (Brock et al., 2018), which are shown as follows.
LD = E

xreal∼pdata(x)
[fD(−D(x))] + E

z∼p(z)
[fD(D(G(z)))], LG = E

z∼p(z)
[fG(D(G(z)))] (5)

where z is the latent vector drawn from a Gaussian distribution, and pdata is the real data distribution.
fD(x) = max(0, 1 + x) and fG(x) are the hinge losses for D and G, respectively (Miyato et al.,
2018). LD and LG are alternatively minimized by updating D and G, respectively.

3.2 HARD POSITIVE GENERATION WITHOUT USING LABELS

In addition to generating hard samples, we also propose a new method to generate hard positive pairs.
The main idea is that we can use two similar yet different generators G and Gema to generate two
similar but distinct samples as a positive pair, when taking the same latent vector as input.

Positive pair generation. To generate each pair of positives, we use a generator G and its slowly-
evolving version Gema, which are very similar but different. By feeding a latent vector zi sampled
from a Gaussian distribution to both G and Gema, a pair of raw samples (x2i−1, x2i), which are
similar but distinctive, is generated as a positive pair. The process is described as follows:

x2i−1 = G(zi), x2i = Gema(zi), zi ∼ p(z) (6)
To make the positives harder by increasing their difference, G is updated by gradients from the main
model by Eq.(4) while Gema is not. On the other hand, to keep the similarity of generated positive
pairs, we update Gema by momentum update following G. Denoting the parameters of G as w and
the counterpart of Gema as wema, wema is updated by:

wema ← mwema + (1−m)w (7)

5

Under review as a conference paper at ICLR 2022

where m ∈ (0, 1) is a momentum parameter.

To generate N samples with N
2 positive pairs, we sample N

2 latent vectors {zi}i=1...N2
to generate a

batch ofN raw samplesBgen = {xk}k=1...N following Eq.(6). To leverage the diversity and hardness
of generated samples, and the high quality of real samples, we further sample N real samples Breal =
{xk}k=N+1...2N from the dataset. Then a raw batch is formed as B = Bgen ∪Breal = {xk}k=1...2N ,
with N generated samples and N real samples. After that, two augmentations are applied to each xk
to form a multiviewed batch Bmv = {x̃l}l=1...4N for training as shown in Step 1 of Algorithm 1.

Partially pseudo-labeled contrastive loss (PPCL). The contrastive loss in Eq.(2) treats each gen-
erated sample separately and only uses two views generated by T as positive pairs. It does not
leverage the fact that samples generated by G and Gema are actually positive pairs to learn better
representations. To better cluster the generated positive pairs, we define a partially pseudo-labeled
contrastive loss by using the input latent vectors zi as pseudo-labels. Each zi (i = 1...N2) generates
two positives (x2i−1, x2i) in the raw batch and four positives in the multiviewed batch (x̃4i−3, x̃4i−2,
x̃4i−1, x̃4i), which are assigned a same pseudo-label to cluster their features.

Within the multiviewed batch Bmv, let i ∈ Igen = {1...2N} be the indices of generated samples and
i ∈ Ireal = {2N + 1...4N} be the indices of real samples. The PPCL loss is defined as follows.

LPPCL =
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
exp (vi · vp/τ)∑

a∈A(i) exp(vi · va/τ)
, P (i) =

{
{p ∈ A(i), zp = zi}, if i ∈ Igen

{j(i)}, if i ∈ Ireal

(8)
where I = Igen ∪ Ireal. A(i) = I\{i} is the set of indices of i’s positives and negatives, and P (i) is
the set of indices of i’s positives in the multiviewed batch. For real samples i ∈ Ireal, the positive
P (i) = j(i) is the index of the other view of i in the multiviewed batch. For generated samples
i ∈ Igen, the positives P (i) are defined by the pseudo-labels from the input latent vector zi, which
includes the indices of multiviewed samples originating from the same zi.

3.3 ANALYSIS OF THE EFFECTIVENESS OF HARD SAMPLES GENERATION

By plugging the PPCL loss in Eq.(8) into the Min-Max problem in Eq.(3), the main model will
minimize the loss to learn effective representations from hard samples. Meanwhile, the generator will
maximize the loss, which achieves three goals simultaneously: generating individually hard samples,
generating hard positive pairs, and generating hard negatives while following real data distribution.

For the multiviewed positives (x̃4i−3, x̃4i−2, x̃4i−1, x̃4i) originating from zi, taking x̃4i−3 as an
example, its positives are (x̃4i−2, x̃4i−1, x̃4i) and its PPCL loss can be rewritten as:

L4i−3 = −1

3

∑
p∈{4i−2,4i−1,4i}

log
exp(f(x̃4i−3) · f(x̃p)/τ)

Q
(9)

Q =
∑

k∈{{1...2N},k 6=4i−3}∪{2N+1...4N}}

exp(f(x̃4i−3) · f(x̃k)/τ) (10)

When maximizing Eq.(9) by optimizing G, the cosine similarity between positive pairs (in the
numerator) will be minimized for each of the three positives p, and the cosine similarity between
negative pairs (in the denominator Q) will be maximized.

Generating individually hard samples. For the first positive pair (x̃4i−3, x̃4i−2), both of them orig-
inate from raw sample x2i−1 = G(zi). To minimize P1 = f(x̃4i−3) · f(x̃4i−2) = f(t2i−1(x2i−1)) ·
f(t′2i−1(x2i−1)), where t2i−1, t′2i−1 ∼ T are sampled transformations, x2i−1 = G(zi) will become
individually harder such that the main model f(·) cannot perfectly generate similar representations
for this positive pair originating from x2i−1.

Generating hard positive pairs. For the second positive pair (x̃4i−3, x̃4i−1) and the third positive
pair (x̃4i−3, x̃4i), the first multiviewed sample in each pair x̃4i−3 is from raw sample x2i−1 = G(zi)
by G, and the second multiviewed sample in each pair x̃4i−1, x̃4i are from raw sample x2i =
Gema(zi) by Gema. To minimize P2 = f(x̃4i−3) · f(x̃4i−1) = f(t2i−1(x2i−1)) · f(t2i(x2i)) and
P3 = f(x̃4i−3) · f(x̃4i) = f(t2i−1(x2i−1)) · f(t′2i(x2i)), both of which take x2i−1 and x2i as input,
the difference between x2i−1 and x2i will be increased. To achieve this, since no gradients are
propagated to Gema, it will be fixed when optimizing Eq.(9) and G will be pushed apart from Gema.
In this way, distinct samples will be generated as positive pairs by G and Gema. On the other hand,
Gema is slowly updated following G by Eq.(7), which encourages them to generate similar samples

6

Under review as a conference paper at ICLR 2022

when taking the same latent vector zi as input. As a result, by updating G and Gema by Eq.(8) and
Eq.(7), distinct yet similar samples can be generated as a positive pair as shown in Figure 1 (Right).

Generating hard negatives while following real distributions. For the negative pairs, when max-
imizing Eq.(9), Q will be maximized. For the first set k ∈ {{1...2N}, k 6= 4i − 3}, the term
Nk = f(x̃4i−3) · f(x̃k) = f(t2i−1(x2i−1)) · f(t(xd k2 e)), t ∈ {td k2 e, t

′
d k2 e
} is the cosine similarity

of two samples generated by G or Gema. When maximizing Nk by optimizing G, G will generate
samples that the main model cannot effectively discriminate in its current training state. As a result,
the main model will learn to distinguish these hard negatives.

For the second set k ∈ {2N +1...4N}, Nk is the cosine similarity between features of one generated
(and transformed) sample t2i−1(x2i−1) and one transformed real sample t(xd k2 e), t ∈ {td k2 e, t

′
d k2 e
}.

When maximizingNk,Gwill generate samples that have larger similarities to real samples. Therefore,
G will generate samples following real data distributions, instead of generating meaningless samples.

4 EXPERIMENTAL RESULTS

Datasets and model architecture. We evaluate the proposed approaches on five datasets, including
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), Fashion-MNIST (Xiao
et al., 2017), ImageNet-100 and ImageNet-10. ImageNet-100 is a subset of ImageNet (Russakovsky
et al., 2015) also used in (Van Gansbeke et al., 2020; Kalantidis et al., 2020; Shen et al., 2020; Tian
et al., 2019), and ImageNet-10 is a smaller subset of ImageNet. We use ResNet-18 as the main
model and use a 2-layer MLP to project the output to 128-dimensional representation space (Chen
et al., 2020; He et al., 2020). We use the generator and discriminator architectures from (Brock et al.,
2018). The batch size is 256 and the main model is trained for 300 epochs on CIFAR-10, CIFAR-100
and ImageNet-10, 200 epochs on Fashion-MNIST, and 100 epochs on ImageNet-100 for efficient
evaluation. The training details and detailed model architectures can be found in the Appendix.

Metrics. To evaluate the learned representations, we use two metrics linear evaluation and transfer
learning for self-supervised learning (Chen et al., 2020). In linear evaluation, a linear classifier is
trained on top of the frozen base encoder, and the test accuracy represents the quality of learned rep-
resentations. We first perform CL by the proposed approaches without labels to learn representations.
Then we fix the encoder and train a linear classifier on 100% labeled data on top of the encoder. The
classifier is trained for 500 epochs with Adam optimizer and learning rate 3e-4. Transfer learning
evaluates the generalization of learned features. The features are first learned on the source dataset,
then evaluated on the target task. Following (Caron et al., 2020), we train a linear classifier on top of
the frozen encoder on the target task, using the same hyper-parameters as the ones in linear evaluation.

Baselines. We compare the proposed approaches with multiple approaches. SimCLR is the original
contrastive learning approach by using real data (Chen et al., 2020). SimCLR-2x is a variant of
SimCLR by sampling 2× data for each batch from the dataset, serving as a strong baseline. By
comparing our approaches with SimCLR-2x, we evaluate if the samples generated by our approaches
benefit CL more than using the same amount of additional real data. CLAE is the SOTA approach to
improve the performance of CL by using pixel-level adversarial perturbations (Ho & Vasconcelos,
2020). CL-GAN uses a generator from GAN (Brock et al., 2018) to generate additional training data
for SimCLR (Chen et al., 2020) without joint learning.

4.1 LINEAR EVALUATION
Table 1: Linear classification when limited training data are available for CL. Available data are
labeled and used for learning the classifier on the fixed encoder and top-1 accuracy is reported.

Method
CIFAR-10

(20% tr. data)
CIFAR-10

(10% tr. data)
CIFAR-100

(20% tr. data)
CIFAR-100

(10% tr. data)
FMNIST

(20% tr. data)
FMNIST

(10% tr. data)
ImageNet-100
(20% tr. data)

ImageNet-10
(20% tr. data)

SimCLR 80.19 76.05 44.13 37.46 87.92 87.26 40.39 62.60
SimCLR-2x 81.04 76.06 44.75 37.10 89.60 87.49 42.77 65.00
CLAE 79.84 74.38 45.17 37.28 88.48 87.58 40.14 59.60
CL-GAN 80.81 78.36 46.94 40.03 88.85 87.68 42.79 64.20
Proposed 85.11 80.94 50.24 43.74 91.77 89.79 46.73 68.40

Linear classification of representations learned with limited training data. We evaluate the
proposed approaches by linear evaluation when limited training data is available for contrastive repre-
sentation learning. Linear classification evaluates the linear separability of learned representations

7

Under review as a conference paper at ICLR 2022

(Chen et al., 2020), and higher accuracy indicates more discriminative and desirable features. As
shown in Table 1, the proposed approaches consistently outperform the SOTA approaches by a large
margin. About 5% and 6% improvements are observed on CIFAR-10/100 and ImageNet-100/10, re-
spectively. Notably, the proposed approaches outperform or perform on par with the best-performing
baselines trained with 2× data, achieving 2× data efficiency. For example, with 10% training data on
CIFAR-10, the best-performing baseline with 20% training data achieves 81.04% accuracy, while the
proposed approaches achieve a similar accuracy of 80.94% by using only 10% training data. Besides,
the proposed approaches even largely outperform SimCLR-2x, which samples 2× real data in each
training batch. This result shows that the customized hard data by the proposed approaches have
higher quality in terms of training CL than real data.
Table 2: Linear classification when the full dataset is available for CL. 100% labeled data are
used for learning the classifier on the fixed encoder. And top-1 accuracy is reported.

Method CIFAR-10 CIFAR-100 FMNIST ImageNet-100 ImageNet-10

SimCLR (Chen et al., 2020) 90.37 63.93 92.35 56.19 83.20
SimCLR-2x (Chen et al., 2020) 91.37 64.88 92.50 58.73 82.20
CLAE (Ho & Vasconcelos, 2020) 90.13 63.25 92.36 55.20 81.20
CL-GAN (Chen et al., 2020; Brock et al., 2018) 89.90 63.82 92.64 57.58 83.40
Proposed 92.94 67.41 93.94 60.46 87.40

Linear classification of representations learned with the full dataset. When more training data is
available for CL, the proposed approaches still significantly outperform the SOTA approaches. As
shown in Table 2, substantial improvements of 2.57%, 3.48%, 1.59%, 4.27%, and 4.00% over the
original CL framework SimCLR are observed on five datasets, respectively. This result shows that
the proposed methods can effectively leverage given data for CL.

4.2 TRANSFER LEARNING

Table 3: Transfer learning to downstream tasks with limited training data for learning the
encoder on the source datasets. Top-1 accuracy of linear classification on top of a fixed encoder is
reported.

Source CIFAR-10
(20% tr. data)

CIFAR-10
(10% tr. data)

CIFAR-100
(20% tr. data)

CIFAR-100
(10% tr. data)

ImageNet-100
(20% tr. data)

ImageNet-10
(20% tr. data)

Target CIFAR-100 CIFAR-10 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

SimCLR 46.88 44.98 74.33 71.79 77.09 52.94 69.86 42.56
SimCLR-2x 48.45 46.74 73.94 72.49 77.49 53.03 71.20 43.82
CLAE 46.93 46.11 73.47 71.48 77.65 52.73 69.98 44.19
CL-GAN 48.54 47.39 75.15 73.43 78.54 54.47 70.44 44.74
Proposed 52.51 50.08 77.26 75.10 81.19 58.42 73.08 46.46

Transfer learning with limited training data on the source dataset. We evaluate the generalization
performance of learned representations by transferring to downstream vision tasks. The encoder is
trained on the source dataset and transferred to target tasks, and we report the linear classification
performance. As shown in Table 3, when limited training data is available for learning the encoder on
the source datasets, the proposed approaches consistently outperform the SOTA baselines. Notably,
with only 20% training data of the source dataset CIFAR-10 and transferring to CIFAR-100, the
proposed approaches outperform the best-performing baseline with 100% training data (Table 4)
of CIFAR-10 (52.51% vs. 52.47%), which achieves 5× data efficiency. Besides, with only 10%
training data on CIFAR-10, the proposed approaches outperform the best-performing baseline with
20% training data by a large margin (50.08% vs. 48.54%).

Table 4: Transfer learning with the full dataset for learning the encoder on the source datasets.
Source CIFAR-10 CIFAR-100 ImageNet-100 ImageNet-10

Target CIFAR-100 CIFAR-10 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

SimCLR 51.63 78.87 83.15 61.63 73.91 44.88
SimCLR-2x 52.22 78.53 83.78 62.92 73.77 46.53
CLAE 52.47 78.10 83.02 61.69 74.07 47.11
CL-GAN 52.16 78.98 83.11 62.03 73.62 44.55
Proposed 56.38 82.24 85.75 64.94 75.38 49.03

Transfer learning with the full dataset. We further evaluate the transfer learning performance
when more training data is available for learning the encoder on the source datasets. In Table 4, our
approaches consistently outperform the baselines on four source datasets with various target tasks.

8

Under review as a conference paper at ICLR 2022

4.3 ABLATIONS

SimCLR G
G+Hard

G+Pos.
G+P.+Hard

90.0

91.0

92.0

93.0

To
p-

1
ac

cu
ra

cy
 (%

)

(a) CIFAR-10.
SimCLR G

G+Hard
G+Pos.

G+P.+Hard
80.0
81.0
82.0
83.0
84.0
85.0

To
p-

1
ac

cu
ra

cy
 (%

)

(b) CIFAR-10 (20% training data).
Figure 2: Effectiveness of hard samples, positive pairs, and hard positive pairs. Enabling the
components in the proposed approaches one by one accumulatively improves the performance. G
is using a separate generator, G+Hard is jointly optimizing G and the main model to generate hard
samples, G+Pos. is G with positive pair generation, and G+P.+Hard is the proposed approach with
all the components enabled. Top-1 accuracy of linear classification is reported.
Effectiveness of hard samples, positive pairs, and hard positive pairs. We perform ablation
studies to evaluate the effectiveness of hard samples (G+Hard), positive pairs (G+Pos.), and hard
positive pairs (G+Pos.+Hard). The results of linear evaluation are shown in Figure 2. On CIFAR-10,
using a simple generator degrades the performance of CL compared with the original SimCLR
approach due to the low-quality samples from the generator. Using the proposed hard samples and
positive pairs recover the accuracy by 0.39% and 0.62%, respectively, while using hard positive pairs
outperforms SimCLR by 2.57% (92.94% vs. 90.37%). Similar results are observed on CIFAR-10
with 20% training data, where using a separate generator can slightly improve the accuracy by 0.15%,
while enabling all the proposed components significantly improves the accuracy by 4.92%.

SimCLR SimCLR-2x CLAE CL-GAN Proposed

90

91

92

93

94

To
p-

1
ac

cu
ra

cy
 (%

)

300 epochs
600 epochs

Figure 3: Linear classification
accuracy with more learning
epochs on CIFAR-10. The pro-
posed approaches consistently out-
perform the baselines with longer
training. Training progress

Figure 4: Progressively harder positive pairs during training.
Impact of longer training. We evaluate the impact of training epochs. We increase the number of
training epochs from the default 300 epochs to 600 epochs on CIFAR-10, and evaluate the learned
representations by linear classification. As shown in Figure 3, with longer training, the advantage of
the proposed approaches over the baselines remains, and the margin over the best-performing baseline
becomes larger. This is because with longer training, more and harder samples are customized for the
main model, which improves its performance.

Evolution of positive pairs. The dynamically harder positive pairs in the training progress are shown
in Figure 4. Every two adjacent rows show the evolution of positive pairs on ImageNet-10. With
growing knowledge of the main model, positive pairs become progressively harder, while being
similar objects. Learning from harder positive pairs improves the quality of learned representations.

5 CONCLUSION

We propose a framework to achieve data-efficient contrastive representation learning. We propose a
data generator to track the training state of the main model and customize hard samples on-the-fly in
the training process. To further generate hard positive pairs without using labels, we propose a pair of
generators to generate similar but distinct samples. Experimental results show superior accuracy of
the proposed approaches compared with the state-of-the-art.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340, 2017.

Christopher Bowles, Liang Chen, Ricardo Guerrero, Paul Bentley, Roger Gunn, Alexander Hammers,
David Alexander Dickie, Maria Valdés Hernández, Joanna Wardlaw, and Daniel Rueckert. Gan
augmentation: Augmenting training data using generative adversarial networks. arXiv preprint
arXiv:1810.10863, 2018.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint
arXiv:2006.09882, 2020.

Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, and Zhangyang Wang. Ultra-data-efficient gan
training: Drawing a lottery ticket first, then training it toughly. arXiv preprint arXiv:2103.00397,
2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. arXiv preprint
arXiv:2011.10566, 2020.

D. Ponsa E. Rublee E. Riba, D. Mishkin and G. Bradski. Kornia: an open source differentiable
computer vision library for pytorch. In Winter Conference on Applications of Computer Vision,
2020. URL https://arxiv.org/pdf/1910.02190.pdf.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. arXiv preprint
arXiv:1706.08500, 2017.

Chih-Hui Ho and Nuno Vasconcelos. Contrastive learning with adversarial examples. arXiv preprint
arXiv:2010.12050, 2020.

Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. Robust pre-training by adversarial
contrastive learning. arXiv preprint arXiv:2010.13337, 2020.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard
negative mixing for contrastive learning. arXiv preprint arXiv:2010.01028, 2020.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. arXiv preprint
arXiv:2004.11362, 2020.

Minseon Kim, Jihoon Tack, and Sung Ju Hwang. Adversarial self-supervised contrastive learning.
arXiv preprint arXiv:2006.07589, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

10

https://arxiv.org/pdf/1910.02190.pdf

Under review as a conference paper at ICLR 2022

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Luis Perez and Jason Wang. The effectiveness of data augmentation in image classification using
deep learning. arXiv preprint arXiv:1712.04621, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. arXiv preprint arXiv:1606.03498, 2016.

Zhiqiang Shen, Zechun Liu, Zhuang Liu, Marios Savvides, and Trevor Darrell. Rethinking image
mixture for unsupervised visual representation learning. arXiv preprint arXiv:2003.05438, 2020.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv preprint
arXiv:1906.05849, 2019.

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and Luc
Van Gool. Learning to classify images without labels. arXiv preprint arXiv:2005.12320, 2020.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3733–3742, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. arXiv preprint arXiv:2103.03230, 2021.

Xiaofeng Zhang, Zhangyang Wang, Dong Liu, and Qing Ling. Dada: Deep adversarial data aug-
mentation for extremely low data regime classification. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2807–2811. IEEE, 2019.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
data-efficient gan training. arXiv preprint arXiv:2006.10738, 2020.

11

	Introduction
	Background and Related Work
	Differentiable Hard Sample Generation
	Differentiable Hard Sample Generation
	Hard Positive Generation without Using Labels
	Analysis of the Effectiveness of Hard Samples Generation

	Experimental Results
	Linear Evaluation
	Transfer Learning
	Ablations

	Conclusion

