
Under review as a conference paper at ICLR 2024

DIRECTIONAL DISTANCE FIELD FOR MODELING THE
DIFFERENCE BETWEEN 3D POINT CLOUDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantifying the dissimilarity between two unstructured 3D point clouds is chal-
lenging yet essential, with existing metrics often relying on measuring the distance
between corresponding points which can be either inefficient or ineffective. In this
paper, we propose a novel distance metric called directional distance field (DDF),
which computes the difference between the underlying 3D surfaces calibrated and
induced by a set of reference points. By associating each reference point with
two given point clouds through computing its directional distances to them, the
difference in directional distances of an identical reference point characterizes the
geometric difference between a typical local region of the two point clouds. Finally,
DDF is obtained by averaging the directional distance differences of all reference
points. We evaluate DDF on various optimization and unsupervised learning-based
tasks, including shape reconstruction, rigid registration, scene flow estimation, and
feature representation. Extensive experiments show that DDF achieves significantly
higher accuracy under all tasks in a memory and computationally efficient manner,
compared with existing metrics. As a generic metric, DDF can unleash the potential
of optimization and learning-based frameworks for 3D point cloud processing and
analysis. We include the source code in the supplementary material.

1 INTRODUCTION

(a) EMD (b) CD (c) Ours

Figure 1: Visual illustration of different distance met-
rics for 3D point cloud data. and are two point
clouds under evaluation, and are their underlying
surfaces, and the lines with arrows indicate the corre-
spondence. In contrast to existing metrics measuring
the difference between corresponded points, our metric
computes the difference between the local surfaces (the
ovals) underlying 3D point clouds that are indirectly
corresponded by reference points (the small circles) .

3D point cloud data, which is a set of points de-
fined by 3D coordinates to represent the geomet-
ric shape of an object or a scene, has been used
in various fields, such as computer vision, 3D
modeling, and robotics. Measuring the difference
between 3D point clouds is critical in many tasks,
e.g., reconstruction, rigid registration, etc. Dif-
ferent from 2D images, where pixel values are
structured with regular 2D coordinates, allowing
us to directly compute the difference between
two images pixel-by-pixel, 3D point clouds are
unstructured, i.e., there is no point-wise corre-
spondence naturally available between two point
clouds, posing a great challenge. The two widely used distance metrics, namely Earth Mover’s
Distance (EMD) (Rubner et al., 2000) and Chamfer Distance (CD) (Barrow et al., 1977) illustrated in
Figs. 1(a) and 1(b), first build point-wise correspondence between two point clouds and then compute
the distance between corresponding points. However, EMD is both memory and time-consuming as
it involves solving a linear programming problem for the optimal bijection. For each point in one
point cloud, CD seeks its nearest point in the other point cloud to establish the correspondence, and
it could easily reach a local minimum. Although some improved distance metrics (Wu et al., 2021;
Nguyen et al., 2021; Deng et al., 2021; Urbach et al., 2020) have been proposed, they are still either
inefficient or ineffective.

Existing distance metrics for 3D point cloud data generally concentrate on the point cloud itself,
aligning points to measure the point-wise difference. However, these metrics overlook the fact that
different point clouds obtained by different sampling could represent an identical 3D surface. In
this paper, we propose an efficient yet effective distance metric named Directional Distance Field

1

Under review as a conference paper at ICLR 2024

(DDF). Unlike previous metrics, DDF computes the difference between the underlying 3D surfaces
of two point clouds, as depicted in Fig. 1(c). Specifically, we first sample a set of 3D points called
reference points, which we use to induce and calibrate the local geometry of the surfaces underlying
point clouds, i.e., computing the directional distances of each reference point to the two point clouds
that approximately represent the underlying surfaces in implicit fields. Finally, we define DDF as
the average of the directional distance differences of all reference points. We conduct extensive
experiments on various tasks, including shape reconstruction, rigid registration, scene flow estimation,
and feature representation, demonstrating its significant superiority over existing metrics.

In summary, the main contributions of this paper are:
1. an efficient, effective, and generic distance metric for 3D point cloud data;
2. state-of-the-art benchmarks of rigid registration and scene flow estimation.

2 RELATED WORK

Distance Metrics for 3D Point Clouds. Most of the existing distance metrics for 3D point clouds
concentrate on the points in the point cloud. That is, they calculate the distance value based on the
point-to-point distances from different point clouds, such as CD (Barrow et al., 1977) and EMD
(Rubner et al., 2000). Specifically, EMD builds a global bi-directional mapping between the source
and target point clouds. Then, the sum or mean of the distances between corresponding points is
regarded as the distance between the point clouds. However, the computation of bijection is too
expensive, especially when the number of points is large. Differently, CD builds a local mapping
between point clouds by finding the nearest point in the other point cloud, making it more efficient
than EMD. However, such local correspondence between point clouds may result in local minima or
sub-optimal results. Hausdorff Distance (HD) (Huttenlocher et al., 1993) is modified from CD but
focuses more on the outliers. Thus, it struggles to handle the details of point clouds and usually serves
as an evaluation metric. Considering the distribution of point clouds, Wu et al. (2021) proposed
density-aware CD (DCD) by introducing density information as weights into CD, achieving a higher
tolerance to the outliers. Nguyen et al. (2021) proposed Sliced Wasserstein Distance (SWD) to
measure the distance between point clouds, making it more efficient and effective than EMD and
CD in the shape representation task. PointNetLK (Aoki et al., 2019) and FMR (Huang et al., 2020)
convert point clouds to feature vectors through PointNet (Qi et al., 2017) and utilize the distance of
features to measure the difference between point clouds. However, the global feature cannot represent
the details of the point clouds, and such a kind of distance metric relies heavily on the encoder.

The above-mentioned distance metrics concentrate on points and ignore the geometric nature of a
point cloud. In reality, the point clouds are sampled from the surface, and differently sampled point
clouds could represent the same surface. Therefore, we should measure the difference between the
underlying surfaces as the distance of the point clouds. ARL (Deng et al., 2021) randomly samples
lines and calculates their intersections on the two point clouds’ underlying surfaces approximately. It
then calculates the difference between each line’s intersections on the two point clouds to measure the
dissimilarity of the two point clouds. However, the calculation of the intersection is time-consuming,
and the randomness of the lines could also make the measurement unstable. To leverage the underlying
surfaces of point clouds, DPDist (Urbach et al., 2020) trains a network to regress the point-to-plane
distance between the two point clouds. However, the trained network’s accuracy in regressing
the point-to-plane distance would decrease if the distribution of point cloud changes, limiting its
generalization. Other approaches, such as RMA-Net (Feng et al., 2021), employ the projection of
point clouds onto 2D images and leverage image dissimilarity as a measure of the distance between
point clouds. Nevertheless, this projection process is time-consuming and susceptible to occlusion,
which imposes constraints on its practicality and application.

Distance Metric-driven 3D Point Cloud Processing. A distance metric is necessary for various
3D point cloud data processing and analysis tasks. One of the most common examples is the rigid
registration of point clouds. The traditional registration methods, such as ICP (Besl & McKay,
1992) and its variants (Censi, 2008; Yang et al., 2013; Zhou et al., 2016), utilize the distance metrics
between point clouds as the objective function to optimize. Some recent learning-based registration
methods, such as DCP (Wang & Solomon, 2019), FMR (Huang et al., 2020), and RPM-Net (Yew
& Lee, 2020), could become unsupervised with the distance metrics as the alignment item in their
loss functions during training. Besides, recent learning-based methods for scene flow estimation,
such as PointPWC-Net (Wu et al., 2020), NSFP (Li et al., 2021), and SCOOP (Lang et al., 2023),

2

Under review as a conference paper at ICLR 2024

adopt distance metrics as the alignment item in the loss functions to train the network without using
ground-truth scene flow as supervision, and they have achieve remarkable accuracy. The distance
metrics are also critical in some point cloud generation tasks, e.g., point cloud reconstruction (Yang
et al., 2018; Groueix et al., 2018), upsampling (Yu et al., 2018a;b; Qian et al., 2021; 2020), completion
(Yuan et al., 2018; Yu et al., 2021; Zhou et al., 2022; Xiang et al., 2021; Xie et al., 2020), etc., where
the difference between the generated and ground-truth point clouds is calculated as the main loss to
train the networks.

3 PROPOSED METHOD

3.1 PROBLEM STATEMENT AND OVERVIEW

Given any two unstructured 3D point clouds P1 ∈ RN1×3 and P2 ∈ RN2×3 with N1 and N2 points,
respectively, we aim to construct a differentiable distance metric, which can quantify the difference
between them effectively and efficiently to drive downstream tasks. As mentioned in Section 1, the
problem is fundamentally challenging due to the lack of correspondence information between P1

and P2. Existing metrics generally focus on establishing the point-wise correspondence between P1

and P2 to compute the point-to-point difference, making them either ineffective or inefficient.

Figure 2: Overall illustration of the proposed
distance metric in 2D condition. The orange
points represent the point clouds under eval-
uation, the blue points represent the gener-
ated reference points, and the color inside
the dashed rectangles represents the values
of DDFs.

In contrast to existing metrics, we address this problem by
measuring the difference between the underlying surfaces
of P1 and P2. As shown in Fig. 2, with a set of reference
points generated, we associate each reference point with
P1 and P2 to implicitly model their local surface geometry
through the proposed directional distance fields (DDFs).
Then we calculate the difference between the local surface
geometry reference point-by-reference point and average
the differences of all reference points as the final distance
between P1 and P2. Such a process is memory-saving,
computationally efficient, and effective. In what follows,
we will introduce the technical details of the proposed
distance metric.

3.2 GENERATION OF REFERENCE POINTS

Figure 3: Illustration of
the reference point gen-
eration. The radius of
the red ball represents
the standard deviation
of the added Gaussian
noise.

We generate a set of 3D points Q = {qm ∈ R3}Mm=1 named reference points,
which will be used to indirectly establish the correspondence between P1

and P2 and induce the local geometry of the surfaces underlying P1 and
P2 in an implicit manner. Technically, after selecting either one of P1 and
P2

1 we add Gaussian noise to each point, where the standard deviation is T
times the distance to its nearest point in the point cloud to adapt the different
densities at the location of each point. We repeat the noise addition process
R times randomly to generate R reference points that are distributed near to
the underlying surface. The whole generation process is shown in Fig. 3. See
Table 8 for the ablative studies on this process.

3.3 DIRECTIONAL DISTANCE FIELD

(a) (b)
Figure 4: Illustration of the reference point-induced lo-
cal surface geometry of a 3D point cloud. (a) f(q,P).
(b) v(q,P).

Let P ∈ {P1,P2}, q ∈ Q, and Ω(q,P) :=
{pk}Kk=1 be the set of q’s K-NN (K-Nearest
Neighbor) points in P. Note that we sort all points
in Ω(q,P) according to their distances to q, i.e.,
∥p1 − q∥2 ≤ ∥p2 − q∥2 ≤ ... ≤ ∥pK − q∥2,
where ∥ · ∥2 is the ℓ2 norm of a vector. Denote
by S the underlying surface of P. We define an

1For point cloud generation-based tasks, where one point cloud is used to supervise a network to generate the
other point cloud, the one used as supervision will be selected to generate reference points because the generated
one is messy in initial iterations, lacking sufficient geometric meaning.

3

Under review as a conference paper at ICLR 2024

implicit field, namely Directional Distance Field (DDF), to implicitly characterize S. At reference
point q, DDF consists of a distance and a direction, denoted as f(q,P) ∈ R1 and v(q,P) ∈ R3,
respectively. Specifically, as depicted in Fig. 4(a), f(q,P) is defined as the weighted sum of the
distances between q and each pk ∈ Ω(q,P):

f(q,P) :=

∑K
k=1 w(pk,q) · ∥pk − q∥2∑K

k=1 w(pk,q)
, where w(pk,q) =

1

∥pk − q∥22
. (1)

Similarly, as shown in Fig. 4(b), v(q,P) is defined as the weighted sum of the vectors from each
pk ∈ Ω(q,P) to q:

v(q,P) :=

∑K
k=1 w(pk,q) · (pk − q)∑K

k=1 w(pk,q)
. (2)

Then, we concatenate f(q,P) and v(q,P) to form a 4D vector g(q,P) = [f(q,P)||v(q,P)] ∈ R4

as the value of DDF at the location of q. The DDF at all reference points could approximately
characterizes S, i.e., given Q associated with a DDF, the structure of S can be approximately
inferred.

3.4 LOCAL SURFACE GEOMETRY-DRIVEN DISTANCE METRIC

We measure the dissimilarity between P1 and P2 by calculating the difference between their DDFs
obtained through Eqs. (1) and (2). Specifically, for a typical reference point qm ∈ Q, we have

d(qm,P1,P2) = ∥g(qm,P1)− g(qm,P2)∥1, (3)
where ∥ · ∥1 computes the ℓ1 norm of a vector. In practice, we notice that if the weights in g(qm,P1)
and g(qm,P2) are derived independently using the inverse distance for two point clouds, for the point
cloud to be optimized/generated, the directional distance will be a high-order non-linear function of
its points, thereby complicating the optimization process. To avoid this, g(qm,P1) and g(qm,P2)
should share identical weights {w}Kk=1, where the weights are computed from P1 (resp. P2) and
then shared with P2 (resp. P1) according to the task. Since the points in Ω(qm,P1) and Ω(qm,P2)
are sorted in the same order, the K-NN points at the same rank in two point clouds share the same
weights. The proposed distance metric for 3D point clouds is finally defined as the weighted sum of
d(qm,P1,P2) over all reference points:

DDDF(P1,P2) =
1

M

∑
qm∈Q

s(qm,P1,P2) · d(qm,P1,P2), (4)

where s(qm,P1,P2) = Exp(−β · d(qm,P1,P2)) is the confidence score of d(qm, P1, P2) with
β ≥ 0 being a hyperparameter. Particularly, we introduce s(qm) to cope with the case where P1 and
P2 are partially overlapped.

Remark. According to Eqs. (3) and (4), it is obvious that the proposed DDF satisfies non-negativity,
symmetry, and identity of indiscernibles, the essential properties possessed by a distance metric.
Regarding triangle inequality, we refer readers to Appendix Sec. A for the proof. Second, our
DDF showcases remarkable efficiency as it indirectly calibrates the point clouds through pre-defined
reference points, a departure from the time-consuming correspondence matching approach used
in previous methods. Also, our DDF is more effective by quantifying the disparity in underlying
surfaces rather than focusing solely on point-wise differences.

4 EXPERIMENTS

To demonstrate the effectiveness and superiority of the proposed DDF, we applied it to a wide
range of downstream tasks, including shape reconstruction, rigid point cloud registration, scene flow
estimation, and feature representation. We made comparisons with the two well-known metrics i.e.,
EMD (Rubner et al., 2000) and CD (Barrow et al., 1977), and two recent metrics, i.e., DCD (Wu
et al., 2021) and ARL (Deng et al., 2021)2. In all experiments, we set R = 10, T = 3, and K = 5.
We set β = 3 in rigid registration due to the partially overlapping point clouds, and β = 0 in the other
three tasks. We conducted all experiments on an NVIDIA RTX 3090 with Intel(R) Xeon(R) CPU.

2As ARL was primarily designed for rigid point cloud registration, ARL was evaluated only with the
registration task in our experiments.

4

Under review as a conference paper at ICLR 2024

Table 1: Quantitative comparisons of reconstructed point clouds and surfaces. The best results are highlighted in
bold. ↓ (resp. ↑) indicates the smaller (resp. the larger), the better.

Shape Loss Point Cloud Triangle Mesh
CD (×10−2) ↓ HD (×10−2) ↓ P2F (×10−3) ↓ NC ↑ F-0.5% ↑ F-1% ↑

Chair

EMD 2.935 12.628 9.777 0.781 0.277 0.524
CD 2.221 9.430 4.543 0.839 0.465 0.721
DCD 3.020 10.755 4.164 0.892 0.674 0.868
Ours 1.898 6.787 2.591 0.908 0.709 0.913

Sofa

EMD 2.534 7.355 7.433 0.879 0.459 0.717
CD 1.972 5.323 3.392 0.920 0.668 0.887
DCD 2.937 5.648 2.756 0.929 0.755 0.917
Ours 1.770 4.191 2.040 0.940 0.806 0.949

Table

EMD 2.996 11.374 8.921 0.768 0.243 0.473
CD 2.272 8.881 4.353 0.824 0.403 0.658
DCD 2.250 8.031 4.643 0.868 0.577 0.789
Ours 1.974 6.302 2.480 0.900 0.643 0.873

Average

EMD 2.821 10.452 8.720 0.809 0.326 0.571
CD 2.155 7.878 4.096 0.861 0.521 0.755
DCD 2.735 8.144 3.854 0.898 0.674 0.862
Ours 1.880 5.760 2.370 0.916 0.719 0.911

4.1 3D SHAPE RECONSTRUCTION

We considered a learning-based point cloud shape reconstruction task. Technically, we followed Fold-
ingNet (Yang et al., 2018) to construct a reconstruction network, where regular 2D grids distributed
on a square area [−δ, δ]2 are fed into MLPs to regress 3D point clouds. The network was trained
by minimizing the distance between the reconstructed point cloud and the given point cloud in an
overfitting manner, i.e., each shape has its individual network parameters. Additionally, based on
the mechanism of the reconstruction network and differential geometry, we could obtain the normal
vectors of the reconstructed point cloud through the backpropagation of the network. Finally, we
used SPSR (Kazhdan & Hoppe, 2013) to recover the mesh from the resulting point cloud and its
normal vectors. We refer the readers to Appendix Sec. B for more details.

Implementation Details. We utilized three categories of the ShapeNet dataset (Chang et al., 2015),
namely chair, sofa, and table, each containing 200 randomly selected shapes. For each shape, we
normalized it within a unit cube and sampled 4096 points from its surface uniformly using PDS
(Bridson, 2007) to get the point cloud. As for the input regular 2D grids, we set δ = 0.3 and the
size to be 64× 64. We used the ADAM optimizer to optimize the network for 104 iterations with a
learning rate of 10−3.

E
M

D
C

D
D

C
D

O
ur

s
G

T

Figure 5: Visual comparisons of reconstructed shapes in the form of point clouds and surfaces under different
distance metrics.

Comparisons. To quantitatively compare different distance metrics, we employed CD, HD, and
the point-to-surface distance (P2F) to evaluate the accuracy of reconstructed point clouds. As for

5

Under review as a conference paper at ICLR 2024

Table 2: Quantitative comparisons of rigid registration on the Human dataset.

Method Clean Noise Outlier
RE (◦) ↓ TE (m) ↓ RE (◦) ↓ TE (m) ↓ RE (◦) ↓ TE (m) ↓

Optimized

ICP 1.276 0.068 6.790 0.236 37.515 0.590
FGR 19.684 0.384 48.854 0.732 56.111 0.892
S-ICP 1.587 0.056 3.754 0.168 16.757 0.261
EMD 7.237 0.642 7.371 0.641 18.381 0.537
CD 10.692 0.421 11.442 0.468 33.113 0.462
DCD 40.973 0.933 41.457 0.942 41.671 0.937
ARL 1.245 0.085 2.116 0.150 42.842 0.759
Ours 1.040 0.040 1.745 0.106 3.991 0.080

Unsupervised
(RPM-Net)

EMD 7.667 0.638 8.572 0.635 17.582 0.575
CD 2.197 0.287 8.111 0.392 17.120 0.383
DCD 8.735 0.623 5.862 0.184 20.344 0.217
ARL 1.090 0.075 2.873 0.190 44.105 0.804
Ours 0.793 0.053 2.253 0.128 4.593 0.124

(a) Running time (b) GPU Memory

Figure 6: Efficiency comparison under 3D shape recon-
struction with various numbers of points.

the reconstructed triangle meshes, we used Nor-
mal Consistency (NC) and F-Score with thresh-
olds of 0.5% and 1%, denoted as F-0.5% and
F-1%, as the evaluation metrics. Table 1 and
Fig. 5 show the numerical and visual results,
respectively, where both quantitative accuracy
and visual quality of reconstructed shapes by
the network trained with our DDF are much bet-
ter. Besides, due to the difficulty in establishing
the optimal bijection between a relatively large
number of points, i.e., 4096 points in our experiments, the network trained with EMD produces even
worse shapes than that with CD and DCD. We included more results and analysis in Appendix Sec. B

Efficiency Analysis. We compared the running time in Fig. 6(a), where it can be seen that with the
number of points increasing, the reconstruction driven by EMD requires much more time to optimize
than that by CD and our DDF. Fig. 6(b) compares the GPU memory consumption, showing that these
three distance metrics are comparable when the number of points is relatively small, but when dealing
with a large number of points, EMD requires more GPU memory.

4.2 RIGID REGISTRATION

Given source and target point clouds, denoted as Psrc ∈ RNsrc×3 and Ptgt ∈ RNtgt×3, respectively,
rigid registration is to seek a spatial transformation [R, t] to align Psrc with Ptgt, where R ∈ SO(3)
is the rotation matrix and t ∈ R3 is the translation vector. The optimization-based registration can be
achieved by directly solving the following problem:

{R̂, t̂} = argmin
R,t

D (T (Psrc,R, t),Ptgt) , (5)

where D(·, ·) is the distance metric that can be EMD, CD, DCD, ARL, or our DDF, and T (·, ·, ·)
refers to applying the rigid transformation on a point cloud. We made comparisons with three
well-known optimization-based rigid registration methods, i.e., ICP (Besl & McKay, 1992), FGR
(Zhou et al., 2016), and S-ICP (Rusinkiewicz, 2019). Additionally, We also considered unsupervised
learning-based rigid registration. Specifically, following (Deng et al., 2021), we modified RPM-Net
(Yew & Lee, 2020), a supervised learning-based registration method, to be unsupervised by using a
distance metric to drive the learning of the network. See Appendix Sec. C for more details.

Implementation Details. We used the Human dataset provided in (Deng et al., 2021), containing
5000 pairs of source and target point clouds for training and 500 pairs for testing. The source point
clouds are 1024 points, while the target ones are 2048 points, i.e., they are partially overlapped.
We used Open3D (Zhou et al., 2018) to implement ICP and FGR, and the official code released by
the authors to implement S-ICP. For the optimization-based methods, we utilized Lie algebraic to
represent the transformation and optimized it with the ADAM optimizer for 1000 iterations with
a learning rate of 0.02. For the unsupervised learning-based methods, we kept the same training
settings as (Deng et al., 2021).

Comparison. Following previous registration work (Choy et al., 2020), we adopted Rotation Error
(RE) and Translation Error (TE) as the evaluation metrics. As shown in Table 2 and Fig. 7, our DDF
outperforms the baseline methods in both optimization-based and unsupervised learning methods.
ICP, FGR, S-ICP, as long as EMD, DCD and CD, can easily get local optimal solutions since they
struggle to properly handle the outliers in the non-overlapping regions. ARL (Deng et al., 2021)

6

Under review as a conference paper at ICLR 2024

Initial
RE (◦)
TE (m)

ICP
37.455
0.401

FGR
73.212
1.358

Opt-EMD
2.311
0.745

Opt-CD
9.044
0.311

Opt-ARL
0.804
0.074

Opt-Ours
0.425
0.039

RPM-EMD
13.799
0.848

RPM-CD
109.364
0.921

RPM-ARL
1.260
0.223

RPM-Ours
0.867
0.088

Figure 7: Visual comparisons of rigid registration results. The blue and green points represent the source and
target point clouds, respectively. Opt-X represents the optimization-based method in Eq. (5) with a chosen
distance metric. ü Zoom in to see details.

and our DDF do not have such a disadvantage, but the randomly sampled lines in ARL decrease the
registration accuracy.

Table 3: Running time (s) and GPU memory
(GB) costs of different distance metrics under the
optimization-based rigid registration task.

Time GPU Memory
EMD 11 1.680
CD 11 1.809
DCD 12 1.809
ARL 281 7.202
Ours 13 1.813

Efficiency Analysis. Table 3 lists the running time
and GPU memory costs of the optimization-based
registration driven by different metrics3. Since
the number of points is relatively small, EMD has
comparable running time and GPU memory con-
sumption to CD, DCD, and our DDF. In contrast,
ARL (Deng et al., 2021) is much less efficient
because of the calculation of the intersections.

4.3 SCENE FLOW ESTIMATION

This task aims to predict point-wise offsets F ∈ RNsrc×3, which can align source point cloud Psrc to
target point cloud Ptgt. The optimization-based methods directly solve

F̂ = argmin
F

D(Psrc + F,Ptgt) + αRsmooth(F), (6)

where Rsmooth(·) is the spatial smooth regularization term and the hyperparameter α > 0 balances
the two iterms. Besides, we also evaluated the proposed DDF by incorporating it into unsupervised
learning-based frameworks, i.e., replacing the distance metrics of existing unsupervised learning-
based frameworks with our DDF to train the network, We adopted two state-of-the-art unsupervised
learning-based scene flow estimation methods named NSFP (Li et al., 2021) and SCOOP (Lang et al.,
2023), both of which utilize CD to drive the learning of the network.

Implementation Details. We used the Flyingthings3D dataset (Mayer et al., 2016) preprocessed
by (Gu et al., 2019), where point clouds each with Nsrc = Ntgt = 8192 points were sampled
randomly and non-uniformly distributed. For the optimization-based methods, we used ℓ2-smooth
regularization, set α = 50, and optimized the scene flow directly with the ADAM optimizer for 500
iterations with a learning rate of 0.01. For the unsupervised learning-based methods, we adopted the
same training settings as their original papers.

Table 4: Quantitative comparisons of scene flow estimation on the Flyingthings3D dataset .
Method EPE3D(m)↓ Acc-0.05 ↑ Acc-0.1↑ Outliers ↓

Optimized
EMD 0.3681 0.1894 0.4226 0.7838
CD 0.1557 0.3489 0.6581 0.6799
DCD 0.7045 0.0309 0.0980 0.9965
Ours 0.0843 0.5899 0.8722 0.4707

Unsupervised

NSFP 0.0899 0.6095 0.8496 0.4472
NSFP + Ours 0.0662 0.7346 0.9107 0.3426
SCOOP 0.0839 0.5698 0.8516 0.4834
SCOOP + Ours 0.0742 0.6134 0.8858 0.4497

Comparison. Following (Li et al., 2021; Lang et al., 2023), we employed End Point Error (EPE),
Flow Estimation Accuracy (Acc) with thresholds 0.05 and 0.1 (denoted as Acc-0.05 and Acc-0.1), and
Outliers as the evaluation metrics. From the results shown in Table 4 and Fig. 8, it can be seen that our
DDF drives much more accurate scene flows than EMD, CD, and DCD under the optimization-based
framework, and our DDF further boosts the accuracy of SOTA unsupervised learning-based methods
to a significant extent, demonstrating its superiority and the importance of the distance metric in 3D
point cloud modeling.

3Note that for the unsupervised learning-based methods, different distance metrics are only used to train the
network, and the inference time of a trained network with different metrics is equal.

7

Under review as a conference paper at ICLR 2024

GT
EPE3D (m)

Acc-0.05
Acc-0.1
Outliers

Opt-EMD
0.247
0.437
0.672
0.361

Opt-CD
0.079
0.627
0.963
0.069

Opt-Ours
0.067
0.875
0.973
0.044

NSFP
0.086
0.527
0.974
0.057

NSFP + Ours
0.050
0.859
0.991
0.010

SCOOP
0.071
0.648
0.989
0.040

SCOOP + Ours
0.047
0.892
0.995
0.019

Figure 8: Visual comparisons of scene flow estimation. The blue and green points represent the source and
target point clouds, respectively, and the red points are the warped source point cloud with estimated scene flows.
ü Zoom in to see details.

Table 5: Running time (s) and GPU memory
(GB) costs of different distance metrics under
the optimization-based scene flow estimation
task.

Time GPU Memory
EMD 1011 2.204
CD 7 1.704
DCD 8 1.704
Ours 14 1.725

Efficiency Analysis.We also compared the running
time and GPU memory cost of different metrics in
the optimization-based framework. As shown in Table
5, EMD consumes much more time and GPU memory
than CD and our DDF.

4.4 FEATURE REPRESENTATION

In this experiment, we trained an auto-encoder with different distance metrics used as the reconstruc-
tion loss to evaluate their abilities. Technically, an input point cloud is encoded into a global feature
through the encoder, which is further decoded to reconstruct the input point cloud through a decoder.
After training, we used the encoder to represent point clouds as features for classification by an SVM
classifier.

Implementation Details. We built an auto-encoder with MLPs and used the ShapeNet (Chang et al.,
2015) and ModelNet40 (Wu et al., 2015) datasets for training and testing, respectively. We trained
the network for 300 epochs using the ADAM optimizer with a learning rate of 10−3. We refer the
readers to Appendix Sec. E for more details.

Table 6: Classification accuracy by SVM on
ModelNet40.

Loss Function EMD CD Ours
Accuracy (%) 78.12 78.89 81.28

Comparison. As listed in Table 6, the higher classifica-
tion accuracy by our DDF demonstrates the auto-encoder
driven by our DDF can learn more discriminative features.
Besides, we also used T-SNE (Van der Maaten & Hinton,
2008) to visualize the 2D embeddings of the global features
of 1000 shapes from 10 categories in Fig. 9 to show the advantages of our method more intuitively.

(a) EMD (b) CD (c) Ours

Figure 9: The T-SNE clustering visualization of the features obtained from the auto-encoder trained with different
distance metrics.

4.5 ABLATION STUDY

We carried out comprehensive ablation studies on shape reconstruction and rigid registration to verify
the rationality of the design in our DDF.

Necessity of shared weights. When calculating the DDFs of the two point clouds, their weights in
Eqs. (1) and (2) are shared, which can benefit the modeling accuracy. To verify this, we conducted an
ablative study, i.e., their weights are independently calculated. The numerical results shown in Table
7, demonstrate the advantage of using shared weights for the two point clouds.

Table 7: Quantitative analysis of the effect of DDF with independent and shared weights on shape reconstruction.

CD (×10−2) ↓ HD (×10−2) ↓ P2F (×10−3) ↓ NC ↑ F-0.5% ↑ F-1% ↑
Independent Weights 1.964 5.939 2.388 0.898 0.631 0.848

Shared Weights 1.880 5.760 2.370 0.916 0.719 0.911

8

Under review as a conference paper at ICLR 2024

Table 8: Reconstruction accuracy under different
choices of directional distance.

Geometry NC ↑ F-0.5% ↑ F-1% ↑
f 0.791 0.611 0.776
v 0.907 0.675 0.888
g 0.916 0.719 0.911

Necessity of f(·, ·) and v(·, ·). We removed f or v
from the directional distance g when modeling the lo-
cal surface geometry in Section 3.3. The accuracy
of reconstructed 3D mesh shapes is listed in Table 8,
where it can be seen that removing either one of f and v
would decrease the reconstruction accuracy, especially
v, because using f or v alone could hardly characterize the underlying surfaces of point clouds.

Table 9: The effect of K on reconstruction accuracy.
K NC ↑ F-0.5% ↑ F-1% ↑ Time (s) ↓
1 0.913 0.687 0.888 119
3 0.916 0.717 0.908 124
5 0.916 0.719 0.911 126
10 0.913 0.712 0.907 132

Size of Ω(q,P). We changed the size of Ω(q,P)
by varying the value of K used in Eqs. (1) and (2).
As shown in Table 9, a small or large value of K
would decrease the performance of DDF because a
small K only covers a tiny region on the point cloud,
resulting in g(q,P) being unable to represent the
local surface geometry induced by q, while a large K includes too many points, making g(q,P)
would become smooth and ignore the details of the local surface geometry induced by q.

Table 10: Reconstruction accuracy under different set-
tings of the reference points.

R T NC ↑ F-0.5% ↑ F-1% ↑ Time (s) ↓
1 3 0.899 0.610 0.831 110
5 3 0.912 0.686 0.886 112

20 3 0.913 0.693 0.893 149
10 1 0.916 0.722 0.909 126
10 5 0.911 0.692 0.896 126
10 10 0.891 0.610 0.836 126
10 3 0.916 0.719 0.911 126

Reference Points. We studied how the number of
reference points affects DDF by varying the value
of R. As shown in Table 10, too few reference
points cannot sufficiently capture the local surface
geometry difference, while too many reference
points are not necessary for improving perfor-
mance but compromise efficiency. When R = 1,
our DDF has the same computational complexity
as CD. In this case, our DDF still outperforms
CD, thereby demonstrating that the superior performance of our DDF is primarily attributed to its
well-designed structure rather than an increase in computational complexity. Moreover, we also
studied how the distribution of reference points affects DDF by varying the value of T , concluding
that the reconstruction accuracy decreases if the reference points are either too close to or too far
from the underlying surface.

Table 11: Effect of the value of β on
rigid registration accuracy.

β RE (◦) TE (m)
0 5.637 0.286
1 1.598 0.080
3 1.040 0.040
5 1.290 0.037
10 1.769 0.046

Effectiveness of s(q) in Rigid Registration. We set various
values of β in Eq. (4) in the rigid registration task. As shown
in Table 11, when β = 0, the registration accuracy decreases
significantly because the source and target point clouds are par-
tially overlapped, and those reference points, which correspond
to the non-overlapping regions and negate the optimization
process, are still equally taken into account. On the contrary,
if the value of β is large, the registration accuracy only drops
slightly. The reason is that the weights of the reference points with similar local surface geometry
differences would be quite different, and the details of the point clouds may be ignored, making the
registration accuracy slightly affected.

5 CONCLUSION

We have introduced DDF, a novel, robust, and generic distance metric for 3D point clouds. DDF
measures the difference between the local surfaces underlying 3D point clouds under evaluation,
which is significantly different from existing metrics. Our extensive experiments have demonstrated
the significant superiority of DDF in terms of both efficiency and effectiveness for various tasks,
including shape reconstruction, rigid registration, scene flow estimation, and feature representation.
Besides, comprehensive ablation studies have validated its rationality. DDF can further unleash
the potential of optimization and learning-based frameworks to advance the field of 3D point cloud
processing and analysis.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan, and Simon Lucey. Pointnetlk: Robust
& efficient point cloud registration using pointnet. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7163–7172, 2019.

Harry G Barrow, Jay M Tenenbaum, Robert C Bolles, and Helen Cf Wolf. Parametric correspon-
dence and chamfer matching: Two new techniques for image matching. In Proceedings: Image
Understanding Workshop, pp. 21–27. Science Applications, Inc, 1977.

Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor Fusion IV: Control
Paradigms and Data Structures, volume 1611, pp. 586–606. Spie, 1992.

Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH 2007
sketches, pp. 22–es. 2007.

Andrea Censi. An icp variant using a point-to-line metric. In 2008 IEEE International Conference on
Robotics and Automation, pp. 19–25. Ieee, 2008.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Christopher Choy, Wei Dong, and Vladlen Koltun. Deep global registration. In Proceedings of the
IEEE/CVF conference on Computer Vision and Pattern Recognition, pp. 2514–2523, 2020.

Zhi Deng, Yuxin Yao, Bailin Deng, and Juyong Zhang. A robust loss for point cloud registration.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6138–6147,
2021.

Wanquan Feng, Juyong Zhang, Hongrui Cai, Haofei Xu, Junhui Hou, and Hujun Bao. Recurrent multi-
view alignment network for unsupervised surface registration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10297–10307, 2021.

Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A
papier-mâché approach to learning 3d surface generation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 216–224, 2018.

Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and Panqu Wang. Hplflownet: Hierarchical
permutohedral lattice flownet for scene flow estimation on large-scale point clouds. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3254–3263, 2019.

Xiaoshui Huang, Guofeng Mei, and Jian Zhang. Feature-metric registration: A fast semi-supervised
approach for robust point cloud registration without correspondences. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11366–11374, 2020.

Daniel P Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. Comparing images using
the hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):
850–863, 1993.

Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Transactions
on Graphics (ToG), 32(3):1–13, 2013.

Itai Lang, Dror Aiger, Forrester Cole, Shai Avidan, and Michael Rubinstein. Scoop: Self-supervised
correspondence and optimization-based scene flow. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5281–5290, 2023.

Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey. Neural scene flow prior. volume 34, pp.
7838–7851, 2021.

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy,
and Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4040–4048, 2016.

10

Under review as a conference paper at ICLR 2024

Trung Nguyen, Quang-Hieu Pham, Tam Le, Tung Pham, Nhat Ho, and Binh-Son Hua. Point-
set distances for learning representations of 3d point clouds. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 10478–10487, 2021.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 652–660, 2017.

Guocheng Qian, Abdulellah Abualshour, Guohao Li, Ali Thabet, and Bernard Ghanem. Pu-gcn:
Point cloud upsampling using graph convolutional networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11683–11692, 2021.

Yue Qian, Junhui Hou, Sam Kwong, and Ying He. Pugeo-net: A geometry-centric network for 3d
point cloud upsampling. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIX, pp. 752–769. Springer, 2020.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for
image retrieval. International Journal of Computer Vision, 40(2):99, 2000.

Szymon Rusinkiewicz. A symmetric objective function for icp. ACM Transactions on Graphics
(TOG), 38(4):1–7, 2019.

Dahlia Urbach, Yizhak Ben-Shabat, and Michael Lindenbaum. Dpdist: Comparing point clouds
using deep point cloud distance. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16, pp. 545–560. Springer, 2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(11), 2008.

Yue Wang and Justin M Solomon. Deep closest point: Learning representations for point cloud
registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
3523–3532, 2019.

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, and Dahua Lin. Density-aware cham-
fer distance as a comprehensive metric for point cloud completion. In In Advances in Neural
Information Processing Systems (NeurIPS), 2021, 2021.

Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li Fuxin. Pointpwc-net: Cost volume on
point clouds for (self-) supervised scene flow estimation. In European Conference on Computer
Vision, pp. 88–107. Springer, 2020.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1912–1920, 2015.

Peng Xiang, Xin Wen, Yu-Shen Liu, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Zhizhong Han.
Snowflakenet: Point cloud completion by snowflake point deconvolution with skip-transformer.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5499–5509,
2021.

Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao, Shengping Zhang, and Wenxiu Sun.
Grnet: Gridding residual network for dense point cloud completion. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX, pp.
365–381. Springer, 2020.

Jiaolong Yang, Hongdong Li, and Yunde Jia. Go-icp: Solving 3d registration efficiently and globally
optimally. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1457–
1464, 2013.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via
deep grid deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 206–215, 2018.

11

Under review as a conference paper at ICLR 2024

Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point matching using learned features. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June
2020.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Ec-net: an edge-aware
point set consolidation network. In Proceedings of the European Conference on Computer Vision,
pp. 386–402, 2018a.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and PhengAnn Heng. Pu-net: Point cloud
upsampling network. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2790–2799, 2018b.

Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu, and Jie Zhou. Pointr: Diverse
point cloud completion with geometry-aware transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 12498–12507, 2021.

Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. Pcn: Point completion
network. In 2018 International Conference on 3D Vision (3DV), pp. 728–737. IEEE, 2018.

Haoran Zhou, Yun Cao, Wenqing Chu, Junwei Zhu, Tong Lu, Ying Tai, and Chengjie Wang.
Seedformer: Patch seeds based point cloud completion with upsample transformer. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part III, pp. 416–432. Springer, 2022.

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global registration. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part II 14, pp. 766–782. Springer, 2016.

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A modern library for 3d data processing.
arXiv preprint arXiv:1801.09847, 2018.

Appendix

A PROOF OF TRIANGLE INEQUALITY

Given three sets of point clouds denoted as P1, P2, and P3, along with the generated reference point
set Q, our objective is to demonstrate the validity of the following inequality:

DDDF(P1,P2) +DDDF(P2,P3) ≥ DDDF(P1,P3). (7)

For ease of description, we denote the differences introduced by a reference point qm ∈ Q,
d(qm,P1,P3), d(qm,P1,P2) and d(qm,P2,P3), as d13, d12, and d23, respectively. According to
the triangle inequality, these three item satisfies

d12 + d23 ≥ d13. (8)

We denote z(x) = Exp(−βx) · x, and we only need to prove the following inequality

z(d12) + z(d23) ≥ z(d13).

As outlined in Section 3.2, the reference points are generated in proximity to the underlying surfaces of
the point clouds. Consequently, the differences introduced by the reference point qm are sufficiently
small, such that they are less than 1

β , i.e., d13, d12, d23 < 1
β .

On the other hand, we notice that the function z(x) has the following two properties:

• z(x) is monotonically increasing in the period (0, 1
β),

• for any non-negative constant a ≤ 1, it satisfies z(ax) ≥ a · z(x) in the period (0, 1
β).

12

Under review as a conference paper at ICLR 2024

If at least one of d12 and d23 is greater than d13, the triangle inequality obviously holds. If both d12
and d23 are not greater than d13, they could be represented as d12 = a1d13 and d23 = a2d13, where
0 < a1, a2 ≤ 1 and a1 + a2 ≥ 1. According to the second property of z(x), there are

z(d12) = z(a1d13) ≥ a1 · z(d13),
z(d23) = z(a2d13) ≥ a2 · z(d13).

By adding these two inequalities, we have
z(d12) + z(d23) ≥ (a1 + a2) · z(d13)

≥ z(d13).

B SHAPE RECONSTRUCTION

Network Architecture. Fig. 10 shows the architecture of the neural network F(·) : R2 → R3 used
for 3D shape reconstruction, which maps a 2D grid u := [u1, u2]

T to a 3D coordinate x := [x, y, z]T,
i.e., x = F(u).

Normal Estimation.

Figure 10: The network architecture used for 3D shape reconstruction.

According to the differential geometric property of F , we could obtain the normal vector of a typical
3D point x corresponding to u by

n(x) =

∂F(u)
∂u1

× ∂F(u)
∂u2

∥∂F(u)
∂u1

× ∂F(u)
∂u2

∥2
, (9)

where × is the cross product of two vectors, and the partial derivatives can be calculated through the
backpropagation of the network. The resulting normal vectors as well as the 3D coordinates are used
for mesh reconstruction via SPSR (Kazhdan & Hoppe, 2013).

Evaluation Metric. Let Srec and SGT denote the reconstructed and ground-truth 3D meshes,
respectively, on which we randomly sample Neval = 105 points, denoted as Prec and PGT. For each
point on Prec and PGT, the normal of the triangle face where it is sampled is considered to be its
normal vector, and the normal sets of Prec and PGT are denoted as Nrec and NGT, respectively.

Let NN Norm(x,P) be the operator that returns the normal vector of the point x’s nearest point in
the point cloud P. The NC is defined as

NC(Srec,SGT) =
1

Neval

∑
x∈Prec

|Nrec(x) · NN Normal(x,PGT)|

+
1

Neval

∑
x∈PGT

|NGT(x) · NN Normal(x,Prec)| .
(10)

The F-Score is defined as the harmonic mean between the precision and the recall of points that lie
within a certain distance threshold ϵ between Srec and SGT,

F-Score(Srec,SGT, ϵ) =
2 · Recall · Precision
Recall+ Precision

, (11)

where

Recall(Srec,SGT, ϵ) =

∣∣∣∣{x1 ∈ Prec, s.t. min
x2∈PGT

∥x1 − x2∥2 < ϵ

}∣∣∣∣ ,
Precision(Srec,SGT, ϵ) =

∣∣∣∣{x2 ∈ PGT, s.t. min
x1∈Prec

∥x1 − x2∥2 < ϵ

}∣∣∣∣ .
13

Under review as a conference paper at ICLR 2024

More visual results. Figure 11 provides more visual results illustrating the reconstructed point
clouds and meshes under different distance metrics. Obviously, our method has superior performance.
Notably, the meshes are reconstructed utilizing SPSR Kazhdan & Hoppe (2013), where the accuracy
of normals is crucial. Consequently, while certain methods may produce reasonably accurate
point clouds, the meshes they generate may manifest considerable errors due to inaccuracies in the
estimation of normals.

E
M

D
C

D
D

C
D

O
ur

s
G

T

Figure 11: More visual comparisons of reconstructed shapes in the form of point clouds and surfaces under
different distance metrics.

Error & Accuracy Distribution. The distributions of the reconstruction error and accuracy are
illustrated in Fig. 12. Notably, it is evident that the 3D reconstruction supervised under our distance
metric exhibits superior performance for both reconstructed point clouds and meshes.

E
M

D
C

D
D

C
D

O
ur

s

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

CD (1e2)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

CD (1e2)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

CD (1e2)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

CD (1e2)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

CD

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

HD (1e2)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

HD (1e2)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

HD (1e2)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

HD (1e2)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

HD

0 1 2 3 4 5 6 7 8

P2F (1e3)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4 5 6 7 8

P2F (1e3)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4 5 6 7 8

P2F (1e3)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4 5 6 7 8

P2F (1e3)
0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
 (%

)

P2F

0.0 0.2 0.4 0.6 0.8 1.0

NC
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0

NC
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0

NC
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0

NC
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

NC

0.0 0.2 0.4 0.6 0.8 1.0

F-0.5%
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0

F-0.5%
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0

F-0.5%
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0

F-0.5%
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

F-0.5%

0.0 0.2 0.4 0.6 0.8 1.0

F-1%
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0

F-1%
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0

F-1%
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0

F-1%
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

F-1%
Figure 12: Histograms of different evaluation metrics (CD, HD, P2F, NC, F-0.5%, and F-1%) on the 3D shape
reconstruction experiment under different distance metrics.

14

Under review as a conference paper at ICLR 2024

C RIGID REGISTRATION

Evaluation Metric. Let [R̂, t̂] and [RGT, tGt] be the estimated and ground-truth transformation,
respectively. The two evaluation metrics named Rotation Error (RE) and Translation Error (TE) are
defined as

RE(R̂,RGT) = ∠(R−1
GTR̂), TE(t̂, tGT) = ∥t̂− tGT∥2, (12)

where ∠(A) = arccos(trace(A)−1
2) returns the angle of rotation matrix A in degrees.

Unsupervised Learning-based Method.

Figure 13: The overall pipeline of the unsupervised learning-based rigid registration built upon RPM-Net (Yew
& Lee, 2020). The loss Li is defined in Eq. equation 13. Niter is the total number of iterations, and [Ri, ti] is
the resulting transformation at the i-th iteration. See the original paper for detailed structures.

Based on RPM-Net (Yew & Lee, 2020), we construct an unsupervised learning-based rigid registration
framework by modifying its loss, as shown in Fig. 13. The loss at i-th iteration Li is defined as

Li = λ1D(RiPsrc + ti,Ptgt) + λ2Rinlier(Psrc,Ptgt), (13)

where Rinlier is the inlier regularization in RPM-Net (see Eq. (11) of the original paper of RPM-Net
for more details), and the hyperparameters, λ1 and λ2, are set 10 and 0.01, respectively. Considering
all iterations, the total loss is

Ltotal =

Niter∑
i=1

(
1

2

)(Niter−i)

Li, (14)

assigning later iterations with higher weights. We set Niter = 2 and Niter = 5 during training and
inference, respectively.

Error Distribution. The distributions of the registration error are shown in Fig. 14, where it can be
seen that under both optimization and unsupervised learning pipelines, the registration errors by our
methods are concentrated in smaller ranges, compared with other methods.

D SCENE FLOW ESTIMATION

Spatial Smooth Regularization. Given the source point cloud Psrc ∈ RNsrc×3 and its estimated
scene flow F ∈ RNsrc×3, we define the spatial smooth regularization term Rsmooth(F) as

Rsmooth(F) =
1

3NsrcKs

∑
x∈Psrc

∑
x′∈N (x)

∥F(x)− F(x′)∥22, (15)

where N (x) is the operator returning x’s Ks-NN points in the Psrc with Ks = 30 in our experiments.

E FEATURE REPRESENTATION

Network Architecture. Fig. 15 shows the network architecture of the auto-decoder for feature
representation, where the encode embeds an input point cloud P as a global feature z, and the
resulting global feature is then fed into the decoder to get the reconstructed point cloud P̂. The
difference between P and P̂ is employed as the loss to train the auto-decoder:

Lrec = D(P̂, P), (16)

15

Under review as a conference paper at ICLR 2024

0 2 4 6 8
RE (°)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4
TE (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

(a) EMD
0 2 4 6 8

RE (°)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4
TE (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

(b) CD

0 2 4 6 8
RE (°)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4
TE (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

(c) DCD
0 2 4 6 8

RE (°)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4
TE (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

(d) ARL

0 2 4 6 8
RE (°)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4
TE (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

(e) Ours
0 2 4 6 8

RE (°)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4
TE (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

(f) RPM-EMD

0 2 4 6 8
RE (°)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4
TE (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

(g) RPM-CD
0 2 4 6 8

RE (°)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4
TE (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

(h) RPM-DCD

0 2 4 6 8
RE (°)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4
TE (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

(g) RPM-ARL
0 2 4 6 8

RE (°)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0 1 2 3 4
TE (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

(h) RPM-Ours

Figure 14: Histograms of RE and TE on the optimization-based and unsupervised learning-based registration
methods. x-axis is RE(◦) and TE(m), and y-axis is the percentage.

where D(·, ·) is a typical point cloud distance metric, e.g., EMD, CD, or our DDF. After training, we
adopt SVM to classify the global feature representations of point clouds to achieve classification.

Visualization of the Decoded Point Clouds. We also show the decoded results by the auto-decoder
after trained with different distance metrics in Fig. 16, where it can be seen that the auto-encoder
trained with our DDF can decode point clouds that are closer to input/ground-truth ones during
inference, demonstrating its advantage.

16

Under review as a conference paper at ICLR 2024

Figure 15: The network architecture of the auto-decoder for feature representation.

(a) EMD (b) CD (c) Ours (d) Input/GT

Figure 16: Visual comparisons of decoded point clouds by the auto-encoder trained with different distance
metrics.

17

	Introduction
	Related Work
	Proposed Method
	Problem Statement and Overview
	Generation of Reference Points
	Directional Distance Field
	Local Surface Geometry-driven Distance Metric

	Experiments
	3D Shape Reconstruction
	Rigid Registration
	Scene Flow Estimation
	Feature Representation
	Ablation Study

	Conclusion
	Proof of Triangle Inequality
	Shape Reconstruction
	Rigid Registration
	Scene Flow Estimation
	Feature Representation

