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Abstract— Precise robot manipulations require rich spatial
information in imitation learning, which remains a challenge
in both 2D and 3D based policies. To tackle this problem, we
present RISE, an end-to-end baseline for real-world imitation
learning, which predicts continuous actions directly from single-
view point clouds. It compresses the point cloud to tokens with
a sparse 3D encoder. After adding sparse positional encoding,
the tokens are featurized using a transformer. Finally, the
features are decoded into robot actions by a diffusion head.
Trained with 50 demonstrations for each real-world task, RISE
surpasses currently representative 2D and 3D policies by a large
margin, showcasing significant advantages in both accuracy and
efficiency. Project website: rise-policy.github.io.

I. INTRODUCTION

Recent work has made significant strides in imitation
learning in an end-to-end fashion [1, 3, 5, 6, 23], which opens
new possibilities for addressing complex manipulation tasks
and drives research in the field of manipulation [16].

Spatial information is crucial for precise manipulations.
Image-based imitation learning tends to learn implicit spatial
representations from fixed camera views [1, 3, 5, 10, 19, 23].
Many of these approaches utilize distinct image encoders for
each view and increase the number of cameras to enhance
stability and precision, consequently increasing the number
of network parameters and computational overhead.

Recently, imitation learning based on point clouds is
drawing increasing interest in our community [2, 7, 8, 9,
13, 17, 21, 22]. Most of the 3D-based methods learn to
predict the next keyframe as opposed to continuous actions,
which often struggle with tasks involving frequent contacts
and abrupt environmental changes. Meanwhile, addressing
the annotation of keyframes at scale for real-world data
necessitates additional manual effort.

In this work, we propose an end-to-end imitation baseline,
RISE, a method leveraging 3D perception to make real-
world robot imitation simple and effective. RISE takes point
clouds from a single-view RGB-D camera as input directly,
and outputs continuous action trajectories.

We test RISE in 6 real-world tasks, where all the objects
are randomly arranged throughout the entire workspace.
Trained on 50 demonstrations for each task, RISE signifi-
cantly outperforms other representative methods and keeps
stable when the number of objects increases. We also find
that RISE is more robust to environmental disturbance, which
enhances the error tolerance of real-world deployment.
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Fig. 1: RISE focuses on real-world robot imitation settings with
a noisy single-view partial point cloud as input, and outputs contin-
uous robot actions. While simple, it shows effective generalization
ability across object locations, novel workspaces and camera views.

II. METHOD

Given a point cloud Ot as the observation at time t,
RISE aims to predict the next n-step robot actions At,
which contain the translations, rotations and widths of the
gripper. RISE is decomposed into three functions: a sparse
3D encoder hE : Ot → F t

P, a transformer hT : F t
P → F t

A

and an action decoder hD : F t
A → At, where F t

P and F t
A

denote the features of point clouds and actions respectively.

A. Modeling Point Clouds using Sparse 3D Encoder

The sparse 3D encoder hE adopts a shallow ResNet
architecture [11] built on sparse convolution [4]. Such de-
sign saves computation and inherits the core advantage of
conventional convolution. By hE, the voxelized point cloud
Ot is encoded to sparse point features F t

P in an efficient
way, avoiding redundant computing on huge empty space.
F t

P is then fed into the transformer hT as sparse tokens.

B. Transformer with Sparse Point Tokens

We adopt transformer [20] to implement the mapping from
point features F t

P to action features F t
A. Sparse positional

encoding is employed for point tokens. Let (x, y, z) be
the coordinate of the point token P with d-dimension, the
position of P is defined as pos = [posx, posy, posz] with

posk =
k

v
+ c, k ∈ {x, y, z} (1)

where c and v are fixed offsets, and [·] stands for vector
concatenation. The encoding dimension along each axis is
dx = dy = ⌊d/3⌋, dz = d− dx − dy . The position encoding

https://rise-policy.github.io/
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Fig. 2: Overview of RISE architecture. The input of RISE is a noisy point cloud captured from the real world. A 3D encoder built with
sparse convolution is employed to compress the point cloud into tokens. The tokens are fed into the transformer encoder after adding
sparse positional encoding. A readout token is used to query the action features from the transformer decoder. Conditioned on the action
features, the Gaussian samples are denoised into continuous actions iteratively using a diffusion head.

of P is computed by SPE = [SPEx, SPEy, SPEz] whereSPEk
(pos,2i) = sin

posk
100002i/dk

SPEk
(pos,2i+1) = cos

posk
100002i/dk

, k ∈ {x, y, z} (2)

With the help of sparse positional encoding, we effectively
capture intricate 3D spatial relationships among unordered
points, which enables seamless embedding of the 3D features
into conventional transformers.

C. Diffusion as Action Decoder
The action decoder hD is implemented as a denoising

process by diffusion [3, 12, 15]. Conditioning on F t
A, hD

denoises the Gaussian noises N (0, σ2I) to actions At iter-
atively. We use the DDIM scheduler [18] to accelerate the
inference speed in real-world experiments.

RISE adopts a unified action representation in camera
coordinates which is composed of translations, rotations, and
gripper widths. We opt for absolute position for translation
and 6D representation [24] for rotation.

III. EXPERIMENTS

A. Setup
Tasks. We designed 6 tasks for the experiments in Fig. 3.
Hardware. We use a Flexiv Rizon robotic arm with a

Dahuan AG-95 gripper for interacting with objects. Two
Intel RealSense D435 RGB-D cameras are installed for scene
perception (One global, one inhand).

Baselines. We employ two representative image-based
policies as our baselines: ACT [23] and Diffusion Policy [3].
We also evaluate a keyframe-based 3D policy Act3D [7], the
current state-of-the-art policy on RLBench [14].

Protocols. For 3D perception, only the global camera is
used to generate a noisy single-view partial point cloud;
while for image-based policies, both cameras are used for
a better understanding of spatial geometries. We gathered
50 expert demonstrations for each task for training, and
each policy was tested for 20 consecutive trials. During
evaluations, objects in the task are randomly initialized
within the robot workspace of approximately 50cm× 70cm.
The evaluation time limit for each task is sufficient for each
method to accomplish the task.

Collect Pens. Collect the marker pens into the bowl.

Collect Cups. Collect the cups into the large metal cup.

Pick-and-Place

Long Horizon

Pour Balls. Grasp the cup, pour the balls in the cup to the bowl, and 
drop the cup into the basket.

6-DoF

……

……

…………

Evaluation Setup

Stack Blocks. Stack the blocks together in the order of block size.

Stack Blocks: ~28s / ~56s / ~76s  for 2 / 3 / 4 blocks

Collect Cups: ~15s / cup
Collect Pens: ~30s / pen

Push Block. Push the block into the goal area using the gripper. 

Push Ball. Push the soccer ball into the goal area using the marker pen.

Push-to-Goal Push Block: ~48s

Pour Balls: ~47s

Push Ball: ~42s

Fig. 3: Definition of the tasks in the experiments. During evaluation,
each task is randomly initialized within the robot workspace. For
each task, only 3 to 5 evaluation setups are depicted for clarity.

B. Results

Pick-and-place tasks are crucial in robotics, focusing on
precise object manipulations and efficient policy generaliza-
tion. The evaluation in Fig. 4 for Collect Cups and Collect
Pens reveals RISE consistently outperforming all baselines,
demonstrating its ability to not only predict the translation
part but also accurately forecast planner rotation. We also
discover that Act3D performs comparably to image-based
baselines. Moreover, given that Act3D requires specially
designed motion planners for more complicated actions and
cannot provide immediate responses to sudden changes in the



Method
Pour Balls Push Block Push Ball Stack Blocks

SR (%) CR (%) SR (%) SR (%) CR (%)
Grasp Pour Place Overall If Poured 1 block 2 blocks 3 blocks

ACT [23] 30 30 0 13.0 43.3 - - 60.0 25.0 10.0
Diffusion Policy [3] 55 55 35 30.5 55.5 50 30 70.0 25.0 16.7

RISE (ours) 80 80 70 49.0 61.3 55 60 80.0 75.0 30.0

TABLE I: Experimental results of the Pour Balls, Push Block, Push Ball and Stack Blocks task, where SR denotes success rate and
CR represents completion rate.

13
 cm

L3. HeightL1. Bowl L2. Light L4. Camera

train test

test
train Method

Completion Rate (%)

Original Disturbance
Bowl Light Height Camera

ACT [23] 80 70 ↓10 40 ↓40 0 ↓80 0 ↓80

Diffusion Policy [3] 70 50 ↓20 30 ↓40 0 ↓70 0 ↓70

Act3D [7] 70 40 ↓30 60 ↓10 50 ↓20 10 ↓60

RISE (ours) 90 80 ↓10 80 ↓10 80 ↓10 50 ↓40

TABLE II: Generalization test setup and experimental results of the Collect Pens task with 1 pen (10 trials).
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Fig. 4: Experimental results of the pick-and-place tasks.

Method 3D # Cameras Completion Rate (%)

ACT [23]
2 12

✓ 1 32 ↑20

Diffusion Policy [3]
2 24

✓ 1 36 ↑12

Act3D [7] ✓ 1 28
RISE (ours) ✓ 1 66

TABLE III: Effectiveness test of 3D perception on the Collect
Cups task with 5 cups (10 trials).

environment, we therefore only employ ACT and Diffusion
Policy as baselines in our subsequent experiments.

The 6-DoF Pour Balls task assesses robot policies’ ca-
pability in forecasting actions involving complex spatial
rotations, unlike the simpler planner rotations in pick-and-
place tasks. Tab. I presents the experimental results. RISE
demonstrates superior learning of actions with intricate spa-
tial rotations compared to image-based policies, as evidenced
by higher action success rates. Moreover, its precision in
pouring positions leads to increased task completion rates,
highlighting the effectiveness of 3D perception in capturing
accurate spatial object relationships.

For effective task completion, robot policies must
promptly respond to environmental changes and adapt to
object movements. We designed push-to-goal tasks, Push
Block and Push Ball (Fig. 3), to assess this ability. Evalua-
tion results in Tab. I show RISE slightly surpassing Diffusion
Policy in the Push Block task, while significantly outper-
forming Diffusion Policy in the Push Ball task, demon-
strating its adeptness in 3D perception for object positioning
adjustments and swift policy action modifications.

Long-horizon tasks are essential in robotics, revealing how
errors accumulate over extended actions and showcasing a
policy’s robustness and adaptability. Hence, we introduced
the Stack Blocks task to evaluate this aspect, especially
since block stacks are prone to toppling as they grow. Tab. I
shows the experimental results. Initially, with just two blocks,
all policies performed similarly. However, as the block
count increased, RISE notably outperformed the baselines,
demonstrating its strong adaptability to long-horizon tasks
and ability to effectively control accumulated errors.

C. Generalization Test

We assess the generalization abilities of different methods
using the Collect Pens task with 1 pen under various
environmental disturbances detailed in Tab. II. The results
in Tab. II indicate that image-based policies achieve decent
L1 and some L2-level generalizations but fall short in L3 and
L4-level generalizations involving spatial transformations.
Act3D, as a 3D policy, shows good generalization up to L3-
level disturbances but struggles significantly in L4-level tests.
On the contrary, RISE demonstrates strong generalization
across all testing levels, even excelling in the challenging
L4-level tests involving camera view changes.

D. Effectiveness of 3D Perception

We explore how 3D perception enhances the performance
of policies on the Collect Cups task with 5 cups. We replace
the image encoder of the image-based policies ACT and
Diffusion Policy with the sparse 3D encoder used in RISE.
We observe a significant improvement after applying 3D
perception even with fewer camera views, surpassing the
3D policy Act3D, as shown in Tab. III, which reflects the
effectiveness of our 3D perception module.

IV. CONCLUSION

We present RISE, an efficient end-to-end policy utiliz-
ing 3D perception for real-world robot manipulation. RISE
significantly outperforms representative 2D and 3D policies
in multiple tasks, demonstrating great advantages in both
accuracy and efficiency. We hope our baseline inspires the
integration of 3D perception into real-world policy learning.
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