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Abstract

Adversarial learning is a widely used paradigm in machine learning, often for-
mulated as a min-max optimization problem where the inner maximization im-
poses adversarial constraints to guide the outer learner toward more robust so-
lutions. This framework underlies methods such as Sharpness-Aware Minimiza-
tion (SAM) and Generative Adversarial Networks (GANs). However, traditional
gradient-based approaches to such problems often face challenges in balancing
accuracy and efficiency due to second-order complexities. In this paper, we pro-
pose a bilevel optimization framework that reformulates these adversarial learning
problems by leveraging the tractability of the lower-level problem. The bilevel
framework introduces no additional complexity and enables the use of advanced
bilevel tools. We further develop a provably convergent single-loop stochastic
algorithm that effectively balances learning accuracy and computational cost. Ex-
tensive experiments show that our method improves generation quality of GANs,
and consistently achieves higher accuracy for SAM under label noise and across
various backbones, while promoting flatter loss landscapes. Overall, this work
provides a practical and theoretically grounded framework for solving adversarial
learning tasks through bilevel optimization.

1 Introduction

Nowadays, adversarial learning has attracted considerable attention due to its broad applicability
in machine learning, particularly in addressing fairness and robustness. Typically formulated as
a min-max optimization problem [46, 80, 16], adversarial learning involves maximizing an inner
objective to impose adversarial constraints, thereby guiding the outer learner toward more robust
solutions. This framework underpins a wide range of applications. In Generative Adversarial Net-
works (GANs) [8, 33, 41, 66, 77, 79], a generator (minimizer) and discriminator (maximizer) com-
pete to improve the quality of synthetic data. In Sharpness-Aware Minimization (SAM) [2, 68, 69],
adversarial perturbations on model parameters encourage optimization in flatter loss regions. In ad-
versarial training [62, 46, 1, 80], input-space attacks are maximized to enhance model robustness
against perturbations. These examples highlight the foundational role of adversarial learning across
various domains.

Despite the widespread adoption and their empirical success, the traditional min-max framework
introduces significant challenges for scalability, primarily because each training step involves
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multiple nested maximization steps. This results in prohibitively high computational costs, ren-
dering these methods impractical for many real-world applications and further understandings
[32, 80, 61, 64, 82].

Among the various applications of adversarial learning, we use Sharpness-Aware Minimization
(SAM) as a representative example to highlight the challenges inherent in the min-max formula-
tion and to motivate the need for a new reformulation.

Sharpness-Aware Minimization. Due to the influence of noise and overparameterization, mod-
ern neural networks are often prone to overfitting, resulting in poor generalization performance
[78, 58, 68]. This challenge remains a significant barrier to further progress in machine learning.
Recent numerical and theoretical studies have revealed a strong correlation between a model’s gen-
eralization ability and the sharpness of the loss function landscape around its optimized parameters
[28, 12, 14, 50, 22]. Classical optimization methods, which aim solely to minimize the value of the
loss function, often fail to account for this geometric aspect and are thus insufficient for improving
generalization.

To overcome this, researchers have turned their attention to the geometry of the loss surface, par-
ticularly the sharpness near minimizers, leading to the formulation of a min-max problem. This
direction has culminated in the development of Sharpness-Aware Minimization (SAM), which ex-
plicitly incorporates sharpness into the optimization process [71, 83, 16, 51]. Recent work by [59]
further suggests that SAMs effectiveness lies in its ability to balance the quality of diverse features,
rather than merely seeking flatter minima.

Difficulties in SAM: Min-Max Perspective. Despite the rapid development and empirical success
of SAM, algorithms based on SAMs original min-max formulation require implicit differentiation,
which is computationally demanding. To reduce cost, practical implementations often avoid this
step, but at the expense of accuracy, even with various refinements [16, 13, 5, 68]. For example,
[72] incorporated second-order information to improve efficiency. Most theoretical analyses, how-
ever, still rely on the full SAM formulation without simplifications [5, 68, 69, 11]. For instance,
[16] derived a PAC-Bayes bound for an averaged direction model, while [68] showed SAMs local
regularization effect on the Hessian eigenvalues. These results point to a gap between simplified
practical algorithms and the theoretical models that justify them.

Difficulties in Adversarial Learning: the Min-Max Perspective. The challenges encountered
in SAM are not isolated but reflect a broader set of issues faced in many adversarial learning
tasks. Similar difficulties appear in fast adversarial training [80, 1], generative adversarial learn-
ing [7, 64, 61, 82]. These methods frequently exhibit the following limitations [32, 80]: (i) reduced
computational cost at the expense of learning accuracy, and (ii) a lack of sufficient theoretical guar-
antees.

These recurring issues raise a fundamental question:

Is there an efficient framework that balances computational cost and learning accuracy in such
adversarial learning tasks?

To address this, we propose a unified bilevel optimization perspective, where the lower-level prob-
lem is chosen to be simple and, in many cases, admits a closed-form solution. This design allows
us to apply advanced bilevel optimization theory and algorithms without increasing computational
burden, as the lower-level remains analytically tractable. As a result, the proposed framework of-
fers a principled and efficient approach applicable to various tasks, including SAM and generative
adversarial networks, as discussed in this paper.

Contributions. We summarize our contributions as follows:

Formulation-wise. We propose a unified bilevel optimization framework to reformulate a range
of adversarial learning tasks, including SAM and GANs, by introducing an efficient lower-level
problem. This formulation enables the use of advanced bilevel optimization algorithms, achieving a
better balance between computational efficiency and learning accuracy.

Experiment-wise. We conduct comprehensive experiments to evaluate the proposed bilevel frame-
work, focusing on Sharpness-Aware Minimization (SAM) and generative adversarial learning
(GAN). The results demonstrate that our approach effectively balances computational cost and nu-
merical accuracy, highlighting its practicality and robustness in real-world adversarial learning tasks.
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2 Related work

Examples from the Traditional Perspective. In recent years, mathematical formulations and corre-
sponding optimization algorithms have played an increasingly prominent role in adversarial learning.
Prominent examples of min-max formulations include adversarial training [78, 70, 1] and genera-
tive adversarial learning [55, 24, 49, 27, 26, 48, 25, 9, 23, 76]. While these approaches often reduce
computational complexity, they tend to compromise model accuracy and robustness.

As an illustrate example, [16] leveraged the relationship between flat minima and generalization
error to train deep neural networks (DNNs) with improved generalization across natural distributions
using SAM. Similarly, [71] proposed a method that regularizes the sharpness term in adversarial
training, achieving significantly more robust generalization against adversarial attacks. A substantial
body of research has explored combining SAM with other training strategies or neural architectures
[10, 67, 63]. For instance, [31] improved SAM by scaling the sharpness adjustment relative to
the parameter size, while [42] optimized computational efficiency by reusing previously computed
weight perturbations. Numerous efforts have been made to refine and adapt the SAM algorithm. For
example, [13] introduced the Efficient Sharpness-Aware Minimizer (ESAM), which incorporates
two key training strategies: Stochastic Weight Perturbation (SWP) and Sharpness-Sensitive Data
Selection (SDS). [52] provides a unified framework of analysis on SAM.

Bilevel Optimization. Bilevel optimization is a hierarchical framework involving an upper-level
and a lower-level problem. It is a highly challenging yet impactful area in both theory and practice.
This framework has led to significant progress in machine learning domains such as hyperparameter
selection [53, 17, 45] and meta-learning [6, 30, 56, 17, 36, 21, 75, 81]. [74] proposed a bilevel
algorithm for the 0-1 classification problem, and [80] introduced a bilevel reformulation of fast ad-
versarial training originally modeled as a traditional min-max problem in [46]. In this work, we take
the step toward establishing a bilevel perspective for adversarial learning tasks, and propose corre-
sponding algorithms and theoretical analyses to overcome the limitations of traditional perspectives.

3 The Bilevel Perspective Beyond the Traditional Framework

In this section, we first revisit the traditional optimization approach commonly used in adversar-
ial learning tasks, using Sharpness-Aware Minimization (SAM) as a representative example, and
point out their key limitations. We then introduce a bilevel optimization perspective featuring an
efficiently solvable lower-level problem. This reformulation enables the application of advanced
bilevel methods without incurring additional computational complexity, offering a principled and
practical framework for a broad class of adversarial learning problems.

3.1 Preliminary on The Traditional Perspective: Min-Max Formulations

We begin by introducing a widely used min-max optimization formulation that underlies several
adversarial learning applications, such as adversarial training [78, 70, 1], generative adversarial
learning [55, 24, 49, 27, 26, 48, 25, 9, 23, 76], and, as discussed in the next subsection, SAM.

Consider the standard min-max formulation for many adversarial learning tasks:
min
ω

max
δ∈C

L(ω, δ), (1)

where the parameter ω ∈ Rn, δ ∈ C ⊂ Rm, C represents the regular closed constraint set. Let

S =
N∪
i=1

{(ui, vi)} represents the training dataset sampled from the data space U × V . The function

L : Rn × Rm → R is the empirical loss defined as

L(ω, δ) =
1

N

N∑
i=1

LS(ω, δ, ui, vi),

where LS : Rn×Rm×U ×V → R+ is the per-sample loss. The goal is to learn optimal parameters
ω and δ that solve the min-max objective (1).

The loss function L(ω, δ) is often nonconvex with respect to both ω and δ. This nonconvexity implies
that local or global minimizers with identical loss values may exhibit vastly different neighborhood
behaviors and theoretical capabilities.
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An example of the computational challenges in min-max problems is provided by [73], where 128
GPUs were used to run Adversarial Training (AT) on the ImageNet dataset. Such computational re-
quirements highlight the prohibitive costs of solving large-scale min-max problems directly. Several
computational techniques have been proposed to improve the efficiency of min-max optimization.
For instance, gradient alignment (GA) regularization [1] and fast adversarial training methods [70]
have been developed to address these challenges. However, these methods often suffer from prac-
tical issues such as instability, catastrophic overfitting, and degraded robustness [32, 80]. These
limitations underscore the need for more robust and scalable approaches, such as the bilevel per-
spective.

3.2 SAM: An Example of The Traditional Perspective

In this subsection, we present an example of Sharpness-Aware Minimization (SAM) [16], which is
based on the observation that the generalization ability of a model is closely related to the sharpness
of its loss function landscape.

Consider a local neighborhood around a parameter ω with radius r > 0 and a unit direction δ. SAM
introduces the following min-max formulation:

min
ω

[
L(ω) + max

∥δ∥≤1
[L(ω + rδ)− L(ω)]

]
, (2)

which can be equivalently written as:

min
ω

max
∥δ∥≤1

L(ω + rδ), (3)

where C = {δ ∈ Rn : ∥δ∥ ≤ 1} is the set of feasible perturbations, and r denotes the radius.
This formulation augments the original loss function L(ω) by incorporating a sharpness term L(ω+
rδ) − L(ω), which captures the worst-case increase in the loss within the neighborhood defined by
rδ. The goal of SAM is thus twofold: minimize the loss function while simultaneously reducing
sharpness in the worst-case direction.

The common strategy to address these computational challenges is to adopt approximation tech-
niques. In the context of (2), the maximum function Lmax : Rn → R is defined as:

Lmax(ω) := max
∥δ∥≤1

L(ω + rδ), (4)

where r denotes the neighborhood radius. The traditional SAM algorithm minimizes Lmax(ω) by
employing an approximation technique and a subsequent discard process.

Numerical Technique The approximation begins with a first-order Taylor expansion around ω:

L(ω + rδ) ≈ L(ω) + rδ⊤∇ωL(ω). (5)

Using this approximation, the maximizer δ∗(ω) is computed as:

δ∗(ω) = arg max
∥δ∥≤1

[
L(ω) + rδ⊤∇ωL(ω)

]
=

∇ωL(ω)

∥∇ωL(ω)∥
.

Substituting δ∗(ω) back into the SAM formulation, it becomes:

min
ω

LASC(ω) := L

(
ω + r

∇ωL(ω)

∥∇ωL(ω)∥

)
. (6)

To efficiently compute the gradient, traditional methods calculate:

∇ωL
(
ω + rδ∗(ω)

)
=

d
(
ω + rδ∗(ω)

)
dω

∇ωL
(
ω + rδ∗(ω)

)
= ∇ωL

(
ω + rδ∗(ω)

)
+ r

dδ∗(ω)

dω
∇ωL

(
ω + rδ∗(ω)

)
.

(7)

The second term, r dδ∗(ω)
dω ∇ωL

(
ω + rδ∗(ω)

)
, involves the derivative of the composition function

δ∗(ω), which is computationally expensive to evaluate. Therefore, traditional methods often discard
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this term to simplify the gradient computation [16, 68, 29]. Thus, the standard iterative process can
be expressed as:

ωk+1 = ωk − t∇L

(
ωk + r

∇L(ωk)

∥∇L(ωk)∥

)
, (8)

where t > 0 is the step size. Convergence analysis for this iterative scheme and its extensions has
been extensively studied (e.g., [16, 29, 52]).

Importance of Hessian. To better understand the behavior of SAM, consider Table 1. In the table,
λ1 denotes the largest eigenvalue, λmin the smallest non-zero eigenvalue, Tr the trace operator, and
HL(ω) the Hessian of the loss function L at ω.

Table 1: Definitions and biases of different SAM loss formulations [68].
Type of Loss Definition Biases

Worst max
∥δ∥≤1

L(ω + rδ) min
ω

λ1(HL(ω))

Ascent L
(
ω + r ∇L(ω)

∥∇L(ω)∥

)
min
ω

λmin(HL(ω))

Average E(u,v)∼D[LS(ω, u, v)] min
ω

Tr(HL(ω))

In Table 1, the worst-direction loss captures the sharpest curvature of the loss landscape and is
associated with λ1. The ascent-direction loss reflects the local curvature along the most favorable
direction of increase and corresponds to λmin. Finally, the average-direction loss characterizes the
overall sharpness of the loss surface and is measured by Tr(HL(ω)). From this table, it is clear
that the effectiveness of the SAM technique in minimizing sharpness arises from its incorporation
of second-order information via the Hessian matrix HL(ω). Specifically, the largest eigenvalue
λ1(HL(ω)) directly measures the sharpness of the loss function. This connection explains why SAM
improves generalization by reducing sharpness. In fact, prior studies (e.g., [44, 4, 43]) have used
λ1(HL(ω)) as a key metric to evaluate SAM’s efficiency in enhancing generalization performance.

Loss of Accuracy. While the discarding step reduces computational costs, it introduces inaccuracies
that may compromise learning performance. Specifically, in (7), we have

dδ∗(ω)

dω
= ∇ω

(
∇L(ω)

∥∇L(ω)∥

)
=

1

∥∇L(ω)∥

(
HL(ω)−

∇L(ω)∇L(ω)⊤HL(ω)

∥∇L(ω)∥2

)
, (9)

where HL(ω) denotes the Hessian of the loss function L (details are in Subsection 3.1). The term
discarded in (7) contains valuable geometric information about the loss landscape, which plays a
critical role in establishing theoretical guarantees and ensuring robust optimization [68, 69]. This
discrepancy between the theoretical formulation and its practical implementation highlights the need
for a more principled and efficient framework. Experiments in Subsection 5.1 also shows that its
loses accuracy.

3.3 The Bilevel Perspective

We introduce the bilevel perspective to address the limitations of traditional approaches, offering a
simple lower-level problem without introducing additional complexities.

Bilevel Perspective. The bilevel optimization framework provides a natural and effective solution
to the challenges in traditional perspectives. This formulation facilitates the application of advanced
methods, such as those based on the Moreau envelope. Crucially, the lower-level problem remains
simple and tractable, avoiding unnecessary complexity. This structure allows for the preservation of
learning accuracy while managing computational costs, making it a robust alternative to traditional
formulations.

Specifically, by selecting a suitable lower-level function Lℓ : Rn × Rm → R, we reformulate
traditional models - such as the min-max problem (1) – into a bilevel optimization problem:

min
ω

L(ω, δ̃)

subject to δ̃ = argmin
δ∈C

{Lℓ(ω, δ)},
(10)
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where the lower-level problem allows efficient computation of the optimal solution δ̃ for a given ω,
and C denotes the feasible set for δ.

As an example, consider the SAM formulation in (2) and (6). By setting Lℓ(ω, δ) := −δT∇L(ω),
the lower-level problem becomes a linear program over the unit ball C. This admits a closed-form
solution: δ̃ = ∇L(ω)

∥∇L(ω)∥ . Hence, this bilevel reformulation introduces no additional complexity com-
pared to the original model. In this case, the bilevel formulation (10) is equivalent to the traditional
SAM model (2). The bilevel perspective allows both theoretical analysis and numerical optimization
tools from bilevel programming to be applied effectively to such tasks.

4 Algorithm and Theoretical Investigation

Given the bilevel perspective, we now investigate algorithms tailored for this type of bilevel op-
timization. Solving large-scale bilevel optimization (BLO) problems for complex learning tasks
presents two significant challenges: ensuring computational efficiency and guarantees of accuracy.
To address these challenges, we apply a stochastic single-loop algorithm adopted from [40], inspired
by [18], based on the Moreau envelope.

Value Function. One of the main challenges in solving bilevel programming problems (BLPPs)
lies in their nested structure: one must first solve the lower-level problem and then optimize the
upper-level objective based on that solution.

Let the value function be defined as

V (ω) := min
δ∈C

Lℓ(ω, δ).

Then, the bilevel problem (10) can be equivalently reformulated as:

min
ω

L(ω, δ)

subject to Lℓ(ω, δ)− V (ω) ≤ 0, δ ∈ C.
(11)

However, the nonsmooth and nonconvex nature of V (ω) poses significant computational challenges.

Moreau Envelope. To address this issue, we reformulate the problem using the Moreau envelope
of Lℓ(ω, δ) with parameter γ > 0:

vγ(ω, δ) := inf
θ∈C

{
Lℓ(ω, θ) +

1

2γ
∥θ − δ∥2

}
. (12)

The Moreau envelope provides a smooth approximation to the value function. Geometrically, it
defines a family of smooth surfaces that approximate the graph of V . Using this, we reformulate
problem (10) as:

min
ω

L(ω, δ)

subject to Lℓ(ω, δ)− vγ(ω, δ) ≤ 0, δ ∈ C.
(13)

If Lℓ(ω, ·) is convex in δ for each fixed ω, then (10) and (13) are equivalent [18, Theorem 2.1]. If
Lℓ(ω, ·) is only weakly convex, then the latter is a relaxation of the former [40, Theorem A.1].

Note that Lℓ(ω, δ) − vγ(ω, δ) ≥ 0 for all (ω, δ) ∈ Rn × C, so the constraint is effectively an
equality constraint. This violates standard constraint qualifications and complicates the derivation
of optimality conditions.

To circumvent this, we introduce a penalty parameter µ > 0 and consider the penalized problem:

min
ω

Fµ(ω, δ) := L(ω, δ) + µ [Lℓ(ω, δ)− vγ(ω, δ)] , subject to δ ∈ C. (14)

Algorithm. Based on the Moreau envelope, we propose a single-loop stochastic algorithm. At
iteration k, given a mini-batch bk ⊂ {1, . . . , N}, define:

Lbk(ω, δ) :=
1

|bk|
∑
i∈bk

LS(ω, δ, ui, vi), (15)
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where LS denotes the sample-wise loss. The batch-based lower-level loss is denoted as Lbk
ℓ (ω, δ).

The update is computed using gradients of Lbk(ω, δ), as described in (18).

Unlike SAM [17, 40] or fast adversarial training [80], our method avoids computing gradients of
composite functions, thus significantly reducing computational cost while preserving robustness
and accuracy.

Convergence Analysis. We define the residual function using the selected mini-batch bk:

Rbk
k (ω, δ) := dist

(
0,∇Lbk(ω, δ) + µk

(
∇Lbk

ℓ (ω, δ)−∇vbkγ (ω, δ)
)
+NRn×C(ω, δ)

)
,

where NRn×C(ω, δ) is the normal cone to Rn × C at (ω, δ).

When bk = {1, . . . , N}, denote
Rk(ω, δ) := dist (0,∇L(ω, δ) + µk (∇Lℓ(ω, δ)−∇vγ(ω, δ)) +NRn×C(ω, δ)) .

This residual serves as a stationarity measure for the penalized problem:
min
ω

Fµk
(ω, δ) := L(ω, δ) + µk [Lℓ(ω, δ)− vγ(ω, δ)] , subject to δ ∈ C. (16)

A point (ω, δ) is stationary for (16) if and only if Rk(ω, δ) = 0.

Special Case: SAM. In the SAM setting where L(ω, δ) = L(ω+rδ) and Lℓ(ω, δ) = −δ⊤∇ωL(ω),
the lower-level solution is given by:

δ = θ∗γ(ω, δ) =
∇L(ω)

∥∇L(ω)∥
.

Then the gradient of the penalized objective becomes:
∇Fµ(ω, δ) = (∇L(ω + rδ), r∇L(ω + rδ)− µ∇L(ω)) .

Thus Rk(ω, δ) captures the sharpness in the ascent direction model (6). We then present the follow-
ing convergence result for the proposed algorithm:
Theorem 4.1. Assume the algorithm satisfies some standard conditions. Then for any p ∈ (0, 1

2 ),
we have:

E
[

min
0≤k≤K

Rbk
k (ωk+1, δk+1)

]
= O

(
1

K(1−2p)/2

)
. (17)

Figure 1 compares the convergence performance of our algorithm with existing bilevel methods,
demonstrating its superior efficiency.

(a) ∥ω − ω∗∥ (b) ∥δ − δ∗∥ (c) ∥ω − ω∗∥ (d) ∥δ − δ∗∥

Figure 1: Illustration of convergence behaviors compared with representative BLO schemes.

Future Generalization. For various types of min-max problems, modern methods have been pro-
posed (e.g., [1, 2, 32, 80, 65]). For instance, [65] investigates min-max problems of the form
minθ maxϕ L(F (θ), G(ϕ)) in the convex-concave setting. Our method can be applied to some of
these problems, particularly when the inner concave subproblem maxϕ L(F (θ), G(ϕ)) is tractable,
but solving the overall min-max problem requires sacrificing learning accuracy for computational
efficiency. Some of these problems suffer from cyclic behavior of level sets (see Figure 4 in [65]).
Unlike the approach in [65], we address this issue through a bilevel reformulation, whose conver-
gence is established in Theorem A.8. In such cases, our bilevel framework provides a compelling
alternative, offering a more favorable balance between learning accuracy and computational cost.
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5 Experiments

In this section, we validate the performance under two real-world learning applications, including
generative adversarial network and sharpness-ware minimization. Then we demonstrate the supe-
riority of proposed scheme, illustrating the convergence behaviors and computation efficiency on
synthetic numerical problems compared with existing BLO schemes. Details of implementation
configurations and parameters selection are provided in the Appendix B. The source codes will be
released at https://github.com/LiuZhu-CV/BLOAL.

Table 2: Evaluation of the robustness for SAM under varying noise labels and diverse backbones.

Noise Label SGD SAM Ours Backbone SGD SAM Ours
Clean 95.47 ± 0.12 96.27±0.03 96.34±0.11 ResNet34 95.58 ± 0.15 96.61 ± 0.08 97.75 ± 0.06
10% 89.58 ± 0.19 92.84±0.55 93.41±0.18 ResNet50 95.40 ± 0.44 96.48 ± 0.05 96.50 ± 0.09
20% 82.64 ± 0.31 90.80±0.73 91.48±0.06 ResNet101 95.66 ± 0.18 96.60 ± 0.13 96.69 ± 0.05

Table 3: Evaluation of the robustness based on sharpness metrics and diverse perturbation rates.
Sharpness Metric SGD SAM Ours Perturbation SAM Ours

Hessian Norm 8.869 ± 3.31 4.412±1.84 3.840±1.63 r=0.05 96.22 ± 0.13 96.23 ± 0.10
Trace 13756 ± 1710 6650±1828 5023±1101 r=0.15 96.25 ± 0.05 96.38 ± 0.26

Top Eigenvalues 1048.347 621.349 520.889 r=0.2 96.26 ± 0.05 96.28 ± 0.17

Figure 2: Comparison of generative adversarial learning under synthesized 2D wheels.

5.1 Real-world Applications

Table 4: Performance
comparison of GAN on
StackedMNIST.

Methods Modes DKL

DcGAN [54] 99 3.40
VEEGAN [60] 150 2.95

WGAN [3] 959 0.73
PacGAN [34] 992 0.28
R3GAN [20] 1000 0.12

Ours 1000 0.08

Generative Adversarial Learning. We conduct comparison with
Stacked MNIST, a challenging dataset with 1000 modes and two-
dimensional simulation experiments based on Gaussian distribution,
generating eight distribution of 2D wheels. Table 4 reports the nu-
merical performances compared with specialized methods, in terms
of KL divergence and the maximum of modes. The visualization of
data generation is shown in Figure 2. It can be observed that the
proposed scheme can effectively generate all modes, compared with
SNGAN [49], WGAN [3], LCGAN [15] and UGAN [47].

Sharpness-ware Minimization. As aforementioned, we propose a
BLO perspective for SAM with computation accuracy and efficiency.
Table 2 illustrates the robustness of different optimizer under varying
levels of label noise and backbones on the Cifar-10 benchmark. Compared to standard SGD and
SAM, our method consistently achieves superior accuracy across all noise labels and backbone,
demonstrating its adaptability and robustness. Table 3 presents the analyses of model robustness
based on sharpness-aware metrics, specifically analyzing the Hessian properties and the impact of
varying perturbation rates r. The Hessian Norm quantifies the overall curvature of the loss landscape.
The trace of the Hessian matrix reflects the sum of its eigenvalues. Lower top eigenvalues correspond
to smoother loss surfaces. These metrics indicates our method encourages convergence toward
flatter, more robust regions in the parameter space. Furthermore, Ours achieves consistently higher
accuracy than SAM, demonstrating the practical robustness against diverse perturbation radius.

5.2 Synthetic Numerical Evaluation

General Min-Max Numerical Cases. Here, we compare the convergence behavior of our method
with representative bilevel optimization (BLO) schemes, including Hessian-based algorithms (e.g.,

8
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RHG [17], CG [53], IAPTT [37]), first-order methods (e.g., BOME [35], VPBGD [57]), and the
single-loop approach BAMM [39].

100  1000 10000
Samples

5 

10

15

T
im

e
(s

)
RHG
CG
BDA
IAPTT
Proposed

100  1000 10000
Dimension

50 

100

150

T
im

e
(s

)

RHG
CG
BDA
IAPTT
Proposed

100  1000 10000
Samples

1

2

3

4

5

6

T
im

e
(s

)

BVFSM
BOME
VPBGD
BAMM
Proposed

100  1000 10000
Dimension

20 
40 
60 
80 
100
120

T
im

e
(s

)

BVFSM
BOME
VPBGD
BAMM
Proposed

(a) Comparison with Hessian-based algorithms (b) Comparison with Hessian-free algorithms
Figure 3: Computation efficiency comparison as the dimension of samples and features increase.

The first min-max numerical example is minω∈R maxδ∈R ω2 − δ2 + α sin(ωδ), where α controls
the nonlinearity. This problem features bilinear coupling and oscillatory components, resulting in
multiple saddle points that can hinder convergence. For simplicity, we set α = 1 and constrain
ω, δ ∈ [0, 1], with the optimal solution at (0, 0). Figure 1 (a) and (b) show the convergence of various
BLO methods in terms of ∥ω − ω∗∥ and ∥δ − δ∗∥. Our method achieves the fastest convergence
across both metrics, while BOME and VPBGD exhibit slower decay and higher residuals. We also
consider a more challenging case: minω maxδ ω

TAδ + sin(∥ω∥2 − ∥δ∥2), where ω, δ,A ∈ R. The
nonlinear squared coupling introduces varying oscillation frequencies and degenerate critical points.
With ω, δ ∈ [0, 1] and A = 1, the solution remains (0, 0). Figure 1 (c) and (d) illustrate that
our method maintains superior convergence speed and stability, while other approaches, including
BAMM, BOME, CG, and VPBGD, suffer from oscillations in the lower-level updates.

Large-scale Computation Efficiency. We construct a synthetic numerical case to perform the
large-scale computation, which is formulated as minω maxδ

∑m
i=1

∑n
j=1(ω

2
i,j−δ2i,j+sin(ωi,jδi,j)),

where m and n denote the numbers of samples and dimensions. Figure 3 illustrates the computa-
tion time of single step under varying numbers of samples and feature dimensions. Compared with
Hessian-free algorithms, value function based schemes (e.g., BVFSM [38], BOME and VPBGD)
suffer from steep computational increases, especially with larger feature dimensions. Moreover,
compared with single-loop scheme BAMM, the proposed method remains highly efficient, improv-
ing 16.8% at 10000 samples.

6 Conclusion

This paper presents a unified bilevel optimization framework for solving adversarial learning tasks,
aiming to balance computational efficiency and learning accuracy. Motivated by the limitations
of traditional methods, such as high cost and limited theoretical grounding, our approach offers
an efficient and interpretable alternative. In particular, it effectively addresses Sharpness-Aware
Minimization (SAM) and generative adversarial learning tasks. Extensive experiments show that
our method captures all data modes in generative modeling and improves FID and JS scores. For
SAM, it consistently achieves higher accuracy under label noise and across different backbones,
while encouraging flatter loss landscapes. Overall, this work provides a practical and theoretically
sound foundation for addressing adversarial learning tasks via bilevel optimization.
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A Convergence Analysis

This part will present some classical and basic properties in the convergence analysis for this paper.

Preliminaries for Convergence Analysis

In this subsection, we present essential properties of the Moreau envelope and its gradient, which
form the foundation for our convergence analysis. Detailed proofs of the following results can be
found in [18, 40].

We now recall a regularity result showing that the Moreau envelope inherits convexity under weak
convexity of the original function.
Lemma A.1. In (13), suppose Lℓ(ω, δ) is weakly convex in ω and δ with constants ρ1, ρ2 ≥ 0,
respectively, and γ ∈ (0, 1

2ρ2
). Then, for any ρv1 ≥ ρ1 and ρv2 ≥ 1

γ , the function

vγ(ω, δ) +
ρv1
2

∥ω∥2 + ρv2
2

∥δ∥2

is convex over Rn × Rn.

Next, we state a key result on the differentiability of the Moreau envelope, which allows its gradient
to be expressed via the minimizer of the inner problem.
Lemma A.2. Under the assumptions of Lemma A.1, the solution of the minimization problem

Sγ(ω, δ) := argmin
θ∈C

{
Lℓ(ω, θ) +

1

2γ
∥θ − δ∥2

}
is unique for all (ω, δ). Let θ∗γ(ω, δ) denote this unique minimizer. Then the Moreau envelope vγ is
differentiable and satisfies

∇vγ(ω, δ) =

(
∇ωLℓ(ω, θ

∗
γ(ω, δ)),

1

γ
(δ − θ∗γ(ω, δ))

)
.

Finally, we establish a Lipschitz-type bound for the smoothed minimizer θ∗γ(ω, δ), which is critical
for bounding gradient approximation errors.

Lemma A.3. Let γ ∈
(
0, 1

2ρ2

)
and define Lθ := max{1, γℓ}. Then for any (ω, δ), (ω̄, δ̄) ∈

Rn × Rm, we have

∥θ∗γ(ω, δ)− θ∗γ(ω̄, δ̄)∥ ≤ Lθ

(
∥ω − ω̄∥+ ∥δ − δ̄∥

)
.

These results provide the theoretical basis for analyzing the approximation error and stability of our
proposed algorithm.

Gradient of the Normalized Gradient

In this subsection, we calculate the gradient of the discarded term dδ∗(ω)
dω in (7) in details. Recall

that ω ∈ Rn and L : Rn → R be a smooth function. Define the normalized gradient mapping as:

f(ω) :=
∇L(ω)

∥∇L(ω)∥
.

We aim to compute the Jacobian ∇ωf(ω) ∈ Rn×n. Denote:

g(ω) := ∇L(ω), h(ω) := ∥g(ω)∥ = ∥∇L(ω)∥.
Then we have:

f(ω) =
g(ω)

h(ω)
.

Using the quotient rule for vector-valued functions:

∇ω

(
g(ω)

h(ω)

)
=

1

h(ω)
∇ωg(ω)−

g(ω)

h(ω)2
∇ωh(ω)

T .

We now compute the two components separately:
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• The Jacobian of g(ω) is the Hessian matrix:

∇ωg(ω) = ∇2L(ω) =: HL(ω).

• The gradient of the scalar function h(ω) is given by:

∇ωh(ω) = ∇ω∥g(ω)∥ =
HL(ω)∇L(ω)

∥∇L(ω)∥
.

Substituting into the quotient rule, we obtain:

∇ω

(
∇L(ω)

∥∇L(ω)∥

)
=

1

∥∇L(ω)∥
HL(ω)−

∇L(ω)

∥∇L(ω)∥2

(
HL(ω)∇L(ω)

∥∇L(ω)∥

)T

=
1

∥∇L(ω)∥

(
HL(ω)−

∇L(ω)∇L(ω)⊤HL(ω)

∥∇L(ω)∥2

)
.

This expression gives the Jacobian matrix of the normalized gradient f(ω), which appears frequently
in sharpness-aware optimization and directional smoothing.

Algorithms

In this subsection, we underly our algorithm. The algorithm follows a standard stochastic process.
Given batches bk ⊂ {1, . . . , N} at each iteration, the procedure is summarized as follows:

• Initialization: Set step sizes {αk}, {βk}, {ηk}, and penalty parameters {µk}, and initialize
the variables ω0, δ0, and θ0.

• Update rules:

θk+1 = ProjC

(
θk − ηk[∇δL

bk
ℓ (ωk, θk) +

1

γ
(θk − δk)]

)
,

δk+1 = ProjC

(
δk − βk

[
1

µk
∇δL

bk(ωk, δk) +∇δL
bk
ℓ (ωk, δk)− 1

γ
(δk − θk+1)

])
,

ωk+1 = ωk − αk

[
1

µk
∇ωL

bk(ωk, δk+1) +∇ωL
bk
ℓ (ωk, δk+1)−∇ωL

bk
ℓ (ωk, θk+1)

]
.

(18)

Algorithm for SAM

In particular, we consider the SAM problem given in (3). For a fixed pair (ω, δ), the Moreau envelope
reformulates the lower-level problem as the following smooth optimization problem:

min
θ∈C

Lℓ(ω, θ) +
1

2γ
∥θ − δ∥2, (19)

which is typically convex in θ. In this case, any Karush-Kuhn-Tucker (KKT) point corresponds to a
global minimizer. The global minimizer θ∗γ(ω, δ) of (19) satisfies the optimality condition:

0 ∈ ∇δLℓ(ω, θ
∗) +

1

γ
(θ∗ − δ) +N(θ∗, C),

where C = {δ ∈ Rn : ∥δ∥ ≤ 1}, and N(θ∗, C) denotes the normal cone to C at θ∗, defined by:

N(θ∗, C) =
{
{0}, ∥θ∗∥ < 1;

{λθ∗ : λ ≥ 0}, ∥θ∗∥ = 1.
(20)

Consequently, the closed-form expression for the global minimizer θ∗γ(ω, δ) is:

θ∗γ(ω, δ) =

{
δ + γ∇L(ω), ∥δ + γ∇L(ω)∥ < 1;
δ+γ∇L(ω)

∥δ+γ∇L(ω)∥ , ∥δ + γ∇L(ω)∥ ≥ 1.
(21)

Then we adopt the following algorithm:
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• Initialization: Set step sizes {αk}, {βk}, {ηk}, and penalty parameters {µk}, and initialize
the variables ω0, δ0, and θ0.

• Update:

θk+1 =

{
δk + γ∇Lbk(ωk), ∥δk + γ∇Lbk(ωk)∥ < 1,
δk+γ∇Lbk (ωk)

∥δk+γ∇Lbk (ωk)∥ , ∥δk + γ∇Lbk(ωk)∥ ≥ 1.

• Generate i.i.d. Gaussian vectors: Generate a sequence of independent and identically
distributed (i.i.d.) Gaussian vectors {uk,j ∈ Rn}Qj=1, where each uk,j is sampled from a
standard normal distribution. Update the parameters as follows:

δk+1 =
∇Lbk(ωk)

∥∇Lbk(ωk)∥
,

ωk+1 = ωk − αk

[
1

µk
∇ωL

bk(ωk + rδk+1) +HLbk (ω
k)(θk+1 − δk+1)

]
≈ ωk − αk

[
1

µk
∇ωL

bk(ωk + rδk+1) + J∗(ωk, θk+1 − δk+1)

]
= ωk − αk

[
1

µk
∇ωL

bk(ωk + rδk+1)

+
1

Q

Q∑
j=1

⟨
∇Lbk(ωk + µuk,j)−∇Lbk(ωk)

µ
, θk+1 − δk+1

⟩
uk,j

 .

Here, HL denotes the Hessian matrix, and J∗ is an approximation matrix used for numerical pur-
poses, as described in [19].

Convergence Result with Biased Estimator

In this section, we present the convergence analysis of the proposed algorithm. For convergence
analysis, we impose the following assumptions on the bilevel formulation (10):

Assumption A.4. The lower-level function Lℓ(ω, δ) is locally Lipschitz continuous with constant
ℓ.

Assumption A.5. The functions L(ω, δ) and Lℓ(ω, δ) in (10) are weakly convex with respect to
both ω and δ, with constants ρL,1, ρL,2, ρ1, ρ2 ≥ 0, respectively. That is, the functions

L(ω, δ) + ρL,1∥ω∥2 + ρL,2∥δ∥2 and Lℓ(ω, δ) + ρ1∥ω∥2 + ρ2∥δ∥2

are convex.

The analysis relies on the following assumption regarding the variance of the biased gradient esti-
mators.

Assumption A.6 (Biased Estimator). For any batch b ⊂ {1, . . . , N}, the following bounds on the
expected squared bias hold for σω, σδ, σℓ,ω, σℓ,δ ≥ 0:

E
[
∥∇ωL

b(ω, δ)−∇ωL(ω, δ)∥2
]
≤ σ2

ω,

E
[
∥∇δL

b(ω, δ)−∇δL(ω, δ)∥2
]
≤ σ2

δ ,

E
[
∥∇ωL

b
ℓ(ω, δ)−∇ωLℓ(ω, δ)∥2

]
≤ σ2

ℓ,ω,

E
[
∥∇δL

b
ℓ(ω, δ)−∇δLℓ(ω, δ)∥2

]
≤ σ2

ℓ,δ.

(22)

Given a penalty parameter µ > 0, we define:

fµ(ω, δ) :=
1

µ
L(ω, δ) + Lℓ(ω, δ)− vγ(ω, δ),

Fµ(ω, δ) := L(ω, δ) + µ[Lℓ(ω, δ)− vγ(ω, δ)].
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The convergence analysis will be conducted primarily based on these two functions. Set

dkδ :=
1

µk
∇δL

bk(ωk, δk) +∇δL
bk
ℓ (ωk, δk)− 1

γ
(δk − θk+1);

dkω :=
1

µk
∇ωL

bk(ωk, δk+1) +∇ωL
bk
ℓ (ωk, δk+1)−∇ωL

bk
ℓ (ωk, θk+1).

(23)

The following lemma shows that the expected value of fµk
exhibits a monotonic decreasing behavior,

which plays a critical role in the convergence analysis.
Lemma A.7. Under Assumptions A.4, A.5, A.6 and assumptions in Lemma A.2, the sequence
(ωk, δk) generated by the algorithm satisfies

E[fµk
(ωk+1, δk+1)− fµk

(ωk, δk)] ≤
[
Lfk

2
− 1

8αk

]
∥ωk − ωk+1∥2

+

[
1

2
Lfk − 1

4βk
+

αkℓ
2L2

θ

2

]
∥δk − δk+1∥2

+

(
αkℓ

2

2
+

βk

2γ2

)
∥θk+1 − θ∗γ(ω

k, δk)∥2

+
2αk

µ2
k

σ2
ω + 4αkσ

2
ℓ,ω +

2βk

µ2
k

σ2
δ + 2βkσ

2
ℓ,δ.

(24)

where Lfk is the Lipschitz constant of the gradient of fµk
in its second-order Taylor expansion.

Proof. Assuming that fµk
is smooth, we have the inequality with Lfk > 0:

fµk
(ωk+1, δk+1) ≤ fµk

(ωk, δk+1) + ⟨∇ωfµk
(ωk, δk+1), ωk+1 − ωk⟩+ Lfk

2
∥ωk+1 − ωk∥2

= fµk
(ωk, δk+1) + ⟨∇ωfµk

(ωk, δk+1)− dkω + dkω, ω
k+1 − ωk⟩+ Lfk

2
∥ωk+1 − ωk∥2

= fµk
(ωk, δk+1) + ⟨∇ωfµk

(ωk, δk+1)− dkω, ω
k+1 − ωk⟩+

(
Lfk

2
− 1

αk

)
∥ωk+1 − ωk∥2.

(25)

By Assumption A.6, the expectation of the first inner product term satisfies:

E
[⟨
∇ωfµk

(ωk, δk+1)− dkω, ω
k+1 − ωk

⟩]
≤ E[⟨ 1

µk
(∇ωL(ω

k, δk+1)−∇ωL
bk(ωk, δk+1)) + (∇ωLℓ(ω

k, δk+1)−∇ωL
bk
ℓ (ωk, δk+1))

− (∇ωLℓ(ω
k, θ∗γ(ω

k, δk+1))−∇ωL
bk
ℓ (ωk, θk+1)), ωk+1 − ωk⟩]

≤ 2αk

µ2
k

σ2
ω +

1

8αk
∥ωk+1 − ωk∥2 + 2αkσ

2
ℓ,ω +

1

8αk
∥ωk+1 − ωk∥2

+ 2αkσ
2
ℓ,ω +

1

8αk
∥ωk+1 − ωk∥2 + ℓ∥θk+1 − θ∗γ(ω

k, δk+1)∥∥ωk+1 − ωk∥

≤ 7

8αk
∥ωk+1 − ωk∥2 + αkℓ

2

2
∥θk+1 − θ∗γ(ω

k, δk+1)∥2 + 2αk

µ2
k

σ2
ω + 4αkσ

2
ℓ,ω.

(26)

Similarly, we apply the same approach for the update of δk+1 and obtain:

fµk
(ωk, δk+1) ≤ fµk

(ωk, δk) + ⟨∇δfµk
(ωk, δk), δk+1 − δk⟩+ Lfk

2
∥δk+1 − δk∥2

= fµk
(ωk, δk) + ⟨∇δfµk

(ωk, δk)− dkδ + dkδ , δ
k+1 − δk⟩+ Lfk

2
∥δk+1 − δk∥2

= fµk
(ωk, δk) + ⟨∇δfµk

(ωk, δk)− dkδ , δ
k+1 − δk⟩+

(
Lfk

2
− 1

βk

)
∥δk+1 − δk∥2,

(27)
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and

E
[⟨
∇δfµk

(ωk, δk)− dkδ , δ
k+1 − δk

⟩]
≤ 2βk

µ2
k

σ2
δ +

1

8βk
∥δk+1 − δk∥2 + 2βkσ

2
ℓ,δ +

1

8βk
∥δk+1 − δk∥2 + 1

2βk
∥δk+1 − δk∥2

+
βk

2γ2
∥θk+1 − θ∗γ(ω

k, δk)∥2

≤ 2βk

µ2
k

σ2
δ + 2βkσ

2
ℓ,δ +

3

4βk
∥δk+1 − δk∥2 + βk

2γ2
∥θk+1 − θ∗γ(ω

k, δk)∥2.

(28)

Combining all parts, we obtain the claimed result.

Using Lemma A.7, we obtain the following convergence result for the proposed algorithm:
Theorem A.8. Suppose γ ∈ (0, 1

2ρ2
) and penalty parameters satisfy µ̄(k + 1)p ≥ µk+1 ≥ µk ≥

µ > 0. Then, for any 0 < α < αk < 1
8Lfk

, 0 < β < βk < 1
4Lfk

, and 0 < ηk < 1
ρL,2+2ρ2

the

iterates {(ωk, δk)} generated by the algorithm satisfy

E
[

1

K1/2
min

0≤k≤K
Rbk

k (ωk+1, δk+1)

]
= O

(
1

K1/2

)
. (29)

Furthermore, if the step sizes satisfy
∑∞

k=0(αk + βk) < ∞, then for any p ∈ (0, 1
2 ), it holds that

E
[

min
0≤k≤K

Rbk
k (ωk+1, δk+1)

]
= O

(
1

K(1−2p)/2

)
. (30)

Proof. By [18, Proposition 2.1,],[40, Lemma A.7], we deduce that (ekω, e
k
δ ) ∈ ∇Rbk

k (ωk+1, δk+1)
with

ekω = ∇ωF
bk
µk
(ωk+1, δk+1)− µkd

k
ω − µk

αk
(ωk+1 − ωk)

ekδ = ∇δF
bk
µk
(ωk+1, δk+1)− µkd

k
δ − µk

βk
(δk+1 − δk).

(31)

Then by Lipschitz continuity of Fµk
and Lℓ with constants LFk

, ℓ, we have

∥ekω∥ ≤ ∥∇ωF
bk
µk
(ωk+1, δk+1)−∇ωF

bk
µk
(ωk, δk+1)∥+ ∥∇ωF

bk
µk
(ωk, δk+1)− µkd

k
ω∥

+ ∥µk

αk
(ωk+1 − ωk)∥

≤ µkLFk
∥ωk+1 − ωk∥+ µk

αk
∥ωk+1 − ωk∥+ µkℓ∥θk+1 − θ∗γ(ω

k, δk+1)∥,

(32)

∥ekδ∥ ≤ ∥∇δF
bk
µk
(ωk+1, δk+1)−∇δF

bk
µk
(ωk, δk)∥+ ∥∇δF

bk
µk
(ωk, δk)− µkd

k
δ∥

+ ∥µk

βk
(δk+1 − δk)∥

≤ µkLFk
∥(ωk+1 − ωk, δk+1 − δk)∥+ µk

βk
∥δk+1 − δk∥

+
µk

γ
(∥θk+1 − θ∗γ(ω

k, δk)∥+ Lθ∥ωk+1 − ωk∥).

(33)

Thus,

Rbk
k (ωk+1, δk+1) ≤µk(2LFk

+
1

αk
+

Lθ

γ
)∥ωk+1 − ωk∥+ µk(LFk

+
1

βk
)∥δk+1 − δk∥

+ µk(ℓ∥θk+1 − θ∗(ωk, δk+1)∥+ 1

γ
∥θk+1 − θ∗(ωk, δk)∥).

(34)

By [40][Lemma A.6], there exists σk ∈ (0, 1) such that

∥θk+1 − θ∗γ(ω
k, δk)∥ ≤ σk∥θk − θ∗γ(ω

k, δk)∥.
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Then we have

Rbk
k (ωk+1, δk+1)

≤ µk(2LFk
+

1

αk
+

Lθ

γ
)∥ωk+1 − ωk∥+ µk(LFk

+
1

βk
+ Lθℓ)∥δk+1 − δk∥

+ µk(ℓ+
1

γ
)∥θk+1 − θ∗γ(ω

k, δk)∥

≤ µk(2LFk
+

1

αk
+

Lθ

γ
)∥ωk+1 − ωk∥+ µk(LFk

+
1

βk
+ Lθℓ)∥δk+1 − δk∥

+ µkσk(ℓ+
1

γ
)∥θk − θ∗γ(ω

k, δk)∥.

(35)

Because αk > α > 0, βk > β > 0, there exists CR > 0, Cθ > 0 such that

1

µ2
k

[Rbk
k (ωk+1, δk+1)]2

≤ CR(
1

8αk
∥ωk+1 − ωk∥2 + 1

16βk
∥δk+1 − δk∥2 + Cθ∥θk − θ∗γ(ω

k, δk)∥2).
(36)

Since µk ≤ µk+1, then

fµk+1
(ωk+1, δk+1)− fµk

(ωk+1, δk+1) = (
1

µk+1
− 1

µk
)L(ωk+1, δk+1) < 0. (37)

By inserting (37) into Lemma A.7, we know

E[fµk+1
(ωk+1, δk+1) + (ℓ2 +

1

γ2
)∥θk+1 − θ∗γ(ω

k+1, δk+1)∥]

− E[fµk
(ωk, δk) + (ℓ2 +

1

γ2
)∥θk − θ∗γ(ω

k, δk)∥]

≤ E[fµk
(ωk+1, δk+1)− fµk

(ωk, δk)] + (ℓ2 +
1

γ2
)[∥θk+1 − θ∗γ(ω

k+1, δk+1)∥

− ∥θk − θ∗γ(ω
k, δk)∥]

≤
[
Lfk

2
− 1

8αk

]
∥ωk − ωk+1∥2 +

[
1

2
Lfk − 1

4βk
+

αkℓ
2L2

θ

2

]
∥δk − δk+1∥2

+ (
αkℓ

2

2
+

βk

2γ2
)∥θk+1 − θ∗γ(ω

k, δk)∥2 + (ℓ2 +
1

γ2
)[∥θk+1 − θ∗γ(ω

k+1, δk+1)∥2

− ∥θk − θ∗γ(ω
k, δk)∥2] + 2αk

µ2
k

σ2
ω + 4αkσ

2
ℓ,ω +

2βk

µ2
k

σ2
δ + 2βkσ

2
ℓ,δ.

(38)

Besides, recall that by [40][Lemma A.6], there exists σk ∈ (0, 1) such that

∥θk+1 − θ∗γ(ω
k, δk)∥ ≤ σk∥θk − θ∗γ(ω

k, δk)∥.

Then for any ϵk > 0, we have

1

2
αk∥θk+1 − θ∗γ(ω

k, δk)∥2 + ∥θk+1 − θ∗γ(ω
k+1, δk+1)∥2 − ∥θk − θ∗γ(ω

k, δk)∥2

≤ (ϵk +
1

2
αk)∥θk+1 − θ∗γ(ω

k, δk)∥2 − ∥θk − θ∗γ(ω
k, δk)∥2

+
1

ϵk
∥θ∗γ(ωk+1, δk+1)− θ∗γ(ω

k, δk)∥2

≤ [σ2
k(ϵk +

1

2
αk)− 1]∥θk − θ∗γ(ω

k, δk)∥2 + L2
θ

ϵk
(∥ωk+1 − ωk∥2 + ∥δk+1 − δk∥2)

(39)
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Similarily, we have
1

2
βk∥θk+1 − θ∗γ(ω

k, δk)∥2 + ∥θk+1 − θ∗γ(ω
k+1, δk+1)∥2 − ∥θk − θ∗γ(ω

k, δk)∥2

≤ (ϵk +
1

2
βk)∥θk+1 − θ∗γ(ω

k, δk)∥2 − ∥θk − θ∗γ(ω
k, δk)∥2

+
1

ϵk
∥θ∗γ(ωk+1, δk+1)− θ∗γ(ω

k, δk)∥2

≤ [σ2
k(ϵk +

1

2
βk)− 1]∥θk − θ∗γ(ω

k, δk)∥2 + L2
θ

ϵk
(∥ωk+1 − ωk∥2 + ∥δk+1 − δk∥2)

(40)

Thus, when 1
2Lfk +

L2
θ

ϵk
≤ 1

16αk
and 1

2Lfk +
L2

θ

ϵk
≤ 1

8βk
(by αk < 1

8Lfk

, βk < 1
4Lfk

), we have

E[fµk+1
(ωk+1, δk+1) + (ℓ2 +

1

γ2
)∥θk+1 − θ∗γ(ω

k+1, δk+1)∥]

− E[fµk
(ωk, δk) + (ℓ2 +

1

γ2
)∥θk − θ∗γ(ω

k, δk)∥]

≤ ℓ2[σ2
k(ϵk +

1

2
αk) +

1

γ2
σ2
k(ϵk +

1

2
βk)− 1]∥θk − θ∗γ(ω

k, δk)∥2

+ [
1

2
Lfk − 1

8αk
+

L2
θ

ϵk
]∥ωk+1 − ωk∥2 + [

1

2
Lfk − 1

4βk
+

L2
θ

ϵk
]∥δk+1 − δk∥2

+
2αk

µ2
k

σ2
ω + 4αkσ

2
ℓ,ω +

2βk

µ2
k

σ2
δ + 2βkσ

2
ℓ,δ

≤ −CR(Cθ∥θk − θ∗γ(ω
k, δk)∥2 + 1

16αk
∥ωk+1 − ωk∥2 + 1

8βk
∥δk+1 − δk∥2)

+
2αk

µ2
k

σ2
ω + 4αkσ

2
ℓ,ω +

2βk

µ2
k

σ2
δ + 2βkσ

2
ℓ,δ.

(41)

As a result, by take the sum of iteratives k in (36), when max{σ2
ω, σ

2
δ , σ

2
ℓ,ω, σ

2
ℓ,δ} ≤ σ2, µk ≥ µ > 0,

there exists a constant C > 0 such that

C

K∑
k=0

1

µ2
k

E[Rbk
k (ωk+1, δk+1)]2

≤ fµ0(ω
0, δ0) + (ℓ2 +

1

γ2
)∥θ0 − θ∗γ(ω

0, δ0)∥+
K∑

k=0

[
2αk

µ2
k

σ2
ω + 4αkσ

2
ℓ,ω +

2βk

µ2
k

σ2
δ + 2βkσ

2
ℓ,δ]

≤ fµ0
(ω0, δ0) + (ℓ2 +

1

γ2
)∥θ0 − θ∗γ(ω

0, δ0)∥+ 2σ2(
1

µ2
+ 1)

K∑
k=0

(2αk + βk).

(42)

Because αk < 1
8Lfk

and βk < 1
4Lfk

, we have

C

K

K∑
k=0

1

µ2
k

E[Rbk
k (ωk+1, δk+1)]2

≤ 1

K
[fµ0(ω

0, δ0) + (ℓ2 +
1

γ2
)∥θ0 − θ∗γ(ω

0, δ0)∥] + 2σ2(
1

µ2
+ 1)(

1

2Lfk

+
1

4Lfk

).

(43)

Then
1

K1/2
E[Rbk

k (ωk+1, δk+1)] = O(
1

K1/2
). (44)

Furthermore, when
∞∑
k=0

(αk + βk) < ∞, we have

∞∑
k=0

1

µ2
k

E[Rbk
k (ωk+1, δk+1)]2 < ∞. (45)
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For p ∈ (0, 1
2 ), because µk ≤ µ̄(k + 1)p

K∑
k=0

1

µ2
k

≥ 1

µ̄2

K∑
k=0

(
1

k + 1
)2p ≥ 1

µ̄2

∫ K+2

1

1

t2p
dt ≥ (K + 2)1−2p − 1

(1− 2p)µ̄2
. (46)

then

E[ min
0≤k≤K

Rbk
k (ωk+1, δk+1)] = O(

1

K(1−2p)/2
). (47)

B Experimental Details

We conducted the experiments on a PC with Intel i5-13600KF CPU (3.5 GHz), 32GB RAM and
NVIDIA RTX 4090 GPU. We leveraged the PyTorch framework on the 64-bit Linux system. In the
following, we elaborately introduce the implementation details and parameter configurations.

Numerical Cases

As for the first case, we set η, β, α, γ, µ, and p as 0.001, 0.01, 0.0001, 20, and 0.1 and leverage
∥ω − ω∗∥ ≤ 1e−4 as the stop criterion. SGD optimizer is used for the update of ω. We set the the
maximum steps of optimization as 1000 uniformly. As for the second case, η, β, α, γ, µ, and p are
0.001, 0.05, 0.0001, 20, and 0.1, respectively.

Generative Adversarial Learning

The goal of generative adversarial learning is to build a min-max game between the generator
Gen(ω; ·) and discriminator Dis(δ; ·), which can be formulated as minω maxδ log(Dis(δ;u)) +
log(1 − Dis(δ; Gen(ω;v))), where u ∼ pdata represents the real data distribution and v denotes
the random latent vector. The hyperparameters η, β, α, γ, µ, and p are set to 0.005, 0.005, 0.01,
100, 5 and 0.1, respectively. The generator is a three-layer fully connected neural network that
maps an input vector to a target output through two hidden layers. Each hidden layer is followed
by a non-linear activation function. The final layer outputs the generated vector without activation.
The discriminator consists of two hidden layers and a final classification layer. All hidden layers
use the ReLU activation function. The output is passed through a sigmoid activation. We conduct
the experiments under 8 distribution of 2D wheel, sampling 500 data points from 2D surfaces. All
experiments are repeated three times with diverse random seeds.

Sharpness-aware Minimization

We conduct image classification experiments using the standard open-source CIFAR-10 benchmark,
which consists of 50,000 training and 10,000 testing image-label pairs. ResNet-18 is employed as
the backbone model to evaluate performance under noisy labels and various perturbation radius r.
For fair comparison in experiments involving both noisy labels and different backbone architectures,
we fix r = 0.1. The hyperparameters α, γ, µ, Q, and p are set to 0.05, 1 × 10−4, 0.75, 1 and 0.01,
respectively. Following the setup in [2], we apply basic augmentation during training, including
horizontal flipping, four-pixel padding, and cropping. Models are trained from scratch for 200
epochs using a batch size of 128 and a cosine learning rate schedule. To ensure fair comparison, all
experiments are repeated three times with diverse random seeds.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This study focuses on advancements in machine learning. While potential
societal implications may exist, they fall beyond the scope of the current technical contri-
bution and thus are not analyzed herein.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve such researches.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This Paper does not involve such researches.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs only for editing and formatting.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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