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Abstract

We show how to take a regression function f that is appropriately “multicalibrated” and efficiently
post-process it into an approximately error minimizing classifier satisfying a large variety of fairness
constraints. The post-processing requires no labeled data, and only a modest amount of unlabeled data
and computation. The computational and sample complexity requirements of computing f are comparable
to the requirements for solving a single fair learning task optimally, but it can in fact be used to solve
many different downstream fairness-constrained learning problems efficiently. Our post-processing method
easily handles intersecting groups, generalizing prior work on post-processing regression functions to
satisfy fairness constraints that only applied to disjoint groups. Our work extends recent work showing
that multicalibrated regression functions are “omnipredictors” (i.e. can be post-processed to optimally
solve unconstrained ERM problems) to constrained optimization.

1 Introduction

The most common technical framing for fair machine learning is as constrained optimization. The goal is to
solve an empirical risk minimization problem over some class of models H, subject to fairness constraints.
For example, we might ask to find the best performing model h € H that equalizes false positive rates, false
negative rates, raw error rates, or positive classification rates across some collection of groups G
let al.l [2016, Dwork et al.l [2012]). For each of these notions of fairness, there is a continuum of relaxations to
consider: rather than asking that (e.g.) false positive rates be exactly equalized across groups, we could ask
that they deviate by not more than 5%, or 10%, or 15%, etc. Because these relaxations trade off with model
accuracy (tracing out Pareto frontiers), it is common to explore the entire range of tradeoffs for a particular
family of fairness constraints (see e.g. [Agarwal et al., 2018, Kearns et al., |2018]).

Each of these are distinct problems that seemingly require training fresh models on the data. And each of
these problems can be computationally expensive to solve: for example, the “reductions” approach of
requires solving roughly log |G|/€? empirical risk minimization problems over H to produce an
e-approximately optimal solution to any one of them, and the computations cannot be reused. Our goal is
to understand when we can pre-compute a single regression model f which is sufficient to solve all of the
fair machine learning problems described above, each as only a computationally easy post-processing of f ,
without sacrificing accuracy.

1.1 Our Results in Context

The idea of post-processing a trained model f in order to satisfy fairness constraints is not new. For example,
|Hardt et al.| ||2016|| propose a simple post-processing of a regression function f to derive a classifier subject




to false positive or negative rate constraints. However, the conditions under which such post-processing
approaches work are not yet well understood. In particular, two important questions about post-proceessing
remain: First, how should one algorithmically post-process a regression function f to obtain a good (and
fair) downstream classifier, and what properties must f satisfy? Prior work [Hardt et all|2016] handles the
case in which the groups G are disjoint, by finding a different thresholding of f for each group g € G. Is there
a simple, efficient post-processing that applies in the common case that groups intersect — as is the case
e.g. with groups defined by race and gender? Second and similarly, [Hardt et al.| [2016] and |Corbett-Davies
et al. [2017] show that this post-processing yields the Bayes Optimal fair classifier if f is the true conditional
label distribution. Are there weaker conditions on f (that can be efficiently satisfied from only a polynomial
number of samples) that also lead to guarantees? We answer both of these questions in the affirmative.

Post Processing for Intersecting Groups Suppose we have k = |G| groups that are intersecting (e.g.
divisions of a population by race, gender, income, nationality, etc.) A naive reduction to the post-processing
approach of [Hardt et al| [2016] would consider all 2% (now disjoint) intersections of groups, and find a
separate thresholding of f (z) for each one. We show that even when groups intersect, for a variety of fairness
constraints, the optimal post-processing h remains a thresholding that depends on only k parameters A4,
one for each group g. The value at which to threshold f (z) now depends only on these k parameters and
the subset of groups that x is contained in. We give a simple, efficient algorithm to compute these optimal
post-processings. The algorithm is efficient in the worst case — i.e. it does not have to call any heuristic
“learning oracle” as direct learning approaches do |[Agarwal et al., |2018| [Kearns et al.,|2018|, and requires
access only to a modest amount of unlabeled data from the underlying distribution.

Accuracy Guarantees from Multicalibration As in|Hardt et al.| [2016] when f is the Bayes optimal
regression function, for a variety of fairness constraints, our post-processing h is the Bayes optimal fair
classifier. But in general we cannot hope to learn the Bayes optimal regression function f given only a
polynomial amount of data and computation. We show that substantially weaker conditions suffice: If f
is multicalibrated with respect to a class of models H, a class of groups G, and a simple class of functions
derived from H and G, then the post-processing h of f will be as accurate as the best fair model in H while
satisfying all of the fairness constraints defined over G. Learning a multicalibrated predictor with respect to
these classes can be done with polynomial sample complexity in an oracle-efficient manner whenever  and
G have polynomial VC dimension — and so both the sample and computational complexity of computing
f are comparable to what would be required to directly solve a single instance of a fairness constrained
optimization problem over H.

Experimental Evaluation We provide preliminary experimental evaluation of our method on a dataset
derived from Pennsylvania Census data provided by the Folktables package [Ding et all [2021]. The
experimental results support the theoretical findings that our method is able to quickly converge to a solution
that approximately satisfies the given target constraints.

Taken together, our results contribute to the following conclusion: even when the notion of fairness that is
eventually desired in downstream tasks is one that approximately equalizes some notion of statistical error
across groups, this is not necessarily what should be trained. Aiming instead for group-wise fidelity in the
form of multicalibration provides the flexibility to deploy an optimal downstream model subject to a variety
of fairness constraints without destroying information that would be needed to later relax or tighten those
constraints, to remove them or to add more, or to change their type.

1.2 Additional Related Work

There are a number of other papers that study the problem of converting a regression (or “score”) function
into a classification rule in the context of fair machine learning. For example, [Woodworth et al.|[2017] shows



that post-proceessing a learned binary classification model to satisfy fairness constraints can be substantially
suboptimal even when the hypothesis class under consideration contains the Bayes optimal predictor, which
motivates a focus on post-processing regression functions instead. [Yang et al.| [2020] study the structure of
the Bayes optimal fair classifier for several notions of fairness when groups are intersecting, under a continuity
assumption on the underlying distribution; they do not consider utility guarantees for post-processing a
regression function that does not completely represent the underlying probability distribution. [Wei et al.
[2021] and |Alabdulmohsin and Lucic| [2021] give post-processing algorithms that transforms a score function
into a regression function that optimizes different measures of accuracy subject to a variety of fairness
constraints using a similar primal/dual perspective that we use in this paper. But these papers do not address
the two main questions we raise in our work: intersecting groups, and efficiently learnable conditions on
the score function that lead to utility guarantees (they assume that in the limit the true conditional label
distribution is learnable and given as input to their algorithm)

In proving our accuracy bounds, we draw on a recent line of work on multicalibration [Hébert-Johnson
et al., 2018] [Kim et al, |2019] [Jung et al.| 2021a, Dwork et al.l |2021, |Gupta et all [2022]. In particular,
Gopalan et al.| [2022] showed that regression functions that are multicalibrated with respect to a class of
models H are omni-predictors with respect to H, which means that they can be post-processed to perform as
well as the best model in ‘H with respect to any convex loss function satisfying mild technical conditions.
The results in our paper can be viewed as being a constrained optimization parallel to Gopalan et al.[[2022],
which studies unconstrained optimization.

Several other papers also use multicalibration of intermediate statistical products to argue for the utility
of downstream models. Zhao et al.[[2021] consider the problem of calibrating a model to the utility function
of a downstream utility maximizing decision maker to preserve the usefulness of the model for the decision-
maker. [Diana et al|[2021] show that a prozy-model for a protected attribute can be useful in enforcing
fairness constraints on a downstream model when the real protected attribute is not available if the proxy is
appropriately multicalibrated. [Burhanpurkar et al.|[2021] propose training a multicalibrated predictor on
the level sets of a low dimensional learned representation as a means of obtaining Bayes optimality. [Kim
et al.|[2022| show that a predictor that is multicalibrated with respect to a function class can adapt to new
domains with covariate shift as well as a model trained using propensity-score reweighting via any propensity
score function in the class.

Hu et al.| [2022] independently study a similar problem. Our two papers derive a closely related but
incomparable set of results. [Hu et al.|[2022] tackles a more general problem, and studies a richer set of
objective functions and constraints (whereas we restrict attention to the classification error objective and
fairness motivated constraints). In contrast, in our paper, we are able to take advantage of the additional
structure of our problem to derive improved bounds. In particular, we can handle intersecting groups (with
running time and sample complexity depending polynomially on the number of groups), whereas Hu et al.
[2022] requires taking all of the exponentially many group intersections to recover disjoint groups—which
leads to an exponential (in the number of groups) loss in the running time and sample complexity. Similarly,
they require more precise multicalibration as more groups are added, whereas we derive results from a
multicalibrated predictor with parameter that is independent of the number of groups.

1.3 Limitations

This work explores approaches to fairness that make a jump between complex and ambiguous social ideas of
fairness and mathematical guarantees such as equality of false positive rates between groups of individuals.
Our work can be applied only when evaluating the membership of an individual to a group is well-defined,
and when consideration of group membership is legaﬂ and when the training data is representative of the
underlying population. There will be contexts in which these assumptions are either false, overly simplistic,
or bypass larger questions: e.g. an application might be fair in its performance but still entirely unethical, or

INote that in some contexts such as consumer lending in the United States, direct consideration of membership in protected
groups such as race is illegal. However, demographic information can be used when designing and auditing a decision-making
process, so long as those characteristics are not part of the real-time lending decisions.



groups may be systematically underrepresented in datasets. In the latter case, the guarantees of our work
cannot be interpreted as guarantees relative to the optimal predictor for the true distribution over groups.
It is worth noting that while the assumption that we can define group membership of individuals simplifies
the complexities of personal identity, this work does improve on the existing literature on post-processing
approaches to fairness in that it allows for non-disjoint, or intersectional, group membership. In general, this
work (and all work in algorithmic fairness) should not be assumed to “solve" fairness. Instead it should be
taken as a tool in a larger system to evaluate and remediate issues of fairness and ethics in machine learning.

2 Preliminaries

We study binary classification problems. Let X be an arbitrary feature space and Y = {0, 1} be a binary
label space. A classification problem is defined by an underlying data distribution D € A(X x )). In general
we will not have direct access to the data distribution, but rather only to samples drawn i.i.d. from D. We
let D denote a dataset of size n, drawn i.i.d. from D: D ~ D",

We will study both regression functions f : X — R and classification functions (classifiers) h: X — {0,1}.
In general we will use f and variants (f*, f , etc.) when speaking of regression functions and h and variants
(h*, iL, etc.) when speaking of classification functions. Our interest will be in regression functions used
to estimate conditoinal label expectations in binary prediction problems, and so the natural range of our
regression functions will be (discrete subsets of) [0, 1].

Definition 1 (Bayes Optimal Regression Function). We let f* denote the Bayes Optimal Regression Function
f* =argming B, ) p(f(2) — y)? which takes value:
frl@)y= "E [y]a’ =a]
(a',y")~D
Remark. The property of f* that we are interested in is that it encodes the true conditional label expectations.

The fact that it minimizes squared error is not important — f* would also minimize any other proper loss
function.

Let Dy denote the marginal distribution on features induced by projecting D onto X. Note that we can
equivalently sample a pair (z,y) ~ D by first sampling « ~ Dy and then sampling y = 1 with probability
f*(z) and y = 0 otherwise.

Given a classifier h: X — ), and a data distribution D, we can refer to various notions of error. We will
be interested in error rates not just overall, but on subsets of the data that we call groups (which we might
think of as e.g. demographic groups when the data represents people). We will represent groups by group
indicator functions:

Definition 2. Let G denote a collection of groups, each represented by a group indicator function g : X —
{0,1}. If g(x) = 1 we say that x is a member of group g. Let I denote the group containing all elements
(I(x) =1 for all ). We will always assume that I € G.

We allow G to contain arbitrarily intersecting groups. We can now define error rates over these groups,
and a notion of fairness.

Definition 3. The error of a classifier h: X — Y on a group g as measured over distribution D is:

err(h, g, D) = P)r @) #ylgl@) =1 = E__[(h(z),y)lg(z) =1]
z,y)~ (z,y)~D

The false positive rate of a classifier h : X — Y on a group g is:

p(h,g, D)= Pr [h(z)#yly=0,9(z)=1]

(z,y)~D

When h is a randomized classifier, the probabilities are computed over the randomness of h as well. For
convenience, we write err(h) = err(h,I,D), pg(h) = p(h, g, D), and p(h) = p(h,I,D).



Definition 4. We say that classifier h : X — Y satisfies y-False Positive (FP) Fairness with respect to D
and G if for all g € G,
wy |pg(h) = p(h)| < 7.

where wy = Pr(z’y)ND[g(m) =1,y=0].

Remark. In the above definition, we include a multiplicative factor that provides slack in the fairness
guarantee for groups with small weight over the distribution. This approximation parameter is necessary, as
statistical estimation over small groups is inherently more difficult. By including this factor directly into our
fairness constraint rather than incorporating it indirectly into sample complexity guarantees, we are able to
elide exposition in our later proofs. An equivalent (up to reparameterization) alternative would be to remove
the wy term in our constraints, but to provide guarantees only for groups for whom wy is sufficiently large.

For the sake of brevity and clarity, in the main body of this paper we prove all results in the context
of ~-False Positive Fairness. We discuss the modifications necessary to extend the results to other fairness
notions in Appendix [A]

We will study how to derive classifiers with optimal error properties, subject to fairness-motivated
constraints on group-wise error rates from regression functions satisfying multicalibration constraints [Hébert-
Johnson et al., |2018|. Informally, if f is multicalibrated with respect to a class of functions C, then f (z)
takes values equal to f*(z) in expectation, even conditional on both the value of f (z) and on the value of
c(x) for each ¢ € C. We use two variants. The first (multicalibration in expectation) was defined and studied
in |Gopalan et al. [2022]:

Definition 5 (Multicalibration in Expectation |Hébert-Johnson et al., 2018| |(Gopalan et al., [2022]). Fiz a

distribution D and let C be a collection of functions c: X — {0,1}. We say that a predictor f : X = R where
R is some discrete domain R C [0, 1] is a-approzimately multicalibrated with respect to C' if for every c € C':

2.3, fa) =2l | E [(7(e) ~ £*(2) - @) F (o) = o]
:UERxngf(@:v]'iii:ijzgzi:ﬁg:j E (@) =1 @) o) f@ =]
=2 By @ =1 5@ =0l | B [f@) = @) (@) = vrelo) = |

=3 Bl =1 =up- B (7)) = v, eto) = 1H

<a

We will require this notion of multicalibration with respect to the set of groups G with which we define our
fairness constraints, for the classifiers h € #, and for the intersection of these classes G x H = {g(x) - h(z)|g €
G,h € H}. We will also need a variant of multicalibration that is tailored to two-argument functions
¢: X x R— {0,1} in order to argue about the properties of thresholding functions, which take both a value
x € X and a threshold in a discrete domain R C [0, 1], and which threshold predictions to {0, 1}.

In this definition, when we condition on f (z) = v, we also condition on the second argument of ¢ taking
the same value v. We call this joint-multicalibration. It is only a modest generalization of multicalibration:
we verify in Appendix [C] that existing algorithms for obtaining multicalibrated predictors easily extend to our
definition of joint multicalibration.

Definition 6 (Joint Multicalibration in Expectation). We say that a predictor f : X = R where R is some
discrete domain R C [0,1] is a-approzimately jointly multicalibrated with respect to a class of functions
c: X x R—{0,1} if for every c € C':

Z Prf(z) = v, c(x,v) = 1] -

vER




which is equivalent to

S Prlf(e) = v

vER

(z,y)

3 The Structure of an Optimal Post-Processing

In this section, we consider a fairness-constrained optimization problem that seeks to find the (distribution
over) model(s) in A that minimize error subject to a constraint on group-wise false positive rates:

B ) W
s.t. foreach g € G : wy|pg(h) — p(h)| <,

where wy, pg(h), and p(h) are defined as in Definition

It will be useful for us to re-write this optimization problem in terms of the conditional label expectation
f*(x). Since later in the paper we will want to replace f*(x) with a different regression function f that is
easier to learn, we define the linear program generically in terms of an arbitrary regression function f:

Definition 7. Let f : X — R C [0,1] be some regression function and let v € Ry. Define ¥(f,~v,H) to be
the following optimization problem.:

min JE [f(z)e(h(x),1) + (1 — f(z))t(h(z),0)]
s.t. for each g € G : [E[£(h(x),0)g(x)(1 — f(x))] = BgE[£(h(x),0)(1 — f(x))]] <,

where By = Pr[g(xz) = 1]y = 0].

Lemma 1. Let f* be the Bayes optimal regression function over D. Then optimization problem ¥ (f*,~v,H)
s equivalent to the fairness-constrained optimization problem .

The proof is in Appendix
We will be interested in the structure and properties of the optimal solution to ¥(f,~, #), which will be
elucidated via its Lagrangian. Note that the optimization problem has 2|G| linear inequality constraints.

Let A = {Af}yecg denote the vector of 2|G| dual variables corresponding to those constraints, and write
Ay = AT — A
g 9

Definition 8 (Lagrangian). Given any regression function f, we define a Lagrangian of the optimization
problem (f,v,H) as Ly : H x R29 - R:

Li(h,\) = E {f(x)f(h(z)vl)Jr(lf(x))f(h(z)vo)

x~Dx

+ A (Un(2),0)g(2)(1 = f(x)) = Byl(h(w),0)(1 = f(x)) =)
geg

+ > Ay (Bl(h(x),0)(1 = f(x)) = £(h(x),0)g(z)(1 = f(x)) =)
geg

For convenience, given a Bayes optimal regressor f*, we write L* = Ly«. Similarly, given some other
regressor f, we write L = Lf..

Let H 4 = 2% be the set of all Boolean functions f : X — {0,1}. We will consider solving our optimization
problem over this set of functions H 4.



Definition 9 (Optimal post-processed classifier). We say that a classifier hy is an optimal post-processing of
f if there exists a vector A such that the following primal/dual optimality conditions are simultaneously met:

h in Ls(h,\") M Ly(hs, A
7(z) € arg min Ly(h, A7) AT € arg max Ly(hy, ).
For convenience, we write
h*(z) = hy-(x) and N =\~

h(z)=hp(x) and A=)\

where f* is the Bayes optimal regressor and f is any other regressor. We will write A} and 5\9 to refer to the

dual variable in \* and for group g, respectively. We observe that as the optimal solution to the Lagrangian
minimaz optimization problem, h*(x) is the Bayes optimal classifier subject to the fairness constraints in .

Lemma 2. The optimal post-processed classifier h of ¥(f,~v,Ha) for some regressor [ takes the following
form:

1+deg Ag(g(x
2+Zg€g A ((J(‘T

. 1+Z >‘g( (z)*ﬁg)
17 Zf f(x) > 2+ZzZ§ )\g(jg(w)_ﬂg) d2 + deg )‘g(g(x) - /89) > 0)
. 1+deg Ag(g(x)—Bg) d by
ey |0 @) < SRS and 2+ Tcg dlo(w) = By) >0
T) = ‘ +5 o Agla(2)—By)
1, i f(x) < 2+Zgiz AZ(Z(fﬂ)*ﬁZ) d2+ deg )‘g(g(x) - ﬁg) <0,
: +5 g Ao (9(2)—By)
0, if f(x) > gys<? AZZ(:)—@?) and 2+ Y, Ag(9(x) — By) <0
)~
=

In the edge case in which f(x) =

The proof is in Appendix

3.1 Computing the optimally post-processed classifier

To approximate h given f, we need to compute an approximately optimal solution to the linear program
W(f,v,Ha). We can do this by playing a no-regret algorithm over the dual variables A and best response over
the primal variables as defined in Definition We can approximate the losses to the no-regret algorithm
from a finite sample of unlabelled data of size scaling logarithmically in the number of constraints and linearly
in the number of rounds 7" of the no regret dynamics, which using standard techniques we can show yields an
approximately optimal solution to the original LP. The algorithm is described in Algorithm [T, We state its
approximate guarantees then spend the rest of this section formalizing the structure necessary for the result.

Theorem 1. Let OPT be the objective value of the optimal solution to W (f,v,Ha). Then, for any C € R, after
=1.c% (C? + 4|Q|) ztemtwns Algorzthml 1| outputs a randomized hypothesis h such that err(h) < OPT+ 2
andwg|pg( )=o) <y + &+ &

In order to prove Theorem [I| (which is proved fully in Appendix ,We first must specify the game
formulation of the problem and demonstrate that constraining the dual player still allows for an adequate
approximation to the original problem.

Game formulation We pose the optimization of our original linear program as a zero-sum game between
a primal (minimization) player who plays over the set of hypotheses and a dual (maximization) player who
plays over the set of dual variables. The utility function of the game is the Lagrangian of our linear program
as stated in Definition [8] The value of this game is given by

min max Lys(h, ).
hEAH A&R2IGI



Constraining the linear program In order to compute an approximate minimax solution to this game,
we need to constrain the strategy space of the dual player. That is, we need to bound the dual space to a
region A = {\ € R%|||A||; < C}. We call this constrained version of the problem the A-bounded Lagrangian
problem, which has value
min max Lg¢(h, A 2
REAH A:| A1 <C 51 2): 2)

We can apply the minimax theorem to this bounded game to see:

min  max Ls(h,A\) = max min Lg(h,\).
heAH XA, <C AIN1<C hEAH

We will only be able to achieve an approximate solution to the problem, which we define as follows.

Definition 10. We say that (h, \) is a v-approzimate minimaz solution to the A-bounded Lagrangian problem
Ly if Lf(h, )\) < minpeay Lf(h/, )\) +v and Lf(h, )\) > maxy’/ep Lf(h, /\/) — .

An approximate minimax solution to this bounded version of the problem is also an approximate solution
to the original problem we described in Equation

Theorem 2. [Kearns et al| [2018]] Let (h,\) be a v-approximate minimaz solution to the A-bounded
Lagrangian problem Ly and let OPT be the objective value of the optimal solution to ¥(f,v,Ha). Then,
err(h) < OPT+ 2v, and ¥g € G, wg|pg(h) — p(h)] < v+ (1 +2v)/C.

Approximate equilibrium of the constrained game Now, we can proceed with no-regret play to find
an approximate solution to the game. The dual player will play projected gradient descent over their vector
A and the primal player will best respond, as described in Algorithm

Theorem 3. Algorithm |1| returns an e—approzimate equilibrium solution to the zero-sum game defined by
. 1 1 2
Equation|d after T = 15 (& +4|G|)” rounds.

The proof of Theorem [3]is in Appendix [Bl Combining Theorem [2] and Theorem [3] gives us the proof of
Theorem [ which appears in Appendix [B]

3.2 Beginning with a Multicalibrated Regression Function f

Thus far, we have considered the optimization problem ¢(f,v,H ) in the abstract, have characterized its
optimal solution h, and have given a simple algorithm to find h, an approximately optimal solution. When
f = f*, h=h* is the Bayes optimal fair classifier, and h is approximately Bayes optimal. But in practice,
we will not have access to f*, but will instead only have some surrogate function, which we will call f (z).
We will argue that if f is appropriately multicalibrated, then it is good enough for our purposes. We will
compare the approximate solution h produced by Algorithm [1{ to the optimization problem ( f v, H 4) which
has corresponding Lagrangian L(h,)), as defined in Definition [8| to the optimal solution (h*, A\*) to the
optimization problem ¥ (f*,~,H) for some constrained class H, and show conditions under which they are
close.

In order to proceed, we first need to determine what our surrogate function ought to be multicalibrated
with respect to. In addition to being a-approximately multicalibrated in expectation with respect to G and H,
we will require that f be a-approximately multicalibrated with respect to G x H = {g(z) - h(z)|g € G,h € H}.
Furthermore, we will need to require that f be a-approximately jointly multicalibrated in expectation with
respect to a set of thresholding functions, defined below:

Definition 11 (Set of thresholding functions B(C)). Let 2g € {0,1}19! denote the group membership indicator
vector of some point x. Define the function

2v—1

1—wv’

d(v) ==



Algorithm 1: Projected Gradient Descent Algorithm

Input: (D: dataset, f : X — [0, 1]: regression function, G: groups, 7: tolerance on fairness violation,

C': bound on dual (||A]|1 < C), n: learning rate)
Initialize dual vector A’ = 0 and set T' = % - C% - (C* 4 4/G|)2.
fort=1,...,T do
Primal player updates h;

43 ,eq Xy (9(2)=By)

. (g t—1
1, if f(z) > 2+deg /\t l(g(;c)—ﬁg) and 2+ 3 oA, (9(x) — Bg) >0,
. 143, cg Ao Hg(x)—By) t—1
0, if f(z) < 2+Zz€g )\? Tote) By and 243> o Ay~ (g(z) — Bg) > 0,
he(x) = 143 ,eg Ay (9(z)—By) t—1
(@) =31, if f(z) < 2+zgegA: o —a 04 2+ T e Ay (g(x) — By) <0,
. 1S g Ny (0(0)—By) -1
0, if f(z) > S e M (g(@) o) and 2+ > oA (9(x) — By) <0,
Loif 243 oA (g(x) = By) =0
Compute
by = B Mh(@),0g(x)(1 ~ f())] for all g € G,
xZ,y)~
pr= W E et (h(2),0)(1 = f(x)], where § = Prlg(z) = 1]y = 0]
Z,y)~

Dual player updates
AgT = max(0, AT + - (pg — 5 — 7)),
)\tg’_ = max(0, )\g’_ +n-(pt— ,6; —7)).

Dual player sets A! = > geg AT = AL

If [\t > C, set At = arg Min g5 cga2c |5/, <c} [IAe — 5\||%

end

Output: h:= % Zthl fzt, a uniformly random classifier over all rounds’ hypotheses.




Then, let for any \,x, 3

sa(z,v) :=1[(A\,zg — B) = d(v)].
Define B(C) = {sx|A € A(C), 8= By, ., Bg}> where A(C) = {\ € R%||[Al1 < C}, as defined in Equation
and Bg = Priy yplg(z) = \ O] as defined in Deﬁmtion@

Remark. When the groups of interest are disjoint, joint multicalibraiton with respect to this class B(C) is
implied by multicalibration with respect to G. Bul when the groups can intersect, this is not an implication,
and asking for joint multicalibration with respect to B(C') adds new constraints on f.

Informally, these functions take an example, and map it to a vector of its group membership, indicating
whether a A-weighting of the example’s group membership is larger than some threshold d(v). We will need
joint multicalibration with respect to such functions in order to relate the estimated error of h to its true
error. These thresholding functions B(C) have a natural relationship to the deterministic thresholded models
h¢ that we compute at each round of Algorithm

Lemma 3. Let h; be the response to \'=1 described in Algom'thm at some round t € [T]. Then,

hi(z) = sye—1(x, f(x)).

The proof is in Appendix [B] We verify in Appendix [C] that a variant of the multicalibration algorithms
given in |Hébert-Johnson et al.| [2018], |Gopalan et al.| [2022] can guarantee joint multicalibration with respect
to B(C) as well.

With these preliminaries behind us, we can now state our main theorem, which shows that for any class of
models H and class of groups G, given an appropriately multicalibrated f (with multicalibration requirements
depending on H and G), the model h output by Algorithm [I| achieves an error rate and fairness guarantees
comparable to the optimal solution to ¥ (f*,~, H):

Theorem 4. Set C = \/1/7 Let f be a-approximately multicalibrated in expectation with respect to G, H,
and G X H and a-approzimately jomtly multicalibrated in expectation with respect to B(C). Let h be the result
of running Algomthm with input f and C. Then, err(h) < err(h*) + (5 + 2y/1/a) + 2y/a, and for all
g€ G, wy |pg(h) = p(h)| < wglpg(h*) — p(h*)] + wyav.

Proof Sketch: Generalizing notation from the previous sections, let err(h) = Egup. [f*(2)0(h(z),1) + (1 —
f*(x))¢(h(x),0)] denote the true error of h on the distribution (i.e. as measured according to the true
conditional label distribution f*), and let ert(h) = Ry [f(2)0(h(z),1) + (1 — f(x))¢(h(z),0)] denote the
error of h as estimated using the surrogate function f . At a high level, the proof of Theorem will proceed
as follows:

err(h*) = L*(h*, \*) 3
> L*(h*, \) 4
~ L(h*, ) 5
> L

h

ZZ

3)
(4)
()
(h,X) (6)
err(h) (7)
err(h) (®)
err(h). 9)

=)

~
~

Each of these steps takes a lemma (presented in full in the appendix) to justify, but the logic is at a high
level as follows: The equalities on lines [§] and [7] follow from complimentary slackness: at the optimal solution
(h*, A\*) it must be that for each constraint g either the constraint is exactly tight so that its “violation" term
in the Lagrangian evaluates to 0, or its corresponding dual variable )\j = 0. Thus, all terms in the Lagrangian
other than the objective evaluate to 0. The inequality in line [4] follows from the dual optimality condition that

10



Trajectory over 2000 rounds
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Figure 1: The plot on the left is a trajectory over 2000 iterations of gradient descent of our method post-
processing a base model of gradient-boosted regression trees, for a single value of v = 0.01. The trajectory
starts at the top of the figure and moves downwards with time, and the blue point represents the uniform
distribution over the constituent models of the 2000 iterations. The blue point, whose error is 0.1987 and
maximum violation of group error - population error is 0.0098, shows our method limits the maximum
violation to . The plot on the right shows the pareto curve for our method for constraint values ranging
between 0.003 < v < 0.01, showing that large reductions in false positive rate disparities cost modestly in
error.

A* € argmaxy L*(h*, \) and similarly the inequality in line |§| follows from the primal optimality condition
that h € arg minpcy ﬁ(h, 5\) Line |8 follows from the fact that h is an approximately optimal solution to
U( f Y, Ha). Steps and follow from our multicalibration guarantees, the former from multicalibration
with respect to groups and our hypothesis class, and the latter from joint multicalibration with respect to the
set of thresholding functions from Definition The complete proof is found in Appendix

4 Experiments

In this section, we evaluate our post-processing algorithm on a dataset derived from Pennsylvania Census
data provided by the Folktables package , which we use under its MIT license. The sensitive
attributes we use from the dataset are binarized gender and the re-coded detailed race code (RACIP) to
create two classes of overlapping groups. We run our algorithm on top of a regression function f trained using
the sklearn gradient-boosted decision trees package — notably it is not guaranteed to be multicalibrated
in any of the ways our theorems require! Nevertheless our experiments bear out that our post-processing
method performs well even on top of off-the-shelf regression methodologies. We expand on our experimental
investigation in Appendix [E]

The experimental findings we present support the theoretical analysis that the algorithm quickly converges
to classifier approximately satisfying our fairness constraints.

We emphasize that our post-processing method is extremely lightweight. As a primal/dual algorithm,
it is very similar in structure to the “fair reductions” method of |[Agarwal et al., |2018]. However where
[Agarwal et al., 2018 needs to solve an ERM problem at every iteration and then evaluate the performance
of the resulting trained model, we entirely skip the ERM step and need only evaluate the performance of a
thresholded classifier which we have in closed form.

11
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A Generalization to other fairness notions

A.1 False Negative (FN) Fairness
Definition 12. The false negative rate of a classifier h : X — Y on a group g is:

prn(h, g, D) = . BFND[h(w) #yly =1,9(z) =1]

When h is a randomized classifier, the probabilities are computed over the randomness of h as well. pgN(h) =
pFN(hagaD)7 and PFN(h) = p(hala D)

Definition 13. We say that classifier h: X — Y satisfies y-False Negative (FN) Fairness with respect to D
and G if for all g € G,
wy™ |pg () = prn(R)] < 7.
F

where ng =Pryoplg(@) =1,y =1].

We consider the following fairness-constrained optimization problem:

; 1
i) err )
s.t. for each g € G : wyN|pyN (h) — pen(B)] < 7,

Definition 14. Let f : X — R C [0,1] be some regression function and let v € Ry. Define ypn(f,v, H) to
be the following optimization problem:

nin INI%X[f(x)f(h(LE% 1)+ 1 = fz)(h(z),0)]
s.t. for each g € G : |E[€(h(x), Dg(z)f(x)] — 5;NE [(h(x), 1)f(x)” <

where BN = Prlg(z) = 1]y = 1].

Lemma 4. Let f* be the Bayes optimal regression function over D. Then optimization problem ¥ pn(f*, v, H)
is equivalent to the fairness-constrained optimization problem 10

Proof. Note that the objective function is equivalent to that of Equation [I} and hence proof of the objectives
being equivalent is identical to that of Lemma[I] For the constraints, note that

wy™ oy (h) — pex ()| = Prg(x) = 1,y = 1] [Pr[h(z) = Olg(x) = 1,y = 1] — Pr[h(z) = 0y = 1]]
_ _ . |Prlh(z) =0,9(x) =1,y =1] Prla(z) =0,y =1]
=Prlg(e) =Ly =1] Prig(z) =1,y = 1] a Pr[y =1] ’

Prlg(z) =1,y = 1] Pr[h(z) = 0,y = 1] ‘
PrlY =1]

Prih(z) =0,9(z) =1,y = 1] —

[0, V(o) (0 - PED A= 0100, 1))

)g(2) f* (x)] = Prig(x) = 1[Y = OJE [£(h(x), 1) f* ()]

=

—~
8

~
—

The result follows. O
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Definition 15 (Lagrangian). Given any regression function f, we define a Lagrangian of the optimization
problem Yen(f, 7, H) as LEV : 1 x R291 5 R:

Li¥(hA\) = E [f(ff)f(h(x%l)+(1—f(x))£(h(x)»0)

x~Dx

+ Z /\;; (Z(h’('x)’ 1)9(1‘)f($) - /Bgz(h(.’lf), 1)f(g;) — ')/)
g9eg

+ A, (Byt(h(x),1) f(w) — £(h(x), 1)g(2) f (x) — 7)]
geg

Lemma 5.

LEV(h, ) = Eveny lah(x), 0)— 7 ST + A7)

g9cg

+ f(x) (—E(h( ),0) + £(h (1 +) Nl 5FN)>) 1
geg

Proof. Distributing out like terms in the expression for the Lagrangian in Definition [15] gives us

Lf(h> A) =Ezupy [L(R(2),0) — VZ()‘; + A;)
L geg

+ f(x) | €h(z),1) = £(h(2), 0) + £(h(x),1) Y (A7 (9(2) = By) + Ay (B — g(x))) ]

geg

= Epupy [L(0(2),0) =7 > (AF + ;)

L Y
+ f(@) | =€(h(x),0) + £(h Y1+ 0 9(@) = By) ]
geg
Recall that Ay = )\;’ — Ay, so we are done. O]

Lemma 6. The optimal post-processed classifier h of ¥(f,y,Ha) for some regressor f takes the following
form:

1, if f(x) > 5,00 )é(g(x)f,gg) and 2 + deg Ag(g(w) — Bg) >
h(z) = 0, Zf fr) < PR S Ai(g(z)_gg) and 2 + deg Ag(g(x) — By) >
L if f(z) < pES Sy Ai(g(z)f,gg) and 2 + deg Ag(g(w) — By) <
0, if f(z) > gr=— @ 9l 2+ Y geg Ag(9(@) = By) <

In the edge case in which f(x) =

DRSSy )\i(g(x)_ﬁg), h(z) could take either value and might be randomized.

Proof. Note that since we are optimizing over the set of all binary classifiers, h optimizes the Lagrangian
objective pointwise for every z. In particular, we have from Lemma [5| that:

h(m):argrrgn[ﬁ(p,o)—i—f(x)( £(p,0) + £(p, 1) (1—"2)‘ ))]
g€eg

15



In order to determine the threshold, we need to check when setting p = 1 leads to a value less than setting
p = 0. In other words, we need to solve for f(z) when

1= f(x) < f(z) [ 14D Aglglx) = By)
g€eg
1

TS, o A 9@) = By)

= f(z)

Thus,

=
~
8

> o h @B 0 2+ Xeg Ae(9(7) = Bg) > 0,
< e n @Ay A 2+ Xgeg A (9(@) = Bg) > 0,
< Ag(9(z) — By)
> Ag(g(z) )

o
~

1

T, oo R (0@ By A 2+ X eg
1

DRSS W (TCY Ry and 2 + deg glg(x) — By) < 0.

O = O
—- —
- -
~ ~
/N /N
8 8
NN SN

O

From Lemmal6] we can now define a best-response model and use Algorithm [2] to generate an optimally
post-processed model that preserves v—False Negative fairness. The algorithm’s error bounds may be derived
using symmetric arguments to sections 3.1 and 3.2, where f is required to be a-approximately jointly
multicalibrated in expectation with respect to sy(z,v) := 1[(\,zg — ) > (1 — 2v)/v] following the same
arguments as used in Lemma

A.2 Error Fairness

Definition 16. We say that classifier h : X — Y satisfies y-Error (E) Fairness with respect to D and G if
forallge g,

wf|e7"r(h,g,D) —err(h,D)| <,
where wf = Pr(zy)~plg(z) = 1].

We consider the following fairness-constrained optimization problem:

,nin err(h) (11)
s.t. foreach g € G: wg lerr(h, g, D) — err(h,D)| < 7,

Definition 17. Let f: X — R C [0,1] be some regression function and let v € Ry. Define Yg(f,v,H) to be
the following optimization problem.:

i B F@)H(E), 1) + (1 - f@)h().0)]

s.t. for each g € G :
[E[f(h(x), 1)g(x) f* () + £(h(2), 0)g(z)(1 - f*(2))
—wg (£(h(x), 1) f*(2) — wgl(h(),0)(1 — f*(2)]] <,
where wE = Pr(, ) plg(x) = 1] as in the previous definition.

Lemma 7. Let f* be the Bayes optimal regression function over D. Then optimization problem ¥g(f*, v, H)
is equivalent to the fairness-constrained optimization problem [I1]
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Algorithm 2: Projected Gradient Descent Algorithm for v-False Negative Fairness

Input: (D: dataset, f : X — [0, 1]: regression function, G: groups, 7: tolerance on fairness violation,
C': bound on dual (||A]|1 < C), n: learning rate)

Initialize dual vector A = 0 and set T' = 1 - C% - (C% + 4|G|)2.

fort=1,...,7T do

Primal player updates hy

@) 2 e Sy 2 2t Deeg X (9(2) — Bo)
,if f(x) < RS )\:}l(g(w)iﬂg) and 2+ 37 o A (9(x) — By)
() — (9(x) — By)

(9(x) — By)

=
~
8

t—1
243 e N (g(@)—By) and 2+ 3,6 Ag

. > 1 t—1
’ if f(x) - 2+Zg€§ Aéil(g(z)*ﬁg) and 2+ deg Ag

2+ $,e0 Ao (9(2) — ) =0

1
0
hi(z)=<¢1
0
0

Compute
Ay = E_ Mhu@) Dg(@)f(@)] for all g € G,
z,y)~

ﬁt - (z.z%‘ND[ﬁgg(ht(x)v 1)f(1‘)}, Where BQ = Pr[g(x) = 1|y = O]

Dual player updates

Af]ﬂ_ = maX(O, )‘ZA— + mn- ([)tg - ﬁt - 7))7

Ng~ = max(0,\g™ + 1 (' — py — 7).

Dual player sets A\' =37 5 Aot —AG™. )
IE Ay > C, set A = argming5cpao) 5, <oy 1A — All3-
end

Output: h:= 7 Zthl h:, a uniformly random classifier over all rounds’ hypotheses.
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Proof. Note that the objective function is equivalent to that of Equation [I} and hence proof of the objectives
being equivalent is identical to that of Lemma[I} For the constraints, note that

wg|err(h,g,D)| —err(h, D) = Prlg(z) = 1]

Prly = 1|g(x) = 1] Pr[h(z) = 0[g(x) = 1,y = 1]

+ Prly = 0lg(z) = 1] Pr[h(z) = 1|g(z) = 1,y = 0]

= Prlg(a) = 1] Paly = Llg(o) = 1] A= L=
B o Prip(z) =1,g9(x) = 1,y = 0]
= ) = T R = 1y =0
—Prly =1] Pr[h(;fr)[yzoﬁ =1 Prly = 0] Pr[h(PxE[_,y] =1 ‘
— [E{(h(@), Dg(x) £ (2) + (A(). 0)g(z) (1~ F*(a)
—wB(UA() ) &)~ wf (), 0)(1 — ()]

Definition 18 (Lagrangian). Given any regression function f, we define a Lagrangian of the optimization

problem Yp(f,7, H) as LY : H x RI9 — R:

L7(h,A) = Exnpy [f(x)é(h(x), D)+ (1 = f(2))l(h(x),0)

YA (Uh(@), Dg(2) f(x) + £(h(2), 0)g(2)(1 — f(2))

9geg
—wgl(h(x),1) f(x) — wgl(h(z),0)(1 — f(z)) —)
+ Z Ay (ngE(h(z), 1 f(z) + wfé(h(:z:), 0)(1 — f(x))

9geg

— {(h(x),1)g(x) f(x) = £(h(x),0)g(z)(1 = f(x)) = V)} -

Lemma 8.
LE(h,A) = Equp, [ﬂ(h(ac), 0) (1 3" A () - w5>) 08 Ay
geG geG
+ f(a) ( ~ (0@, 0| 14 0 Ay (a(2) — wP)
g€g
+ 0(h(z),1) [1 +) Ag(g(x) — wf)]ﬂ
9€g

Proof. Distribute out like terms as shown previously. O

Lemma 9. The optimal post-processed classifier h of ¥(f,~v,Ha) for some regressor [ takes the following
form:
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1430 ,eg Ao (9(2) —wy)

1, i f(z)> pEES S )\g(g(w)_wg) and 2 + Qdeg Ag(g(z) — wf) >0,
hz) = 0, i flzx)< 2}}?;;:‘;{?;2{_2?) and 2 + Zdeg Ag(g(z) — wf) >0,
L if f(7) < 533 f:egg jgfg‘fi)_fgg) and 24237 5 Ag(9(x) —w)) <0,
0, if f(2) > 7yttt and 24 25 e Agl9(2) — wF) > 0

143, eg Ao (9(2) —w)
2423 cg Ao (9(@)—w i)’

In the edge case in which f(x) =

ized.

h(zx) could take either value and might be random-

Proof. Note that since we are optimizing over the set of all binary classifiers, A optimizes the Lagrangian
objective pointwise for every . In particular, we have from Lemma [§] that:

() = argmin [ap, ) (14 X Alota) - uf))

9€g
+f(x)<—€(p70)[1+zg/\g(9( ) + 101 [”z; M

Setting p = 0 makes the inner portion of the expression evaluate to

(z) (1 + Y Aglg(z) - w?)) ;

Y
and setting p = 1 makes the inner portion of the expression evaluate to

(1 + > Aglg(@) — w?)) — f(2) <1 + D Aglg(@) — w?))

9€g

In order to find the optimal h, we want to find the threshold at which setting p = 1 minimizes the
expression, and hence:

<1 + Aglgle) — ng)> — f(x) (1 + D Aglg(a) —wy) | < fla) (1 +> Aglgle) — ng)>

9e€g geg
L+ 3 eg Ag(9(2) — wy)

(1 + deg Ag(g(x) — ng)> + (1 + deg Ag(g(x) — wg)

SRS S wpres o ItAe
Thus,
1, if f(z) > Qigzi,f:;;;?;zﬂ;)—_“% and 2423, 5 Ag(g(x) — wP) >0,
PNBLECE {{%gge:g E( Eg@%) ”j}Z Ej) and 2+ 23, g Ag(g(x) — wE) > 0,
1, if f(z) < 2+2§ffg Non “;E) and 2+ 23 g Ag(g(x) — wh) <0,
0, i [(2) > gt R and 2425 g Aglg() — wF) > 0
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O

From Lemma[J} we can now define a best-response model and use Algorithm [3] to generate an optimally
post-processed model that preserves y—Error fairness. The algorithm’s error bounds may be derived using
symmetric arguments to sections 3.1 and 3.2, where f is a-multicalibrated in expectation with respect to
G,H, and G x ‘H and is jointly multicalibrated with respect to functions of the form:

20—1
)\t—l _.,E >
Wheg —w) 2 77

the proofs from section 3.2 may be modified to get its desired error bounds.

Algorithm 3: Projected Gradient Descent Algorithm for v-Error Fairness

Input: (D: dataset, f : X — [0,1]: regression function, G: groups, 7: tolerance on fairness violation,
C': bound on dual (||A||1 < C), n: learning rate)

Initialize dual vector A = 0 and set 7' = % - C% - (C? 4 4/G|)2.

fort=1,...,7 do

Primal player updates h;

143 g AT Hg(m)—w?) i .
2+22;g Ao H(g(=) - wE) and 2+22969 Ay~ (9(x) — wg) >0,

(z)
0, if f(a) < Somese X W) L9y o5n LA (g(x) — wE) >0,
(2)

V

2425, .o Ay (g(a)—wP)

t—1 4
—ecols BN and 242,06 N (9(2) - wf) <0,

N

2423 g )\’g’*l(g(w)*w ) g

. 43 ,e0 Ay g(@) —wy
0, if f(z) > 2+2qu€:g ;' g (90)*w}gE and 2+229eg /\z 1( () — ng) >0,

L2423, 06 N (g(e) —wE) = 0.

Compute

Py = B yy~nll(he(z), 1)g(x) f (2) +e<ht<z> 0)g(x)(1 - f(x))
( ( x)] for all g € G,

where wy = Pr(, ) plg(z) = 1].

Dual player updates
Nyt = max(0, A + 5+ (3, — 5 — ),
N~ =max(0,Ag" + - (0" — py —7))-

Dual player sets A\ = > o Ao+ — Ap~

If | XYL > C, set At = arg min 5 cpag| x|, <’} [[Ae — XH%

end

Output: h := % Z?:l ﬁt, a uniformly random classifier over all rounds’ hypotheses.

A.3 Statistical Parity Fairness

Definition 19. We say that classifier h : X — Y satisfies v-Statistical Parity (SP) Fairness with respect to
D and G if for allg € G,

(m};)]pr[g(x) =1] (Iygwp[h(x)lg(x) =1] - (I’gw[h(x)} €7
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We consider the following fairness-constrained optimization problem:

hrélir%_[ err(h) (12)
s.t. foreach g € G : Prig(z) = 1] [h(z)|lg(z) =1 - E [h2)]]| <7,
(z,y)~D (z,y)~D

Definition 20. Let f : X — R C [0,1] be some regression function and let v € Ry. Define ¢psp(f,~y,H) to
be the following optimization problem:

min B [f(@)e(h(z), 1) + (1 = f(2))f(h(z),0)]

s.t. for each g € G: E [h(z)g(x)] — wfp E [h(z)]

z~Dx

where wiP = Prlg(z) =1].

Lemma 10. Let f* be the Bayes optimal regression function over D. Then optimization problem vgp(f*,~v, H)
is equivalent to the fairness-constrained optimization problem I3

Definition 21 (Lagrangian). Given any regression function f, we define a Lagrangian of the optimization
problem Psp(f,~, H) as LT : H x R — R:

L{"(hA\) = E {f(w)f(h(x),lH(lf(x))(ﬁ(h(w),())

x~Dy

+ ) A (M@)(g(x) — 1) =) + DA, (h(@)(1 = g(x)) — )]

9€g geg

Lemma 11. The optimal post-processed classifier h of ¥sp(f, v, Ha) for some regressor f takes the following
form:

h(z) = Lo fle) > 1/24(1/2) 3oy Ag(9(x) = 1),
0, if f(z) <1/24 (1/2) X5 Ag(9(x) = 1).

In the edge case in which f(x) =1/24 (1/2) 32 cg Ag(9(x) — 1), h(z) could take either value and might
be randomized.

—1
—1
Proof. Note that we can rewrite our Lagrangian from Definition [21] as

L (hA) = E | f(@)(t(h(x),1) = £(h(2),0)) + £(h(),0) + h(z) D Ag(g(z) = 1) +7 Y AT+ A7) |,

~D
s Y 9€g

and hence our optimal h will be optimal pointwise, i.e.

h(z) argmin | f(x)(é(p, 1) + £(p, 0)) — £(p,0) +p D Aglyla) = 1)

9eg

We can then find our threshold by comparing this expression when p =0 and p =1, i.e.
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—f@) 1+ Y A(g(@) — 1) < f(@)

geg

L4+ geg Ag(g(x) = 1)

< f(x).

Hence,

oy {1 1) > 1724 (1/2) S e Mylo(x) 1),

0, if f(z) <1/2+(1/2)3 e Ag(g(z) —1).
O
We can now define a best-response model and use Algorithm [4] to generate an optimally post-processed
model that preserves 7-Statistical Parity fairness. Assuming that f is a-multicalibrated in expectation

with respect to G,H, and G x H and is jointly multicalibrated with respect to functions of the form
1[{\, g — B) > 2v — 1], the proofs from section 3.2 may be modified to get its desired error bounds.

Algorithm 4: Projected Gradient Descent Algorithm for y-Statistical Parity Fairness

Input: (D: dataset, f : X — [0,1]: regression function, G: groups, 7: tolerance on fairness violation,
C': bound on dual (|| M1 < C), n: learning rate)

Initialize dual vector A’ = 0 and set T = § - C% - (C? 4 4|G|)2.

fort=1,...,T do

Primal player updates h;

oy < [ )2 1724 (1/2) 5,0 M o) 1
0, if f(z) <1/24(1/2) deg A;’l(g(x) —1).

Compute

:I;N'DX xr~LDx

p' = Ey~nlf(@)l(he(2),1) + (1 = f(2))l(he(),0)],

where wi” = Prlg(z) = 1].
Dual player updates

)\E’Jr = max(0, )\g’+ +n- (ﬁtg —p' =),

ALT = max(0, 57 +n- (3" — p) — 7).

Dual player sets A\ = 37 5 Ao+ — Ao~

IE Ay > O, set A\ = arg min 5 cpeoy 5, <oy A — All3-

end

Output: h:= % Zthl hy, a uniformly random classifier over all rounds’ hypotheses.
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A.4 Achieving All Fairness Notions

Ideally, we would like our function to be multicalibrated so that we can achieve any fairness notion downstream.
Putting everything together from the previous sections, we can do so.

Definition 22 (Set of thresholding functions B(C)). Let 2g € {0,1}19! denote the group membership indicator
vector of some point x, and define the following functions:

20 —1

dFP(’U) — 1’U 7

—v

R PE—
v

20—1

d®(v) =15y

dF(v) :=2v — 1.

Then, for any A\, x, 3, let

i (z,v) =1\ ag — B7F) = d"PF(v),
s3 (@, 0) = 1[N, 2g — BTY) = d"N(v)],
s¥(x,v) == 1[(\, axg — w¥) > d¥(v)],
s (@,0) = 1[(\, 2g — 1) > d%(v)]
where
FP 1 —
A=A, Pr  lo(@) =1y = 0l}seq,
g ={ Pr lo(@) =1y =1l}seq,
wh={ Pr_lo()=1}seq.

Define B(C) = {s{P|X € AC)} U {sIMX € A(C)} U {s¥|X € A(C)} U {s5F|X € A(C)}, where A(C) =
{NeR¥|||A[|1 < C}, as defined in Equation.

Then, if f is multicalibrated with respect to B(C'), any of the projected gradient descent algorithms
covered above (Algorithms [1| through [3)) may be run to achieve the desired fairness notion.

B Expanded Proofs and Section 3 Discussion

Lemma 1. Let f* be the Bayes optimal regression function over D. Then optimization problem ¥ (f*,~v,H)
s equivalent to the fairness-constrained optimization problem .

Proof. We confirm that the objective and constraints are both equivalent. First the objective:

err(h) = E [0(h(z),y)]
(z,y)~D

= > Pr(X==zY =y)l(hx),y)

(z,y)€X XY

=Y Pr(X =2,Y =0){(h(z),0) + Pr(X =2,V = 1) ((h(x),1)
reX

= IgX[(l = [ (@)(h(x),0) + f*(x)l(h(x),1)]
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For the constraints, note that

wglpg() — )] = Prlg(e) = 1, = 0] [Prlh(z) = 1]g(x) = 1, = 0] — PrlA(z) = 1]y = 0]
Prlh(z) =1,g9(x) =1,y =0] Pr[h(z) =1,y =0] ‘

Pr[g(z) = 1,y = 0] a Pr[Y = 0]
= [Printo) = Lgta) = 1,y =0 - PO =Ly 2 AP =Ly 20
= [t 09000 - 7o) - U =LA = g a0 - £ o)

= [E[t(h(x),0)g(x)(1 = f*(x))] — Prlg(z) = 1|Y = OE [f(h(x)70)(1 = (@)l

The result follows. O

Lemma 12.

LihN= E 0)(1+ g;jxgcq(x) ~By)) - vg;ju; +2;)
— f@)( = @), 1) + £k 1+§gx )1
Proof. Distributing out like terms in the expression for the Lagrangian in Definition [§] gives us
Ly(h,A) = JE f@)t(h(z),1) + (1 = f())(h(z),0)
+§E;A+ (2)(1 = f(z)) = Byt(h(),0)(1 — f(x)) —7)

Ag (Bl (h(=), )(1—f(fﬂ))—ﬂ(h(x),o)g(m)(l—f(x))—v)]

- E (HZA* — Bg) + A (By — )))—VZO\;"’)\;)
X g9€g geg
= 1(@)( = ), 1)+ £A), 0)(1+ D g (glw) = By) + D A5 (8 )]
1Y Y
= E (1+X (2) = B,)) =7 SO + A
s geg geg
— J(@)( = en(@), 1) + eh(@), 0)(1+ D (AF —@)))].
geg
Recall that )\gz)\;—)\;, so we are done. O]

Lemma 2. The optimal post-processed classifier h of ¥(f,v,Ha) for some regressor f takes the following
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form:
143" g Aa(9(x)—By)

1, if f(z) > TS o g (9(2)By) and 2+ 37 g Ag(9(z) — By) >0,
1450 e A (9(2)—By)
O i @) < g ay 9 2+ Xgeg Aa(9(@) = By) > 0,
h(z) = _ L4 geg Ao (9(@)—Ba) \
1, if f(x) < 2T yeg Na(9(2)—By) and 2 + deg g(g(l‘) - Bg) <0,
. 1+Zq >‘g( (I)fﬁg)
0. if f(2) > =05 s a0l 2+ Lygeg Aol9(®) = ) <0

;i%;iz ijgég:gz; , h(x) could take either value and might be randomized.

Proof. Note that since we are optimizing over the set of all binary classifiers, h optimizes the Lagrangian
objective pointwise for every z. In particular, we have from Lemma [12] that:

h(x)—argmln[ (l—i-Z/\ )—f(x)(—@( 1)+ £(p,0) 1+Z)\ ))]

geg

In the edge case in which f(x) =

Determining the optimal threshold is equivalent to determining when the above expression with £(p,0) = 1
and £(p,1) = 0 is less than f(z), i.e

1+ > Aglg(z) — By 2) (14> Aglg By)) < f()

geg geg
L+ A(g(x) = By) < fla) [ 1+ (14D Agl By))
geg gcg
Thus,
. 432,65 Ao (9(@)—By)
1, if f(z) > 2+Zng (35) 5y and (2432 g Ag(9(z) — By)) >
. L+, Bq)
0, if f(z) < Fr 20t and (24 Lyeq Ao (9(@) = By)) >
h(z) = . 145 aeg Ao a(x) —By)
L, if f(z) < 2_;,_%@ 2o (9(x)—Bq) and (2+deg)‘ (9(z) = By)) <
. LA 5 Co A (9(2)—By)
0, if f(z) > 2+Zg;gkgg(gg(m)*ﬂgg) and (243 ,cg Ag(9(x) — By)) <

O

In Lemma [2 we can only describe the optimal post-processed classifier for cases where either f(x) is less

than or greater than the threshold ;%qez Egg:gj;, h(zx). In practice, our algorithm will need to update h
€

at round ¢ according to the current dual variables A in a way that is well-defined for all values of f(x). Hence,
we define our best response as follows, where ties between f(x) and the threshold are broken by rounding to
1.

Definition 23 (Best Response Model). Given regressor f and dual variables X, let the best response h be

defined as
1430 g Aa(9(x)—By)

1, if f(x) > 3T e Mo (9(2)—Bg y @ and (2 +deg )‘g(g(z) ﬂg)) 0,

. 1432 5eg Ao (9(2)—=By)
hx) — 0, if f(z) < 2+Z;z>\ (g(m) 5g) and (2 "‘deg Ag(9(x) — Bg)) > 0,
(CC) - 1 . < 1+deg)\ (9(3:) ﬁg d 2 )\

, if flx) < Y yeq Mo (9(2) By y @ ( +deg 9(9(37) Bg)) 0,
. 143 geg Xol9(®)=By)

0, if f(2) > =G sy 0 (24 Leeg o(9(2) = By)) <

Lemma 13. For any regression model f and dual variables X, The classifier h defined in Definition[23 is a

“best response” in the sense that:

h € arg min Ly (h, X).

heHa
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B.1 Proofs from Section 3.1

Theorem 1. Let OPT be the objective value of the optimal solution to Y (f,~v,Ha). Then, for any C € R, after
=302 (C? + 4|g|) ztemtwns Algomthm outputs a randomized hypothesis h such that err(h) < OPT+ 2
C””““UgLOg( )=ph)| Sy +E+ 5

Theorem 3. Algorithm |1| returns an e—approzimate equilibrium solution to the zero-sum game defined by
. 1 1 2
Equation|d after T = 15 (& +4|G|)” rounds.

To prove this, we will use the following result from Freund and Shapire.

Theorem 5 (Freund and Schapire| [1996]). (Approzimately solving a game). If Ai,...,Ar € Ay is the
sequence of distributions over \ played by the dual player and hy,. .., hp € H is the sequence of best-response
hypotheses played by the primal player satisfying regret guarantees

1 T
U(he, ) E U(he, N)] < Ay
t:l A ’\t

’ﬂ\
HMH

T
T Z AN/\t[U(ht, A)] = %min E [U(h,\)] < Ay

h ~
€H — A~ g

then the time-average of the two players’ empirical distributions is a (A1 + Ag)—approzimate equilibrium.

Proof of Theorem[3 We follow the regret analysis of |Zinkevich! [2003]. To instantiate their result, we need a
bound on the norm of the gradients of the loss function and on the diameter of the feasible set F'. First, we
see that at each step the gradient of the loss seen by gradient descent is bounded:

Ive|* = ng )2+wg (_Pg"‘/)_’)’)z < 2[g|.
ge€g

Second, we see that if we consider the feasible set such that [|[A|| < 1, then ||F||* = %. Thus we have that the
regret of the dual player is bounded:

r(r) < VT (7 Lo
1 1
LA (622T+<ﬁ—;)2g|> <2t

After T = 25 (5 +4/G |) rounds, by [Freund and Schapire| [1996] the average over empirical distributions of
play of the dual and primal players, A and h, respectively, form an e—approximate equilibrium solution to
the zero-sum game defined by [2} O

Proof of Theorem[]. Applying Theorems [2| and |3| we have that after T rounds (h,A) is an e-approximate
equilibrium to the zero-sum game of 2] and equivalently a minimax solution to the A-bounded Lagrangian.
Taking e = 1/C, the solution (h,)) is a 11+—/2: = 1/C + 2/C? approximate solution to the original linear
program [T} O

B.2 Proofs from Section 3.2
Lemma 3. Let h; be the response to \'=1 described in Algorithm at some round ¢ € [T]. Then,

ha() = sy (2, £ ().

26



Proof. Recall from Lemma [13| and Algorithm [I| that the best response to A that the primal player can make
is to compute h based on the thresholding of the expression

1450 AN g(@) — )
24+, M Hgl@) = By)
Setting this threshold to be greater than or equal to some value v, note the following is implied:
L4 Tyeg N 0@) = By)
24+, A (g (l’) —Bg)
=Y AT g(@) = By) —v Y AT gla) = By) = 20— 1,

geg geg
1=0)O_ A (g(x) = By) = 20 -1,
geyg
t—1 i—1 2v—1
= (A ,xg—@:Z)\g (g(m)_ﬁg)2ﬁ~
9€9g

Thus, taking the indicator of

LA g — B) > d(v)]
is equivalent to determining if the threshold 7 is greater than or equal to some v, and hence by the definition
of syt—1(x,v) in Definition [L1f and of the best response h in Definition if v is set to f(x) it follows that

h(zx) = sye-1(z, f(x)).
O

Theorem 4. Set C = \/1/704 Let f be a-approximately multicalibrated in expectation with respect to G, H,
and G X H and a-approzimately jomtly multicalibrated in expectation with respect to B(C). Let h be the result
of running Algorzthm 1| with input f and C. Then, err(h) < err(h*) + a(5 + 2y/1/a) + 2y/a, and for all
9 € G,wy |pg(h) = p(R)] < wg |pg(h*) = p(h*)] + wya.

In order to prove this, we will proceed through the specifics of each line of the proof sketch in the section
3.2 through Lemmas [14] through [20]

Lemma 14 (Equality in Equation .

err(h*) = L*(h*, ")
Proof. Consider the optimal solution (h*, A*) to ¥ (f*,~, H), and recall that err(h) = Ezp, [f*(@)(h(x), 1)+
(1 = f*(x))e(h(z),0)]. Since the solution is optimal, it follows from complementary slackness, for each group

g one of the following must hold: Either the constraint is exactly tight and so its “violation” term in the
Lagrangian evaluates to 0, or its corresponding dual variables )\;t = 0. Thus, L}(h*, A*) simplifies to

L A) = [f(ac)ahw 1)+ (1— f@)(h(z),0)

z~Dy
F0- SN (Eh(a), 0)g(2) (1~ F)) = Bylh(z), 001~ F(2) ~ )
geg
003005 (Bt h(a), 0)(1 = F(2) — €h(x), 0)g(2)(1 ~ £(2)) ~7)
geg
- B [f(ac)ahw 1) (L= F@)(h(z), 0)
=err(h")
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Lemma 15 (Bounding Equation [3| by Equation .
L*(h*, \*) > L*(h*, }).
Proof. This follows from the dual optimality condition that A* € argmaxy L*(h*, \). O

Lemma 16 (Bounding Equation by Equation . Fixz any \. If f is a-multicalibrated with respect to G, H,
and G x H = {g(z) - h(z)|g € G,h € H}, then then we have

L) = 2 (0, )| < a3+ 2All).
Proof. Observe that we can write:

L(h,A) = Li(h,A) =y Y (Af + ;) = La(h, ),

g9eg
where
LihN= E 0)(1 4+ Agla(a) — B) ) |
x 9eg
LN = B |f()( = h(). 1) + £h(2),0) (14 Ag(o() - ﬂg)))] .
X g9€g

Similarly, we can write:
L*(h,A) = La(h, A) =7 > _(AF +A5) = L3(h, \),
Y

where

Li(h,\)= E [f*(m)(—ﬂ(h() 1) + £(h(x),0) (1 + Y Alg )]

~D
T geg

Observe that the L; term does not depend on f or f* and so is common between L and L*. We can bound
Lo as follows:

L= E f@;)(%(h*() 1)+ £(h* (z 1+g;A )]
- B [f(x)(—(l—h*( ) + b (x 1+g€ZgA )]
:g Pr[f(m):v]z%m :f(:c)(—(l—h*( )+ h*(z 1+96ng )’f(x):v]
s% Prlf(z) =] B :f*(x)((lh*( )+ b (a H;A )|f<z>v]
+a(3+2>\g(1+ﬂg)
9€5

< Lay(h% ) + a3+ 2([Ah),
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where the first inequality follows from the fact that h* € H and f is multicalibrated with respect to G, H,
and G x H, which we verify below:

> Iﬁﬁu)_ﬁmgjl<ﬁ@9f@0.((1hw) )+ R (@) 1+ Ag(g ﬂf@)_4
vER * 9€g
= > Pr{f(@) =] [(f*(:r) - f<x>) (12 @) @) Y Nl )‘ﬂx) = ]
vER 9€g
—-> P E [f@-f@)|f@ =]
vER ¥
+2) " Prif(@) =v] E [(f() = f@)h' @) f(@) =]
vER v
+ Y Prlf@) =0 YA B[ @) - f@)h @)g(@)| f@) = o]
vER geg *
=) Prf(z) =] ) AgBy E {(f*(x) — F@)h* ()| f(z) = v]
vER geg ”
< 3o+ Z Ag(1+ Bg)a
9c€g
<30¢+a2)\ 1+maxﬂg ")
geg
<Ba+a) A(l+1)
geg
< 3a+ 2|\«

Similarly, we can show that L*(h*, \) — L(h*,\) < a (3 + 2|[A||1). Putting everything together, we get that:
L(h*, ) = L' (0", 0] < a3+ 2] All).

This concludes the proof. O

Lemma 17 (Bounding Equation [5| by Equation @
B3 > B ()
Proof. This follows from the primal optimality condition that he arg minpey , ﬁ(h7 5\) and that H C Ha. O
Lemma 18 (Equality of Equation |§| and Equation .
i, %) = an(h)

Proof. This follows the same complimentary slackness argument as the proof of Lemma [T4] O

Lemma 19 (Bound of Equation E by Equation . Consider h output by algorithm 1| after T = i -C?.
(C?+ 4\Q|)2 rounds. Then,

err(h) +2/C > err(h)
Proof. This follows directly from Theorem [I] O

Lemma 20 (Bound of Equation [§] by Equation @) Let f be a-approximately jointly multicalibrated with
respect to B(C'). Then, - -
|err(h) — err(h)| < 20
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Proof. Since h is a randomized model that mixes uniformly over model h, for ¢ € [T, it suffices to show that
for every t € [T,

et (hy) — err(hy)| < 2a.
We can compute:
@i(h) = B [f@)he 1) + (1~ (@) tlhu(),0)],
= Y Prf(x) = v, 5501 (w,0) = 0] E [f(@)e(he(@), 1) + (1 = f(@)e(hi(@), 0)| f(2) = v, 5501 (w,0) = 0],
vER X
+ Y Pr{f(z) = v, sy (z,0) = 1] E [f(@)e(he(x), 1) + (1 = f(@)e(he(@), 0)| f () = v, 5501 (w,0) = 1].
vER x

By Lemma [3| A () = syi—1 (, f(x)), and so in particular conditioning on f(z) = v and sye—1 (z, v) fixes
the value of hi(z). So, we can rewrite the above as

ai(hy) = Y Prlf(z) = v,snea(@0) = 0] E [f(@)|f(@) = v, 8501 (z,0) = 0]

= N
+ Uzegpr[f(x) =vsyer@o)=1] E [1- F@ (@) = v, 5r0s(@,0) = 1]
< “épr[f(x) = v, sxe—1 (2, 0) = 0] m}%x[f*(xﬂf(f@ osya(@,0) = 0] 40
+ ZR Prj() = vy (o) = 1] B [1- S @I =000 = 1] +a
:Z%Jf “(@)0(he(w), 1) + (1= £ (@))elu(), 0)] + 20

= err(hy) + 20,

where the inequality comes from our a-approximate joint multicalibration guarantee. The same argument
yields the opposite direction, so we are done. O

We now have the tools to prove our main theorem.

Proof of Theorem[]] Applying lemmas [[4] through [20] gives us

err(h*) = L*(h*,\*) (Lemma/[I4) (13)
> L*(h*,\) (Lemma[I5) (14)
> L(h* N —aB+2|\) (Lemma [6) (15)
> L(h,A) —a(3+2|A) (LemmallD), (16)
and
L(h,)) = eér(h) (LemmallR) (17)
> eért(h) —2/C (Lemma[I9) (18)
> err(h) —2/C —2a (Lemma[20). (19)
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Putting this all together gives us

—a(3+2|Ah1) —2/C — 2

= err(h) — a(5+ 2||\|1) — 2/C
> err(h) — a(5 +20) — 2/C

We want to set C' to minimize this discrepancy. Noting that the derivative of (5 + 2C) + 2/C with

respect to C' is 2a — 2/C?, we get a minimization at C' = \/1/a.
Setting C' as such gives the desired bound:

err(h*) > err(h) — a(5 +2y/1/a) — 2v/a.

Following a similar analysis as Lemma we can bound the fairness constraints on A by bounding them
for the model h; found at every round ¢ € [T] of algorithm

po(he) = plhe) = E_[(1 = f@)l(he(x),009(2)] = E_[(1 = f(2))e(hs(x),0)]

D, E

_ Z;Pr[f(x) = v (e0) =0 B (1= F@)h(),0)- (9(x) = DIF (@) = v, 551 (2,0) = 0]
}pr[f(x) —ser) = 1) B (- FE)().0) - (50) ~ D) = oy (2.0) = 1

— ;Pr[f(x) =v,Sxe-1>(z,0) =1] ;NEDJ“ B @) ()0 - (g(2) = DIF (@) = v, 5201 (2,0) = 1]

<SPt == E (- @) h(@),0) (9(0) ~ D F(@) = visx1(0,0) = 1]+

- :Zé;[(l — F*(@)l(he(),0) - (g(z) — 1)] + a

= pg(he) — p(he) + .

Here, the inequality comes from our multicalibration guarantees. We can repeat the same argument in the
opposite direction, and get that

wy |pg(h*) — p(h*)] = wg [pg(R) — p(h)| — wya.

C Achieving Joint Multicalibration

In this section we give an algorithm that can take as input any model f : X — [0, 1] and transform it into
a new model f : X — R such that f achieves multicalibration in expectation with respect to a class of
functions C; C {0,1}* and simultaneously, joint multicalibration in expectation with respect to a class of
functions Co C {0,1}**# where R = {0, 2,2 ... 1} for some m > 0. Our algorithm can be viewed as a
variant of the original multicalibration algorithm of [Hébert-Johnson et al.|[2018] (our variant achieves the
stronger guarantee of calibration in expectation, first defined in |Gopalan et al.| [2022]), or a simplification of
the split-and-marge algorithm of |Gopalan et al.| [2022], which replaces the “merge” operation with simple
per-update rounding.

First we observe that without loss of generality, we can focus on achieving joint multicalibration for a
single class of functions. To see this, note that given C; C {0, 1}, we can transform it into an identical class
of two argument functions that simply ignore their second argument:

Ch = {c where c(x,v) = c¢1(z) for every ¢; € C1}.
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Note that if f is a-approximately joint-multicalibrated with respect to C5, then it is a-approximately
multicalibrated with respect to C; and vice versa. In other words, in order to be simultaniously multicalibrated
with respect to C; and joint-multicalibrated with respect to Co, it is sufficient (actually equivalent) to be
joint-multicalibrated with respect to Co U Ch. Therefore, we focus on enforcing joint-multicalibration with
respect to arbitrary C c {0,1}%*[0:1],

Before we describe the algorithm, we define the round operation. Write [%] = {0, %, %7 ..., 1} for any
m > 0. We let f" = Round(f, m) to denote the function that simply rounds the output of f to the nearest
grid point of [1/m]. Similarly, we write Round(v, m) = arg min,/¢[; /m] [v" — v| to denote the grid point of
[-L] closest to v.

Algorithm 5: Multicalibration algorithm
Input: (o, f,C)
m= 1
fo = Round(f,m)
t=0
while there exists a ¢ € C such that:

Z Pr [fi(x) =v,c(z,v) = 1] (v — Pr [ylfi(z) = v, c(x,v) = 1]) >«

UGRmNDX (z,y)~D
do
Let
2
(v, c) =arg max Dr [fi(z) =v,c(z,v) =1]- (v ~ oD Wlfil@) = v, ez, v) = 1]>
Sy ={zx e X: fi(z) =v,ct(x,vs) =1}
’(~)t = ]E [y|.’L' S St}
(z,y)~D
vy = Round (v, m)
Let
_Jup ifre S
Jen(e) = {ft(x) otherwise.
t=t+1
end

Theorem 6. The output of Algorithm@ fr: X = {0,a,2q,...,1} is \/a-approzimately jointly multicalibrated
with respect to C where T < %.

Proof. By definition, the output of the algorithm f7 is such that

Z Pr [fi(z) = v, c(z,v) = 1] (’U - (zyl;)rND[y\ft(a:) =v,c(x,v) = 1]) <a

z~D
vER *
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for every ¢ € C, meaning it is satisfies y/a-joint calibration:

> Pr [fil@) =v,e(z,0) = 1]
vER

- B e) =0l = 1)

2
< J Py Uie) = o) =1 (0= Pr[ilfe) = vclo) = 1)
o~Dy (@.y)~D
vER
< V.
So it suffices to show that the algorithm halts in less than T < $ rounds. Define

B(f)y= E [(y—f(x)))

(z,y)~D

We use B as a potential function and show that we decrease it in each round in the following lemma.

Lemma 21. For everyt < T, B(fiy1) — B(f:) < —0‘72

Proof. Define f; such that
~ @t if x € Bt
fe(x) otherwise.

Bounding (*):

B(fi+1) = B(ft) = Pr [z € 5]- g [(y — fre1(2))® — (y — fu(2))?|z € S4]

o~Dax (@,

= PrjzesS] E [((y- fe@) + (0 —v}))* = (y = fil))?|z € S
x~Dx (z,y)~D
= $flgx[$ €S- (m7£~73[2(y = 00) (0 — vp) + (0 — v)*|z € ]
1
< xflgx [x € S - g

where the last inequality follows from the fact that o, = E¢ ) ~pylz € Si] and |0, — vj| < 7.

Bounding (**): Because in round ¢,

2
Pr [fi(e) = v,cla,v) = 1] (v— P [y|ft<x>:v7c<x,v>=1]) >a,

(z,y)~D
we must have

2
«

Pr [zeS —5)= P €S - P €Sl > .

mng[@" t] (v — Dy) m~1gx[x 1] ('Ut (x,y)rND[y‘x A) “ 1
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Now,we show that

B(fi) = B(fis1) = Pr [zeS]- E [y~ ful2))® —(y— fi2))’|z € 5]

z~Dx (z,y)~D
= PrzeS] E [(y-fi@) =y file) + (@ —v))*|lz € S]
z~Dx (ajvy)N,D
= Pr [LU € St] . E [—2(y - ’ljt)(’l’}t - Ut) - ({)t - vt))2|x S St]
x~Dx (z,y)~D
-
<
“m+1

where the last inequality follows from the fact that B, . [y|lz € S| = ;.
Combining them together, we get

1 «
B - B < — —
(fiv1) = BUf) < 75 m+1
ot o
4 a+l
< a?  a?
— 4 2
o2
[
Iterating Lemma [2I] over T rounds, we have
o2
B(fr) < B(fo) — T
Also, because B(f) € [0,1] for any f, it must be that T < . O

D Out of Sample Guarantees

In the body of the paper, we assumed that we had direct access to distributional quantities — in particular,
we needed to evaluate expectations over the feature distribution. In this section, we show that it is possible to
estimate these quantities from modest amounts of unlabeled data sampled from the underlying distribution,
and that the guarantees of our algorithm carry over to the underlying distribution. In particular, our algorithm
results in a solution to the linear program that approximately satisfies its constraints on the underlying
distribution, and achieves objective value that is approximately optimal within its comparison class. The
strategy we take is to analyze a slightly modified algorithm (Algorithm @, which at every stage, uses a fresh
sample of data to evaluate the necessary expectations empirically. In particular, it uses a new sample at every
iteration, and so has sample complexity that scales linearly with the number of iterations. Using techniques
from adaptive data analysis Dwork et al.| [2015], Bassily et al. [2016], |[Jung et al.||2021b] similar to how they
are used by [Hébert-Johnson et al.| [2018] to prove sample complexity bounds, we could reduce our linear
dependence on T in our sample complexity bound by a quadratic factor by reusing data across rounds, but
we settle for the conceptually simpler bound here.

Theorem 7. Fiz any distribution D, hypothesis class H, class of group indicators G, dual bound C, and
€,0 > 0. After T rounds, with probability 1 — 9, Algorithmla outputs a randomized hypothesis h such that
err(h) < OPT+ 2 4 8¢ and wy|py(h) — p(h)| < v+ & + & + %, where OPT is the objective value of the

2761

optimal solution of ¥(f,vy,Ha). It makes use of m = O <T10g(262“> samples of unlabeled data drawn i.i.d.

from Dx. Here T is as specified in the algorithm: T = % - C? - (C? + 4|G|)?.
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Lemma 22. Fix any distribution D, hypothesis class H, and class of group indicators G. In a single round t

2|61
of Algom'thmH with Sy ~ D™ for m = O(log(2€25 )), Algorithm |6 returns a hypothesis hy that with probability
1 — 9 satisfies for all g € G:

lerr(he, g, D) — err(hy, g, Se)| < €
‘p(h’hg?D) - p(ht7gast)| S €.

Algorithm 6: Projected Gradient Descent Algorithm
Input: (D: data distribution, f: X — [0,1]: regression function, G: groups, v: tolerance on fairness

violation, C': bound on dual (||A\||1 < C), n: learning rate, m = log;# batch size of fresh data for
each round of gradient descent, €: per round estimation error, §: failure probability)

Initialize dual vector A’ = 0 and set 7' = % - C% - (C? 4 4/G|)2.

fort=1,...,7 do

Primal player updates h;

1 fz) > ;gzjg W) and (24 X g N () — ) > 0,
iy = 1% IO % EE% g;) and (24 Yye Xy (9(2) — B,)) > 0,
1, if f(z) < 2+ZZZ g pr ﬁz and (243, Ao (g(x) = By)) <0,
0, if f(a) > rrazese fl(“’f”) %) and (24 3,6 A (g(x) — By)) < 0

2+Zg€§ (‘7 93) ﬁg

Sample S; i.i.d. from D™ Compute
ph=E [l(h(z),0)9(z)(1 — f(z))] forall g € G,

pr= " yH)ENS [B¢(he(),0)(1 — f(x))], where 85 = Prlg(z) = 1]y = 0]

Dual player updates

Nt = max(0, X + 71+ (6, — 5 — 7)),

t— _ t— st At
Ay~ =max(0,A\; " +1- (0" — py—7))-

Dual player sets A\ = > o Ao+ — AL~

If [l > C, set A = C'+ -

end
Output: h:= 7 S°7_, hy, a uniformly random classifier over all rounds’ hypotheses.

Theorem 8 (Chernoff-Hoeffding Bound). Let X1, X5, ..., X, be i.i.d. random variables with a < X; <b
and E[X;] = p for all i. Then, for any a > 0,

> X —2a°m
P =t — <2 — .
r(‘ m w > o) < 2exXp (b—a)2

(2Ll
Proof of Lemma[23. This claim follows by applying a Chernoff-Hoeffding bound with m > ! (263 ) O

TG
Proof Sketch of Theorem[7 Taking m > % we have that in a single round ¢ of our algorithm we are

able to estimate the true distributional classification and fairness constraint errors up to an additive error of €
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Trajectory over 2000 rounds

‘ Adult Pareto Frontier
LogisticRegression, gamma = 0.003 Adult
0.00355 .
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0.00350 0.045

0.00345 0.044

0043
0.00340
0042
0.00335 i d.an 0,041

0.040
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0.00330

Max of Weighted Group Error - Population Error (FPR)
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Population Error (0/1) Population Error (0/1)

Figure 2: The plot on the left is a trajectory over 2000 iterations of gradient descent of our method post-
processing a base logistic regression model, for a single value of v = 0.003. The trajectory starts at the top of
the figure and moves downwards with time, and the purple point represents the uniform distribution over the
constituent models of the 2000 iterations. The plot on the right shows the Pareto curve for our method (blue)
and for the fair reductions |[Agarwal et al., 2018| for constraint values ranging between 0.0025 < v < 0.00355.

with probability 1 —d/T — and hence with probability 1 —J, we estimate these quantities up to additive error
¢ uniformly over all 7' rounds. We can then make one small modification to the analysis of Algorithm[I} First
observe that since the primal player’s best response does not depend on any estimation of a distributional
quantity based on the sample S;, their regret is still zero, as it is in the analysis of Algorithm [I] The dual
player, on the other hand, is given loss vectors that deviate from the versions that would have been computed
on the underlying distribution by at most 2¢ in ¢, norm, and hence experience additional regret (to the
true distributional quantities) larger than in the analysis of Algorithm [I| by up to an additional additive 4e.
Consequently, the equilibrium solution (h, \) from Algorithm [6]is an 4¢ + 1/C approximate equilibrium to the
zero-sum game of [2{ which then, applying Theorem |2} yields a & + 8¢ approximate solution to the objective of
the original linear program. O

E Expanded Experimental Discussion

We provide additional experimental evaluation on the UCI Adult dataset [Dua and Graff] [2017]. The sensitive
attributes we use are binary gender and race, categorized as White, Black, Asian and Pacific Islander,
American Indian or Eskimo, and Other. Note that race and gender are intersecting attributes. In these
experiments our algorithm is post-processing a standard sklearn logistic regression model, notably, as in our
previous results, not guaranteed to be multicalibrated in the ways our theory requires. We also provide a
comparison to the popular in-processing “fair reductions” method |Agarwal et al.| |2018]. We note that our
algorithm performs competitively, even Pareto-dominating certain points on the reductions Pareto frontier.
However, the reductions method is also able generate points corresponding to constraint violations that our
method is not able to access — this does not violate our theoretical findings, since we are not starting with a
multicalibrated regression function. Our method requires solving a single logistic regression problem over
the dataset (to compute the regression model f that we post-process), whereas the method of

[2018] requires solving a regression problem at every iteration.
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