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ABSTRACT

We propose Parametric UMAP, a parametric variation of the UMAP (Uniform
Manifold Approximation and Projection) algorithm. UMAP is a non-parametric
graph-based dimensionality reduction algorithm using applied Riemannian ge-
ometry and algebraic topology to find low-dimensional embeddings of structured
data. The UMAP algorithm consists of two steps: (1) Compute a graphical rep-
resentation of a dataset (fuzzy simplicial complex), and (2) Through stochastic
gradient descent, optimize a low-dimensional embedding of the graph. Here, we
replace the second step of UMAP with a deep neural network that learns a para-
metric relationship between data and embedding. We demonstrate that our method
performs similarly to its non-parametric counterpart while conferring the benefit
of a learned parametric mapping (e.g. fast online embeddings for new data). We
then show that UMAP loss can be extended to arbitrary deep learning applica-
tions, for example constraining the latent distribution of autoencoders, and im-
proving classifier accuracy for semi-supervised learning by capturing structure in
unlabeled data.1

Current non-linear dimensionality reduction algorithms can be divided broadly into non-parametric
algorithms which rely on the efficient computation of probabilistic relationships from neighborhood
graphs to extract structure in large datasets (e.g. UMAP (McInnes et al., 2018), t-SNE (van der
Maaten & Hinton, 2008), LargeVis (Tang et al., 2016)), and parametric algorithms, which, driven
by advances in deep-learning, optimize an objective function related to capturing structure in a
dataset over neural network weights (e.g. Hinton & Salakhutdinov 2006; Ding et al. 2018; Ding &
Regev 2019; Szubert et al. 2019; Kingma & Welling 2013).

The goal of this paper is to wed those two classes of methods: learning a structured graphical
representation of the data and using a deep neural network to embed that graph. Over the past
decade several varients of the t-SNE algorithm have proposed parameterized forms of t-SNE (Van
Der Maaten, 2009; Gisbrecht et al., 2015; Bunte et al., 2012; Gisbrecht et al., 2012). In partic-
ular, Parametric t-SNE (Van Der Maaten, 2009) performs exactly that wedding; training a deep
neural network to minimize loss over a t-SNE graph. However, the t-SNE loss function itself is
not well suited to be optimized over deep neural networks using contemporary training schemes.
In particular, t-SNE’s optimization requires normalization over the entire dataset at each step of
optimization, making batch-based optimization and on-line learning of large datasets difficult. In
contrast, UMAP is optimized using negative sampling (Mikolov et al., 2013; Tang et al., 2016) and
requires no normalization step, making it more well-suited to deep learning applications. Our pro-
posed method, Parametric UMAP, brings the non-parametric graph-based dimensionality reduction
algorithm UMAP into a emerging class of parametric topologically-inspired embedding algorithms
(Reviewed in A.5).

In the following section we broadly outline the algorithm underlying UMAP to explain why our
proposed algorithm, Parametric UMAP, is particularly well suited to deep learning applications. We
contextualize our discussion of UMAP in t-SNE, to outline the advantages that UMAP confers over
t-SNE in the domain of parametric neural-network based embedding. We then perform experiments
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comparing our algorithm, Parametric UMAP, to parametric and non-parametric algorithms. Finally,
we show a novel extension of Parametric UMAP to semisupervised learning.

Figure 1: Overview of UMAP (A → B) and Parametric UMAP (A → C). (A) The first stage of
the UMAP algorithm is to compute a probabilistic graphical representation of the data. (B) The
second stage of the UMAP algorithm is to optimize a set of embeddings to preserve the structure of
the fuzzy simplicial complex. (C) The second stage of UMAP, learning a set of embeddings which
preserves the structure of the graph, is replaced with a neural network which learns a set of neural
network weights (parameters) that maps the high-dimensional data to an embedding. Both B and C
are learned through the same loss function.

0.1 PARAMETRIC UMAP

t-SNE and its more recent cousin UMAP are both non-parametric graph-based dimensionality re-
duction algorithms that learn embeddings based upon local structure in data. Much prior work has
focused on extending t-SNE to learn the mapping between data and embeddings, for example opti-
mizing t-SNE’s loss over learned neural network weights (Van Der Maaten, 2009). However, t-SNE
optimizes it’s embeddings in a manner poorly suited to being translated to neural network opti-
mization, requiring significant modification of the learning algorithm to train via stochastic gradient
descent. Conversely, UMAP’s loss is optimized in a manner that can be directly translated for neu-
ral network optimization. Here, we explain UMAP’s compatability with deep learning applications,
why this differs for t-SNE, and how we take advantage. A full discussion of UMAP and t-SNE
explaining this contrast is given in the Appendix A.1.

To summarize, both t-SNE and UMAP rely on the construction of a graph, and a subsequent embed-
ding that preserves the structure of that graph (Fig. 1). UMAP learns an embedding by minimizing
cross entropy sampled over positively weighted edges (attraction), and using negative sampling ran-
domly over the dataset (repulsion), allowing minimization to occur over sampled batches of the
dataset. t-SNE, meanwhile, minimizes a KL divergence loss function normalized over the entire
set of embeddings in the dataset using different approximation techniques to compute attractive and
repulsive forces.

Because t-SNE optimization requires normalization over the distribution of embedding in projection
space, gradient descent can only be performed after computing edge probabilities over the entire
dataset. Projecting an entire dataset into a neural network between each gradient descent step would
be too computationally expensive to optimize however. The trick that Parametric t-SNE proposes to
this problem is to split the dataset up into large batches (e.g. 5000 datapoints in the original paper)
that are independently normalized over and used constantly throughout training, rather than being
randomized. Conversely, UMAP can be trained on batch sizes as small as a single edge, making
it suitable for minibatch training needed for memory-expensive neural networks trained on large
datasets as well as on-line learning.

Given these design features, the UMAP algorithm is better suited to deep neural networks, and
is more extendable to typical neural network training regimes. Parametric UMAP can be defined
simply by applying the UMAP cost function to a deep neural network over mini batches using
negative sampling within minibatches. In our implementation, we keep all hyperparameters the
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same as the original UMAP implementation, and optimize over the UMAP loss function using the
Adam (Kingma & Ba, 2014) optimizer2.

1 UMAP AS A REGULARIZATION

In machine learning, regularization refers to a modification of the learning algorithm to improve
generalization to new data. Here, we consider both regularizing neural networks with UMAP loss,
as well as using additional loss functions to regularize UMAP.

While non-parametric UMAP optimizes UMAP loss directly over embeddings (Fig 2A), our pro-
posed algorithm, Parametric UMAP, applies the same cost function over an encoder network (Fig
2B). Beyond the parameters being optimized, the optimization steps are equivalent. Given this sim-
ple extension toward optimizing over a neural network, UMAP can further be extended to arbitrary
neural network architectures and loss functions. Specifically, we use UMAP loss over unlabeled data
as a regularization term for a classifier network trained on labeled data (semi-supervised learning),
as well as an autoencoder loss as an additional regularization for UMAP latent projections. In the
experiments section, we quantitatively explore these networks.

Figure 2: An outline of the varients of UMAP used in this paper. Solid lines represent neural
networks. Dashed lines represent error gradients.

1.1 AUTOENCODING WITH UMAP

AEs are by themselves a powerful dimensionality reduction algorithm (Hinton & Salakhutdinov,
2006). Thus, combining them with UMAP may yield additional benefits in capturing latent structure.
We used an autoencoder as an additional regularization to Parametric UMAP (Fig 2C). A UMAP/AE
hybrid is simply the combination of the UMAP loss and a reconstruction loss and apply both over
the network. VAEs have similarly been used in conjunction with Parametric t-SNE for capturing
structure in animal behavioral data (Graving & Couzin, 2020) and combining t-SNE, which similarly
emphasizes local structure, with AEs aids in capturing more global structure over the dataset (van der
Maaten & Hinton, 2008; Graving & Couzin, 2020).

1.2 SEMISUPERVISED LEARNING

UMAP can also be used to regularize supervised classifier networks, training the network on a
combination of labeled data with the classifier loss and unlabeled data with the UMAP loss (Fig
2D). Semi-supervised learning refers to the use of unlabeled data to jointly learn the structure of a
dataset while labeled data is used to optimize the supervised objective function, such as classifying
images. Here, we explore how UMAP can be jointly trained as an objective function in a deep neural
network alongside a classifier.

In the example in Fig 3, we show an intuitive example of semisupervised learning using UMAP
over the Moons dataset (Pedregosa et al., 2011). By training a Y-shaped network (Fig 2D) both on
the classifier loss over labeled datapoints (Fig 3A, red and blue) and the UMAP loss over unlabeled
datapoints (Fig 3A, grey) jointly, the shared latent space between between the UMAP and classifier
network pulls apart the two moons (Fig 3B), resulting a a decision boundary that divides cleanly
between the two distributions in dataspace.

2See code implementations: Experiments (www.placeholder.com) Python package (www.placeholder.com)
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Figure 3: An example of semi-supervised learning with UMAP on the moons dataset. (A) A de-
cision contour learned over the moons dataset with 3 labeled datapoints from each class. Unlabled
datapoints are shown in grey and labeled datapoints are shown in red and blue. The decision contour
is shown in the background using the ’coolwarm’ colormap. (B) The learned embeddings in the
jointly trained network. (C) UMAP loss over the unlabeled training dataset. (D) Classifier accuracy
for the training and validation set.

2 EXPERIMENTS

Figure 4: Example comparison of 2D projections from Parametric UMAP and each baseline. (A)
3D buffalo. (B) Mouse retina single cell transcriptomes. (C) Fashion MNIST. 2D projections of the
remaining datasets are given in Fig. 12.

Experiments were performed comparing our novel algorithms, Parametric UMAP and a UMAP/AE
hybrid, to several baselines: nonparametric UMAP, nonparametric t-SNE (FIt-SNE) (Poličar et al.,
2019), Parametric t-SNE, an AE, a VAE, and a PCA projections. Many additional relevant com-
parisons (i.e. those discussed in A.5) are not made, as those methods had already been compared to
non-parametric UMAP, and our embedding comparisons were performed to confirm similar quality
to their non-parametric counterparts, not to outperform them. We additionally compare a second
non-parametric UMAP implementation that has the same underlying code as Parametric UMAP, but
where optimization is performed over embeddings directly, rather than neural network weights. This
comparison is made to provide a bridge between the UMAP-learn implementation and parametric
UMAP, to control for variation exogenous to differences parametric versus non-parametric embed-
ding. Parametric t-SNE, Parametric UMAP, the AE, VAE, and the UMAP/AE hybrid use the same
neural network architectures and optimizers within each dataset (described in A.2 and A.3). We
used the common machine learning benchmark datasets MNIST, FMNIST, and CIFAR10 alongside
two real-world datasets in areas where UMAP has proven a useful tool for dimensionality reduc-
tion: a single-cell retinal transcriptome dataset (Macosko et al., 2015), and a bioacoustic dataset of
Cassin’s vireo song, recorded in the Sierra Nevada mountains (Hedley, 2016a;b).

2.1 EMBEDDINGS

We first confirm that Parametric UMAP produces embeddings that are of a similar quality to non-
parametric UMAP. To quantitatively measure the quality of embeddings we compared embedding
algorithms on several metrics across datasets. We compared each method/dataset on 2D and 64D
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projections3. Each metric is explained in detail in A.4. The 2D projection of each dataset/method is
shown in Fig 4. The results are given in Figs 13-17 and Tables 2-6, and summarized below.

Trustworthiness Trustworthiness (Eq. 5, Venna & Kaski 2006) is a measure of how much of the
local structure of a dataset is preserved in a set of embeddings. In 2D, we observe each of the UMAP
algorithms performs similarly in trustworthiness, with t-SNE being slightly more trustworthy in each
dataset (Fig 13; Table 2). At 64D, PCA, AE, VAE, and Parametric t-SNE are most trustworthy in
comparison to each UMAP implementation, possibly reflecting the more approximate repulsion
(negative sampling) used by UMAP.

KNN-Classifier A KNN-classifier is used as a baseline to measure supervised classification ac-
curacy based upon local relationships in embeddings. We find KNN-classifier performance largely
reflects trustworthiness (Figs 14, 15; Tables 3m 4). In 2D, we observe a broadly similar perfor-
mance between UMAP and t-SNE varients, each of which is substantially better than the PCA, AE,
or VAE projections. At 64 dimensions UMAP projections are similar but in some datasets (FMNIST,
CIFAR10) slightly underperform PCA, AE, VAE, and Parametric t-SNE .

Silhouette score Silhouette score measures how clustered a set of embeddings are given ground
truth labels. In 2D, across datasets, we tend to see a better silhouette score for UMAP and Parametric
UMAP projections than t-SNE and Parametric t-SNE, which are in turn more clustered than PCA
in all cases but CIFAR10, which shows little difference from PCA (Fig 16; 5). The clustering of
each dataset can also be observed in Fig 4, where t-SNE and Parametric t-SNE are more spread out
within cluster than UMAP. In 64D projections, we find the silhouette score of Parametric t-SNE
is near or below that of PCA, which are lower than UMAP-based methods. We note, however,
that the poor performance of Parametric t-SNE may reflect setting the degrees-of-freedom (α) at
d− 1 which is only one of three parameterization schemes that Van Der Maaten (2009) suggests. A
learned degrees-of-freedom parameter might improve performance for parametric t-SNE at higher
dimensions.

Clustering To compare clustering directly across embeddings, we performed k-Means clustering
over each latent projection and compared each embedding’s clustering on the basis of the normalized
mutual information (NMI) between clustering schemes (Fig 17; Table 6). In both the 2D and 64D
projections, we find that NMI corresponds closely to the silhouette score. UMAP and t-SNE show
comperable clustering in 2D, both well above PCA in most datasets. At 64D, each UMAP approach
shows superior performance over t-SNE.

2.2 SPEED

Training speed Optimization in non-parametric UMAP is not influenced by the dimensionality
of the original dataset; the dimensionality of the dataset only comes into play in computing the
nearest-neighbors graph. In contrast, training speeds for Parametric UMAP are variable based upon
the dimensionality of data and the architecture of the neural network used. The dimensionality of
the embedding does not have a substantial effect on speed. In Fig 5, we show the cross-entropy
loss over time for Parametric and Non-parametric UMAP, for the MNIST, Fashion MNIST, and
Retina datasets. Across each dataset we find that non-parametric UMAP reaches a lower loss more
quickly than Parametric UMAP, but that Parametric UMAP reaches a similar cross-entropy within
an order of magnitude. Thus, Parametric UMAP can train more slowly than non-parametric UMAP,
but training times remain within a similar range making Paramatric UMAP reasonable alternative to
non-parametric UMAP in terms of training time.

Embedding and reconstruction speed A parametric mapping allows embeddings to be inferred
directly from data, resulting in a quicker embedding than non-parametric methods. The speed of
embedding is especially important in signal-processing paradigms where near real-time embedding
speeds are necessary. For example in brain-machine interfacing, bioacoustics, and computational

3Where possible. In contrast with UMAP, Parametric UMAP, and Parametric t-SNE, Barnes Huts t-SNE
can only embed in two or three dimensions (Van Der Maaten, 2014) and while FIt-SNE can in principle scale
to higher dimensions (Linderman et al., 2019), embedding in more than 2 dimensions is unsupported in both
the official implementation (KlugerLab, 2020) and openTSNE (Poličar et al., 2019)
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Figure 5: Training times comparison between UMAP and Parametric UMAP. All results were ob-
tained with up to 32 threads on a machine with 2 AMD EPYC Rome 7252 8-Core CPU running at
3.1 GHz and a Quadro RTX 6000.

ethology, fast embedding methods like PCA or deep neural networks are necessary for real-time
analysis and manipulations and deep neural networks are increasingly being used (e.g. Pandarinath
et al. 2018; Brown & De Bivort 2018; Sainburg et al. 2019). Here, we compare the embedding speed
of a held-out test sample for each dataset, as well as the speed of reconstruction of the same held out
test samples.

Broadly, we observe similar embedding times for the non-parametric t-SNE and UMAP methods,
which are several orders of magnitude slower than the parametric methods (Fig 6). Because the same
neural networks are used across the different parametric UMAP and t-SNE methods, we show only
Parametric UMAP in Fig 12, which is only slightly slower than PCA, making it a viable candidate
for fast embedding in embedding paradigms where PCA is currently used.

Figure 6: Comparison of embedding speeds using parametric UMAP and other embedding algo-
rithms on a held-out testing dataset. Embeddings were performed on the same machine as Figure
11. Values shown are the median times over 10 runs.

Similar to the embedding speeds, we compared parametric and non-parametric UMAP reconstruc-
tion speeds (Fig 18). We find that the reconstructions of Parametric UMAP are orders of magnitude
faster than non-parametric UMAP, and slightly slower, but within the same order of magnitude, as
PCA.

2.3 AUTOENCODING

The ability to reconstruct data from embeddings can both aid in understanding the structure of non-
linear embeddings, as well as allow for manipulation and synthesis of data based on the learned
features of the dataset. We compared the reconstruction accuracy across each method which had
inverse-transform capabilities (i.e. Z → X), as well as the reconstruction speed across the neu-
ral network-based implementations to non-parametric implementations and PCA. In addition, we
performed latent space algebra on Parametric UMAP embeddings both with and without an au-
toencoder regularization, and found that reconstructed data can be linearly manipulated in complex
feature space.

Reconstruction accuracy We measured reconstruction accuracy as Mean Squared Error (MSE)
across each dataset (Fig 7; Table 7). In two dimensions, we find that Parametric UMAP typically
reconstructs better than non-parametric UMAP, which in turn performs better than PCA. In addition,
the autoencoder regularization slightly improves reconstruction performance. At 64 dimensions, the
AE regularized Parametric UMAP is generally comparable to the AE and VAE and performs bet-
ter than Parametric UMAP without autoencoder regularization. The non-parametric UMAP recon-
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struction algorithm is not compared at 64 dimensions because it relies on an estimation of Delaunay
triangulation, which does not scale well with higher dimensions.
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Figure 7: Reconstruction accuracy measured as mean squared error (MSE). MSE is shown relative
to each dataset (setting mean at 1).

Latent features Previous work shows that parametric embedding algorithms such as AEs (e.g.
Variational Autoencoders) linearize complex data features in latent-space, for example the presence
of a pair of sunglasses in pictures of faces (e.g. Radford et al. 2015; White 2016; Sainburg et al.
2018). Here, we performed latent-space algebra and reconstructed manipulations on Parametric
UMAP latent-space to explore whether UMAP does the same.

To do so, we use the CelebAMask-HQ dataset, which contains annotations for 40 different facial
features over a highly-structured dataset of human faces. We projected the dataset of faces into
a CNN autoencoder architecture based upon the architecture defined in Huang et al. (2018). We
trained the network first using UMAP loss alone (Parametric UMAP; Fig 8 right), and second using
the joint UMAP and AE loss (Fig 8 center). We then fit an OLS regression to predict the latent
projections of entire dataset using the 40 annotated features (e.g. hair color, presence of beard,
smiling, etc). The vectors corresponding to each feature learned by the linear model were then
treated as feature vectors in latent space, and added and subtracted from projected images, then
passed through the decoder to observe the resulting image (as in Sainburg et al. 2018).

We find that complex latent features are linearized in latent space, both when the network is trained
with UMAP loss alone as well as when the network is trained with AE loss. For example, in the last
set of images in Figure 10B, a smile can be added or removed from the projected image by adding
or subtracting its corresponding latent vector.

Figure 8: Reconstruction and interpolation. (A) Parametric UMAP reconstructions of faces from
a holdout testing dataset. (B) The same networks, adding latent vectors corresponding to image
features.

2.4 SEMI-SUPERVISED LEARNING

Real-word datasets are often comprised of a small number of labeled data, and a large number of
unlabeled data. Semisupervised learning (SSL) aims to use the unlabeled data to learn the structure
of the dataset, aiding a supervised learning algorithm in making decisions about the data. Current
SOTA approaches in many areas of supervised learning such as computer vision rely on deep neural
networks. Likewise, semisupervised learning approaches modify supervised networks with stucture-
learning loss using unlabeled data. Parametric UMAP, being a neural network that learns structure
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from unlabeled data, is well suited to semi-supervised applications. Here, we determine the effi-
cacy of UMAP for semisupervised learning by jointly training a Y-shaped neural network (Fig 2D)
on classification and UMAP compared to classification alone on datasets with varying numbers of
labeled data.

We compared datasets ranging from highly-structured (MNIST) to unstructured (CIFAR10) in
UMAP using a naı̈ve distance metric in data space (e.g. Euclidean distance over images). For
image datasets, we used a deep convolutional neural networks (CNN) which performs with rela-
tively high accuracy for CNN classification on the fully supervised networks (see Table 8) based
upon the CNN13 architecture commonly used in SSL (Oliver et al., 2018). For the birdsong dataset
we used a BLSTM network, and for the retina dataset we used a densely connected network.

Naı̈ve UMAP embedding For datasets where structure is learned in UMAP (e.g. MNIST, FM-
NIST) we expect that regularizing a classifier network with UMAP loss will aid the network in
labeling data by learning the structure of the dataset from unlabeled data. To test this, we com-
pared a baseline classifier to a network jointly trained on classifier loss and UMAP loss. We
first trained the baseline classifier to asymptotic performance on the validation dataset, then us-
ing the pretrained-weights from the baseline classifier, trained a Y-shaped network (Fig 2D) jointly
on UMAP over Euclidean distances and a classifier loss over the dataset. We find that for each
dataset where categorically-relevant structure is found in latent projections of the datasets (MNIST,
FMNIST, birdsong, retina), classifications are improved in the semi-supervised network over the
supervised network alone, especially with smaller numbers of training examples (Fig 9; Table 8). In
contrast for CIFAR10, the additional UMAP loss impairs performance in the classifier.

Figure 9: Baseline classifier with an additional UMAP loss with different numbers of labeled train-
ing examples. Non-parametric UMAP projections of the UMAP graph being jointly trained are
shown in the bottom right of each panel. Error bars show SEM.

Consistency regularization and learned invariance using data augmentation Several current
SOTA SSL approaches employ a technique called consistency regularization (Sajjadi et al., 2016);
training a classifier to produce the same predictions with unlabeled data which have been augmented
and data that have not been augmented (Sohn et al., 2020; Berthelot et al., 2020). In a similar vein,
for each image dataset, we train the network to preserve the structure of the UMAP graph when data
have been augmented. We computed a UMAP graph over un-augmented data, and using augmented
data, trained the network jointly using classifier and UMAP loss, teaching the network to learn
to optimize the same UMAP graph, invarient to augmentations in the data. We observe a further
improvement in network accuracy for MNIST and FMNIST over the baseline, and the augmented
baseline (Fig 10; Table 8). For the CIFAR10 dataset, the addition of the UMAP loss, even over
augmented data, reduces classification accuracy.

Figure 10: Comparison of baseline classifier, augmentation, and augmentation with an additional
UMAP loss.
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Learning a categorically-relevant UMAP metric using a supervised network It is unsurpris-
ing that UMAP confers no improvement for the CIFAR10 dataset, as UMAP computed over the
pixel-wise Euclidean distance between images in the CIFAR10 dataset does not capture very much
categorically-relevant structure in the dataset. Because no common distance metric over CIFAR10
images is likely to capture such structure, we consider using supervision to learn a categorically-
relevant distance metric for UMAP. We do so by training on a UMAP graph computed using dis-
tance over latent activations in the classifier network (as in, e.g. Carter et al. 2019), where categorical
structure can be seen in UMAP projection (Fig 19). The intuition being that training the network with
unlabeled data to capture distributional-structure within the network’s learned categorically-relevant
space will aid in labeling new data.

We find that in all three datasets, without augmentation, the addition of the learned UMAP loss con-
fers little no improvement in classification accuracy over the data (Fig 11; Table 8). When we look at
non-parametric projections of the graph over latent space activations, we see that the learned graph
largely conforms to the network’s already-present categorical decision making (e.g. Fig 19 predic-
tions vs. ground truth). In contrast, with augmentation, the addition of the UMAP loss improves
performance in each dataset, including CIFAR10. This contrast in improvement demonstrates that
training the network to learn a distribution in a categorically-relevant space that is already intrinsic
to the network does not confer any additional information that the network can use in classification.
Training the network to be invariant toward augmentations in the data, however, does aid in regular-
izing the classifier, more in-line with directly training the network on consistency in classifications
(Sajjadi et al., 2016).

Figure 11: SSL using UMAP over the learned latent graph, computed over latent activations in the
classifier.

3 DISCUSSION

In this paper we propose a novel parametric extension to UMAP using arbitrary deep neural net-
works. This parametric form of UMAP produces similar embeddings to non-parametric UMAP,
with the added benefit of a learned mapping between data space and embedding space. We demon-
strated the utility of this learned mapping on several downstream tasks. We showed that UMAP
applied to deep neural networks improves inference times for embeddings and reconstructions by
orders of magnitude while maintaining similar embedding quality to non-parametric UMAP. Com-
bined with an autoencoder, UMAP improves reconstruction quality and allows for reconstruction
of high-dimensional UMAP projections. We also show that parametric UMAP projections linearize
complex features in latent space, similar to other latent neural networks such as AEs and GANs.
Combined with a classifier, UMAP can be used for semi-supervised learning vastly improving train-
ing accuracy on datasets where small numbers of training exemplars are available. We showed
that UMAP loss applied to a classifier improves semi-supervised learning in real world cases where
UMAP projections carry categorically-relevant information (such as stereotyped birdsongs or single-
cell transcriptomes), but not in cases where categorically relevant structure is not present (such as
CIFAR10). We devised two downstream approaches based around learned categorically-relevant
distances, and consistency regularization, that show improvements on these more complex datasets.
Parametric embedding also makes UMAP feasible in fields where where dimensionality reduction
of continuously generated signals plays an important role in real-time analysis and experimental
control.

Future work can explore several of these topics such as on-line continuous embeddings of real-
world datasets, semi-supervised learning with UMAP with improved categorically-relevant metrics,
and applying UMAP loss to novel deep learning applications.
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A APPENDIX

A.1 GRAPH CONSTRUCTION AND EMBEDDING

UMAP and t-SNE have the same goal: Given a D-dimensional data set X ∈ RD, produce a d
dimensional embedding Z ∈ Rd such that points that are close together in X (e.g. xi and xj) are
also close together in Z (zi and zj).

Both algorithms are comprised of the same two broad steps, first construct a graph of local rela-
tionships between datasets (Fig 1A), then optimize an embedding in low dimensional space which
preserves the structure of the graph (Fig 1B). The parametric approach replaces the second step of
this process with an optimization of the parameters of a deep neural network (Fig 1C).

A.1.1 GRAPH CONSTRUCTION

Computing probabilities in X The first step in both UMAP and t-SNE is to compute a distri-
bution of probabilities P between pairs of points in X based upon the distances between points in
data space. Probabilities are initially computed as local, one-directional, probabilities between a
point and its neighbors in data-space, then symmetrized to yield a final probability representing the
relationship between pairs of points.

In t-SNE, these probabilities are treated as conditional probabilities of neighborhood (pt-SNE
i|j ) com-

puted using a Gaussian distribution centered at xi.

pt-SNE
j|i =

exp
(
−d(xi,xj)/2σ

2
i

)∑
k 6=i exp (−d(xi,xk)/2σ2

i )
(1)

Where d(xi,xj) represents the distance between xi an xi (e.g. Euclidean distance) and σi is the
standard deviation for the Gaussian distribution, set based upon the a perplexity parameter such that
one standard deviation of the Gaussian kernel fits a a set number of nearest-neighbors in X .

In UMAP, local, one-directional, probabilities (P UMAP
i|j ) are computed between a point and its neigh-

bors to determine the probability with which an edge (or simplex exists), based upon an assumption
that data is uniformly distributed across a manifold in a warped dataspace. Under this assumption, a
local notion of distance is set by the distance to the kth nearest neighbor and the local probability is
scaled by that local notion of distance.

pUMAP
j|i = exp(−(d(xi,xj)− ρi)/σi) (2)

Where ρi is a local connectivity parameter set to the distance from xi to its nearest neighbor, and
σi is a local connectivity parameter set to match the local distance around xi upon its k nearest
neighbors (where k is a hyperparameter).

After computing the one-directional edge probabilities for each datapoint, UMAP computes a
global probability as the probability of either of the two local, one-directional, probabilities oc-
curring pij =

(
pj|i + pi|j

)
− pj|ipi|j . In contrast, t-SNE symmetrizes the conditional probabilities

as pij =
pj|i+pi|j

2N .

A.1.2 GRAPH EMBEDDING

After constructing a distribution of probabilistically weighted edges between points in X , UMAP
and t-SNE initialize an embedding in Z corresponding to each data point, where a probability distri-
bution (Q) is computed between points as was done with the distribution (P ) in the input space. The
objective of the UMAP and t-SNE is then to optimize that embedding to minimize the difference
between P and Q.

Computing probabilities in Z In embedding space, the pairwise probabilities are computed di-
rectly without first computing local, one-directional probabilities.

In the t-SNE embedding space, the pairwise probability between two points qt-SNE
i|j is computed in

a similar manner to pt-SNE
i|j , but where the Gaussian distribution is replaced with the fatter-tailed
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Student’s t-distribution (with one degree of freedom), which is used to overcome the ’crowding
problem’ (van der Maaten & Hinton, 2008) in translating volume differences in high-dimensional
spaces to low-dimensional spaces:

qt-SNE
ij =

(
1 + ‖zi − zj‖2

)−1
∑

k 6=l

(
1 + ‖zk − zl‖2

)−1 (3)

UMAP’s computation of the pairwise probability qUMAP
ij between points in the embedding space Z

uses a different family of functions:

qUMAP
ij =

(
1 + a ‖zi − zj ||2b

)−1
(4)

Where a and b are hyperparameters set based upon a desired minimum distance between points
in embedding space. Notably, the UMAP probability distribution in embedding space is not nor-
malized, while the t-SNE distribution is normalized across the entire distribution of probabilities,
meaning that the entire distribution of probabilities needs to be calculated before each optimization
step of t-SNE.

Cost function Finally the distribution of embeddings in Z is optimized to minimize the difference
betwee Q and P .

In t-SNE, a Kullback-Leibler divergence between the two probability distributions is used, and gra-
dient descent in t-SNE is computed over the embeddings Ct-SNE =

∑
i 6=j pij log pij − pij log qij .

In UMAP, the cost function is cross-entropy, also optimized using gradient descent CUMAP =∑
i 6=j pij log

(
pij

qij

)
+ (1− pij) log

(
1−pij

1−qij

)
.

Attraction and repulsion Minimizing the cost function over every possible pair of points in the
dataset would be computationally expensive. UMAP and more recent varients of t-SNE both use
shortcuts to bypass much of that computation. In UMAP, those shortcuts are directly advantageous
to batch-wise training in a neural network.

The primary intuition behind these shortcuts is that the cost function of both t-SNE and UMAP can
both be broken out into a mixture of attractive forces between locally connected embeddings and
repulsive forces between non-locally connected embeddings.

Attractive forces Both UMAP and t-SNE utilize a similar strategy in minimizing the compu-
tational cost over attractive forces: they rely on an approximate nearest neighbors graph4. The
intuition for this approach is that elements that are further apart in data space have very small edge
probabilities, which can be treated as effectively zero. Thus, edge probabilities and attractive forces
only need to be computed over the nearest neighbors, non-nearest neighbors can be treated as hav-
ing an edge-probability of zero. Because nearest-neighbor graphs are themselves computationally
expensive, approximate nearest neighbors (e.g. Dong et al. 2011) produce effectively similar results.

Repulsive forces Because most data points are not locally connected, we do not need to waste
computation on most pairs of embeddings.

UMAP takes a shortcut motivated by the language model word2vec (Mikolov et al., 2013) and
performs negative sampling over embeddings. Each training step iterates over positive, locally-
connected, edges and randomly samples edges from the remainder of the dataset treating their edge
probabilities as zero to compute cross-entropy. Because most data points are not locally connected
and have a very low edge probability, these negative samples are, on average, correct, allowing
UMAP to sample only sparsely over edges in the dataset.

4UMAP requires substantially fewer nearest neighbors than t-SNE, which generally requires 3 times the
perplexity hyperparameter (defaulted at 30 here), whereas UMAP computes only 15 neighbors by default,
which is computationally less costly.
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In t-SNE, repulsion is derived from the normalization of Q. A few methods for minimizing the
amount of computation needed for repulsion have been developed. The first, is the Barnes-Hut tree
algorithm Van Der Maaten (2014), which bins the embedding space into cells and where repulsive
forces can be computed over cells rather than individual data points within those cells. Similarly,
the more recent interpolation-based t-SNE (FIt-SNE; Linderman et al. 2017; 2019) divides the em-
bedding space up into a grid and computes repulsive forces over the grid, rather than the full set of
embeddings.

A.2 DATASETS

We performed experiments over several different datasets varying in complexity. The Cassin’s vireo
song dataset (Hedley, 2016b;a; Sainburg et al., 2019) consists of spectrograms of 20 of the most
frequently sung elements elements of Cassin’s vireo song (zero padded to 32 frequency by 31 time
bins) produced by several individuals recorded in the Sierra Nevada mountains of California. De-
spite being recorded in the wild, the Cassin’s vireo song is relatively low noise and vocal elements
are highly stereotyped. MNIST is a benchmark handwritten digits dataset in 28x28 pixels (Kluger-
Lab, 2010). Fashion MNIST (FMNIST) is a dataset of fashion items in the same format as Fashion
MNIST designed to be a more difficult classification problem than MNIST (Xiao et al., 2017). CI-
FAR10 is a natural image dataset (32x32x3 pixels) with 10 classes (Krizhevsky, 2009). CIFAR10
classes are much less structured than the other datasets used. For example, unlike FMNIST, subjects
of images are not uniformly centered in the image and can have different background conditions that
make neighborhood in pixel-space less likely between members of the same class. The single-cell
retina transcriptome dataset consists of PCA projections (50D) of single-cell RNA transcriptome
data from mouse retina (Macosko et al., 2015; Poličar et al., 2019). The CelebAMask-HQ dataset
consists of cropped and aligned photographs of celebrity faces with 40 facial feature annotations
(Lee et al., 2020; Liu et al., 2015) and label masks corresponding to face-landmarks. We removed
the background of each image to make the task of learning a structured embedding simpler for the
neural network. A further description of each dataset is given in Table 1 and a 2D projection of each
dataset using each embedding algorithm is given in Figure 12.

Dataset Dim. # Train/Valid/Test Citation
Moons 2 1K/NA/NA Pedregosa et al. (2011)
Bison 3 50K/NA/NA Duhaime (2019)
Cassin’s vireo song 32x31 24.98K/1K/1K Hedley (2016b;a)
MNIST 28x28 50K/10K/10K KlugerLab (2010)
Fashion MNIST 28x28 50K/10K/10K Xiao et al. (2017)
CIFAR10 32x32x3 40K/10K/10K Krizhevsky (2009)
Mouse retina transcriptomes 50 30.33K/4.81K/10K Macosko et al. (2015)
CelebA-HQ (128) 128x128x3 28K/1K/1K Lee et al. (2020); Liu et al. (2015)

Table 1: Datasets used across all of the analyses and visualizations in the paper. NA refers to a split
that was not used in the paper (e.g. no validation or testing set was used for the bison visualization
in Fig 4B.)

A.3 EMBEDDING ALGORITHMS

Neural network architectures for the Parametric networks differ between datasets. MNIST, FMNIST,
and CIFAR10 use convolutional neural networks. The Cassin’s vireo dataset uses an LSTM encoder
(and decoder for the autoencoder). The Retina dataset uses a 3-layer MLP with 100-neurons per
layer. Parametric t-SNE and UMAP used the same neural network architectures and optimizer. For
UMAP, the distance metric used for Cassin’s vireo song is a dynamic-time warping (DTW) metric.
The UMAP Autoencoder (UMAP AE) uses the same architecture of the Parametric UMAP and t-
SNE implementations, combined with a corresponding decoder network. The encoder network and
decoder network are jointly trained on a reconstruction and UMAP loss function. We additionally
trained a decoder for the Parametric UMAP network, in which the encoder is trained only on the
UMAP loss, and is not jointly trained on a reconstruction loss. For both t-SNE and Parametric
t-SNE perplexity was left at its default value of 30 across datasets. We also left the degrees of
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freedom for parametric t-SNE at α = d − 1, where d is the number of dimensions in the latent
projection. Parametric embeddings (UMAP, t-SNE) are initialized with the same random neural
network weights. Non-parametric algorithms use their corresponding default initializations.

A.4 EMBEDDING METRICS

A.4.1 TRUSTWORTHINESS

Trustworthiness (Venna & Kaski, 2006) is a measure of how much of the local structure of a dataset
is preserved in a set of embeddings. Trustworthiness is quantified by comparing each datapoint’s
nearest neighbors in the original space, to its nearest neighbors in the embedding space:

T (k) = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈Nk

i

max(0, (r(i, j)− k)) (5)

where k is the number of nearest neighbors trustworthiness is being computed over, and for each
sample i, N k

i are the nearest k neighbors in the original space, and each sample j is i’s r(i, j)th

nearest neighbor. We compared the Trustworthness using Scikit-learn’s default k value of 5. Trust-
worthiness is scaled between 0 and 1, with 1 being more trustworthy.

A.4.2 KNN CLASSIFIER

Related to trustworthiness, a k-Nearest Neighbor’s (KNN) classifier is a supervised algorithm that
classifies each unlabeled point based on its k-nearest labeled datapoints. We applied a KNN classifier
with k=1 (Fig 14) and k=5 (Fig 15) to each dataset.

A.4.3 SILHOUETTE SCORE

As opposed to Trustworthiness, which measures the preservation of local structure in a projection,
the silhouette score (Rousseeuw, 1987) measures how ’clustered’ a set of embeddings are, given
ground truth labels. Silhouette score is computed as the mean silhouette coefficient across em-
beddings, where the silhouette coefficient is the distance between each embedding and all other
embeddings in the same class, minus the distance to the nearest point in a separate class. Silhouette
score is scaled between -1 and 1, with 1 being more clustered.

A.4.4 CLUSTERING

To compare clustering directly across embeddings, we performed k-Means clustering over each
latent projection and compared each embeddings clustering on the basis of the normalized mutual
information (NMI) between clustering schemes. For each latent projection, k-Means was used to
cluster the latent projection with k (the number of clusters) varied between 1

2 − 1 1
2 times the true

number of categories in the dataset. The clustering was repeated five times per k. The best clustering
was then picked on the basis of the silhouette score between the k clusters and the projections (i.e.
without reference to ground truth).

A.5 RELATED WORK

Beyond Parametric t-SNE and Parametric UMAP, a number of recent parametric dimensionality
reduction algorithms utilizing structure-preserving constraints exist which were not compared here.
In this work, we chose not to compare these algorithms to Parametric UMAP because the focus of
Parametric UMAP is on downstream applications, and not embedding quality, which we confirm in
Section 2.1 is similar to non-parametric UMAP. This work is relevant to ours and is mentioned here
to provide clarity on the current state of parametric topologically motivated and structure preserving
dimensionality reduction algorithms.

Moor et al., (topological autoencoders; 2020) and Hoffer et al. (Connectivity-Optimized Repre-
sentation Learning; 2019) apply an additional topological structure-preserving loss using persistent
homology over mini-batches to the latent space of an autoencoder. Jia et al., (Laplacian Au-
toencoders; 2015) similarly defines an autoencoder with a local structure preserving regularization.
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Mishne et al., (Diffusion Nets; 2019) define an autoencoder extension based upon diffusion maps
that constrains the latent space of the autoencoder. Ding et al., (scvis; 2018) and Graving and Couzin
(VAE-SNE; 2020) describe VAE-derived dimensionality reduction algorithms based upon the ELBO
objective. Duque et al (geometry-regularized autoencoders; 2020) regularize an autoencoder with
the PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding) embedding al-
gorithm (Moon et al., 2019). Szubert et al (ivis; 2019) and Robinson (Differential Embedding
Networks; 2020) both make use of Siamese neural network architectures with structure-preserving
loss functions to learn embeddings. Pai et al., (DIMAL; 2019) similarly uses Siamese networks
constrained to preserve geodesic distances for dimensionality reduction.

B FIGURES

Figure 12: Comparison of projections from multiple datasets using UMAP, UMAP in Tensorflow,
Parametric UMAP, Parametric UMAP with an Autoencoder loss, Parametric t-SNE, t-SNE, a VAE,
an AE, and PCA. (a) Moons. (B) 3D buffalo. (c) MNIST (d) Cassin’s vireo song segments (e) Mouse
retina single cell transcriptomes. (f) Fashion MNIST (g) CIFAR10. The Cassin’s vireo dataset uses
a dynamic time warping loss and an LSTM network for the encoder and decoder for the neural
networks. The image datasets use a convnet for the encoder and decoder for the neural networks.
The bison examples use a t-SNE parplexity of 500 and 150 nearest neighbors in UMAP to capture
more global structure.
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Figure 13: Trustworthiness scores for five datasets using 2- and 64-dimensional projections using
each projection method. 64-dimensional t-SNE is not shown due to limitations in high-dimensional
projections with t-SNE. Trustworthiness is computed over 10,000 samples of the training dataset.
UMAP (TF) stands for the Tensorflow implementation of non-parametric UMAP.
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Figure 14: Generalization errors of KNN classifiers (k=1) on latent projections.
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Figure 15: Generalization errors of KNN classifiers (k=5) on latent projections.
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Figure 16: Silhouette scores for five datasets using 2- and 64-dimensional projections using each
projection method. 64-dimensional t-SNE is not shown due to limitations in high-dimensional pro-
jections with t-SNE.
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Figure 17: Clustering results. Comparisons are based upon the Normalized Mutual Information
(NMI) between labels and clusters. Each dataset shows the NMI for the best clustering chosen on
the basis of its silhouette score.

Figure 18: Reconstruction speed. Reconstructions are performed on the same machine as in Fig 6.
Reconstructions are not shown for the retina dataset with PCA with a 64D latent space because the
dataset is only 50 dimensions. Because all neural network architectures are held constant, speeds
remain equal across each Parametric UMAP and t-SNE implementation. Values show the median
time over 10 runs.
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Figure 19: Non-parametric UMAP projections of activations in the last layer of a trained classifier
for MNIST, FMNIST, and CIFAR10. For each dataset, the top row shows the ground truth labels on
above, and the model’s predictions below, in a light colormap. On top of each projection, the labeled
datapoints used for training are shown in a darker colormap.
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B.1 RESULTS TABLES

Dataset Dim. t-SNE P. t-SNE UMAP P. UMAP UMAP/AE AE VAE PCA

Cassin’s 2 0.9949 0.9867 0.9758 0.9756 0.9777 0.9488 0.8976 0.8380
64 - 0.9990 0.9831 0.9840 0.9907 0.9981 0.9949 0.9999

CIFAR10 2 0.9216 0.7773 0.8310 0.8187 0.8273 0.8564 0.8510 0.8202
64 - 0.9971 0.9209 0.9140 0.9199 0.9992 0.9913 0.9996

FMNIST 2 0.9906 0.9827 0.9777 0.9733 0.9842 0.9803 0.9751 0.9126
64 - 0.9991 0.9897 0.9894 0.9913 0.9991 0.9960 0.9995

Retina 2 0.9702 0.9463 0.9494 0.9435 0.9173 0.8063 0.7533 0.7445
64 - 0.9918 0.9708 0.9628 0.9542 0.9921 0.9342 1.0000

MNIST 2 0.9874 0.9655 0.9601 0.9573 0.9675 0.9663 0.9513 0.7434
64 - 0.9997 0.9895 0.9880 0.9905 0.9997 0.9994 0.9999

Table 2: Trustworthiness score for each method from Fig 13.

Dataset Dim. t-SNE P. t-SNE UMAP P. UMAP UMAP/AE AE VAE PCA

Cassin’s 2 0.9880 0.9860 0.9860 0.9910 0.9890 0.8740 0.7300 0.6260
64 - 0.9950 0.9850 0.9880 0.9940 0.9950 0.9800 0.9950

CIFAR10 2 0.2457 0.1675 0.1689 0.1512 0.1592 0.1696 0.1665 0.1436
64 - 0.3426 0.2375 0.2139 0.2223 0.3790 0.3949 0.3829

FMNIST 2 0.7825 0.6834 0.7144 0.6941 0.7083 0.6816 0.6646 0.4467
64 - 0.8300 0.7682 0.7431 0.7772 0.8671 0.8747 0.8398

Retina 2 0.9717 0.9661 0.9665 0.9643 0.8581 0.9429 0.8545 0.8085
64 - 0.9772 0.9721 0.9683 0.9576 0.9750 0.9670 0.9759

MNIST 2 0.9411 0.9118 0.9317 0.9402 0.9403 0.7647 0.7241 0.3765
64 - 0.9697 0.9449 0.9518 0.9481 0.9748 0.9785 0.9707

Table 3: KNN (k = 1) scores for each method from Fig 14

Dataset Dim. t-SNE P. t-SNE UMAP P. UMAP UMAP/AE AE VAE PCA

Cassin’s 2 0.9910 0.9930 0.9890 0.9950 0.9930 0.9090 0.7740 0.6910
64 - 0.9950 0.9860 0.9910 0.9970 0.9930 0.9880 0.9920

CIFAR10 2 0.2608 0.2017 0.1936 0.1722 0.1833 0.2007 0.1941 0.1503
64 - 0.3556 0.2694 0.2519 0.2477 0.3728 0.3777 0.3769

FMNIST 2 0.8039 0.7361 0.7608 0.7407 0.7561 0.7339 0.7161 0.5055
64 - 0.8479 0.8059 0.7878 0.8028 0.8756 0.8830 0.8568

Retina 2 0.9795 0.9766 0.9792 0.9761 0.8933 0.9647 0.8795 0.8429
64 - 0.9813 0.9801 0.9748 0.9661 0.9817 0.9770 0.9806

MNIST 2 0.9502 0.9378 0.9544 0.9614 0.9537 0.7926 0.7649 0.4201
64 - 0.9734 0.9538 0.9680 0.9654 0.9758 0.9791 0.9727

Table 4: KNN (k = 5) scores for each method from Fig 14
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Dataset Dim. t-SNE P. t-SNE UMAP P. UMAP UMAP/AE AE VAE PCA

Cassin’s 2 0.5431 0.7439 0.7749 0.8013 0.7714 0.1125 0.0853 0.0731
64 - 0.2299 0.8536 0.8173 0.8271 0.2411 0.1583 0.2914

CIFAR10 2 -0.1216 -0.2757 -0.1340 -0.1359 -0.1320 -0.1436 -0.1114 -0.1142
64 - -0.0536 -0.1166 -0.1163 -0.1172 -0.0644 -0.0529 -0.0580

FMNIST 2 0.1251 0.2013 0.1936 0.2139 0.2060 0.0427 0.1064 -0.0331
64 - 0.0543 0.2195 0.2315 0.2305 0.0655 0.0376 0.0618

Retina 2 0.0151 0.2578 0.2800 0.4519 0.3973 0.4394 0.4449 0.4009
64 - -0.0214 0.3522 0.4652 0.4662 0.4289 0.3873 0.4188

MNIST 2 0.3498 0.3710 0.5186 0.5559 0.4637 -0.0258 0.0627 0.0228
64 - 0.0488 0.5276 0.5571 0.5166 0.0653 0.0431 0.0569

Table 5: Silhouette score for each method from Fig 16.

Dataset Dim. t-SNE P. t-SNE UMAP P. UMAP UMAP/AE AE VAE PCA

Cassin’s 2 0.9628 0.9605 0.9581 0.9686 0.9660 0.5984 0.7198 0.6029
64 - 0.9434 0.9596 0.9665 0.9662 0.7501 0.7923 0.9019

CIFAR10 2 0.0688 0.0383 0.0743 0.0719 0.0730 0.0258 0.0560 0.0605
64 - 0.0570 0.0733 0.0742 0.0746 0.0574 0.0905 0.0599

FMNIST 2 0.5408 0.6248 0.6603 0.6594 0.6602 0.4818 0.5319 0.4221
64 - 0.4680 0.6602 0.6618 0.6635 0.5541 0.5639 0.5244

Retina 2 0.5124 0.5912 0.5510 0.7112 0.5862 0.5695 0.5691 0.5522
64 - 0.4682 0.7763 0.6356 0.5793 0.5897 0.5908 0.6696

MNIST 2 0.7704 0.7446 0.8375 0.7824 0.8460 0.4093 0.5467 0.3234
64 - 0.4977 0.7747 0.7818 0.8701 0.4253 0.5617 0.5010

Table 6: Clustering score for each method from Fig 17

Dataset Dim. UMAP P. UMAP UMAP/AE AE VAE PCA

Cassin’s 2 0.0085 0.0028 0.0028 0.0163 0.0125 0.0082
64 - 0.0034 0.0028 0.0011 0.0013 0.0008

CIFAR10 2 0.0528 0.0369 0.0364 0.0344 0.0217 0.0370
64 - 0.0300 0.0094 0.0080 0.0084 0.0084

FMNIST 2 0.0347 0.0266 0.0240 0.0244 0.0253 0.0461
64 - 0.0241 0.0092 0.0054 0.0058 0.0104

Retina 2 0.0003 0.0008 0.0005 0.0005 0.0006 0.0010
64 - 0.0005 0.0003 0.0001 0.0003 -

MNIST 2 0.0393 0.0374 0.0360 0.0369 0.0371 0.0557
64 - 0.0313 0.0027 0.0016 0.0024 0.0090

Table 7: Reconstruction error on held-out testing set for each method.
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4 64 256 1024 full

MNIST Baseline 0.814 0.979 0.990 0.994 0.996
+ Aug. 0.928 0.986 0.990 0.994 0.996
+ UMAP (Euclidean) 0.978 0.986 0.990 0.993 0.996
+ UMAP (learned) 0.832 0.979 0.990 0.994 0.996
+ Aug. + UMAP (learned) 0.955 0.991 0.994 0.996 0.996
+ Aug. + UMAP (Euclidean) 0.978 0.992 0.993 0.995 0.997

FMNIST Baseline 0.607 0.835 0.889 0.920 0.943
+ Aug. 0.692 0.860 0.901 0.932 0.949
+ UMAP (Euclidean) 0.714 0.841 0.885 0.916 0.947
+ UMAP (learned) 0.629 0.835 0.889 0.920 0.944
+ Aug. + UMAP (learned) 0.747 0.880 0.908 0.932 0.952
+ Aug. + UMAP (Euclidean) 0.737 0.864 0.900 0.930 0.952

CIFAR10 Baseline 0.217 0.499 0.722 0.838 0.905
+ Aug. 0.281 0.599 0.766 0.867 0.933
+ UMAP (Euclidean) 0.190 0.450 0.674 0.829 0.913
+ UMAP (learned) 0.199 0.515 0.748 0.850 0.912
+ Aug. + UMAP (learned) 0.351 0.674 0.820 0.891 0.932
+ Aug. + UMAP (Euclidean) 0.243 0.560 0.748 0.852 0.932

Cassin’s vireo Baseline 0.952 0.993 0.995 1.000 0.999
+ UMAP (Euclidean) 0.996 0.998 0.997 0.999 0.999

Retina Baseline 0.888 0.970 0.979 0.978 0.983
+ UMAP (Euclidean) 0.929 0.973 0.973 0.977 0.979

Table 8: Classification accuracy across each dataset and method for different numbers of labeled
training examples.
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