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ABSTRACT

Zero-shot quantization (ZSQ) is a promising approach for achieving low-bit con-
straint networks without relying on the original data (OD). However, due to the
high cost and privacy concerns associated with OD, it is often scarce, leading to
the unsatisfactory performance of ZSQ. Most ZSQ methods rely solely on syn-
thetic data (SD) to mitigate this issue. In this paper, we propose a novel ZSQ
framework, named ZeroP, that leverages publicly available data - proxy data (PD)
- as a substitute for the OD. We first explore the impact of PD on the performance
of current ZSQ methods over 16 different computer vision datasets and introduce a
simple and effective PD selection method based on batch-normalization statistics
to select the optimal PD. We then apply ZeroP to three state-of-the-art pure-SD
(using only SD) methods, achieving 7% to 16% improvements in accuracy for
MobileNetV1 on ImageNet-1K in a 4-bit setting. Furthermore, we demonstrate
the effectiveness of ZeroP on extensive models and datasets. For example, ZeroP
achieves a top-1 accuracy of 72.17% for ResNet-50 on ImageNet-1K in a 4-bit
setting, outperforming the SOTA pure-SD method by 3.9%. Overall, our results
indicate that ZeroP offers a promising solution for achieving high-performance
low-bit networks without relying on OD and opens up new avenues for using pub-
licly available data for data-free tasks.

1 INTRODUCTION

Figure 1: 4-Bit performance comparison on
ImageNet-1K. The top-1 accuracy for 4 archi-
tectures. ZeroP significantly outperforms SOTA
pure-SD methods, including GDFQ (Xu et al.,
2020), Qimera (Choi et al., 2021), and IntraQ
(Zhong et al., 2022b), e.g., achieving an 8.02%
improvement for MobileNetV1 (Howard et al.,
2017) over IntraQ.

As Deep Learning (DL) continues to advance,
DL-based applications have become prevalent
in many fields, including Computer Vision (He
et al., 2016; Ren et al., 2015; Chen et al., 2017),
Natural Language Processing (Bahdanau et al.,
2014; Cho et al., 2014), and other domains (Sil-
ver et al., 2016). Quantization (Courbariaux
et al., 2015; Jacob et al., 2018) has gained pop-
ularity in both academia and industry, aiming
to obtain low-bit networks with minimal per-
formance loss compared to the pre-trained full-
precision model. However, directly quantiz-
ing the full-precision network to a limited-bit
architecture often leads to significant accuracy
degradation. To maintain the performance of
quantized models, one approach is to fine-tune
them using the original training data (OD) (Cai
et al., 2017; Louizos et al., 2018). Nevertheless,
acquiring OD can be difficult due to accessibil-
ity, cost, or privacy concerns. For example, ob-
taining a small number of diagnostic medical
images may take years. To address this challenge, zero-shot quantization (ZSQ) (Nagel et al., 2019)
has been proposed, which performs quantization without requiring access to the OD.

However, the absence of access to the OD often leads to significant performance degradation for
ZSQ methods (Nagel et al., 2019). To address this issue, two main approaches have been explored
in ZSQ. The first approach completely restricts the use of any access data (Guo et al., 2022), rep-
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Figure 2: Visualization of features using t-SNE. We randomly selected 1000 images (5 classes, 200
images per class) from ImageNet-1K, as well as synthetic images/data (SD) generated by GDFQ,
Qimera, IntraQ, and proxy images/data (PD) from COCO used by ZeroP. We used t-SNE (Van der
Maaten & Hinton, 2008) to visualize the SD/PD and OD in ImageNet-1K, with ’X’ representing OD
and ’O’ representing SD/PD. The colors indicate different classes, and all class labels were obtained
via a pre-trained ResNet-18 (He et al., 2016). Please zoom in for a better visual effect.

resenting the challenging scenario of having no access to OD. In contrast, the other approach (Cai
et al., 2020; Xu et al., 2020; Zhang et al., 2021b) aims to mitigate the lack of data by generating
synthetic images that incorporate information from the OD. The underlying idea behind synthetic
data (SD) is to capture relevant features from the OD and incorporate them into the synthetic sam-
ples. The ZeroQ method (Cai et al., 2020) was the first to introduce the concept of using SD in the
ZSQ pipeline, and subsequent works (Xu et al., 2020; Zhang et al., 2021b; Zhong et al., 2022b) have
explored different aspects of SD generation, such as utilizing generative adversarial networks (Good-
fellow et al., 2020) to generate images, diversifying the data distribution (Zhang et al., 2021b), and
enhancing intra-class heterogeneity (Zhong et al., 2022b). While these methods attempt to mimic
the features of the OD from various angles, they solely rely on SD to achieve performance gains.
However, SD may only capture a subset of the variability and complexity present in the OD, as
depicted in the first three columns of Fig. 2. Thus, a fundamental question arises:

Can we obtain or grasp the related information of original data aside from using synthetic data, or
must we rely on synthetic data solely?

In addition to ZSQ, synthetic image techniques have been extensively studied in various related
tasks, such as zero-shot knowledge distillation (Nayak et al., 2019; Chen et al., 2019) and black-box
model stealing (Orekondy et al., 2019; Barbalau et al., 2020). To augment the diversity of SD, some
methods (Addepalli et al., 2020; Orekondy et al., 2019; Sanyal et al., 2022) use proxy data (PD),
which is publicly available and easily accessible, to guide the image generation process. However,
previous techniques only utilized SD as input data, while PD helped enrich the features of SD.
This raises the question of whether PD can be directly used as input data since replacing the OD
with PD is not straightforward. One of the immediate challenges is that PD may have a different
distribution or be unrelated to OD, leading to reduced performance. Moreover, the selection cost
might outweigh its benefits even if the appropriate PD can be identified. In this work, we propose
a method to leverage PD to represent OD’s information and comprehensively investigate the impact
of PD on ZSQ’s performance. Our research is intended to bridge the gap between purely synthetic
images and directly using PD for quantization fine-tuning.

To do this, we begin by revisiting the core idea behind SD approaches: diversifying sample genera-
tion. The main aim of SD methods is to generate data that closely resembles the OD’s distribution.
However, OD may not always adhere to a single perspective assumption, and capturing its various
features can be challenging. For instance, an image cartoonization dataset (Royer et al., 2020) may
require area smoothing and sharp edge descriptions instead of class-label information (Deng et al.,
2009). Accurately representing the various properties of OD is crucial to address OD deficiency
and to improve performance. Hence, understanding whether PD can represent the abundant latent
features of OD is essential. To achieve this, we first construct a straightforward ZSQ baseline that
employs 16 distinct PDs as direct inputs for quantization fine-tuning rather than PD to guide SD
generation. This simple modification results in a significant performance improvement. Next, we
devise a simple and computationally feasible method to address the second challenge — how to
rapidly and inexpensively choose an effective PD. Specifically, we calculate a scalar distance using
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the batch normalization statistic (Ioffe & Szegedy, 2015) (BNS) of the full-precision model for all
PDs and select the final PD based on the PD’s distance rank. We also conduct a series of experi-
ments to demonstrate that the simple BNS distance can provide informative signals for predicting
the efficacy of a PD.

Our research highlights the importance of integrating PDs into ZSQ methods and shows that relying
solely on SD is not necessary. We do not claim that the PDs leading to performance gains are unre-
lated to the OD or do not overlap with OD. On the contrary, some PDs capture latent properties of
OD that may be difficult to represent using current generation methods since PDs themself are real-
world datasets with a similar complex distribution as OD. Moreover, PDs are publicly available and
easy to obtain, and our proposed method provides a straightforward way to select the most suitable
PD to enhance ZSQ while minimizing costs. In summary, our contributions are: 1) We introduce
the incorporation of PDs into the current ZSQ pipeline to address the OD-lacking issue and provide
a systematic understanding of the role of PDs in ZSQ, which may deliver insights to other data-free
tasks. 2) We demonstrate that using PDs in ZeroP can be easily integrated into existing ZSQ meth-
ods without incurring additional costs and consistently improve their performance. Additionally,
we propose a simple and effective method for guiding PD selection. 3) Our results demonstrate a
new SOTA performance level in the ZSQ task and consistently outperform the SOTA methods on
CIFAR10, CIFAR100, and ImageNet-1K. Specifically, on ImageNet-1K, ZeroP gains of 0.84% to
3.90% in 4-bit setting over 4 common architectures compared with SOTA methods. Besides, ZeroP
achieves a comparable performance of OD methods, such as FDDA (Fang et al., 2019).

2 EXPLORING THE POTENTIAL OF PROXY DATA

Figure 3: Performance of 16 commonly used
datasets as Proxy Data. The top-1 accuracy devi-
ation of the baseline and variants using 16 differ-
ent PDs for image classification on ImageNet-1K
as the OD in 4-bit setting.

The use of SD and PD to address the lack of
OD has been studied for years, with early re-
search dating back to Buciluǎ’s work (Buciluǎ
et al., 2006). At that time, OD often lay in a
small submanifold of the attribute space. How-
ever, as modern datasets (Husain et al., 2019;
Sun et al., 2017) grow larger and more com-
plex, generating SD that accurately mimics the
distribution of OD is becoming more challeng-
ing. While significant efforts have been devoted
to developing SD methods that match the distri-
bution of OD, PD has not received as much at-
tention from the research community. One pos-
sible reason for this is that the complex distribu-
tion of modern datasets hinders the exploration
of PD’s potential.

Pure-SD methods (Cai et al., 2020; Xu et al.,
2020; Zhong et al., 2022b) match OD by com-
bining a set of discretely defined measures,
such as BNS loss (Cai et al., 2020) and inter or
intra-class loss (Zhong et al., 2022b). Although
these methods may be suboptimal in approxi-
mating OD via limited measurements, they are
more controllable than PD. Conversely, PD is
a naturally occurring public dataset with a complex distribution, making PD’s potential unclear.
However, as the 4th column of Fig. 2 shows, PD, such as COCO (Lin et al., 2014), has a better
t-SNE match for ImageNet-1K (Krizhevsky et al., 2017) than other SD generated by pure-SD meth-
ods, suggesting that PD may provide a promising approach to matching the rich latent features of
large-scale datasets.

Recent works related PD, such as KnockoffNet (Orekondy et al., 2019) and DeGANs (Addepalli
et al., 2020), are SD methods that use PD as guidance to generate SD and only test a limited number
of PDs (#(PD) < 3) for data-free model stealing. It is, therefore, important to investigate whether
PD has the potential to enhance performance of data-free tasks when used as a substitute for OD. To
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this end, we constructed a simple baseline based on FDDA (Zhong et al., 2022a) using only SD and
conducted extensive experiments by directly using a mixture of PD and SD as the input data for the
quantization process. We considered 16 commonly used computer vision datasets with distinctive
features as candidate PDs. Fig. 3 shows that while some PDs, such as SVHN (Netzer et al., 2011)
and Stanford Dogs (Khosla et al., 2011), decreased accuracy compared to our manually constructed
dataset Random Noise, 13 datasets increased performance, with more than 5 achieving a gain of
1.0% to 1.4% in accuracy. From this perspective, not only is PD readily accessible and often free,
but also our results suggest that they offer a promising way to represent the latent rich features of
OD with almost no cost. One remaining challenge is selecting appropriate and beneficial PDs from
a large pool of PDs and we will present our method to address this challenge in the next section.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

ZSQ aims to obtain a low-bit constraint network, i.e., a quantized network Q, by leveraging in-
formation from a pre-trained full-precision model F , while working under the condition that the
OD is either unavailable or hard to access. Typically, F is trained on the task-specific dataset
DOri = {(xi, yi)}, and achieves the best performance on the original test dataset. For an input
data x, F predicts a corresponding K-dimensional label vector y = F (x), where y 2 [0, 1]K andP

k
yk = 1. It is easy to convert y to a scalar class label y and vice versa. In most ZSQ methods, the

overall training loss LZSQ typically consists of two phases: updating the generator G to generate
SD and fine-tuning the quantized network Q. The corresponding loss functions are denoted by LG

and LQ, respectively. We will further explain LG and LQ in the following section.

Data synthesis. In ZSQ methods, when the OD is unavailable, the SD, DSyn = {(x̂i, ŷi)}, is
typically generated using a generator G, where x̂ is produced by G from a K-dimensional latent
random vector z and a corresponding label ŷ. The producing process can be formulated as x̂ =
G(z|ŷ), z s p(z), where z is sampled from a prior distribution p(z), such as a Gaussian distribution
N (0, 1). To ensure that the distribution of SD is as similar as possible to the OD, SD methods
enforce the information of SD captured by the BNS in F close to the information of OD captured
by the same BNS. The loss LG

BNS
is defined as follows:

LG

BNS
=

LX

l=1

||µ
0

l
(x̂)� µF

l
||2 + ||�

0

l
(x̂)� �F

l
||2, (1)

where µF

l
, �F

l
are the running mean and running variance at l-th layer of F . µ

0

l
(x̂), �

0

l
(x̂) are the

mean and variance of l-th layer of F for the input data x̂. L is the total number of BN layers in F .
In addition to LG

BNS
, a cross-entropy loss term LG

CE
is also introduced to ensure that the generated

data can be correctly identified by F . The loss LG

CE
is defined as follows:

LG

CE
= E(x,y)s{(x̂,ŷ)}[CE(F (x), y)], (2)

where CE(·, ·) is the cross-entropy loss function, and the expectation is taken over the pairs of
inputs and labels over the SD. Finally, the overall loss function for updating G is defined as LG =
LG

BNS
+ ↵LG

CE
, where ↵ is a hyperparameter that balances the importance of the two loss terms,

LG

BNS
and LG

CE
.

Quantization with Synthetic Data. When OD is unavailable, the quantized network Q can be
updated using the SD DSyn by optimizing the cross-entropy loss function as follows:

LQ

CE
= E(x,y)s{(x̂,ŷ)}[CE(Q(x), y)]. (3)

However, since the labels ŷ in DSyn may be unreliable, ZSQ methods often use knowledge distil-
lation (KD) (Hinton et al., 2015) to further force Q to learn from the soft labels provided by the
full-precision model F . The loss function for KD is defined as follows:

LQ

KD
= E(x,y)s{(x̂,ŷ)}[KL((Q(x), F (x))], (4)
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where, KL(·) is the Kullback-Leibler divergence. Therefore, the overall target optimization loss
function for updating the quantized network Q becomes LQ = LQ

CE
+ �LQ

KD
, where � is a hyper-

parameter that balances the importance of the two loss terms, LQ

CE
and LQ

KD
.

3.2 QUANTIZATION WITH PROXY DATA

Proxy Data selection. To choose an appropriate PD, we propose a simple and effective method
based on the BNS. Specifically, we define a distance metric using BNS as follows:

DBNS =

P
M

m=1

P
L

l=1 ||µ
0

l
(x̃)� µF

l
||2 + ||�0

l
(x̃)� �F

l
||2

L
, (5)

where, µF

l
, �F

l
, and L share the same definition as in Equ. 1. µ

0

l
(x̃) and �

0

l
(x̃) are the mean and

variance calculated using the PD x̃ instead of the SD x̂. Total M samples are using to calculate
the DBNS . A larger BNS distance indicates that the current PD is less related to the OD. To select
an appropriate PD, we first calculate the BNS distance for all candidate PDs and rank them in
decreasing order. We then select the PD with the smallest BNS distance, which is the one that is
most closely related to the OD according to our distance metric. Note that choosing the PD with
the smallest BNS distance is not always the best choice, as BNS distance is only a fast and cheap
approximation of the true performance of a PD. However, it provides a reasonable starting point for
selecting an appropriate PD.

Using Proxy Data. Instead of using PD as a guide to obtaining SD, we propose constructing the
input data x̄ of ZeroP by combining PD x̃ and SD x̂ as direct inputs for updating the quantized
network. This approach allows the input data to benefit not only from the useful latent properties of
PD but also from the specific features explicitly learned by SD. The input data x̄ can be obtained as
follows:

x̄ = Concat[x̃1:�B , x̂�B+1:B ], (6)

where, � 2 [0, 1] represents the mixing ratio of PD x̃ and SD x̂. x̄ has a total batch size of
B. Concat[·, · · · , ·] module concatenates the PD x̃1:�B with �B batches and SD x̂�B+1:B with
(1� �)B batches, according to the batch dimension, to form the final input data x̄.

4 EXPERIMENTS

We conducted extensive experiments to demonstrate the efficiency and effectiveness of ZeroP. In
this section, we provide an overview of the general experimental settings. Any specific changes
will be mentioned in subsequent sections. We then present additional experiments to evaluate the
benefits of PD and the relationship between BNS and performance, which support the research flow
discussed in Sec. 2. Next, we compare the performance of ZeroP with SOTA methods. Additionally,
we perform an ablation study on PD. Due to space limitations, we provide a detailed analysis and
some experimental results in the supplemental materials (SM). We encourage readers to refer to the
SM for a comprehensive understanding of PD and ZeroP.

Datasets & Baselines. To compare the performance of ZeroP with other SOTA methods, we re-
port the top-1 accuracy on ImageNet-1K (Krizhevsky et al., 2017). Additionally, we evaluate the
generalization of ZeroP by reporting the top-1 accuracy on CIFAR10 (Krizhevsky et al., 2009),
CIFAR100 (Krizhevsky et al., 2009), and ImageNet-1K (Krizhevsky et al., 2017). Furthermore,
we assess the performance gain of PD by using 16 datasets as PD, including CityscapesgtCoarse
(Cordts et al., 2016), ADE2K (Zhou et al., 2017), Cartoon 1, DIV2K (Agustsson & Timofte, 2017),
CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), PASCAL VOC (Evering-
ham et al., 2010), COCO (Lin et al., 2014), Cityscapes (Cordts et al., 2016), MNIST (LeCun et al.,
1998), Random Noise2, MPII (Andriluka et al., 2014), Stanford Dogs (Khosla et al., 2011), Stanford
Cars (Krause et al., 2013), SVHN (Netzer et al., 2011), and CelebFaces (Liu et al., 2015). Please
refer to the SM for the deatils of all the datasets.

1We will release the dataset after the paper accepted.
2Manually constructed by the authors.
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Table 1: The gain of 16 PDs on ImageNet-1K (OD). The result of 4 commonly used architectures
in 4-bit quantization is reported. ‘FP32 Acc’ denotes the full-precision model performances. PDs
are divided into 3 groups based on the BNS distance for better display.

BW ProxyData BN ResNet-18 MobileNetV1 MobileNetV2 RegNet-600MF
FP32 Acc 0.00 71.47 73.39 72.49 73.71

4w4a

ZeroPw/o - 66.35 43.31 66.22 63.70
SVHN 108.08 65.94 (0.41#) 46.66 (3.35") 65.67 (0.55#) 64.13 (0.43")

CIFAR10 82.14 66.50 (0.15") 49.20 (5.89") 66.60 (0.38") 64.13 (0.43")
CIFAR100 81.47 66.61(0.26") 50.35 (7.04") 66.21 (0.01#) 64.73 (1.03")

MNIST 78.67 66.46 (0.11") 47.36 (4.05") 66.17(0.05#) 63.17(0.53#)
Random Noise 78.09 66.06 (0.29#) 41.37 (1.94#) 65.65 (0.57#) 62.36 (1.34#)

CityscapesgtCoarse 41.76 66.52 (0.17") 50.48 (7.17") 66.16 (0.06#) 63.53 (0.17#)
Cartoon 37.7 66.48 (0.13") 50.03 (6.72") 66.47 (0.25") 64.65 (0.95")

Cityscapes 25.53 66.61 (0.26") 49.54 (6.23") 66.50 (0.28") 64.50 (0.80")
StanfordDogs 15.02 65.82 (0.53#) 51.10 (7.79") 66.79 (0.57") 65.55 (1.85")
StanfordCars 13.45 66.86 (0.51") 51.75 (8.44") 66.67 (0.45") 65.16 (1.46")
CelebFaces 11.92 67.03 (0.68") 53.85 (10.54") 67.11 (0.89") 65.98 (2.28")

ADE2K 4.55 67.48 (1.13") 56.40 (13.09") 67.13 (0.91") 66.79 (3.09")
DIV2K 4.20 67.41 (1.06") 58.07 (14.76") 67.76 (1.54") 67.10 (3.40")
MPII 3.67 67.44 (1.09") 56.61 (13.30") 67.24 (1.02") 66.65 (2.95")

PASCALVOC 2.18 67.52 (1.17") 59.12 (15.81") 67.87 (1.65") 67.32 (3.62")
COCO 2.17 67.75 (1.40") 59.38 (16.07") 68.13 (1.91") 67.92 (4.22")

We conduct experiments on several commonly used network architectures, including ResNet-18
(He et al., 2016), ResNet-20 (He et al., 2016), ResNet-50 (He et al., 2016), MobileNetV1 (Howard
et al., 2017), MobileNetV2 (Sandler et al., 2018), and RegNet-600MF (Radosavovic et al., 2020). In
specific experiments, we may focus on a subset of these architectures, and we will provide detailed
settings in the corresponding sections. As for the baselines, we compare our results with current
SOTA ZSQ methods using SD, such as GDFQ (Xu et al., 2020), Qimera (Choi et al., 2021), and
IntraQ (Zhong et al., 2022b). All pre-trained full-precision models are sourced from the PyTorchCV
library, and all experiments are implemented using PyTorch (Paszke et al., 2019) and run on A100
GPUs.

Implementation details. We use the original open-source configurations for the baselines we used
or mentioned in our experiment, such as GDFQ, Qimera, IntraQ, and FDDA (Zhong et al., 2022a).
Moreover, we use a ‘*’ to highlight our implementation method or results based on the official code.
We set � = 0.5 and COCO as PD for ImageNet-1K and DIV2K as PD for CIFAR10/CIFAR100 for
default. Furthermore, we implement our ZeroP based on the FDDA framework. We keep the same
configuration of FDDA in open source code3. For the loss, we only use loss mentioned in Sec. 3,
i.e., LG for updating the generator G, and LQ for fine-tuning the quantized network Q.Any changes
to specific configurations will be mentioned in the corresponding experiment section. Due to space
limitations, please refer to the SM for more details.

4.1 EXPLORING THE GAINS OF PROXY DATA

4.1.1 ADDITIONAL RESULTS ON PROXY DATA

Settings. In Sec. 2, we emphasized the importance of exploring the potential of PD for ZSQ.
Here, we present additional experiment results that provide more details on the gains of using PD.
To obtain a comprehensive analysis, we construct a simple ZeroP using only SD as a baseline and
16 different datasets as PD to the baseline. For brevity, we use ZeroPw/o and ZeroPw/ to indi-
cate ZeroP using only SD and ZeroP using PD, respectively. We evaluate ZeroPw/ on ResNet-18,
MobileNetV1, MobileNetV2, and RegNet-600MF in 4-bit (4w/4a) and 5-bit (5w/5a) quantization
settings, and report the top-1 accuracy on the ImageNet-1K validation set in Tab. 1. We manu-
ally construct a ‘Random Noise’ dataset via sampling the image value from a Gaussian distribution
N (0, 1) with the same size of SD/PD/OD. Due to space limitations, we only list the 4-bit experiment
results in the table. Please refer to the SM for the 5-bit experiment results.

3https://github.com/zysxmu/FDDA
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Figure 4: The correlation of BNS distance and accuracy. Spearman’s rank correlation coefficient,
⇢1, measures the fidelity of BNS distance for choosing an appropriate PD. The figure shows the ⇢1
for 4 architectures on 4-bit and 5-bit setting with ZeroP as baseline.

Results. Tab.1 shows that most cases where the performance decreases occur when the BNS dis-
tance is large, such as in the cases of SVHN, CityscapesgtCoarse, and MNIST. However, using
PDs with small BNS distance, e.g., COCO and ADE2K, consistently improved the baseline sig-
nificantly, with approximately 1.40%, 10.00%, 1.50%, and 3.00% performance gain in accuracy
for ResNet-18, MobileNetV1, MobileNetV2, and RegNet-600MF, respectively. Interestingly, some
datasets, e.g. CIFAR10, have larger BNS distances than Random Noise, yet they still yield better
performance. Also, one may notice that some PDs, such as SVHN and MNIST, exhibit worse perfor-
mance than Random Noise. We speculate that this decrease in performance for SVHN and MINIST
may be due to their domains being farther away from the ImageNet-1K domain. In summary, our
experimental results demonstrate that using PDs can lead to significant performance gains, even in
different low-bit cases on large-scale datasets like ImageNet-1K.

4.1.2 SELECTING PROXY DATA WITH BNS

Now that we have shown that PDs can improve performance, it is important to find a way to reduce
the cost of selecting the appropriate PD for specific tasks. Running ZSQ with all possible candidate
PDs can be prohibitively expensive in practice, given the large number of PDs available. Here, we
demonstrate the effectiveness of the proposed selection method with experiments.

Settings. We randomly selected 1024 images, M = 1024 in Equ. 5, from a specific PD and
calculated the BNS distance using Equ. 5. We calculated the BNS distance for 16 PDs, and the
results are listed in Tab. 1. To better visualize the results, we divided the 16 datasets into three groups
based on their BNS distance: less than 10, 10 to 50, and greater than 50. We also calculated the
Spearman’s rank correlation coefficient (⇢1 ) and Pearson correlation coefficient (⇢2) to measure the
relationship between the BNS distance and the final performance. All experiments were performed
on the ImageNet-1K dataset. Due to space limitations, the results of Pearson correlation coefficient
are list in SM. Please refer to SM for more details.

Results. As shown in Tab. 1, we observed that smaller BNS distance is associated with better per-
formance gain for PDs. We also found that performance degradation of PDs only occurred in large
BNS distance datasets such as Stanford Dogs and SVHN. Furthermore, as shown in Fig. 4, the BNS
distance is highly related to the final performance, which is reasonable since BNS is widely used in
SD methods as the main guideline to extract the features of OD into SD. Additionally, Zhang’s work
(Zhang et al., 2021a) provides more experiments to explain how BN contains information on OD.
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4.2 PERFORMANCE COMPARISON

Settings. This study aims to compare the performance of ZeroP with SOTA methods in 4-bit and
5-bit quantization settings for the ZSQ task. We report the top-1 accuracy on the validation set of
ImageNet-1K and compare it with the current SOTA methods. These SOTA methods can be further
divided into two groups: 1) ZSQ methods that use OD to accomplish quantization, including ACIQ-
Mix (Banner et al., 2019), AdaQuant (Hubara et al., 2020), Bit-Split (Wang et al., 2020), BERCQ
(Li et al., 2021), and FDDA (Zhong et al., 2022a). OD methods usually have higher performance
compared to SD methods. 2) ZSQ methods that use only SD, such as HAST (Li et al., 2023), AIT
(Choi et al., 2022), IntraQ (Zhong et al., 2022b), Qimera (Choi et al., 2021), and GDFQ (Xu et al.,
2020). We list the OD methods to show the performance upper bound of the ZSQ task. All results
are shown in Tab. 2.

Table 2: Image classification performance com-
parisons with SOTA methods on ImageNet-1K.
‘BW’ means Bit-Width. This table report 4-bit
and 5-bit quantization settings. ‘*’ denotes our
implementation results based on the official code.

BW Methods Dataset Type ResNet-18 ResNet-50 MobileNetV1 MobileNetV2
FP32 Acc � 71.47 77.73 73.39 72.49

5w5a

ACIQ-Mix OD 66.80 � 51.65 60.42
AdaQuant OD 68.19 � � 63.61
Bit-Split OD 68.88 � � �
BRECQ OD 70.27 � 66.51 70.26
FDDA OD 70.56 � 70.26 71.63
GDFQ SD 68.24⇤ 71.90⇤ 59.34⇤ 67.85⇤

Qimera SD 69.29 75.32 61.89⇤ 70.45
IntraQ SD 69.94 74.64⇤ 68.17 71.28
AIT SD 70.28 76.00 - 71.96

HAST SD � � 68.52 71.72

ZeroPw/o SD 69.92 75.36 67.30 71.23
ZeroPw/ SD+PD 70.28 76.10 70.08 71.71

4w4a

ACIQ-Mix OD 57.47 � 4.68 34.84
AdaQuant OD 63.45 � � 34.64
Bit-Split OD 67.49 � � �
BRECQ OD 67.94 � 57.11 63.64
FDDA OD 68.88 � 63.75 68.38
GDFQ SD 60.60 56.04⇤ 30.79⇤ 59.56⇤

Qimera SD 63.84 66.25 38.66⇤ 61.62
IntraQ SD 66.47 56.88⇤ 51.36 65.10
AIT SD 66.83 68.27 - 66.81

HAST SD 66.91 � 57.70 65.60

ZeroPw/o SD 66.35 64.50 43.31 63.70
ZeroPw/ SD+PD 67.75 72.17 59.38 68.13

Results. Tab. 2 shows that ZeroP, with SD
and PD, outperforms almost all pure SD meth-
ods except for AIT (71.96%) in the 5-bit case.
In the 5-bit case, all the methods can better
approach the full-precision model (FP32 Acc)
for the relaxed bit width constraint, so the dif-
ference between methods may not be distinc-
tive. However, the superiority of ZeroP is
fully demonstrated in the 4-bit case. One may
observe that ZeroP achieves performance in-
creases of 0.84%, 3.90%, 1.68%, and 1.32% for
ResNet-18, ResNet-50, MobileNetV1, and Mo-
bileNetV2, respectively, in comparison with the
highest-performing solo SD methods. ZeroP
consistently outperforms all solely SD SOTA
methods. Meanwhile, FDDA remains almost
the highest accuracy over all methods since it
utilizes OD. ZeroP still outperforms many OD
methods in 4-bit and 5-bit cases, as shown in
Tab. 2. We also conduct a performance com-
parison on CIFAR10/CIFAR100. Please refer
to the SM for more details.

Table 3: The generalization of ZeroP and the ablation study on PD. Where ‘RN’ indicates ‘Ran-
dom Noise’. ‘SD’, ‘PD’, ‘OD’, and ‘BW’ share the same defination as before Tables. For each
method, every ‘SD’ and ‘PD’ columns can be consider as showing the generalization of ZeroP. For
each method, ‘RN’, ‘SD’, ‘PD’, and ‘OD’ can be viewed as the ablation on PD.

Dataset Model
(FP32 Acc) BW GDFQ

+SD
GDFQ
+RN

GDFQ
+OD

GDFQ
+PD

Qimera
+SD

Qimera
+RN

Qimera
+OD

Qimera
+PD

IntraQ
+SD

IntraQ
+RN

IntraQ
+OD

IntraQ
+PD

ZeroP
+SD

ZeroP
+RN

ZeroP
+OD

ZeroP
+PD

CIFAR10
ResNet-20 5w5a 93.39⇤ 92.13 93.85 93.60(0.21") 93.46 92.50 93.68 93.77(0.31") 93.28⇤ 93.33 93.40 93.35(0.07") 93.72 93.49 93.91 93.73(0.01")
94.03 4w4a 90.25 88.04 93.11 92.53(2.28") 91.26 88.70 92.94 92.81(1.55") 91.49 90.76 91.52 91.84(0.35") 92.24 91.40 93.17 93.00(0.76")

3w3a 70.98⇤ 67.34 89.01 87.15(16.17") 77.64⇤ 73.43 89.43 87.48(9.84") 77.07 75.88 87.94 85.63(8.56") 79.43 78.23 89.25 88.24(8.81")

CIFAR100
ResNet-20 5w5a 67.45⇤ 65.55 68.71 68.04(0.59") 69.02 66.41 69.86 69.56(0.54") 68.17⇤ 67.92 69.51 68.66(0.49") 69.53 68.75 70.02 69.52(0.01#)
70.33 4w4a 63.80 57.61 66.98 66.31(2.51") 65.10 61.62 68.10 67.41(2.31") 64.98 64.74 66.80 66.15(1.17") 66.76 65.51 68.55 67.64(0.88")

3w3a 49.62⇤ 36.19 58.46 55.40(5.78") 47.44⇤ 43.84 60.76 56.32(8.88") 48.25 48.45 56.26 53.68(5.43") 52.26 52.93 60.65 57.46(5.20")

ImageNet-1K

ResNet-18 5w5a 68.24⇤ 68.37 69.29 69.27(1.03") 69.29 68.98 70.10 70.12(0.83") 69.94 69.98 70.31 70.24(0.30") 69.92 69.99 70.44 70.28(0.36")
71.47 4w4a 60.60 60.51 66.05 62.50(1.90") 63.84 63.19 66.99 66.52(2.68") 66.47 65.56 67.89 67.67(1.20") 66.35 66.06 67.81 67.75(1.40")

ResNet-50 5w5a 71.90⇤ 72.86 75.53 75.59(3.69") 75.32 73.77 75.53 76.06(0.74") 74.64⇤ 73.78 75.99 75.83(1.19") 75.36 74.95 76.41 76.10(0.74")
77.73 4w4a 56.04⇤ 50.85 70.92 65.98(9.94") 66.25 61.71 69.71 68.62(2.37") 56.88⇤ 59.16 69.78 70.88(14.00") 64.50 66.60 72.44 72.17(7.67")

MobileNetV1 5w5a 59.34⇤ 59.54 66.92 65.02(5.68") 61.89⇤ 63.97 69.74 69.11(7.22") 68.17 67.70 69.87 69.81(1.64") 67.30 67.49 70.06 70.08(2.78")
73.39 4w4a 30.79⇤ 30.05 53.24 38.41(7.62") 38.66⇤ 41.58 57.80 53.00(14.34") 51.36 49.54 59.66 57.21(5.85") 43.31 41.37 61.07 59.38(16.07")

MobileNetV2 5w5a 67.85⇤ 68.22 70.96 70.14(2.29") 70.45 69.46 71.70 71.48(1.03") 71.28 71.24 72.10 71.79(0.51") 71.23 71.25 71.70 71.71(0.48")
72.49 4w4a 59.56⇤ 59.55 66.03 64.63(5.07") 61.72 59.39 66.74 65.72(4.00") 65.10 65.72 67.90 67.73(2.63") 63.70 65.65 68.38 68.13(4.43")

4.3 ABLATION STUDY AND ANALYSIS

Settings. In this section, we perform an ablation study to evaluate the effectiveness of PD used in
ZeroP on CIFAR10, CIFAR100, and ImageNet-1K. Specifically, we construct control experiments
as follows. We first construct each baseline method’s input data as defined in Equ. 6. Then, we
compare four different input data: pure-SD (‘SD’), mixed with Random Noise (‘RN’), mixed with
Original Data (‘OD’), and mixed with Proxy Data (‘PD’). We set � = 0.5 for all mixed input data
cases, and the Random Noise for ‘RN’ is constructed as follows: we directly sample the value of
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RN image from a Gaussian distribution N (0, 1) with as the same size as SD/PD/OD. We test the
following baseline methods: GDFQ, Qimera, IntraQ, and ZeroP. The results are reported in Tab. 3.

Results. As shown in Tab. 3, for each baseline method, we roughly have ‘OD’ > ‘PD’ > ‘SD’
> ‘RN’. Still, there are some counterexamples, such as ‘PD’ > ‘OD’ (ResNet-20 of Qimera on
CIFAR10 in 5-bit case) and ‘RN’ > ‘SD’ (MobileNetV1 of Qimera on ImageNet-1K). This result
is consistent with our expectations. ‘OD’ represents the performance upper bound, and ‘PD’ and
‘SD’ is approximate ‘OD’. With appropriate PD, ‘PD’ is better than ‘SD’ since ‘SD’ may only
provide limited single-angle mimicry of ‘OD’. Finally, ‘RN’ may contain useless or even harmful
information, which results in almost the worst performance. This phenomenon is observed almost
consistently across all baseline methods and datasets. The result of Tab. 3 also demonstrates the
ZeroP pipeline can easily transfer to other SOTA pure-SD ZSQ methods. Besides, due to the limited
space, the extensive analysis of PD is presented in SM. Please refer to SM for more details.

5 RELATED WORK

Data-free setting tasks. Data-free settings have been widely studied in various tasks, such as data-
free Knowledge Distillation (KD) (Lopes et al., 2017; Chen et al., 2019; Nayak et al., 2019; Fang
et al., 2019; Liu et al., 2021) and Model Stealing (MS) (Tramèr et al., 2016; Wang & Gong, 2018;
Oh et al., 2019; Sanyal et al., 2022; Barbalau et al., 2020; Orekondy et al., 2019). Data-free KD
typically assumes a ”Teacher” and ”Student” model relationship, aiming to transfer teacher knowl-
edge to the student model. For example, Lopes et al. (2017) propose utilizing metadata to achieve
data-free KD. However, the reliance on metadata does not fully match the concept of a total data-free
setting. Other works (Chen et al., 2019; Oh et al., 2019; Fang et al., 2019) further propose obtaining
synthetic data during distillation, eliminating the need for OD. On the other hand, Model Stealing
aims to extract specific information from the victim network, such as hyperparameters (Wang &
Gong, 2018), functionality (Tramèr et al., 2016; Barbalau et al., 2020; Orekondy et al., 2019), or
architecture (Oh et al., 2019), often assuming limited access to the victim through certain APIs. Re-
cent works explore stronger constraints, such as complete black-box victim models (Barbalau et al.,
2020) or hard-label settings (Sanyal et al., 2022). Data-free KD and ZSQ are, to some extent, more
relaxed compared to complete black-box data-free tasks like MS (Barbalau et al., 2020; Orekondy
et al., 2019) since the teacher (victim) model’s information is available in ZSQ and data-free KD.
From this perspective, exploring Proxy Data in our ZeroP approach may benefit other data-free
setting tasks.

6 LIMITATIONS

Although ZeroP outperforms current pure-SD methods by a large margin and achieves comparable
performance to OD methods, some potential insufficiencies should be considered: 1) Obtaining PD
can be challenging for certain tasks. In some cases, there may be no available candidate datasets to
serve as PD. 2) We only experimented with the BNS distance selection method on CNN networks.
More recent architectures, such as Vision Transformer (Dosovitskiy et al., 2020), have yet to be
tested due to resource limitations. 3) Alternative PD selection methods should be explored, since
Batch normalization (BN) may not suit some task. For example, in image super-resolution (Ledig
et al., 2017), BN may be harmful to performance.

7 CONCLUSION

In this paper, we propose ZeroP, a novel approach for the ZSQ task. We investigate the potential
gain of PD across 16 commonly used CV datasets. Additionally, we introduce the BNS distance as
a simple yet effective metric for selecting suitable PD for a specific task. Unlike previous works that
rely solely on SD or use PD to guide SD generation, ZeroP directly combines PD and SD as input for
the ZSQ task. Experiment results demonstrate that ZeroP outperforms SOTA pure-SD methods by a
large margin on diverse datasets. Furthermore, ZeroP achieves competitive performance compared
to existing OD methods. The performance gain of ZeroP is consistent across various SOTA pure-SD
methods. Our findings challenge the notion that relying solely on SD is necessary.
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Amélie Royer, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri, Forrester Cole, and
Kevin Murphy. Xgan: Unsupervised image-to-image translation for many-to-many mappings. In Domain
Adaptation for Visual Understanding, pp. 33–49. Springer, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4510–4520, 2018.

Sunandini Sanyal, Sravanti Addepalli, and R Venkatesh Babu. Towards data-free model stealing in a hard label
setting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15284–15293, 2022.

12



Under review as a conference paper at ICLR 2024

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effectiveness
of data in deep learning era. In Proceedings of the IEEE international conference on computer vision, pp.
843–852, 2017.
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