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ABSTRACT

Strength estimation and adjustment are crucial in designing human-AI interactions,
particularly in games where AI surpasses human players. This paper introduces a
novel strength system, including a strength estimator (SE) and an SE-based Monte
Carlo tree search, denoted as SE-MCTS, which predicts strengths from games
and offers different playing strengths with human styles. The strength estimator
calculates strength scores and predicts ranks from games without direct human
interaction. SE-MCTS utilizes the strength scores in a Monte Carlo tree search to
adjust playing strength and style. We first conduct experiments in Go, a challenging
board game with a wide range of ranks. Our strength estimator significantly
achieves over 80% accuracy in predicting ranks by observing 15 games only,
whereas the previous method reached 49% accuracy for 100 games. For strength
adjustment, SE-MCTS successfully adjusts to designated ranks while achieving a
51.33% accuracy in aligning to human actions, outperforming a previous state-of-
the-art, with only 42.56% accuracy. To demonstrate the generality of our strength
system, we further apply SE and SE-MCTS to chess and obtain consistent results.
These results show a promising approach to strength estimation and adjustment,
enhancing human-AI interactions in games.

1 INTRODUCTION

Artificial intelligence has achieved superhuman performance in various domains in recent years,
especially in games (Silver et al., 2018; Schrittwieser et al., 2020; Vinyals et al., 2019; OpenAI et al.,
2019). These achievements have raised interests within the community in exploring AI programs for
human interactions, particularly in estimating human players’ strengths and offering corresponding
levels to increase entertainment or improve skills (Demediuk et al., 2017; Fan et al., 2019; Moon &
Seo, 2020; Gusmão et al., 2015; Silva et al., 2015; Hunicke & Chapman, 2004). For example, since
the advent of AlphaZero, human players have attempted to train themselves by using AI programs.
Subsequently, many researchers have explored several methods to adjust the playing strength of
AlphaZero-like programs to provide appropriate difficulty levels for human players (Wu et al., 2019;
Liu et al., 2020; Fujita, 2022).

However, although these methods can provide strength adjustment, two issues have arisen. First,
while these methods can offer different strengths, human players often need to play several games
or manually choose AI playing strength, consuming time to find a suitable strength for themselves.
Second, the behaviors between AI programs and human players are quite different. This occurs
because most strength adjustment methods mainly focus on adjusting AI strength by calibrating the
win rate to around 50% for specific strengths, without considering the human behaviors at those
strengths. The problem is further exacerbated when human players attempt to use AI programs
to analyze games and learn from the better actions suggested by AI. Therefore, designing AI
programs that can accurately estimate a player’s strength, provide corresponding playing strengths,
and simultaneously offer human-like behavior is crucial for using superhuman AI in human learning.

To address this challenge, this paper proposes a novel strength system, including a strength estimator
and an SE-based MCTS, denoted as an SE-MCTS, which can predict strengths from games and
provide different playing strengths with a human-like playing style. Specifically, we propose a
strength estimator, based on the Bradley-Terry model (Bradley & Terry, 1952), which estimates
a strength score of an action at a game state, with higher scores indicating stronger actions. The
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strength score can be further used to predict the strength of any given game, providing strength
estimation without direct human interaction. Next, we present a novel strength adjustment approach
with human-like styles, named SE-MCTS, by incorporating the strength estimator into the Monte
Carlo tree search (MCTS). During the MCTS, the search is limited to exploring actions that closely
correspond to a given targeted strength score. We conduct experiments in Go, a challenging board
game for human players with a wide range of ranks. The results show several advantages of using
our approach. First, the strength estimator significantly achieves over 80% accuracy in predicting
ranks within 15 games, compared to the previous method only achieves 49% accuracy even after
evaluating 100 games. Second, the experiments show that SE-MCTS can not only provide designated
ranks but also achieve a playing style with 51.33% accuracy in aligning to human players’ actions,
while previous state-of-the-art only obtained 42.56% accuracy. Finally, the strength estimator can
be trained with limited rank data and still accurately predict ranks. Furthermore, to demonstrate the
generality of the proposed method, we apply SE and SE-MCTS to chess, achieving consistent results
and significantly outperforming the previous state-of-the-art approach in both strength estimation and
adjustment. These results show a promising direction for enhancing human-AI interactions in games.

2 BACKGROUND

2.1 BRADLEY-TERRY MODEL

The Bradley-Terry model (Bradley & Terry, 1952) is often used for pairwise comparisons, allowing
for the estimation of outcomes between individuals based on their relative strengths. In a group of
individuals, the model calculates the probability that individual i defeats individual j as P (i ≻ j) =

λi

λi+λj
, where λi and λj represent the positive values of individuals i and j, respectively. A higher λi

indicates a stronger individual. In practice, λi is usually defined by an exponential score function as
λi = eβi , where βi represents the strength score of individual i.

The Bradley-Terry model can be further generalized to include comparison among more than two
individuals (Huang et al., 2006). Consider a group consisting of k individuals, indexed from 1 to k.
The probability that individual i wins out over the other individuals in this group is calculated as
P (i) = λi

λ1+λ2+...+λk
. Furthermore, the model can be adapted for team comparisons, where each

team comprises multiple individuals. For example, assume team a consists of individuals 1 and 2,
team b consists of individuals 2, 3, and 4, and team c consists of individuals 1, 3, and 5. Then, the
probability that team a win against team b and c is defined as P (team a) = λ1λ2

λ1λ2+λ2λ3λ4+λ1λ3λ5
,

where the strength of each team is determined by the product of the strengths of its individual members.
Due to its generalization and broader extension, the Bradley-Terry model has been widely used in
various fields, such as games (Coulom, 2007a), sports (Cattelan et al., 2013), and recommendation
systems (Chen & Joachims, 2016).

2.2 MONTE-CARLO TREE SEARCH

Monte Carlo tree search (MCTS) (Coulom, 2007b; Kocsis & Szepesvári, 2006) is a best-first search al-
gorithm that has been successfully used by AlphaZero (Silver et al., 2018) and MuZero (Schrittwieser
et al., 2020) to master both board games and Atari games. In AlphaZero, each MCTS simulation
begins by traversing the tree from the root node to a leaf node using the PUCT (Rosin, 2011) formula:

a∗ = argmax
a

{
Q(s, a) + c · P (s, a) ·

√∑
b N(s, b)

1 +N(s, a)

}
, (1)

where Q(s, a) represents the estimated Q-value for the state-action pair (s, a), N(s, a) is the visit
counts, P (s, a) is the prior heuristic value, and c is a coefficient to control the exploration. Next, the
leaf node is expanded and evaluated by a two-head network, fθ(s) = (p, v), where p represents the
policy distribution and v denotes the win rate. The policy distribution p serves as the prior heuristic
value. The win rate v is used to update the estimated Q-value of each node, from the leaf node to
its ancestors up to the root node. This process is repeated iteratively, with more MCTS simulations
leading to better decision-making. Finally, the node with the largest simulation counts is decided.
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2.3 MCTS-BASED STRENGTH ADJUSTMENT

Strength adjustment (Hunicke & Chapman, 2004; Paulsen & Fürnkranz, 2010; Silva et al., 2015;
Moon & Seo, 2020) is crucial in the design of human-AI interactions, especially since AlphaZero
achieved superhuman performance in many games like Go, Chess, and Shogi. As MCTS is widely
used in these games, various methods have been explored to adapt it for strength adjustment (Sephton
et al., 2015; Wu et al., 2019; Demediuk et al., 2017; Fan et al., 2019; Moon et al., 2022). For instance,
Sephton et al. (2015) proposes adjusting the playing strength by using a strength index z. After the
search, MCTS decides the node based on the proportionality of their simulation counts, with the
probability of selecting node i calculated as Nz

i∑n
j=1 Nz

j
, where Ni represents the simulation counts

for node i. A larger z value indicates a tendency to select stronger actions, while a smaller z favors
weaker actions. Wu et al. (2019) further improves this method by introducing a threshold R to filter
out lower-quality actions, removing nodes j where Nj < R ×Nmax, where Nmax represents the
node with largest simulation counts. The approach is used to adjust the playing strength of ELF
OpenGo (Tian et al., 2019), resulting in covering a range of 800 Elo ratings within the interval
z ∈ [−2, 2]. However, both methods only change the final decision in MCTS without modifying the
search tree, leaving the search trees identical for different strengths.

2.4 STRENGTH ESTIMATION

Strength estimation is another important technique related to strength adjustment. With accurate
strength estimation, the AI can first predict a player’s strength and subsequently provide an appropriate
level of difficulty for human learning. Several methods (Moudřík & Neruda, 2016; Liu et al., 2020;
Egri-Nagy & Tormanen, 2020; Scheible & Schütze, 2014) have been proposed to estimate player
strength in games. For example, Liu et al. (2020) proposes estimating a player’s strength by using the
strength index with MCTS, as described in the previous subsection, to play against human players.
Specifically, the strength index z is adjusted after each game according to the game outcomes. Their
experiments show that z generally converges after about 20 games. However, this method requires
human players to play against the MCTS programs with multiple games to obtain an estimation
of their playing strengths. On the other hand, Moudřík & Neruda (2016) proposes an alternative
approach that categorizes the Go players into three ranks – strong, median, and weak – and uses a
neural network to classify player ranks based on a game position using supervised learning. After
training, given a game position, the neural network predicts ranks for each position by selecting the
highest probability. Furthermore, it can aggregate predictions across multiple positions. Two methods
are presented: (a) sum, which sums probabilities of all positions and makes a prediction based on
the highest probability; and (b) vote, which predicts the rank of each position first and selects the
most frequent rank. However, this approach does not consider multiple actions during training and
the experiment was limited to only three ranks. In addition, strength estimation is similar to ranking
problems (Burges et al., 2005; Xia et al., 2008), but it differs in a key aspect. Ranking problems often
focus on ordering items based on a single query, whereas in games, strength is assessed as overall
skills across multiple positions or games. This challenge requires aggregating rankings across various
scenarios to capture a player’s ability.

3 METHOD

3.1 STRENGTH ESTIMATOR

We introduce the strength estimator (SE), which is designed to predict the strength of an action a
at a given state s based on human game records. Each state-action pair, denoted as p = (s, a), is
labeled with a rank r that corresponds to the player’s strength. For simplicity, in this paper, ranks are
ordered in descending order where rank 1, denoted as r1, represents the strongest level of play, and
progressively higher numbers indicate weaker playing strength. Each rank corresponds to a group
of players, as we assume that players with the same rank have equivalent strength. Ranks could be
determined by Elo ratings; for example, players with an Elo between 2400 and 2599 are classified as
r1, players with an Elo between 2200 and 2399 as r2, and so on.

Consider a game collection D that consists of numerous state-action pairs p, each associated with
a distinct rank r. Suppose there are n ranks in D, represented by r1, r2, ..., rn. Next, given a state-
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action pair p sampled from D, the strength estimator, denoted as SE(p) = λ, is designed to predict
the strength λ corresponding to action a in state s. Consider two state-action pairs, p1 = (s, a1)
and p2 = (s, a2), where a1 and a2 are played by r1 and r2, respectively. The strength estimator is
expected to predict strength λ1 for p1 and λ2 for p2, such that λ1 ≥ λ2. Note that λ1 = λ2 occurs
when the actions a1 and a2 are identical or are of equal strength. Following the Bradley-Terry model,
we can calculate the probability that r1 wins against r2 as P (r1 ≻ r2) =

λ1

λ1+λ2
. To generalize to n

ranks, consider n state-action pairs, p1, p2, ..., pn, corresponding to ranks r1, r2, ..., rn, respectively.
The strength estimator predicts λi for each pi. The probability that r1 wins against all other ranks is
then calculated as P (r1 ≻ {r2, r3, . . . , rn}) = λ1

λ1+λ2+...+λn
.

Furthermore, we extend the method to estimate the composite strength of a rank by incorporating
multiple state-action pairs, collectively conceptualizing them as a team. This approach allows us to
effectively measure the overall capabilities of players within specific ranks by considering various
actions across different scenarios. Consider m state-action pairs pi,1, pi,2, ..., pi,m, where pi,j
represents the j-th state-action pairs associated with ri sampled from D. The strength estimator
predicts the strength λi,1, λi,2, ..., λi,m for each state-action pair, respectively. We define the
composite strength for ri by aggregating all individual strengths using the geometric mean. The
composite strength, denoted as Λi, is calculated as Λi = (λi,1λi,2 . . . λ1,m)1/m.

The geometric mean is used to ensure that the strength estimator provides stable estimations and
reflects the rank’s ability across different scenarios. Namely, Λi should remain consistent regardless
of the number of state-action pairs considered:

Λi = (λi,1λi,2 . . . λ1,m)1/m =

( m∏
j=1

λi,j

) 1
m

=

( m∏
j=1
pj∼D

SE(pj)

) 1
m

, (2)

where the state-action pair pj is randomly sampled from the game collection D. We can further
calculate the probability that rank r1 wins against all other ranks by using the composite strength:
P (r1 ≻ {r2, r3, . . . , rn}) = Λ1

Λ1+Λ2+...+Λn
.

Note that our proposed method of aggregating strength using the geometric mean for teams differs
from the Bradley-Terry model, which utilizes product aggregation. However, the geometric mean is
specifically tailored to our scenarios to guarantee consistent measurement of individual performance
across different games, rather than focusing on team member interactions. This approach also
helps to mitigate the influence of outliers. Moreover, this modification preserves the integrity of the
Bradley-Terry model principles, ensuring that the order of teams is strictly followed.

3.2 TRAINING THE STRENGTH ESTIMATOR

This subsection introduces a methodology for training strength estimator. For simplicity, we propose
to train a neural network, fθ(p) = β, as a strength estimator which predicts a strength score β instead
of strength λ for a given state-action pair p. This strength score, β, serves as the exponent for strength
λ = eβ , as defined by the Bradley-Terry model. Then, the composite strength, Λi, from the equation
2 can be expressed by using β as follows:

Λi =

( m∏
j=1

λi,j

) 1
m

=

( m∏
j=1

eβi,j

) 1
m

= e
1
m

∑m
j=1 βi,j = eβi , (3)

where βi represents the average strength scores of m state-action pairs, each with ri, sampled from
D.

Next, given n ranks in the game collection, the strength estimator is optimized by maximizing the
likelihood L according to the ranking order (Xia et al., 2008; Chen et al., 2009). The likelihood is
defined as follows:

L = P (r1 ≻ {r2, r3, . . . , rn})× P (r2 ≻ {r3, r4, . . . , rn})× . . .× P (rn−1 ≻ rn)

=

n−1∏
i=1

P (ri ≻ {ri+1, ri+2, . . . , rn}) =
n−1∏
i=1

Λi

Λi + Λi+1 + . . .+ Λn
=

n−1∏
i=1

eβi∑n
j=i e

βj

. (4)
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Figure 1: The training process of the strength estimator.

Maximizing L ensures that the strength scores of r1, r2, ..., rn are strictly in descending order, such
that r1 ≻ r2 ≻ r3 ≻ . . . rn. Then, the loss function L can be defined by log-likelihood:

L = − log(L) = − log

(n−1∏
i=1

eβi∑n
j=i e

βj

)
= −

n−1∑
i=1

log(
eβi∑n
j=i e

βj

). (5)

Figure 1 illustrates the training process of the strength estimator. Assume there are n ranks, r1, r2, ...,
rn, in the game collection. Initially, for each ri, we sample m state-action pairs and evaluate them by
the strength estimator. The strength estimator then outputs the strength score βi,j corresponding to
each state-action pair. Subsequently, we average all βi,j to obtain βi for each ri. Finally, using all
strength scores, βi, we sequentially minimize each softmax loss as defined by the equation 5.

Since the state-action pairs are collected only from human games, the strength estimator may provide
unpredictable estimations for out-of-distribution state-action pairs, which rarely appear in human
games. To address this issue, we introduce an additional rank, r∞ into our training process, as
depicted by the dashed rectangle in Figure 1. This rank, r∞, is defined as the weakest among all
ranks, ensuring that ri ≻ r∞ for all ri. To generate the state-action pairs for r∞, we first select
a state-action pair, pi = (si, ai) from any ri. Then, we disturb the state-action pair pi to p∞ by
modifying the action ai to a randomly chosen legal action, resulting in p∞ = (si, a∞). Since a
random action a∞ is highly likely to result in an inferior outcome, these actions are expected to
correspond to the weakest rank. Note that although a random action may occasionally result in a
strong action, the impact of such outliers will be minimized by the average β∞ as the number of
samples, m, increases.

3.3 STRENGTH ESTIMATOR BASED MCTS FOR STRENGTH ADJUSTMENT

We present a novel method that integrates a strength estimator with MCTS to adjust strength dynami-
cally, named SE-MCTS. In previous strength adjustment approaches, as described in subsection 2.3,
the MCTS search tree is unmodified during the search, with only changing the final action decision
after the search is complete. In contrast, we propose inherently modifying the search based on a
target strength score to ensure that the search aligns more closely with the desired strength of ranks.

Specifically, in MCTS each node is evaluated by the strength estimator to obtain a strength score,
β(s, a), which represents the strength score of action a at state s. We can calculate the composite
strength score β(s, a), by averaging all β from the nodes within the subtree of state s. This is similar
to the method used to calculate estimated Q-values. Given a targeted rank r with strength score βt, we
calculate the absolute strength difference for each node, which is denoted as δ(s, a) = |β(s, a)− βt|.
Higher values of δ indicate that the action is unlikely chosen by a player of the target rank, while
lower δ suggest that the actions are closer to the strength of the target rank.
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As the values δ(s, a) are unbounded and can be any non-negative number, we normalize all values
using the minimum and maximum values observed in the current search tree. This normalization
ensures that the difference values are bounded within the [0, 1] interval, similar to the approach used
in MuZero (Schrittwieser et al., 2020). Then, the PUCT formula in MCTS selection is modified from
equation 1 as follows:

a∗ = argmax
a

{
Q(s, a) + c ·

(
P (s, a)− c1 · δ̂(s, a)

)
·
√∑

b N(s, b)

1 +N(s, a)

}
, (6)

where δ̂(s, a) is the normalized difference values of δ(s, a) and c1 is a hyperparameter used to control
the confidence of prior heuristic values and difference values. Note that we choose to use δ̂(s, a) to
eliminate the prior heuristic value P (s, a), rather than incorporating additional values like the use of
Q(s, a). This is because, during the MCTS search, the algorithm first prioritizes actions based on
higher prior heuristic values and gradually shifts the focus to actions with higher Q-values when the
simulation counts increase. By combining P (s, a) and δ̂(s, a), we effectively adjust the prioritization
of actions, thereby aligning the search more closely with the desired strengths.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We first experiment in the game of Go. The human games are collected1 from FoxWeiqi (YeHu,
2024), which is the largest online Go platform in terms of users. These games are collected from
amateur 5 kyu to 9 dan2, and are ranked in order from the strongest to weakest as follows: 9 dan, 8
dan, ..., 2 dan, 1 dan, 1-2 kyu, and 3-5 kyu, corresponding to r1, r2, ..., r11. Namely, a total of n = 11
ranks are used. Note that for kyu, we classify 1 to 2 kyu as one rank and 3 to 5 kyu as another rank,
and we exclude games played by players ranked lower than 5 kyu. This is because kyu players are
still mastering basic Go strategies, their ranks often change rapidly. Consequently, their games do not
consistently correspond to their ranks. For the training dataset, we collect a total of 495,000 games,
with 45,000 games from each rank. We also prepare a separate testing dataset, including a candidate
and a query dataset. The candidate dataset is used to estimate an average strength score of each rank,
including a total of 1,100 games, with 100 games per rank. The query dataset is used for the strength
estimator to predict the strength, containing a total of 9,900 games, with 900 games per rank.

The network architecture of the strength estimator is similar to the AlphaZero network, consisting
of 20 residual blocks with 256 channels. Given a state-action pair, the network outputs a policy
distribution p, a value v, and a strength score β. The training loss for the policy and value network
follows AlphaZero, while the loss for the strength estimator is defined by equation 5. During training,
we aggregate the composite strength score βi by randomly selecting m = 7 state-action pairs from ri.
Other training details are provided in the appendix.

4.2 PREDICTING RANKS FROM GAMES

The strength estimator can be utilized to predict ranks in games where the rank is unknown. We
first calculate βi for each ri by evaluating all games in the candidate dataset. Next, for games from
the same unknown rank, ru, in the query dataset, a composite score βu is calculated by the strength
estimator. Finally, ru is then determined to be ri, where |βu − βi| is the smallest among all ri.

We train two strength estimator networks, SE and SE∞, where SE is trained with 11 ranks, and SE∞
includes an additional rank, r∞, for a total of 12 ranks. In addition, for comparison, we train another
network based on supervised learning (SL), SLsum and SLvote, as mentioned in subsection 2.4. Both
SLsum and SLvote are trained to classify 11 ranks for a given state-action pair but with different
aggregation methods.

1We downloaded Go games from the FoxWeiqi online platform using its public download links.
2In the game of Go, Kyu represents the beginner to decent amateur level, ranging from 18 kyu to 1 kyu, with

lower numbers indicating stronger kyu players; Dan denotes advanced amateur, ranging from 1 dan to 9 dan,
with higher numbers indicating stronger dan players.
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The evaluation is conducted as follows. For each ri from the query dataset, each network evaluates all
state-action pairs from N randomly selected games and then predicts a rank. We repeat this prediction
process 500 times for each N to ensure a stable estimation.

0 20 40 60 80 100
Games

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

SE

SE∞

SLsum

SLvote

SE±1

SE∞±1

SLsum±1

SLvote±1

(a) Accuracy of rank predictions by different
networks.
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(b) Accuracy of each rank for SE∞.

Figure 2: Accuracy of rank prediction in Go, with the shaded area representing the 95% confidence
interval.

Figure 2a shows the accuracy of predicting the games from the query dataset. From the figure, the
two strength estimator networks significantly outperform the supervised learning networks. Both
SE and SE∞ perform nearly identical performance, achieving over 80% of accuracy with only 15
games and reaching an accuracy of 97.5% after evaluating 100 games. In contrast, both SLsum and
SLvote reached an accuracy of 49%, even after evaluating 100 games, with SLsum performs slightly
better than SLvote. Furthermore, as human players do not always perform consistently and may
occasionally change their ranks by one rank either above or below their actual rank, the games within
ri might involve players whose actual ranks are ri−1 or ri+1, leading to slight fluctuations in the
dataset. Therefore, we incorporate a prediction tolerance that allows for a deviation of one rank.
Specifically, if the network predicts ri−1 or ri+1 for ri, we consider this prediction accurate. The
results show that both strength estimator networks achieve nearly 80% accuracy by only evaluating a
single game, and perfectly predict the rank with an accuracy of over 99% after only 6 games, while
the supervised learning networks still cannot predict the correct ranks after 100 games. This result
indicates that the ranks predicted by the strength estimators are close to the actual ranks even when
the prediction is incorrect.

Figure 2b depicts the accuracy of each rank prediction for SE∞ with several interesting observations.
First, r1 (9 dan) has the highest accuracy among all ranks. Since 9 dan is the highest rank on
FoxWeiqi, so professional Go players and Go AIs are also classified at this level, thus creating a
significant strength gap between r1 and r2, and leading to a clearer distinction. This phenomenon
results in some players, originally ranked at r1 (9 dan), who are relatively stronger compared to
r2 (8 dan), being relegated to r2. Consequently, r2 shows the lowest accuracy among all ranks.
Second, the prediction for r7 (3 dan) is below the average. This is because new players on FoxWeiqi
can only select a maximum initial rank of 3 dan and must advance gradually. Therefore, many
players at this rank are actually stronger than 3 dan. Finally, the prediction for r11 (3-5 kyu) is also
below average, corroborating to common understanding that the strength of kyu players is usually
inconsistent. In conclusion, these results allow our strength estimator to provide evaluations of a
game’s ranking system, further offering developers to make adjustments. Details on the accuracy of
each rank prediction for other networks are provided in the appendix.

4.3 ADJUSTING STRENGTH WITH STRENGTH ESTIMATOR

In this section, we evaluate the performance of SE-MCTS, as described in subsection 3.3, by
incorporating the two trained strength estimator networks into MCTS to adjust the playing strength
for game playing. We first calculate the composite strength score βi, by averaging all β from the
state-action pairs in ri from the candidate set. Although we assume that the strength score βi for any
state-action pair from ri should be similar, in practice, we observe that βi may vary across different
action numbers, as shown in Figure 3. In the beginning, particularly for the first actions, all βi are
estimated as the same score. This is likely because the action choices at the beginning of Go have
less variety, and weaker players can easily remember and imitate the openings from stronger players.
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Therefore, in the SE-MCTS, we propose using βd
i instead of βi as the target strength score for each

action, where βd
i represent the composite strength score at d-th action for ri.
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Figure 3: The composite strength score from SE∞ for
each rank across different actions in games.
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Figure 4: Win rate against
SE∞-MCTS5 in Go.

To evaluate the performance, we select four MCTS programs: (a) MCTS, representing vanilla MCTS
without any strength adjustment mechanism, (b) SA-MCTS, which utilizes the strength index z (Wu
et al., 2019), (c) SE-MCTS, which uses SE network, and (d) SE∞-MCTS, which uses SE∞ network.
Except MCTS, the remaining three programs can be adjusted to different strengths across a total of 11
ranks. We use SA-MCTSi, SE-MCTSi, and SE∞-MCTSi to represent the strength of each program
correspond to ri. For SE-MCTS and SE∞-MCTS, we calculate the target strength score from the
candidate dataset for strength adjustment. However, for SA-MCTS, since the strength index z does
not directly correspond to any specific rank, we adjust z for each ri to ensure that each SA-MCTSi

and SE∞-MCTSi achieve a comparable win rate, i.e., approximately 50%. Each z is in Appendix C.

Figure 4 shows the win rate for each program playing against a baseline program, where the baseline
is chosen as SE∞-MCTSi with i = 5 (5 dan). Generally, the win rate for SA-MCTSi decreases as
i increases, except from i = 3 to i = 6 where there is a slight fluctuation. This corroborates the
experiments in (Wu et al., 2019). Interestingly, although SE can accurately predict the strength,
SE-MCTSi cannot adjust the strength effectively. This is due to the exploration in the MCTS search,
which may inevitably explore actions that are rarely seen in human games. Without training using
r∞, SE provides inaccurate strength scores for these unseen actions. In contrast, the win rate of
SE∞-MCTSi consistently decreases as i increases, demonstrating an accurate strength adjustment
using strength scores. We also include an experiment with different baselines in Appendix C.1.

Moreover, we are interested in whether these programs can align with the human player’s behavior,
i.e., if they can choose the same actions as human players. Therefore, we sample 50 human games
from the query dataset for each rank and use four MCTS programs to play on every state-action pair.
The accuracy is evaluated based on whether the programs choose the same actions as human players.
The results are shown in Table 1. From the table, generally, the accuracy of ri decreases when the
number i increases for all four programs. This is because weaker players are more unpredictable
than stronger players. For MCTS, it achieves a high accuracy, exceeding 50%, but it cannot adjust

Table 1: Accuracy of move prediction for MCTS programs to human players in Go.

MCTS SA-MCTS SE-MCTS SE∞-MCTS

r1 (9 dan) 53.05% ± 0.95% 47.00% ± 0.95% 53.06% ± 0.95% 53.73% ± 0.95%
r2 (8 dan) 53.79% ± 0.97% 45.83% ± 0.97% 53.96% ± 0.97% 54.30% ± 0.97%
r3 (7 dan) 52.70% ± 0.98% 46.70% ± 0.98% 54.28% ± 0.97% 53.88% ± 0.98%
r4 (6 dan) 52.50% ± 0.92% 45.86% ± 0.92% 54.25% ± 0.92% 53.58% ± 0.92%
r5 (5 dan) 49.48% ± 0.93% 42.29% ± 0.92% 52.00% ± 0.93% 50.35% ± 0.93%
r6 (4 dan) 49.44% ± 0.91% 42.72% ± 0.90% 53.11% ± 0.90% 50.87% ± 0.91%
r7 (3 dan) 50.75% ± 0.89% 42.68% ± 0.88% 53.71% ± 0.89% 51.40% ± 0.89%
r8 (2 dan) 50.17% ± 0.93% 40.94% ± 0.92% 53.21% ± 0.93% 50.99% ± 0.93%
r9 (1 dan) 48.10% ± 0.89% 40.94% ± 0.88% 52.60% ± 0.89% 49.44% ± 0.89%

r10 (1-2 kyu) 46.95% ± 0.91% 36.58% ± 0.88% 50.06% ± 0.91% 47.84% ± 0.91%
r11 (3-5 kyu) 46.87% ± 0.89% 36.64% ± 0.86% 51.36% ± 0.89% 48.23% ± 0.89%

average 50.35% ± 0.28% 42.56% ± 0.28% 52.87% ± 0.28% 51.33% ± 0.28%
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strength as shown in Figure 4. In contrast, although SA-MCTS can adjust strengths, it achieves the
lowest accuracy among all four programs. This is due to SA-MCTS selecting actions proportional to
the simulation counts by using strength index z. The randomness results in diverging from human
playing styles. On the other hand, both SE-MCTS and SE∞-MCTS achieve a high accuracy, even
better than MCTS. This is because SE-MCTS directly modifies the search by the strength scores,
guiding the search to better align with human behavior. In conclusion, among all four programs,
SE∞-MCTS not only adjusts strengths to specific ranks but also provides playing styles that are
closely aligned with those of human players at specific ranks.

4.4 TRAINING STRENGTH ESTIMATOR WITH LIMITED DATA

In this subsection, we investigate training a strength estimator with limited data. Unlike the supervised
learning methods, SLsum and SLvote, which require data from each rank, our method can estimate a
strength score and use it to predict ranks that were not observed during training. In niche games or
those favored by a specific group of enthusiasts, ranking systems are often not fully established due
to a limited number of game records, and some specific ranks may be sparsely populated with only a
few players. Therefore, it is intriguing to explore whether the strength estimator can generalize to
these unseen strengths.
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(a) 2-rank dataset.
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(b) 3-rank dataset.

Figure 5: Accuracy of rank predictions on the limited dataset of Go.

We train SE∞ on two separate datasets: the 2-rank dataset, containing r1 (9 dan) and r11 (3-5 kyu),
and the 3-rank dataset, which includes the same ranks as the 2-rank dataset, plus an additional rank,
r6 (4 dan). During the evaluation, we utilize the same methods, as described in 4.2, by using the
strength estimator to calculate βi for each ri in both candidate and query datasets, and then perform
the predictions. Figure 5a and 5b show the accuracy of rank prediction on 2-rank and 3-rank datasets,
respectively. On average, the strength estimator achieves an accuracy of over 80% after evaluating
38 games for the 2-rank dataset and 21 games for the 3-rank datasets, respectively. Although these
numbers are larger than 15 – the number of games needed by a strength estimator trained with all 11
ranks to achieve over 80% accuracy – it can still effectively predict ranks that were not seen during
training. This suggests that the strength estimator can generalize across a spectrum of ranks with
few ranks. Note that if sufficient data for more ranks are available, the accuracy still improves. Our
method provides a way to both generalize with limited data and enhance performance as more data
becomes available.

4.5 GENERALIZING TO OTHER GAMES

We further experiment in another game, chess, to demonstrate the generality of our SE and SE-MCTS
approaches. Similar to Go, chess is also a popular game with abundant human game records. The
games were collected from Lichess3 (Lichess, 2024), which uses Elo ratings as its ranking system.
We collect games with Elo ratings ranging from 1,000 to 2,600 and categorize them into eight ranks,
with each rank covering 200 Elo points and 240,000 games, for a total of 1,920,000 games. For the
testing dataset, the candidate dataset consists of 960 games, with 120 games per rank, while the query
dataset contains 9,600 games, with 1,200 games per rank. Then, we apply experiments to chess,
similar to those in Go. Note that the training algorithms remain identical, except the input features of
the neural network changed from Go to chess.

3Lichess is one of the most popular online chess platforms, with millions of active users.
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The results are consistent with the findings in Go. First, as shown in Figure 6, SE∞ achieves over
80% accuracy in predicting ranks with only 26 games, significantly outperforming both SLsum and
SLvote, and reaches an accuracy of 93.38% after evaluating 100 games. Second, Figure 7 shows
the win rate for each SE∞-MCTSi when playing against SE∞-MCTS5. The win rate consistently
decreases as i increases, demonstrating SE∞-MCTS can adjust its strength in chess. Finally, Table 2
shows the accuracy of predicting human moves, with SE∞-MCTS achieving an average of 47.25%
accuracy in aligning with human actions, outperforming both MCTS (46.56%), SA-MCTS (40.21%),
and SE-MCTS (38.93%). In conclusion, this experiment demonstrates the versatility of our approach.
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Figure 6: Accuracy of rank prediction in
chess.
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Figure 7: Win rate against
SE∞-MCTS5 in chess.

Table 2: Accuracy of move prediction for MCTS programs to human chess players.

rank(Elo) MCTS SA-MCTS SE-MCTS SE∞-MCTS

r1(2400− 2599) 51.97% ±0.69% 50.17% ±0.69% 41.05% ±0.68% 51.51% ±0.69%
r2(2200− 2399) 51.58% ±0.69% 47.49% ±0.69% 40.19% ±0.68% 51.14% ±0.69%
r3(2000− 2199) 49.23% ±0.69% 45.01% ±0.69% 41.40% ±0.68% 49.19% ±0.69%
r4(1800− 1999) 46.52% ±0.69% 41.78% ±0.68% 38.66% ±0.67% 47.26% ±0.69%
r5(1600− 1799) 45.45% ±0.69% 38.18% ±0.67% 36.76% ±0.67% 46.62% ±0.69%
r6(1400− 1599) 44.33% ±0.69% 36.84% ±0.67% 37.63% ±0.67% 46.12% ±0.69%
r7(1200− 1399) 41.54% ±0.68% 31.49% ±0.64% 37.65% ±0.67% 43.04% ±0.68%
r8(1000− 1199) 41.89% ±0.68% 30.72% ±0.64% 38.05% ±0.67% 43.08% ±0.68%

average 46.56% ±0.24% 40.21% ±0.24% 38.93%±0.24% 47.25% ±0.24%

5 DISCUSSION

This paper introduces a novel strength system, including a strength estimator for evaluating the
strength from game records without requiring direct interaction with human players, and an SE-MCTS
for adjusting the playing strength using strength scores provided by the strength estimator. When
predicting ranks in the game of Go, our strength estimator significantly achieves over 80% accuracy
by examining only 15 games, whereas the previous supervised learning method only reached 49%
accuracy even after evaluating 100 games. The strength estimator can be trained with limited rank
data and still accurately predict unseen rank data, providing extensive generalizability. For strength
adjustment, SE-MCTS successfully adjusts to designated ranks while providing a playing style that
aligns with human behavior, achieving an average accuracy of 51.33%, compared to the previous
state-of-the-art method that only reached 42.56% accuracy. Furthermore, we apply our method to the
game of chess and obtain consistent results to Go, demonstrating the generality of our approach to
other games.

One limitation of our work is that the strength estimator relies on human game records for training.
However, this issue could potentially be addressed by using all models trained by AlphaZero, which
may serve as players of different playing strengths to generate games. Besides, the strength system
also provides several benefits for future directions. For example, game designers can use the strength
estimator to evaluate their ranking systems. The strength estimator can evaluate a game by examining
the strength scores for each action, and use it to identify incorrect actions for human players or
for cheat detection (Alayed et al., 2013). Furthermore, we can extend our strength estimator by
incorporating opponent-specific strength scores to address the Bradley-Terry model’s limitations in
capturing intransitivity (Balduzzi et al., 2018; Bertrand et al., 2023; Omidshafiei et al., 2019; Vadori
& Savani, 2024). Finally, the search tree of SE-MCTS can offer the opportunity for explainability of
AI actions in human learning.
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ETHICS STATEMENT

This paper presents a method for estimating player strength and adjusting it to specific ranks, allowing
agents to play in a human-like manner. A potential ethical concern is that our method could be
exploited by human players to develop human-like agents for cheating in human competitions.
However, we emphasize that all models trained in this paper are used strictly for research purposes
and adhere to established ethical guidelines.

REPRODUCIBILITY STATEMENT

We have provided detailed descriptions of the method, implementation, and training hyperparameters
in Section 3, Section 4, and Appendix A to facilitate the reproduction of our experiments. The source
code, along with a README file containing instructions, will be released to ensure reproducibility
once this paper is accepted.
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A DETAILED TRAINING SETTINGS FOR THE STRENGTH ESTIMATOR

The feature design in the strength estimator of Go is similar to AlphaZero (Silver et al., 2018).
Specifically, we use 18 channels to represent a board position, where the first 16 channels are the
board configurations from the past eight moves for both black and white stones. The remaining
two channels are binary indicators of the color of the next player, i.e., one channel for Black and
White. For chess, the feature design also follows the same approach as AlphaZero, which includes
119 input channels. During training, for each rank, we randomly select seven state-action pairs. We
also perform data augmentation to further enhance the diversity of the training data. The network
is optimized using stochastic gradient descent (SGD), with the loss function specified in Equation
5. It is important to note that when training SE∞, the policy and value loss for state-action pairs of
r∞ are not calculated, since these heads should only consider actual human players’ actions. The
learning rate is initially set at 0.01 and is halved after 100,000 training steps. The entire training
process encompasses 130,000 steps, consuming around 242 GPU hours for Go and 69 GPU hours for
chess on an NVIDIA RTX A5000 graphics card. Other hyperparameters are listed in Table 3.

Table 3: Hyperparameters for training strength estimators.

Parameter Go Chess

Number of Blocks 20 20
Input Channel 18 119
Hidden Channel 256 256
Learning Rate 0.01 to 0.005 0.01 to 0.005
Training Steps 130,000 130,000
Optimizer SGD SGD

Main Memory 384GB
Central Processing Unit (CPU) Intel Xeon Silver 4216 (2.1 GHz)
Graphical Processing Unit (GPU) NVIDIA RTX A5000
GPU Hours 242 69

B IN-DEPTH ANALYSIS FOR STRENGTH ESTIMATOR IN GO

We conduct in-depth analyses for strength estimators in Go. First, we present detailed insights into
predicting ranks from games, as detailed in Subsection B.1. Second, we demonstrate the outcomes of
strength prediction using fewer moves in a single game, discussed in Subsection B.2. Finally, we
explore predictions based solely on the first 50 actions or the last 50 actions in games, which are
elaborated in Subsection B.3 and Subsection B.4, respectively.

B.1 PREDICTING RANKS FROM GAMES

Figure 8 shows the accuracy of rank predictions for different networks. We observe that in Figure
8a and Figure 8b, SLvote and SLsum can only distinguish on some ranks, such as 3-5 kyu. This is
because these models do not contain sufficient information to differentiate all ranks based on a single
state-action during training (Moudřík & Neruda, 2016). In Figure 8c and Figure 8d, even though
we incorporated a prediction tolerance for these two methods, they still cannot perfectly distinguish
all ranks, even after 100 games. In Figure 8e and Figure 8f, although our models SE and SE∞
cannot perfectly predict all ranks without incorporating a prediction tolerance, they still achieve high
performance across all ranks. In Figure 8g and Figure 8h, when we allow a prediction tolerance, we
achieve 100% accuracy across all ranks. This result further indicates that our model can differentiate
the strength relationship across all ranks.

B.2 PREDICTING RANKS FROM GAME POSITIONS

We are also interested in whether we can predict the rank using only game positions. Specifically,
only one game position can be chosen for each game instead of all actions when predicting the
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Figure 8: Accuracy of rank prediction for different networks in Go.

ranks, shown in Figure 9. According to Figures 9a and 9b, both SLvote and SLsum show similar
performance as in the situation of using all actions. In our method, Figures 9c and 9d demonstrate
that across 20 games, the accuracy decreases from 80%, when predictions are based on all actions, to
approximately 60% when using just one action. This is intuitive because using the information from
the entire game would help capture the player’s strength. However, achieving 60% accuracy with
unrelated actions among 20 games indicates that our model can still predict accurate ranks based on
one action of different games.

B.3 PREDICTING RANKS FROM THE FIRST 50 ACTIONS IN THE GAME

We are interested in evaluating performance when using only the first 50 actions of a game, known as
the fuseki stage in Go. Figures 10a and 10b indicate that SLvote and SLsum, utilizing these initial
actions, achieve similar performance to predictions made using all actions in the game. Figures
10c and 10d present the prediction results by our methods when limited to the first 50 actions.
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Figure 9: Accuracy of rank prediction for different networks in the game positions of Go.

Clearly, the overall accuracy has declined. Notably, the accuracy for kyu players shows significant
downward trends. This is mainly because the actions in the fuseki stage at these ranks are similar,
thus complicating accurate predictions. This suggests that enhancing performance during the fuseki
could be crucial for human players aiming to progress from kyu to dan rank.

B.4 PREDICTING RANKS FROM THE LAST 50 ACTIONS IN THE GAME

Similarly, we examine the performance when using only the last 50 actions of the game, referred to as
the yose stage in Go. Figures 10e and 10f show that SLvote and SLsum, employing these final actions,
maintain similar performance to predictions based on all actions in the game. In our method, Figures
10g and 10h display the prediction results using only the last 50 actions. As before, the overall
accuracy has declined. However, the accuracy for 9 dan players between predictions made using the
entire game and just the last 50 actions does not differ significantly. This is likely because the yose
stage involves complex calculations and judgments, areas where top players excel. Furthermore, in
most games, especially those between the highest-skilled players, the outcome is often determined
before the yose stage. This leads to less practice and proficiency in this phase among players of lower
ranks. Additionally, we observe a significant drop in accuracy for 8 dan players when predictions are
based solely on yose stage. This could be because some 8 dan players have comparable yose skills to
those of 9 dan players, leading to some misclassifications of 8 dan players as 9 dan.
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(e) SLvote with last 50 actions
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(f) SLsum with last 50 actions
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Figure 10: Accuracy of rank prediction for different networks using only the first or the last 50
actions of the game in Go.
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C DETAILED EXPERIMENTS FOR STRENGTH ADJUSTMENT

Table 4 presents the value of z for SA-MCTSi used in subsection 4.3. For SA-MCTS, since the
strength index z does not directly correspond to any specific rank, we adjust z for each ri to ensure
that each SA-MCTSi and SE∞-MCTSi achieve a comparable win rate. As shown in Table 4, z
gradually decreases from r1 to r11, aligning with the results in the original paper, which indicate that
a greater z corresponds to a higher strength.

Table 4: z according to rank

Rank z

r1 (9 dan) 0.6
r2 (8 dan) 0.5
r3 (7 dan) 0.35
r4 (6 dan) 0.3
r5 (5 dan) 0.2
r6 (4 dan) 0.15
r7 (3 dan) 0.05
r8 (2 dan) -0.1
r9 (1 dan) -0.2
r10 (1-2 kyu) -0.6
r11 (3-5 kyu) -1.0

C.1 ADJUSTING STRENGTH WITH DIFFERENT BASELINES

In Figure 4, the baseline program is chosen as SE∞-MCTSi with i = 5 (5 dan). It would be interesting
to examine whether the relative strength remains consistent when different baseline models are used.
To further investigate this, we conduct a round-robin tournament by selecting three ranks (r4, r6,
and r8) and two representative methods (SA-MCTS and SE∞-MCTS, excluding SE-MCTS due to
its ineffective strength adjustment. Each combination involves 250 games. Table 5 summarizes the
results, with the win rates in each cell representing the performance of the y-axis player against the
x-axis player. Moreover, we compute the Elo rating of each model using this table. We initialize the
rating at 1500 for each model and iteratively update the ratings to match the expected win rates with
the observed pairwise outcomes. The rightmost column of Table 5 presents the resulting Elo ratings.
In summary, the Elo ratings confirm that higher-ranked models consistently achieve higher ratings,
demonstrating the robustness of our method across different baselines.

Table 5: The round-robin tournament among six MCTS programs: SA-MCTS4, SA-MCTS6,
SA-MCTS8, SE∞-MCTS4,SE∞-MCTS6, SE∞-MCTS8. For simplicity, we use abbreviations

SA-r4, SA-r6, SA-r8, SE∞-r4, SE∞-r6, and SE∞-r8 to represent each program.

SA-r4 SA-r6 SA-r8 SE∞-r4 SE∞-r6 SE∞-r8 Avg. Win Rate Elo

SA-r4 - 58.4% 67.2% 55.6% 62.0% 75.2% 63.7% 1587.13±6.12% ±5.83% ±6.17% ±6.03% ±5.36% ±2.64%

SA-r6
41.6% - 65.6% 40.4% 50.0% 66.0% 54.2% 1518.81±6.12% ±5.9% ±6.09% ±6.21% ±5.88% ±2.71%

SA-r8
32.8% 34.4% - 39.2% 39.2% 47.6% 38.6% 1432.55±5.83% ±5.9% ±6.06% ±6.06% ±6.2% ±2.69%

SE∞-r4
44.4% 59.6% 60.8% - 61.2% 78.0% 55.4% 1569.51±6.17% ±6.09% ±6.06% ±6.05% ±5.15% ±2.66%

SE∞-r6
38.0% 50.0% 60.8% 38.8% - 72.0% 47.9% 1515.01±6.03% ±6.21% ±6.06% ±6.05% ±5.58% ±2.68%

SE∞-r8
24.8% 34.0% 52.4% 22.0% 28.0% - 32.2% 1391.83±5.36% ±5.88% ±6.2% ±5.15% ±5.58% ±2.61%
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