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Abstract

Applications of Reinforcement Learning (RL) in robotics are often limited by high
data demand. On the other hand, approximate models are readily available in many
robotics scenarios, making model-based approaches like planning a data-efficient
alternative. Still, the performance of these methods suffers if the model is imprecise
or wrong. In this sense, the respective strengths and weaknesses of RL and model-
based planners are complementary. In the present work, we investigate how both
approaches can be integrated into one framework that combines their strengths.
We introduce Learning to Execute (L2E), which leverages information contained
in approximate plans to learn universal policies that are conditioned on plans. In
our robotic manipulation experiments, L2E exhibits increased performance when
compared to pure RL, pure planning, or baseline methods combining learning and
planning.

1 Introduction

A central goal of robotics research is to design intelligent machines that can solve arbitrary and
formerly unseen tasks while interacting with the physical world. Reinforcement Learning (RL)
(Sutton & Bartol [2018)) is a generic framework to automatically learn such intelligent behavior
with little human engineering. Still, teaching an RL agent to actually exhibit general-purpose
problem-solving behavior is, while possible in principle, prohibitive in practice. This is due to
practical restrictions including limited computational resources and limited data availability. The
latter limitation is particularly dramatic in robotics, where interaction with the physical world is
costly.

On the other hand, for many robotics scenarios, there is a rough model of the environment avail-
able. This can be exploited, e.g., using model-based planning approaches (Mordatch et al., 2012}
Kuindersma et al.| [2016; [Toussaint et al., 2018)). Model-based planners potentially offer a more
data-efficient way to reason about an agent’s interaction with the world. Model-based planners have
been used in many areas of robotics, such as for indoor and aerial robots (Faust et al., [2018]), visual
manipulation (Jeong et al.| [2020), or humanoid walking (Mordatch et al.,[2015)). Still, if the model
does not account for stochasticity or contains systematic errors, directly following the resulting plan
will not be successful.

The present work starts from the observation that both pure RL approaches and pure planning
approaches have strengths and limitations that are fairly complementary. RL makes no assumptions
about the environment but is data-hungry, and model-based planning generally implies model
simplifications but is data-efficient. For robotic manipulation tasks, it seems natural to try and
integrate both approaches into one framework that combines the strengths of both. In the present
work we seek to add an additional perspective to the open question of how this can be achieved best.
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We introduce a novel approach that we call Learning to Execute (L2E). Our approach translates sparse-
reward goal-conditioned Markov Decision Processes (MDPs) (Bellman, |1957) into plan-conditioned
MDPs. L2E exploits a simple planning module to create crude plans, which are then used to teach
any off-the-shelf off-policy RL agent to execute them. L2E makes use of final-volume-preserving
reward shaping (FV-RS) (Schubert et al.| [2021)), allowing it to train a universal plan-conditioned
policy with high data efficiency. The contributions of this work are:

* We introduce L2E, which uses RL to efficiently learn to execute approximate plans from a
model-based planner in a plan-conditioned MDP. We describe formally how FV-RS can be
used as a tool to construct such plan-conditioned MDPs from goal-conditioned MDPs.

* We introduce plan replay strategies to efficiently learn universal plan-conditioned policies.

* We demonstrate, using robotic pushing problems, that L2E exhibits increased performance
when compared to pure RL methods, pure planning methods, or other methods combining
learning and planning.

We discuss work related to ours in section [2] explain background and notation in section [3] and
introduce our method in section[d] We present our experimental results in section[5} discuss limitations
in section[f] and conclude with section [7}

2 Related Work

2.1 Goal-Conditioned Policies

Goal-conditioned or universal policies (Kaelbling| [1993; Moore et al.l [ 1999; Foster & Dayanl 2002;
Schaul et al.l 2015} Veeriah et al., [2018}; [Nasiriany et al.,[2019) not only act based on the state the
agent finds itself in, but also based on the goal it tries to achieve. Hindsight Experience Replay (HER)
(Andrychowicz et al.,[2017)) is a particularly efficient way to learn universal policies. Here, achieved
outcomes of the agent’s interaction with the environment are interpreted as desired goals in order to
improve sample efficiency in sparse-reward settings.

L2E draws great inspiration from this work, but in contrast to HER, L2E learns a universal plan-
conditioned policy. This means that the L2E policy in general can execute multiple plans leading to
the same goal. Although this presents a more complex learning task, we show in our experiments
that by incorporating plan information using plan-based FV-RS, the sample efficiency of L2E is
significantly improved over HER.

2.2 Plan- and Trajectory-Conditioned Policies

Plan-conditioned policies create behavior that depends on plans that are input to the decision making.
Lynch et al.|(2020) learn plans and how to execute them from data generated by a human “playing”
with a teleoperated robot. The resulting policy is conditional on a latent space of encoded plans. Our
work differs from this paradigm in that human interaction is not needed. Both|Lynch et al.| (2020)
and |Co-Reyes et al.[(2018) directly imitate a planned trajectory by maximizing its likelihood. In
contrast, the plans used in the present work are not directly imitated. Using FV-RS guarantees that
the fully trained L2E agent will reach its goal after finite time even if the plan provided is wrong. |Guo
et al.|(2019) learn trajectory-conditioned policies to self-imitate diverse (optimal and suboptimal)
trajectories from the agent’s past experience.

We instead assume in this work that the plan is provided by an external model-based planner. This
allows the L2E agent to use external information during training that could not be concluded from its
own experience yet.

2.3 Learning from Demonstration

L2E learns how to execute plans in order to achieve different tasks. In this sense, it is related to
Learning from Demonstration (LfD) techniques that exploit demonstrations when learning a task.
Existing work (Argall et al., [2009; |Hussein et al., 2017; Ravichandar et al., 2020) differs significantly
both in how the demonstration examples are collected and how the policy is then derived. [Taylor
et al.[{(2011)) derive an approximate policy from human demonstration, and then use this to bias the



exploration in a final RL stage. Hester et al.|(2017)) train a policy on both expert data and collected
data, combining supervised and temporal difference losses. |Salimans & Chen|(2018)) use a single
demonstration as starting points to which the RL agent is reset at the beginning of each episode. |Peng
et al.| (2018) use motion capture data to guide exploration by rewarding the RL agent to imitate it. In
Cabi et al.| (2019), demonstrations are combined with reward sketching done by a human. Interactive
human feedback during training is another source of information used in Thomaz et al.| (2006); [Knox
& Stonel| (2010). [Kinose & Taniguchi| (2020) integrate RL and demonstrations using generative
adversarial imitation learning by interpreting the discriminator loss as an additional optimality signal
in multi-objective RL.

While these LD approaches are related to L2E in that external information is used to increase RL
efficiency, it is in contrast assumed in L2E that this external information is provided by a planner.

2.4 Combining Learning with Planning

Similarly to demonstrations, external plans can be exploited to facilitate learning. |[Faust et al.
(2018)) connect short-range goal-conditioned navigation policies into complex navigation tasks using
probabilistic roadmaps. In contrast, L2E learns a single plan-conditioned policy for both short-term
and long-term decision making. Sekar et al.|(2020) use planning in a learned model to optimize for
expected future novelty. In contrast, L2E encourages the agent to stay close to the planned behavior.
Zhang et al.|(2016) use model-predictive control to generate control policies that are then used to
regularize the RL agent. In L2E, no such intermediate control policy is created, and a reward signal
is computed directly from the plan. In Guided Policy Search (Levine & Koltun} 2013), differential
dynamic programming is used to create informative guiding distributions from a transition model for
policy search. These distributions are used to directly regularize the policy in a supervised fashion,
while L2E makes use of FV-RS as a mechanism to interface planning and RL.|Christiano et al.| (2016)
learn an inverse dynamics model to transfer knowledge from a policy in the source domain to a policy
in the target domain. The idea of integrating model-based and model-free RL has also been studied
independently of planning (Pong et al.,2018; Janner et al.,[2019). In contrast, in L2E the model is
translated by a planner into long-horizon plans.

In the experiments section, we compare L2E against two representative examples from the literature
mentioned above. The first is using a plan to identify subgoals that are then pursued by an RL agent,
as done in Faust et al.| (2018). The second is executing the plan using an inverse model, similar to the
approach in Christiano et al.|(2016). These two baselines and L2E can be seen as representatives of a
continuum: |Christiano et al.|(2016)) follow the plan very closely, trying to imitate the planner at each
time step. [Faust et al.| (2018)) relax this requirement and only train the agent to reach intermediate
goals. Finally, in L2E, the agent is free to deviate arbitrarily from the plan (although it is biased to
stay close), as long as it reaches the goal. We find that L2E results in significantly higher success
rates when compared against both baselines.

3 Background

3.1 Goal-Conditioned MDPs and RL

We consider settings that can be described as discrete-time MDPs M = (S, A, T, v, R, Ps). S and A
denote the set of all possible states and actions, respectively. 7' : S x A x S — R is the transition
probability (density); T'(s|s, a) is the probability of the next state being s’ if the current state is s
and a is chosen as the action. The agent receives a real-valued reward R(s, a, ") after each transition.
Immediate and future rewards are traded off by the discount factor v € [0,1). Ps : S — R{ is the
initial state distribution.

The goal of RL is to learn an optimal policy 7* : Sx A — R that maximizes the expected discounted
return. In other words, RL algorithms generally try to find
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from collected transition and reward data D = {(s;, a;, 74, ;) } 7. More specifically for this work,
we are interested in applications in robotics, where both S and A are typically continuous. There



exists a wide range of algorithms for this case. For the experiments in this paper, soft actor-critic
(SAC) (Haarnoja et al., 2018) is used.

In a goal-conditioned MDP M = (S, G, A, T,~, R¢g, Ps, Pg), the reward function Rg(s, a, s, g)
has an additional input parameter, the goal g € G. Here, Pg : G — R{ is the distribution of goals.
The optimal goal-conditioned policy 7, acts optimally with respect to any of these goals.

3.2 Final-Volume-Preserving Reward Shaping

We use approximate plans as an additional source of information for the RL agent. For sparse-
reward goal-driven MDPs, FV-RS (Schubert et al., [2021) offers an efficient way to include additional
information by adding an additional term

R(s,a,s") = Rpy(s,a,s’) = R(s,a,s") + Fry(s,a,s") )
to the reward function, accelerating exploration. In general, the optimal policy 7* corresponding to
the original MDP and the optimal policy 7y, corresponding to the shaped MDP will be different.
FV-RS however restricts the allowed modifications Fry(s, a, s') in such a way that after finite time,
the optimally controlled agent ends up in a subset of the volume in which it would have ended up
without shaping. As a result, external information can be made available for the RL algorithm without
changing the long-term behavior of the resulting optimal policy.

Specifically in the present work, we consider goal-conditioned MDPs in which the goal-conditioned
reward R of the underlying MDP is either 1, if the goal is reached, or 0 everywhere else. We
further assume that the L2E agent is given an external plan p, represented as an intended trajectory
p = (p1,pa, .. .) in state space. We intend to reward the agent for staying close to the plan, and for
advancing towards the goal along the plan. A natural way of achieving this is to use a plan-based
shaping reward (Schubert et al.| [2021). The single-plan shaping function introduced there can be
generalized to the multi-plan setting in the present work in the following way:

1— Rg(s,a,8', f(p)) k(s) +1 e (_ d2(s,pk(s))>

FFV(S,G/,S/,p) = 2 L 20_2 (3)

Here, f(p) denotes the goal that p leads to, o € (0, 00), k(s) = argmin,(d(p;, s)), and d(-,-) is a
measure of distance in state space. For the pushing experiments discussed in this work, d(-, -) is the
euclidean distance in state space ignoring the coordinates corresponding to the orientation of the
box. The first term in eq. (3) ensures that the assigned shaping reward Fry is always smaller than
the maximum environment reward (at most 1,/2), and that if the binary environment reward is 1, no
shaping reward is assigned. The second term rewards the agent for advancing towards the goal along
the plan, and the third term rewards the agent for staying close to the plan. For a sufficiently high
discount factor v, Fpy is final-volume preserving, meaning that the long-term behavior of the optimal
agent is unchanged.

4 Learning to Execute

L2E considers goal-conditioned MDPs M¢; (see section [3.1)), for which an approximate planner
Q) is available. L2E uses FV-RS to construct a corresponding plan-conditioned MDP Mp from a
goal-conditioned MDP M and a planner 2. In the following sections (4.1|to|4.3| we introduce our
notion of a plan-conditioned MDP M p and describe the components of the L2E algorithm. We then
summarize the L2E algorithm in section [4.4]

4.1 Plan-Conditioned MDPs

Plans are provided by a model-based planner, which can be described as a distribution € : PxSxG —
]Ra’ over a set of plans P. Given an initial state and a goal, Q2(p|s, g) is the probability that the planner
outputs p as a possible plan of how to achieve g from state s. The distinction between goals and plans
is that plans are conditional on both a goal and an initial state. Therefore, both initial state and goal
can be inferred using the plan only.

In a plan-conditioned MDP Mp = (S,P, A, T, v, Rp, Ps, Pp), a plan p € P is given to the reward
function Rp(s,a, s’,p) as an additional input parameter. Pp : P — R is the distribution of plans.
The optimal plan-conditioned policy 7} behaves optimally with respect to any of these plans, creating
a distribution 7} (- | s, p) over actions that is conditional on the current state and the current plan.



4.2 Constructing the Plan-Conditioned MDP

We use FV-RS to shape the reward function R of the original goal-conditioned MDP Mg =
(S,G,A,T,v, Rg, Ps, Pg) with a plan-dependent term Fry (s, a, s, p) (see equation

RG(S,Q, Slvg) — Rgv(svaa Slvg7p) = Rg(S,CL,S/,g) + FFV(S,Q,S/,p) . (4)

We call g = f(p) the goal for which the plan p was created. If a planner 2 should be such that g can
not be recovered from the resulting plan p ~ (.|s, g), we can always construct a new p ~ §2 such
that p = [p, g]. Since now ¢ can be recovered from p deterministically, we can assume that f always
exists without loss of generality. We can interpret the shaped reward function

Rp(s,a,s',p) = R (s,a, ¢, f(p),p) (5)

as a plan-conditioned reward function of a plan-conditioned MDP Mp = (S, G, A, T,~, Rp, Pp).
The distribution over initial states and plans Pp of Mp is still missing, and can be constructed as

Pr(s.p) = / O(pls. 9)Ps(s)P(g)dg - ®)

In practice, Pp can be sampled from by first sampling s ~ Ps, g ~ Pg and then subsequently
sampling p ~ Q(+|s, g).

Thus, we have constructed a plan-conditioned MDP M p by combining a goal-conditioned MDP M
with an approximate planner 2 and a FV-RS shaping function Fgy. For reference later in this paper,
we write as a shorthand notation Mp = C(Mc¢, ), Fry). Furthermore, we will refer to Mp as the
corresponding plan-conditioned MDP to M and vice versa.

In contrast to potential-based reward shaping (Ng et al., [1999), FV-RS does not leave the optimal
policy invariant. As a result, generally 3p € P : w)i(+|-, f(p)) # 7p(-|-,p). In words, the optimal
policy of Mp and the optimal policy of Mg will not result in identical behavior. In fact, while
7 (|-, g) learns one policy for each goal g, 75 (|-, p) can learn different behavior for each plan in
the set of plans {p € P| f(p) = g} leading towards the same goal g.

4.3 Plan Replay Strategy

In order to efficiently learn a universal plan-conditioned L2E policy, the reward for experienced
episodes is evaluated with respect to many different plans. In HER (Andrychowicz et al.| [2017),
it is assumed that each state s € S can be assigned an achieved goal. Recorded episodes are then
replayed with respect to goals that were achieved during the episode, i.e. the recorded transitions are
re-evaluated with respect to these goals. This ensures that the recorded transitions were successful in
reaching the replayed goals, resulting in highly informative data.

In L2E, transitions are replayed with respect to plans. However, there is no meaningful relation
between each state s € S and a unique “achieved plan”. Therefore, the L2E agent replays transitions
with past plans that were recorded at some point during training and were stored in its replay buffer
D. The replay plans are chosen according to a plan replay strategy .Sy,.

A plan replay strategy S,, provides a distribution over n replay plans, conditioned on the replay
buffer D and the buffer containing the current episode D, (see algorithm |1|for a definition of D
and D). For replay, n plans are sampled according to this strategy {p1,...,pn} ~ Sn(- | Dep, D).
We consider two types of replay strategies. Uniform replay S samples n unique plans uniformly
from the replay buffer D. Reward-biased replay S first uniformly samples m unique plans from
the replay buffer D, and then returns the n plans p; that would have resulted in the highest sum
of rewards Z(sk,ak,s;)eDcp Rp(sk,ak, s, p;) for the episode stored in Dp,. The idea behind using

reward-biased replay is to bias the replay towards transitions resulting in higher reward.

4.4 L2E Algorithm

The L2E algorithm is outlined in algorithm [I] First, the corresponding plan-conditioned MDP
Mp = C(Mg,Q, Fry) is constructed from the original goal-conditioned MDP Mj;, the planner 2
and the shaping function Fgy as described in section[d.2] The agent acts in the environment trying
to follow one randomly sampled plan per episode. The episode is then added to the replay buffer,
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Algorithm 1: Learning to Execute (L2E)

Input :Goal-conditioned MDP M, approximate planner €2, FV-RS shaping function Fgy,
plan replay strategy S,,, off-policy RL Algorithm .4
Output : Universal plan-conditioned optimal policy 7} for the corresponding plan-conditioned
MDP Mp = C(Mg, Q, Fry)
Construct plan-conditioned MDP Mp = C(M¢, 2, Fry) as detailed in section
Initialize replay buffer D « {};
while 7% not converged do
Initialize episode buffer De, < {};
Sample initial state and goal (sg, g) ~ Pg;
Sample plan p ~ Q(:|s0, 9);
S+ 805
while Episode not done do
Sample action a ~ 75 (- | s,p);
Sample transition s’ ~ T'(- | s,a);
Collect shaped reward r + Rp(s,a,s’,p);
Add to episode buffer Dep <— Dep U {(s,a,7,5",p)};
s+ s
end
Add episode to replay buffer D <— D U Dep;
Get replay plans {p1. .., pn} ~ Su(- | Dep, D):
for Preplay in P13 DPn do
for (s,a,r,s',p)in D,, do
Calculate replay reward eplay < Rp(S, @, S, Dreplay):
Add replayed transition to buffer D <— D U {(s, @, Treplay, S ; Dreplay) };
end
end
Update policy using off-policy RL algorithm 7% < A(7}, D)

end

along with data from episode replays with respect to other plans. These other plans are sampled from
the replay buffer according to the replay strategy S,,. A generic off-policy RL algorithm is used to
update the agent using the replay buffer. This process is repeated until convergence.

We would like to emphasize that the L2E algorithm is agnostic to the exact type of off-policy RL
algorithm. By combining state and plan into a “super state” for the purpose of passing the replay
buffer to the off-policy RL algorithm, L2E can be interfaced with any off-the-shelf implementation.

5 Experiments

We evaluate the L2E agent against several baselines using two simulated robotic manipulation tasks,
namely a pushing task and an obstacle avoidance task. These two environments are chosen to
compare different approaches on a variety of challenges. While the pushing task can be seen as an
open-source version of the opanAl gym FetchPush-v1 task (Brockman et al., 2016)), the obstacle task
was chosen to represent robotic manipulation tasks with segmented state spaces. This allows us to
discuss limitations of exploration in such environments as well.

A video of the experiments is available in the supplementary material. The complete code to fully
reproduce the figures in this paper from scratch can be found at github.com/ischubert/I2¢e/and in the
supplementary material. This includes the implementation of the environments, the implementation
of the L2E agents and the baselines, and the specific code used for the experiments in this paper.

The experiments section is structured as follows. In section we discuss the environments and
planners that are used in the experiments. We briefly introduce the plan embedding used for the
L2E agent in section additional experiments on this can be found in section[A.3]In section
we introduce the baselines against which we compare our method. In section 5.4 we discuss our
experimental results. Implementation details of the L2E agent are given in section [A.T]
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Figure 1: Results for the basic pushing environment (figures (a) and (b)) and the obstacle pushing
environment (figures(c) and (d)). Lines represent averages over N independently trained agents times
M test rollouts per agent and time step, the colored areas indicate the confidence intervals (standard
deviations of the mean). Renderings created with open-source code by (2021). (a) The
simulated pushing setup (inset). The spherical end effector tries to push the box to the green target.
Once the box is pushed off the table, it can not be recovered. An approximate planner creates simple
manhattan-like plans (blue line and transparent boxes in large figure; the end effector is planned to
change height to push the box from the other side). The path of the box is planned fully, but only
shown at some time steps. Recent end effector movement is indicated in grey. Learned behavior can
differ significantly from the original plan. (b) Comparison to the baselines introduced in section [5.3]
L2E shows significantly higher sample efficiency and success rates. See section [A.7]for a longer
run of L2E Sbiasloo71000. (c) In the simulated obstacle setup, an additional obstacle is added. In
this environment, the planner can create (and the RL agent learns to execute) multiple plans from
the same initial configuration to the same goal (inset shows alternative plan). (d) Comparison to the
baselines introduced in section[5.3] L2E performs significantly better than the pure learning HER
baselines, the pure planning baseline ("Plan"), and the “Planned Subgoals + RL” baseline. While
using an inverse model is initially more efficient, L2E achieves significantly better results if given
enough data.

5.1 Environments and Planners

Figure [Ta and Figure [Ic| show renderings of the basic pushing environment and obstacle pushing
environment, respectively. We use the open-source Nvidia PhysX engine to simulate a
box of size 0.4 x 0.4 being pushed on a table of size 3 x 3 by a spherical end effector of radius 0.06.
The 10D state space of both the goal-conditioned MDP Mg and the corresponding plan-conditioned
MDP Mp consists of the 3D position of the end effector, the 3D position of the box, and the 4D
quaternion for the orientation of the box. The agent controls the 3D velocity of the end effector. The



maximum velocity in any direction is 0.1 per time step. The end effector movement resulting from
the agent’s actions is slightly distorted by random noise. In the obstacle pushing environment, the
agent additionally has to evade an obstacle in the middle of the table.

In the goal-conditioned MDP M, each goal is represented as a desired 2D box position on the table.
The goal-dependent sparse reward function R is 1 if the box is within 0.1 of this desired goal, and
0 if not. The initial state-goal distribution P is uniform across the table for the non-colliding box
position and goal position. The end effector is always initialized at the origin and the box is always
initialized with a fixed orientation parallel to the table.

For the basic pushing environment, we use a crude manhattan-like planner €2 that deterministically
outputs plans consisting of two separate contacts leading the initial state to the goal as shown in
Figure[Ia] For the obstacle pushing environment, plans consist of four contacts, corresponding to
an additional intermediate box position which is chosen at random (see Figure [Ic). Thus, the agent
learns to execute an infinite number of plans for each combination of start and goal.

Plans are represented as a trajectory of length 50 for the basic pushing environment and 100 for the
obstacle pushing environment, consisting of 6D elements representing end effector position and box
position. For the basic pushing environment, we additionally report results for less dense plans in
section[A.6] The orientation of the box is not specified in the plans. We construct the plan-conditioned
MDP Mp as described in section[d.2] using this planner and the FV-RS function in equation[3] We
use the width parameter o = 0.5 throughout the experiments.

5.2 Plan Encoding

The plans p are embedded before they are provided to the policy. A plan encoding is an injective
function ¢ : P — C from the set of plans [P to a latent space C. If P is a manifold in some high-
dimensional space, the dimensionality of the latent space must be at least as high as the dimensionality
of the manifold. Since P is task-dependent, the encoding will be task-dependent as well. For the
basic pushing environment (Figure[Ta), P is a 4D manifold (since the plans only depend on the initial
and final 2D box positions). For the obstacle task (Figure[Ic), P is a 6D-manifold (since the plans
depend on one intermediate box position as well).

In the experiments discussed in the present work, we encode plans analytically using box positions as
described above. We experimentally compare this with either learning the encoding or not using any
encoding at all in section[A.5]

5.3 Baselines

We compare L2E against (1) direct plan execution, (2) plan execution with an inverse dynamics model,
(3) using RL to reach subgoals, and (4) HER. We describe these baselines in detail in section[A.2]

5.4 Results

Both at training and evaluation time, we run episodes of length 250. For each method ¢ (i.e., L2E and
all baselines), we independently train A = 10 agents. After NV environment transitions, we evaluate
the agents. We reset to random initial positions and goals/plans and run the experiment until the goal
is reached or until the episode ends. We repeat this process M = 30 times for each agent, and store
whether the rollout was successful in reaching the goal. We denote the result of the m-th evaluation

of the a-th agent for method g, evaluated after learning for /V environment transitions, as ]—'é%(N ).

As can be seen from the video given in the supplementary material, even though the L2E agent uses
plan information as a guiding bias during exploration, and is encouraged to stay close to the plan
by the shaping reward, it can also learn to deviate considerably from the plan if closely following it
will be suboptimal for reaching the goal fast. For example, while the simple planner (see Figure Ta]
and Figure|lc) suggests to re-establish the contact during the sequence, the L2E agent almost always
moves and turns the box using a single contact.

5.4.1 Basic Pushing Environment

To allow for a fair comparison, we spent a considerable amount of effort to optimize the HER replay
strategy as well as the L2E strategy. Details on this are given in section[A.4]



The results for the pushing setup are summarized in Figure[Ib] We observe that both L2E versions
outperform all baselines in terms of the asymptotical performance. L2E with biased replay strategy
S10,1000 exhibits a high sample efficiency especially in the beginning, resulting in success rates
significantly higher than 50% after 4000 episode rollouts or 1 Million time steps. Directly executing
the plan results in very low success rates of significantly less than 20% on average. Executing the
plan with an inverse model (IM) still shows significantly worse long-term performance than the RL
methods. HER results in better policies than the IM baselines, but is relatively data hungry. This can
be improved slightly if the HER agent is only used to reach subgoals given by the planner.

Pushing is a challenging interaction that requires reasoning for several time steps ahead. A typical
failure mode of the IM baseline (see also videos) is that the box moves away from the intended
trajectory too much, so that the agent is not able to correct for it within one time step. In contrast, the
L2E agent learns to deviate from the planned trajectory if this is required to reach the goal.

We find that L2E, combining a model-based planner and a universal plan-conditioned policy, outper-
forms our baselines that are pure planning or pure learning approaches. In addition, L2E outperforms
the two baselines that also combine learning and planning.

5.4.2 Obstacle Pushing Environment

L2E performs significantly better than the pure learning HER baselines, the pure planning baseline
("Plan"), and the “Planned Subgoals + RL” baseline. While using an inverse model is initially more
efficient, L2E achieves significantly better results if given enough data.

Comparing the basic pushing environment (section [5.4.T) to the obstacle environment, L2E learns
slower in the latter. This is in part due to the higher dimensionality of the latent space of plan
encodings (see also section [5.2)), posing a more challenging learning problem to the L2E agent.
In contrast, the "Plan+IM" baseline is independent of the size of the plan space, and performs
comparably to the experimental setting in the original version.

The obstacle in the middle segments the state space into two parts. In order to move from one
side to the other, an agent already has to be able to reason about long-term results of its actions.
As evidenced by the results for HER, this poses a significant challenge for pure RL. Incorporating
planner knowledge helps the agent to overcome this chicken-and-egg problem.

6 Discussion

Learning plan-dependent policies as opposed to goal-dependent policies has the additional advantage
that the former can learn to execute multiple plans that lead from the same initial state to the same
goal, as shown in the obstacle environment. Thus, the policy learns multiple strategies to achieve the
same outcome. In principle, this allows it to adapt to changed scenarios where some of these strategies
become infeasible. If, e.g., the environment changes, it suffices to only update the planner’s crude
model of the environment so that it creates plans that are feasible again. These can then be directly
fed into the policy without retraining. We explore this possibility in section[A.3] using a simple 2D
maze environment with moving obstacles. We find that the plan-conditioned L2E policy consistently
achieves 90% success rate in this quickly changing environment, while the goal-conditioned HER
policy does not improve beyond 60% success rate.

We used rather simple plans to support the RL agent during training, and demonstrated that these are
already sufficient to significantly speed up learning in our experiments. In fact we demonstrate in
section[A.6|that in the basic pushing example, the L2E agent is very robust against plans of even lower
quality. Using simple plans enabled us to use an analytical encoding; for very complex scenarios
it might be beneficial to learn the encoding using an auxiliary objective (see, e.g.,|Co-Reyes et al.
(2018))). We present results on using a variational autoencoder (VAE) in section @

The use of FV-RS biases the RL agent towards following the plan. While it was shown in the
experiments that the RL agent can learn to deviate from the plan, plans that are globally misleading
can act as a distraction to the agent. In the present work, it is assumed that plans can be used to guide
the agent during learning, increasing sample efficiency. Independently of the specific method used to
achieve this, misleading plans will always break this assumption.



Comparing the basic pushing environment to the obstacle pushing environment, the amount of data
needed for learning a plan-conditioned policy clearly depends on the size of the plan spaces that are
considered. For very large plan spaces, more data will be needed to master the task. Still, including
planner information into the learning process makes a decisive difference, as demonstrated by the
relative performance of L2E and HER in the obstacle example.

While SAC was used for the experiments in section[5] L2E can be used in combination with any
off-policy RL algorithm. L2E reformulates a goal-conditioned MDP as a plan-conditioned MDP, and
provides a replay strategy to efficiently solve the latter. It is agnostic to how this data is then used by
the RL agent.

The specific FV-RS shaping function used in this work applies to MDPs with sparse rewards. We
focused on this since sparse rewards are common in robotic manipulation. In addition, they often
present notoriously hard exploration tasks, making external plan-based information as used by L2E
particularly useful. However, FV-RS in general is not restricted to sparse-reward settings, and by
using a different shaping function, L2E could be applied in other settings as well.

Apart from FV-RS, there are alternative schemes of reward shaping such as potential-based reward
shaping (PB-RS) [Ng et al.| (1999). In principle, these could also be used to increase the sample
efficiency of the RL agent. We chose FV-RS for two reasons. First, in the original paper |Schubert;
et al.| (2021)), it was demonstrated that FV-RS leads to significantly higher sample efficiency than
PB-RS. Second, since PB-RS leaves the optimal policy invariant, the behavior of the fully converged
policy trained with PB-RS will only be goal-dependent, and not depend on the rest of the plan.

The original HER paper (Andrychowicz et al.,2017) considers the use of a simple form of reward
shaping in combination with HER as well. It is found that reward shaping dramatically reduces the
performance of HER in a robotic pushing task. In the present work, we show in contrast that including
plan information using FV-RS shaping improves the performance of RL in a similar task. A possible
explanation to reconciliate these seemingly contradictory results is already offered by |Andrychowicz
et al.| (2017): While simple domain-agnostic shaping functions can be a distraction for the RL agent,
domain-specific reward shaping functions can be beneficial. This view is supported, e.g., by similar
results by |Popov et al.| (2017). |Andrychowicz et al.[(2017) state that however “designing such shaped
rewards requires a lot of domain knowledge”. In this context, one could view L2E as an automated
way to extract such domain-specific knowledge from model-based planners and make it available. We
specifically believe that L2E can be useful in robotic manipulation tasks, where domain knowledge is
in fact readily available in many cases. Here, L2E offers a way to exploit this.

7 Conclusion

We introduced L2E, an algorithm that links RL and model-based planning using FV-RS. RL generally
results in well-performing policies but needs large amounts of data, while model-based planning is
data-efficient but does not always result in successful policies. By combining the two, L2E seeks
to exploit the strengths of both approaches. We demonstrated that L2E in fact shows both higher
sample efficiency when compared to purely model-free RL, and higher success rates when compared
to executing plans of a model-based planner. In addition, L2E also outperformed baseline approaches
that combine learning and planning in our experiments.
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