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ABSTRACT

Deep learning has become the cornerstone of recent advances in artificial in-
telligence. However, the presence of adversarial samples makes deep learning
vulnerable in safety-critical applications. Moreover, adversarial examples have
been shown to be unavoidable in some degree. So how to keep the network secure
under adversarial attacks? To address this issue, we propose the bias classifier.
This approach employs the bias component of a neural network, using ReLU as
its activation function, as a classifier. The bias classifier has been shown to uni-
versally approximate any classification problem with a high degree of probability.
Moreover, it can be made information-theoretically safe against the original model
gradient-based attack in the sense that any such attack produces a completely
random attacking direction for any given input. Thus, the bias classifier provably
achieves the maximum possible robust accuracy under specified attacks. Experi-
ments are used to validate our theoretical results and to show that the bias classifier
is accurate and robust for simple models.

1 INTRODUCTION

Deep learning has become the most powerful machine learning method, which has been successfully
applied in computer vision, natural language processing, and many other fields. However, the
existence of adversarial samples (Szegedy, [2013; Biggio et al.,|2013) makes deep learning vulnerable
in safety-critical applications such as autonomous driving (Cao et al.,[2019), face recognition (Dong
et al.| 2019), and medical image processing (Ma et al.} 2021)). Although many effective methods to
defend adversaries have been proposed (Xu et al.,2020), adversarial examples have been shown to be
inevitable in certain sense (Azulay & Weiss|, 2019; |Shatahi et al.|,2019a}; [Bastounis et al., 2021} |Yu
et al.l 2023} |Gao et al.| [2022).

In (Shafahi et al., [2019a), it is shown that for certain data distributions and network F, if F gives the
correct result for a benign sample x, then  must have an adversarial example. In (Bastounis et al.|
2021)), it is proven that for any network F with a fixed structure, there exists a dataset D such that
if F is accurate on D then F has adversarial examples. In (Yu et al.,[2023), it is proven that if the
network is large enough, then small perturbation of the network parameters will lead to adversarial
examples. On the other hand, for a given dataset D, it is shown that there exists a network which is
robust for D with a given budget (L1 et al.,[2022a; Yu et al., 2024), but the network is too large to be
practical. Furthermore, in order to be robustly generalizable, the network must have an exponential
number of parameters (Li et al., [2022al).

There are many methods to improve the robustness of networks (Xu et al.l 2020). Adversarial
training (Madryl 2017) is one of the most used defenses and has been shown to be optimal in certain
sense (Gao et al.,|2022). However, the robust accuracy for networks developed through adversarial
training is not very high for moderately complex dataset such as CIFAR-10. Besides, the application
of diffusion models for input purification achieves good results to some extent (Nie et al.,[2022). But
all these defenses cannot give the provable highest robust accuracy.

Since theoretical and experimental results show that adversarial examples cannot be totally eliminated
for the commonly used network structures and the practical robust accuracies do not achieve provable
highest values, we may ask the following basic question about the neural network security.
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Question. For neural networks with a given structure, for instance VGG-19 or ResNet-18, is it
possible to provably achieve the highest possible robust accuracy under certain attacks?

In this paper, we present a partial answer to the above question by introducing the bias classifier,
that is, using the bias part of a deep neural network (DNN) as the classifier. We show that the bias
classifier can be made information-theoretically safe for certain attacks in the sense that the success
rate of adversarial attack is close to that of a random direction attack. Since random direction attack
can be considered the weakest attack, robust accuracy under this attack is the highest possible, and in
this sense, the information-theoretically safe bias classifier gives the highest robust accuracy.

LetI = [0,1] and F : I" — R™ be a classification DNN and m the number of labels, using ReLU as
the activation function. For any a € I", there exist W, € R™>*" and B,, € R™ such that

F(x) = Wex + B,.

By the bias classifier, we mean to use F’s bias part Br(z) = B, : I — R™ as a classifier. The
contributions of this paper are summarized below.

First, the universal classification power of the bias classifier is proved. Precisely, it is shown that for
any classification problem G : I — [m)], there exists a DNN whose bias part gives the correct label
G(z) for z € T™ with arbitrarily high probability.

Second, the bias classifier can be provably safe against certain gradient-based attacks of the form:
A(z,y) = v + pDa(z,y) : I" — I", where p € R is the attack coefficient and D 4(x,y) €
{—=1,1}" is the attack direction. A neural network F : I™ — R™ is called information-theoretically
safe against an attack A, if a random attack direction D 4(z, y) is generated for any input sample z.
The robust accuracy under such an attack .4 is equal to the robust accuracy under an attack using
the random attack direction. It is clear that such an attack gives the highest possible robust accuracy,
which can be achieved practically. This seems to be the first time that the concept of information-
theoretically safe classifier is proposed for adversarial attacks. The notion of information-theoretically
safe is borrowed from cryptography (Goldreich, 2001}, which means that the ciphertext yields no
information regarding the plaintext for cyphers that are perfectly random.

Third, an effective training method for the bias classifier is proposed. It is observed that the adversarial
training introduced in (Madry, [2017) significantly increases the classification power of the bias part.
Using the adversarial training to the loss function Leg(Br (), y) + vLce(F (), y) further increases
the classification power of the bias part, and hence is used to train the bias classifier.

Finally, experimental results are used to validate the theoretical results and to show that the bias
classifier is quite accurate and robust on some simple tasks. We first use experiments to show that
the bias classifier is indeed informtion-theoretically safe by achieving the highest possible robust
accuracy. We then use simple networks such as Lenet-5 for MNIST and VGG-19 for CIFAR-10 to
illustrate the practical performance of the bias classifier. Following (Carlini et al., [2019)), we show
that the bias classifier is quite robust against major attacks, such as gradient-based white box attack,
black box attack, AutoAttack, and BDPA attack (Athalye et al.,[2018]).

2 RELATED WORK

Adversarial Defenses. There exist two main approaches to obtain more robust DNNs: using a better
training method or a better structured DNN. Of course, the two approaches can be combined.

Many new defensive structures for DNNs were proposed (Xu et al.,2020). Closely related to this
paper, gradient masking or obfuscation defenses try to make the gradient information of the DNN
unuseful, so that attacks based on gradient cannot work directly (Athalye et al.,|2018)). Gradient
masking methods include the shattered gradients (Buckman et al., 2018 |Guo et al.l 2017}, the
stochastic gradients (Dhillon et al.| [2018]; Xie et al.,2017)), the exploding gradients (Song et al., 2017}
Samangoueil, |2018)), and the quantization methods (Bernhard et al., 2019} |[Khalid et al.,|2019; Song
et al.}2021). In (Athalye et al.,|2018), it was shown that most of these defences can be circumvented
by properly learning the gradients. Other models were also introduced to defend adversarial samples,
including the ensemble adversarial training (Tramer et al.,2017), denoising layer (Xie et al., 2019)),
and difference-privacy noise layer (Lecuyer et al., 2019),
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The bias classifier introduced in this paper is similar to gradient obfuscation defense, but is eseentially
different and has the following novel properties. First, the bias classifier has zero gradient, unlike
other methods, which try to make the gradients approximately zero. Second, we show that BPDA
attack cannot break the bias classifier in our experimental settings, while the BPDA attack can
break most gradient obfuscated defences (Athalye et al., 2018)). Finally, the bias classifier can be
made provably robust against the original model gradient-based attack. Previous random gradient
obfuscation models do not claim provably robustness.

Many effective methods have been proposed to train more robust DNNs to defend adversarial
attacks (Xu et al.,|[2020; Shafahi et al., 2019b}, |[Zhang et al.,[2019; Wu et al.| [2020; [Nie et al., 2022).
Adpversarial training (Madryl [2017)) is one of the best practical defenses and can achieve optimal
adversarial accuracy in certain sense (Gao et al., [2022)). In this paper, adversarial training (Madry,
2017) is used for a new loss function to train the bias classifier.

Provable Robustness. Provable or certified robustness for DNNs can be achieved by verification or
by deriving explicit robust radius bounds or boundaries. Certified verification aims to decide whether
a trained DNN is robust by computing the robust boundaries (Li et al.l 2023} Wang et al.| 2021}
Li et al.,[2022b). Explicit lower bounds for robust radius are given for DNNs trained with various
approaches such as randomized smoothing (Cohen et al., 2019) or L, regulations (Yu & Gao, [2023)).
In (Hein & Andriushchenkol 2017} Raghunathan et al., 2018]), some security boundaries were given.
Compared to the above approaches, our approach is more practical in that our models are trained like
the usual adversarial training, while certified verification usually requires heavy computation, such as
SMT solving (Katz et al.,|2017) and only works for small DNNs, and the explicit robust radius is
usually very small (Yu & Gaol [2023) to be useful for commonly used DNN models.

3 BIAS CLASSIFIER

In this section, we define the bias classifier and prove the universal power of the bias classifier. We
also provide a training algorithm for the bias classifier.

3.1 BIAS CLASSIFIER

LetI = [0,1] and [n] = {1,...,n}. Forn,m,L € Ny, let F : I — R™ be a classification DNN
with L hidden layers. Each hidden layer of F uses ReLU as activity functions, and the output layer is
an affine transformation. We write F : I — R™ as

f(xo) =Wrpixp +bryr and 2 = RGLU(WZ$Z,1 + bl) eR™ [ e [L], (1)
where o € 1", ng = n,npy; = m, W; € R"*"-1 p € R™. Denote O = {W;, b lell to be
the parameter set of F. For a label I € [m] and 2 € 1", denote by F()(x) the I-th coordinate of
F(z). The classification result of F is F(z) = argmaxle[m]]-"(l)(a:).

Let F be a network defined as before, for any « € I, we have

where W, = Jr(x) = erit) |- is the Jacobian of F at x and Bx(x) = B, is the bias of F at . We

will let the bias part Bz : I"" — R™ be used as a classifier and is called the bias classifier, which can
be computed from F as follows:

VF(t)
Vi

Br(z) = F(x) — Wr(x) = F(x) — lo -2 = F(x) — Tr(x) - x. 3)

Remark 1. Due to the property of the ReLU function, F is a piecewise linear function. A linear
region of F is a closed maximal connected subset of the input space 1", on which F is linear. On
each linear region A of F, there exist Wa € R™*"™ and By € R™, such that F(x) = Wax + Ba
for x € A. Obviously, W = W, and By = B, for x € A. It is clear that there exists a finite
number of linear regions and 1" is the union of these linear regions (Goodfellow et al.| 2014). As a
consequence, the bias classifier is a piecewise constant function with a finite number of values.
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3.2 BIAS CLASSIFIER HAS UNIVERSAL POWER FOR CLASSIFICATION

We will prove that for any classification function G : I"™ — [m)], there exists a bias classifier
Bx(x) : I — R™ such that Bx(x) can be arbitrarily close to G, where Bx () is the classification
result of Bx(x). Specifically, we define classification functions as follows (Cybenko, [1989).
Definition 2. G : I — [m)] is called a classification function, if " = U P; is a partition of I"
into m disjoint and measurable subsets and G(x) = i if and only if © € P
Remark 3. Real-world classification problems such as MNIST or CIFAR-10 can be treated as
classification functions as follows. Let O C 1™ be the objects to be classified. For x € Q andr € Ry,
when r is small enough, it is reasonable to treat all objects in

B(z,r) ={z+nlneR" |l <r}
as images that have the same label as x. Furthermore, for all elements in I'"" \ U,coB(z, 1), we may
assign a new label. In this way, all elements of I have a label.

The following existence theorem shows that the bias classifier has the power to interpolate any
classification functions with arbvitray high probability.

Theorem 4. Let G : 1" — [m] be a classification function. Then for any € € (0,1/2), there
exists a neural network F : 1" — R™ and an open set D C 1™ with volume V (D) < ¢, such that

Br(z,y) = G(x) forz € I\ D.

Proof Idea. By the universal approximation theorem given in (Cybenko| [1989), we can construct a
neural network G : I™ — R™ with a step activation function that can approximate G'(x). Furthermore,
we show that G can be modified such that all entries in its bias are nonzero. Furthermore, a neural
network F : I — R™ with ReLU as the activation function can be obtained from G, which satisfies
the condition of Theorem ] Details of the proof are given in Appendix [A]

3.3 TRAINING THE BIAS CLASSIFIER

Given a training set S C I" x [m], normal training is to solve the following optimization problem:

m}i_n Z Leg(F(2),y). “4)

(z,y)€S

Adpversarial training (Madryl, |2017) is to solve the following optimization problem:

mj_}n Z Hr?llax Lee(F(z +¢),v) o)

where ¢ € R, is a given small number. As shown in table[I} adversarial training helps to improve the
power of the bias classifier. In order to further increase the power of the bias classifier B and to
keep the training procedure efficient to update the parameters, we use the following loss function to
train the bias classifier

m}n Z [Lee(Br(x + CLyJ:)a Y) + YLcr(F (T + Gy 7)s ¥)]
(zy)€s (6)

Cay, F = argmaxHqKELCE(]-"(x + Q). y)
where v € R is a hyperparameter. This loss function tries to add the performance of bias classifier
in the adversarial data into the loss function. Because bias classifier does not have gradients, it is
difficult to quickly find adversarial samples by using gradients, so we use the adversarial samples
from the original network as a substitution. Please note that the parameters have derivatives for each
part of equation[f], so training can proceed.

By Table([I] easy to see that adversarial training for the bias classifier in equation [§ further increases
the power of the bias part.

Table 1: Accuracies of network Lenet-5 for MNIST on the test set.

Training Methods Br F

Normal training equation 15.62%  99.09%
Adpversarial training equatlon 98.77%  99.19%
Adpversarial training for bias classifier equation@ 99.09% 99.43%
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4 INFORMATION-THEORETICALLY SAFE BIAS CLASSIFIER

In this section, we will first define a common attack method of bias classifier and Information-
theoretically safe, and then build a information-theoretically safe bias classifier based on such attack
methods and prove it.

4.1 ORIGINAL MODEL GRADIENT-BASED ATTACK

The most popular methods to generate adversarial examples for network F, such as FGSM (Goodfel{

low et al.,|2014) or PGD (Madryl, 2017), use gradient %ﬁf") to make the loss function larger. For
example, adversarial examples are generated by FGSM as follows

VLc(F(z),y)
T) @)

for a small parameter p € R . Motivated by this fact, we introduce the concept of gradient-based
attack. We mainly consider one-step attack , the multistep attacks are discussed in Appendix [D}

Definition 5. Let F : 1" — R™ be a network, p € Ry, and Dg(x,y) : I™ x R — R"™. Then

x — x + psign(

AvaF(Ivy):I+pr(IE7y) :Rn+1 S R" (8)
is called a gradient-based attack for F if the attack direction D5 (x,y) depends only on the sample
VF(x)

(w,y), the network output F (), and the gradient ~5—.

For example, the FGSM attack is a gradient-based attack based on attack direction Dx(x,y) =
sign(%), because W can be calculated by (z,y), F(z) and %gf).

Since the gradient of B is zero, we cannot directly use a gradient-based attack on Bz, but an obvious
alternative attack to Br is to use the gradients of F, which leads to the following definition.
Definition 6. F and Dx(z,y) are following Deﬁnition@ Then

Asrpr(2,y) = 2+ p Dp(,y) : K™ 5 R" ©

is called an original model gradient-based attack for Bx based on attack direction D .

4.2 INFORMATION-THEORETICALLY SAFETY

In this section, we define the concept of information-theoretically safety. Let 7 be a neural network
that involves a random variable R satisfying the distribution R. Safety of Fx against an attack .4 can
be measured by the following adversarial creation rate:

C(Fr, A R) = Eper [E (s g~ [L(Fr(A(z,y)) # Fr(2))] (10)
where D is the data distribution. Attack A is called a random direction attack if A(z,y) is a random
direction in {—1,1}" for any (z,y) ~ D.

Definition 7. The above mentioned neural network Fg is called information-theoretically safe

against an attack A, if
C(Fr, A, R) <infgur C(FRr), (1)

where C(Fr) = 5= > ve(-1,13 E@y~p [I(Fr(z + pV) # Fr(x))] is the creation rate of adver-
sarial examples for random direction attack against network Fg.

We now show how to build an information-theoretically safe bias classifier under original model
gradient-based attack mentioned in Sectiond.1] First train a network F : I" — R™ with the method
in Section[3.3] Let Wz be sampled from a distribution M of random matrices in R™" and let

F(z) = F(z) + Wgz = (W, + W)z + B,

B(x) = F(z) — V@f) cx=F(z)— TJ£- . (12)

It is easy to see that Bf = B, that is, the bias classifiers for 7 and F are the same. Therefore, we

have

St C(Bz) =C(By). (13)
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Remark 8. C(Bx) is the creation rate of adversarial examples for random direction attack against
Bz, which is always small for common networks F as shown in Table E] Thus, if B is information-
theoretically safe against attack A, then the adversarial accuracy under attack A is equal to that
of random direction attack, which is the highest possible value for the adversarial accuracy. If Bz
is not information-theoretically safe against A, then we can use the value C(B+, A, M)/C(BF) to
measure the safety of B relative to the information-theoretically safety.

Remark 9. When m or n is large, Wr contains many parameters. This is not a problem. First,
Wk is generated randomly and does not need to be trained. Second, in practice, we can introduce
randomness using fewer parameters. For example, we can first generate a CNN Fr € I" — R™
without bias part and with random weights and then use Fr(z) instead of Wrx in equation

4.3 INFORMATION-THEORETICALLY SAFETY AGAINST CARLINI-WAGNER ATTACK

We first consider the Carlini-Wagner attack (Carlini & Wagner, 2017) AB}—,D}H which is a gradient-

based attack using the following attack direction:

VF.,(z) _ VFy(x)
Vax Vz

D (x,y) = sign( ) (14)

where n, = arg max;, {F ¥ (x)}.
Denote ||W||o = max; ; [w; ;| for W € R™*™ and denote ||z|| oo = min,ep,{|z;|} for 2 € R™.

We consider two types of random matrix for W in equation[I2]to be defined below.

Definition 10. Let Z(a,b) be the uniform distribution in [a,b] C R. For A\ € Ry, denote Uy, ,,(\)
to be the random matrices whose entries are in I(—\, \) and denote M, ,(\) to be the random
matrices such that the entries of its i-row are in (Z(—2i\, —(2i — 1)) UZ((2i — 1)\, 2i1))™.

For the distribution M, ,,()), the following theorem shows that 3= is information-theoretically safe

for attack .AB? p1 if Ais large.
UF

Theorem 11. For A € Ry, if ||Jr|lc < A/2 and Wg ~ My, n(N), then Bz in equation[I2]is
information-theoretically safe against attack ABf pL.
UF

Proof. From equationand equation JE = vzg(f) = W, + Wg. Let Wg; and W, ; be the

i-rows of W and W, respectively. Since Wgr ~ M., »n(X), we have ||[Wg; — Wk j||—oc > A for
i # j. Since [|[Flloo = [[YE2 |0 = [Waloo < A/2, we have |[W,; — W, i|[e < Afori # j.
From ||[Wg; — Wgj||—oc > Aand ||[W,; — W, j||cc < Afori # j, we have

i VFny (@ VFy(z
ABf,DI?(I) = + psign( V‘i( ) _ v.; ))

=x+ pSlgl’l(VVr,’ngr - W@,y + WR7"(1? - WR,y) (1)
=z + psign(Wgn, — Wry).

Since Wg ~ M, n(XN), W= Wg.n, — Wg,y is a random vector whose entries are in [—ba, —b1| U
[b1, bo] for some by, by € R, and thus we have that:
C(Br, As, bt Muma(N) = Ewgertn)[Eenn[I(Br( A, p1 (7)) # Bx())]
= EwprMp o) [Eend[I(Bx(x + psign(Wr)) # Bx(x))]]

3 Cver1,1yn Bonn[I(Br(z + pV) # Br(@))]
= C(B}—) = ianRNM7n,n(>\) C(Bf)’

where equation [I3]is used in the last equation. The theorem is proved. O

Remark 12. The original model gradient-based attack requires that only the values of the network
and its gradient are known, and its structure is kept as a secret. This is a very strong condition.
On the other hand, the reward is also very high: the maximum possible adversarial accuracy can
be provably achieved for commonly used networks and attacks. Networks possessing such strong
security attributes could be employed in operations demanding assured safety, under strict condition.

For the simpler distribution U, ,,()), the following theorem shows that 53+ is approximately safe for
attack AB? p1 under certain conditions. The proof of the theorem is given in Appendix
TF

6
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Theorem 13. If || Jr||oc < pt/2 and Wi ~ Uy, n(N), then C(B, AB?}D%,Z/{myn()\)) < C(Br)+
pun /. Furthermore, if \ > jin/(eC(Br)), then C(Bx, AB?’D%,Z/{m_,n()\)) < (1+€)C(BF).

By Remark@ Theorem@] implies that B+ is close to information-theoretically safe under attack
.AB? p1 if we use a sufficiently large .
TF

4.4 INFORMATION-THEORETICALLY SAFETY AGAINST FGSM ATTACK

In this section, we consider the FGSM attack AB?’sz (z) (Goodfellow et al., [2014), which is a
gradient-based attack using the following attack direction:

VLCE(.F(:E), y)

< ). (16)

D2 (a,y) = sign(

The following theorem shows that B+ in equation is safe against the FGSM attack for binary
classification problems. All proofs are given in Appendix [C|
Theorem 14. For A € R, if |[J7||cc < A/2, WR ~ My n(N), and m = 2, then Bx is information-
theoretically safe against attack .AB? p2.

TF

When m > 2, we have the following result.
Theorem 15. Let ||Jr|lcc < 1/2, |IBrllee < B, and A € Ry satisfy X\ > p and (A —
e 28 VA (2mA\ + pw)m. Furthermore, assume that the samples are normalized, that

2lloc = L I Wi ~ Mynn(N), then C(B, Ag_p2, Mimn(N) < (m = 1)C(Bx) + 20
(m—2)°

Remark 16. We can choose a large )\ to make the term S small. From Table C(B%) is very

small for MNIST and CIFAR-10. So, by Theorem B= is a[;]proximately safe if m is small. If m is
large, we cannot deduce the safety of B+ from Theorem @ Please note that this does not imply that
the bias classifier is not safe, because the upper bound given in Theorem[I3may not be tight, and
more research on the upper bound of C(B=, ABf,D% Mo (X)) is needed.

is,

In the remainder of this section, we consider the safety of B when Wy ~ Uy, n(N).
Theorem 17. If ||TF|loc < p/2, Wg ~ U n(X), and m = 2, then C (B, AB?DQ?,UW”()\)) <
e"™AC(Bx). Furthermore, if \ > ny/In(1 + €), then C(B=, ABsz?,Um,n()\)) < (14 ¢)C(BF).

For the general m, we have

Theorem 18. Assume ||Tr||co < /4, ||Brllee < B, and A € Ry satisfying pe=2B=nu/24V
2(2X + p)m. Furthermore, assume that the samples are normalized, that is, ||z||cc = 1. If

Wi ~ U n(N), then C(Bg, Ap 2 Unn(N) < (m — 1)C(Br) + 5hne y (n22"

Theorem [I7|shows that, for binary classification, B is close to information-theoretically safe against
FGSM under distribution U, ,,(A) for sufficiently large A\. Theorem shows that the result is
approximately valid if m is small. Refer to Remark [16]for a more detailed discussion.

5 EXPERIMENTS

In this section, experiments are used to validate the theoretical results and to show that the bias
classifier achieves comparable results in terms of accuracy and robustness for simple models.

Basic settings We consider the datasets MNIST and CIFAR10, and the following two bias classi-
fiers:
By : FU) is VGG16 for CIFAR10 (Lenet-5 for MNIST), trained with equation §]
B : F@ is ResNet18 for CIFAR10 (VGG9 for MNIST), trained with equation [f]

We train 200 epoches and learning rate 0.04, halve at 100 and 150 epoches. Use PGD-10 to find
adversarial in the training, and attack budget is L., norm 0.1 for MNIST and 8/255 for CIFAR-10,

7)
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the same budget is also used in the test after training. The accuracy and adversarial accuracy under
original based AutoAttack of these two bias classifiers are shown in table 2} the bias classifier itself
does not have good ability to improve robustness, but by using the ideas in equation[I2] it can achieve
the information-theoretically safety, as shown in the following section.

Table 2: Accuracy(A) and Adversarial Accuracy (AA) on the test sets.

DNN MNIST(A) CIFAR-10(A) | MNIST(AA) CIFAR-10(AA)
Bra)  99.14% 81.33% 98.50% 31.25%
Bre  99.06% 81.64% 98.03% 22.54%

5.1 PROVABLE ROBUSTNESS AGAINST ORIGINAL MODEL GRADIENT-BASED ATTACK

In this section, we use experimental results to validate the theoretical results in Section 4]

Rates of adversaries for random samples We estimate the adversarial creation rates for random
direction attack. In Table 3| we estimate the value of C(B+) defined in equation (11{for p = 0.1
(or p = 8/255 for CIFAR-10), we do it as follows. Randomly take 10000 samples in testset, for
each sample, randomly take 1000 random noise in {—0.1,0.1}" for MNIST ({—8/255,8/255}™ for
CIFAR-10) and add them separately to the sample, where n is the dimension of the samples. At last,
we estimate the value of C(5+) on these samples. We can see that C(Bxq)),C(Bx« ) are very small,
which means that random attacks have little effect in generating adversarial examples. Equivalently,
the adversarial accuracy for random direction attack is near 100%.

Information-theoretically safety of the bias classifier Following equation [12] let F(54) = F() 4
Wsa, where i € {1,2} and F*) are given in equation Ws ~ U1o,784(100) for MNIST, and
Ws ~ Ui 3072(100) for CIFAR-10. Let F69) = FO) 4 Wiz, Ws ~ M 784(100) for MNIST,
and W5 ~ Mg,3072(100) for CIFAR-10. Following Remark 9} let (") = F() 4 Fp, where Fg
is a CNN with two hidden layers for MNIST and CIFAR-10.

We use original model gradient-based PGD-10 to attack these model and the results are given in Table
[l The results under other attack methods are shown in the Appendix [E]

We will show that these bias classifiers almost achieve information-theoretically safety for both
MNIST and CIFAR-10. By the definition of information-theoretically safety, we just need to show
that the attack success rate of the original model gradient-based attack and random attack are almost
the same. By attack success rate, we refer to the proportion of samples for which the network gives
the correct label but assigns an incorrect label after attack.

According to Table C(Bx)) is also about 1% for MNIST and CIFAR-10, and this is approximately
the success rate of the random direction attack. By Table 2] the accuracy of Bz is about 81% for
CIFAR-10 and about 99% for MNIST. By Table [5} the adversarial accuracy of Bz is about 80% for
CIFAR-10 and more than 98% for MNIST. The difference between the corresponding values is about
1%, which means that the attack success rate of the original model gradient-based attack is almost
the same as that of the random direction attack. Therefore, information-theoretical safety is achieved.

It is worth mentioning that the bias classifier gives the highest possible adversarial accuracy for
MNIST and CIFAR-10. By Table |2} the accuracy of By is about 99% for MNIST and 81% for
CIFAR-10. Since the adversarial accuracy is generally less than the accuracy, 5~ achieves the
highest possible adversarial accuracy.

Table 3: Value of C(Brw)),C(Br).  Table 4: Adversarial accuracy with the BPDA attack.

MNIST CIFAR-10 Network MNIST CIFAR-10
C(Brm) 078% 1.09% Bra) 98.18%  69.51%
C(Brx) 082%  1.11% Bra — 97.83%  64.14%
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Table 5: Adversarial accuracy with the original model gradient-based attack.
Network MNIST CIFAR-10 | Network MNIST CIFAR-10
B]:(s,m 98.67% 80.15% B_;.—(s,z) 98.54% 80.02%
Brey 98.70%  80.86% Bre 98.73%  80.62%
Bray  98.25%  79.41% Bre 98.44%  79.48%

5.2 EVALUATION OF THE BIAS CLASSIFIER UNDER GRADIENT-INDEPENDENT ATTACK

The above section shows the information-theoretically safety under the original model gradient-based
attack. In this section, we mainly consider the black box attack and the attack against non-gradient
networks. We assume that under such attacks of B r, the attacker can directly obtain the output of
B £. In this case, and consider that for i = 1, 2, there are By = Br.o = Bre.n = Bre.i, so we
just need to directly consider the attacks on B ri.

To compare, we also consider the following networks:

F®) . VGG16 for CIFAR10 (VGG9 for MNIST), trained with equation 5}

F™ . ResNet18 for CIFAR10 (Lenet5 for MNIST), trained with equation 3} 18
F® . VGG16 for CIFAR10 (VGG9 for MNIST), trained with TRADES (Zhang et al| 2019); (18)
F© : ResNetl8 for CIFAR10 (Lenet5 for MNIST), trained with TRADES (Zhang et al.l 2019).

Black-box attacks We further compare the robustness of Bruy, Bre and F (), i = 3,4,5,6
against three black-box attacks: the surrogate model attack, the limited queries and information
black-box attack (LQI) (Ilyas et al.,2018)), and the zeroth order optimization (ZOO) based black-box
attack (Chen et al.,[2017). Moreover, to increase the power of the surrogate model attack, for any
given bias classifier B £, three new networks F;(j = 1,2, 3) are trained with the data {(z, Br(z))},
and by (Papernot et al., 2017), let 7j have similar structure with F to increase the transferability: Fi
has the same structure with F; F is obtained by increasing depth of 7; 3 is obtained by increasing
the channels of each hidden layer of . For a sample x, create an adversary x; with F; for j = 1,2, 3
by AutoAttack, and x is considered to have an adversary if one of x; is an adversary to Br.

The results are given in Table[6] For the bias classifier, compared to Table[2] we can see that these
black-box attacks are weaker than the white box attack, which is reasonable, and the bias classifier
has the defense capability at the same level as other networks.

Table 6: Adversarial accuracy under the black-box attack.

network MNIST CIFAR-10

surrogate model ~ LQI Z00 | surrogate model  LQI 700
Bro) 98.81% 99.01% 98.15% 73.51% 7120% 68.15%
Bre 98.63% 98.91% 98.22% 72.11% 76.60% 68.20%
F& 98.52% 98.94% 98.49% 70.85% 7521% 67.17%
F& 98.18% 98.26% 98.25% 69.61% 74.51% 68.28%
F®) 98.73% 98.39% 98.15% 72.69% 77.84% 69.61%
F(©) 98.46% 98.68% 98.32% 71.48% 78.35% 67.68%

BPDA attack on the bias classifier The Backward Pass Differentiable Approximation (BPDA) is
a powerful adversarial attack which was used to successfully attacked several gradient obfuscated
defences (Athalye et al.,|2018)). In this section, we show that BPDA cannot break the bias classifier,
which shows that the bias classifier is essentially different from gradient obfuscated defences.

The idea of BPDA is to approximate the non-differentiable layer with a differentiable function. To
attack Br(z) with BPDA, a two-layer network F is trained with the data (F(z), Br(x)) and the
network F o F is used to generate adversarial examples for B+ (). The results are given in Table
Since the gradients of F) i =3,4,5,6 are available, it is not necessary to use BPDA and their
results are not given.
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Compared to Table [6] we can see that BPDA is a little stronger than the black-box attacks, as
expected, because it is specifically designed for non-gradient networks. In particular, BPDA is unable
to compromise the bias classifier in the same way it can bypass gradient obfuscation defenses (Athalye
et al.l [2018)).

6 CONCLUSION

In this paper, we show that the bias part of a DNN can be effectively trained as a classifier. The bias
classifier is shown to have universal power to approximate classification problems. Furthermore, the
bias classifier can be made provably robust in certain sense. This answers the important question of
how to design neural networks that provably achieve the highest possible adversarial accuracy for
certain attacks. Finally, experimental results are used to show that the bias classifier is comparable to
other defensive DNNs of similar sizes against major types of adversarial attack.

Limitations and Future Research. The biggest problem is how to design a network suitable for
bias classifier, in this paper, we still use the classic network structure VGG or ResNet, but they
may not suitable for bias classifier. For further research, the estimations in Theorems and are
not optimal, and better estimations are desirable. Moreover, how to design a more suitable network
structure for bias classifier is also an interesting question.
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A PROOF OF THEOREM [4]

Theorem 4. Let G : 1" — [m] be a classification function. Then for any € € (0,1/2), there
exists a neural network F : I" — R™ and an open set D C 1™ with volume V(D) < ¢, such that

Br(z,y) = G(z) forz € T\ D.

We first prove several lemmas. In this section, the notation in Theorem[d] will be used. LetI" : R — R
be the following activation function:

0 if z<0
F(x):{1 if 250

Lemma 19 (Theorem 5 in (Cybenko} [1989)). Let G : 1" — [m] be a classification function. Then
for any € > 0, there exist N € N, W ¢ RVxn p e RN U € RY™N, and a set D C 1™ with
V(D) < € such that

Glx)=U -TWzx+db):I" >R
and |G(x) — G(z)| < eforx € I" \ D.

The following lemma shows that there exists a DNN with one hidden layer and activation function I,
which can simulate any classification function.

Lemma 20. Let G : I — [m)] be a classification function. For any € € (0,1/2), there exist N € N,
W e RN*" b e RN, U € R™*N, and a set D C 1" with V(D) < ¢, such that
Gx)=U -TWz+b):I" - R™ (19)

and G(x) = G(z) for any x € 1"/ D.

Proof. For each [ € [m], define a classification function £ : I — {0,1}: Fi(z) = Lif G(x) =,
and Fj(z) = 0 otherwise. By Lemma forall I € [m], there exist N € N, W; € RVX" b, € RV,
U, € RN ‘and D; C I" with V(D;) < €/m such that

F(z)=U - T(Wiz+b): I" - R
satisfies | F()(z) — Fy(2)| < e forz € I"\ Dy.

We now define G in equation [19| such that G;(x) = F(x). We just need to define N, W, b, U.
Let N = Nm, W € RV*? p ¢ RN, where the I-th row of W is the [5-th row of W), and the
l-th row of b is the [>-th row of b;,, where [ = 41N 4+15,0 <1y < N,and 0 < l; < m. Let
U € R™*N be formed as follows: for j € [m], the j-th row of U are zeros except the (j — 1) N-th
to the ((j — 1) N + N — 1)-th rows, and the values of the ((j — 1) N + k)-th place of the j-th row of
U equal to the values of the k-th place of U;, where k = 0,1,..., N — 1.

Let D = |J*, D; C I". Itis easy to see that V(D) < e. Then for z € O, and | # y, we have
Gy(z) = FW(2) > Fy(z) —e =1 —eand Gi(z) = F¥(x) < e. Since € € (0,1/2), we have

-~

Gy(x) > Gi(x) forz € I\ D and z € O, and hance y = G(z). The lemma is proved. O
Lemma 21. Let W € RY"™ have nonzero entries and b € R. For any a > 0, let Z, = {x €
I" | |Wx + b < a}. Then V(Zy) < 2ay/n"™ " /|[W]a.

Proof. Let U = {Uy,...,U,} be a unit orthogonal basis of R" and U; = ||VI$/H2' IfT;, =
maxy yez, {(x —y,U;)}, then we have V(Z,,) <II}_,T;.

Fori > 1, we have T; < max, yez, ||z — y||2 < /n. Moreover, for any z,y € Z,, we have
(x—y,Ur) = (@ -y, W)/[|W]l2 = (Wa +b—-Wy —b)/[|W]|2 < 2a/[|W||2
which means 77 < 2a/||W||2. Then we have
n n—1
V(Zy) < \T; < 2ay/n /[|W]]2.

The lemma is proved. O

13
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Lemma 22. The bias vector b in Lemma|20|can be chosen such that each entry of b is not zero.

Proof. By Lemma 20} there exist N € N, W € RN*" b ¢ RN, U € R™*N and D; C I" with
V(D1) < €/2, such that
Gx)=U -T(Wz +0)

makes G(z) = G(z) for z € I\ D;.

Lety = M\f\vﬁ%, where Wy, = ||W]]2,00- Assume b = b — Io(|b|)7, where Iy(z) = 1 — sign(x)
and when I is treated as a vector mayp, it acts on each vector entry, respectively. From the construction,
b does not have zero entries, because b = b; if b; # 0, and b = ~ if b; = 0, where b; and b are

respectively the ¢-th rows of b and b.

Let W; be the i-th row of W and Z; = {z € R"[|W;z + b;| < 7}. By Lemma 21| we have

V(Z;OI") < 2yy/n"~ /W We write C,, = \/n"" 1/Wm.

Let Z = {x € R"|T(Wz + b) # (W + b)}. We will show that Z = UN,Z,. ED(Wx +b) #
(W:c—i—b) then there exists an ¢ € [N] such that Wiz +b; > 0andWa:+b <0,or Wiz+b; <0

and Wz +b; > 0. If Wiz +b; > 0and Wz +b; < 0, theaner = Wix+b;, —Ip(]b])y < 0and

hence |W,;x + b;| < ~. Similarly, if W;z 4+ b; < 0 and Wz + b; > 0, we also have Wiz + b;| <,

which implies x € Z;. As a consequence, Z = U, Z,.

From Z = UY,Z;, we have V(ZNI") < 2yNC, < €/2, since v = iNc.- LetD =

D1U(ZN1I") C I". Then V(D) < V(Dy) + V(ZNI") < e.

Finally, let

Gi(zr) = U -T(Wz +D).

Then, for z € I" \ D, we have I'(Wz + b) = I(Wx + b) and hence G (z) = G(z) = G(z). That
is, G1 = G(x) for x € I" /D and G, satisfies the conditions of the lemma. O

Lemma 23. Let G : I™ — R™ be a one-hidden-layer DNN with activation function T'(z), and any
coordinate of its bias vector is nonzero. Then there exists a DNN JF, which has the same structure as
G, except that the activation function of F is ReLU, such that Br(z) = G(x) for all x € T".

Proof. Assume G(z) = U -T(Wz +b) + c. Let F(z) = U”ReLU(Wz + b) + ¢, where U7 =
Udiag(b%) and b; is the -th entry of b. We will show that F satisfies the condition of the lemma. By
the definition of T', the constant part of ReLU(Wx + b) is b o I'(Wx + b), where o is the point-wise
product. So, Br(x) = U7 (boT'(Wxz+b))+c = Udiag(b%)(boF(W:E+b))+c =UI'(WX+b)+c.
Br(x) = G(x) and the lemma is proved. ' O

Proof of Theoremd| By Lemma[20] there exists a D C I" with V(D) < e and a network G with

one-hidden-layer and with activation function I'(x), such that G(z) = G(z). By Lemma all the
parameters in the bias of G are nonzero. Then by Lemma [23] we can obtain a network F with ReLU
as the activation function such that Bx(z) = G(x), and the theorem is proved. O

B PROOFS OF SECTION

We first prove a lemma.
Lemma 24. Let x1, 29 ~ Z(—\, ) and z = x1 — 2. Then for a € [0, 2)\] we have P(z < a) =

P(z > —a) = 1— (22;5)2, which is denoted as T(\,a) = 1 — (22/\;) . In addition, T(\, a)
increases with a and T' (A, a) € [0.5,1].

Proof. Let f(z) be the density function of z. Then f(z) = 0,if z > 2\ or z < —2X; f(z) = 2N, if

0> 2> —2X; f(z) = 25%,if 0 < z < 2. Therefore, P(z < a) = P(z > —a) = 1— (2§;§>2. O
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We now prove Theorem|13| The key idea of the proof is to consider two cases ||[Wr ., —Wg y||—0c <
wand |[Wg . —Wg || > . where the first case can be handled with Lemmaand the second
case can be proved similar to Theorem T1]

Theorem 13. If || Jr||oc < pt/2 and Wi ~ Uy, n(N), then C(B, AB?,D%»um,n()\)) < C(Br)+
pun /. Furthermore, if \ > jin/(eC(Br)), then C(Bx, AB?’D%,Z/{mm()\)) < (1+€)C(BF).

Proof. Similarly to equation[13] if [|Wg n, — Wg y||—oc > 11, then we have

AB?,D%(@ =z + psign(Wgn, — Wry).

Since V = Wg,, — Wg,, is a random vector whose values are in [—2), 2]\, sign(V’) is a random
vector in {—1,1}". By Lemmaand Br(xz) = Bx(x),

C(va ABf,Dl?7 Z/[m,n()\))
Eund Ewpnitdy (V) [I(Ef(AB?,le(x)) # Br(z))]

< EounEwprtty, . ) IUWRn, — Wryll—0o < p)+
(|Wrin, = Wryll-oo > W)I(Br(Ap, p1 (2)) # Br(x))
< (1=2"(1 =T w)™) +Eond Sy 11y UBF(x + pV) # Br(x))]
< (1-2"(A =T\ p)") +C(BF)
where T(\, u) =1 — (2)5‘5;5)2 is introduced in Lemma We have 27" (1 —T'(A\, u))" = (2 -2+
NN — (1 Aty > ) 2Nt > 1 /A So,

C(Br. A, ot Unn(N) < 1= 2°(L =~ T(\, )" +C(Br) < C(B7) + nps/ A = C(B) + nps/ .

The theorem is proved. O

C PROOFS OF SECTION 4.4

C.1 PROOF OF THEOREM [T4]

Theorem 14. For A € R, if |[J7||oc < A/2, WR ~ My, 1 (X), and m = 2, then B is information-
theoretically safe against attack .AB?D% .

Proof. Lety € {0,1} be the label of x. Use the notation introduced in the proof of Theorem
Since the loss function is Lcg and m = 2, we have

Viep(F(z)y) _  Zr el (Wai—Way+Wri—Wr,y)
Vz - B >m. eFi(@)
F1—y (@)

= Y i@ Waimy = Way + Wriy = Wry).
i~

(20)

The last equality comes from m = 2. Since ||W, ; — Wy jllooc < Aand |[[Wg; — Wg j||—cc > A for

i # j, we have D%(a:, y) = sign(%f(m)’y)) = sign(Wg,1—y — Wg,,) which is a random vector
in {—1,1}", similar to the proof of Theorem The theorem is proved. O

C.2 PROOF OF THEOREM/[I3

We first prove two lemmas.

Lemma 25. Let {u;}!, be a set of iid random variables with values in [—\, \| and w = Y ;| x;u;,
where x; € R such that |x;| > a > 0 for some i. Let the density function of u be f(x). Then
f(@) < 35z forall x.
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Proof. Assume |x,,| > a and f,,(z) is the distribution function of z,,u,,. We have

Since 0 < f!(z) < 2A|x aare.y and f(z) =

oNEN n-l
]P’(u<m):/_/\% H(H ! 2A| ‘)fn( —Zti)dtth...tn,l.
{ ‘ l|}1:1 =1
% we have
f(z)
VP(u<z)
Vz

IN

IN

<

The lemma is proved.

Lemma 26. Let {u;}!
x € R. Then we have

Proof. Let Dy, be the event |u; — u;| > ¢ for Vi, j < k, and F},
density function of {u;}¥

<

Dy,)
Dy,

|
~

,Di—1)
= P

v
g = =

\Y

P(Dj—1

)
)
P(Dy_1)
)
= P(Dy_1)

§
§
(-

Dy fook 7 Fuoa(ty,
f;ﬁd?
f ok 12a( — DYFi_1(t1,...,
2a(k

[ONEN} Sy
V/ (H:’ 1l 2/\\z ‘)fn(w*Z?:_f ti)dtlt%”tnfl

1
{=Aley 137

Vz
Az} —
Vin(x=20""1t;
/{ Al \}” 1(HZL 112)\|1wz|) Lol Va:7/71 )dtltz"'t"_l
Tilfi—1
R
/{ o i ) By diate -t
x5
2)\\1,”\
1
2Xa "

O

1 be a set of iid variables, f; the density function of u;, and f;(x) < a for all

P(lu; — uj| > 1 for Vi # j) > T2 (1 — 2ivpa).
: R* — R the joint probability
*_, under condition Dj,. Then we have

(

(

(Dk || Dg—1)P(Dg—1)

(Jug — wg| > w for Vi < k||Dg—1)P(Dg—1)
(Dg_1 fook T Fuoa(ty,
(
(
(
(

to—1) fr(t) I ([t — ti] > ¢ Vi < k)dtgdty ... tp—s
to—1)(fi(te) — al(Jty — t;| < ¢ Ji < k))dtgdty ... th—1
aFp_1(t1, ... te—1)I(Jtg — t;] < Fi < k)dtgdty ... tg_1)
tho1)dty ... tp_1)

- 1)y).

Since P(Dy) = 1, we have

The lemma is proved.

P(lu; — us| > ¢ for Vi # j)
= P(Dn)
P(Dy-1)(1 — — 1)ya)
P(Dy—2)(1 - 2(n — Dba)(1 - 2(n — 2)ta)

vV V. V V

16
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Theorem 15. Let ||Jr|lcc < /2, |IBF|leoc < B, and X € Ry satisfy A > u and (A —
p)e 2=tV S (9mX 4 p)ym. Furthermore, assume that the samples are normalized, that

Tl|oe = L If Wg ~ My 0 (N), then C(B=, AB?D%,Mm,n()\)) < (m—-1C(Br) + (m\;;) .

S,

Proof. From equatlonland equatlon. we have F(z) = Woz+ B, and F(z) = (W,+Wg)z+B,.
Let z be a sample with label y. From equation equation [20] we have

Vice(F(x)y) _ 2t (Wri=Wry+Wei—Wa, y)ei®
V& a eFi(x) .

Let m, = arg max;+,{(Wg,z)} and consider the condition:
Condition Cy: (Wg ., z) > (Wgj,x) +Vforall j € [m]\ {y,m,}.

We first give the probability for condition C; to be valid. By Lemmas and and due to |z|o = 1,
we have

EondPwpon,, (0 (C1)
Z EwNDPWRNMm n()\)(‘<WR,jal‘> - <WR,i7x>‘ > \/X’ VZ’] € [m}/{y}7 ‘ 75 ])
> E,pll"%(1 - 2%\1\;( ) .
m—2\m—2
> (1-5%)
S

VA
Let ||z]| oo = min;ep,){|x|;} for z € R™. Since |V€;z) loo < p/2 and Wg ~ M,, ,(A), we have

IWeai +Well—co > A\ [|[Wri + Wgjllo < 2mAand ||[W,; + W, jlleo < pfor any i # j. If
condition C is satisfied, then for any j € [m] \ {y, ms}, we have

Fm, (x) = Fj(x)
= Wrmy +Wam, —Wr; — W j)x+ By m, — Baj
= (Wrm, —Wrj)x+ Wam, — W j)x+ Bam, — Baj
> VA —nu—26.
Further considering the hypothesis (A — p1)e =25~ nut VA > (2mA + p)m, we have

IWrm, = Wry + Wam, — Ww,nyooe}-mw (@)

> (A= p)efna@

> (A— u)e?j(ac)+\/X—2/3—w

= (A- u)e*w*””eﬁeﬁ(w)

> (2mA+ p)meri @)

> mll(Wry = Way + Wag = Way)l|oce” ™)

which means

sign(Y it (Wri — Wry + Wi — Wm,y)eﬁ(”) = sign(Wr,m, — Wry + Wam, — Wm,y)ef’"z (w)).

Because of this, we have
VL(F(z), y))

x

)
(it (Wr W o+ Wi — W, )eT @)
(Wrim, — Wy + Wam, — Wy )el ma(@)
(Wrm, = Wry + Wem, = Waey)
(

= sign(Wr,m, — Wry).

17
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Let V' be a random vector in {0, 1}". Then the probability for the sign of Wg ,,,, — Wr,, to be V' is

P(sign(Wg,m, — Wr,y) =V,Ch)
< P(sign(Wg,m, — Wry) =V)
= Yicy Plme =isign(Wry) =V) + 32, Plme = i, sign(Wg,) = V)
S Dicy Plign(Wgy) =V) + 3., P(sign(Wg,i) = V)
= ";;1,
So we have

B oty ) I(Br (& + psign(TEEET @) )) 4 B (0))1(Cy)
= Ewpert, 0 [IBr( + psign(Wgm, — Wry)) # Br(z))I(C1)]
= Sy Pien(Wrm, — Wry) =V, C)I(Bz(z + pV) # Br(z))
< Sverorage(m=1)/@WIBxr(z + pV) # Br(z))
= (m—1)C(Br).

Finally, from equation 21| we have

C(va -AB?,D% My, n()‘))
Ewpont,, ) Bonn [L(Br(x + psign(TELE@0) )y £ B (2)]

< EonpBwnt,, 0 LB + psign(TEZED)) 2 Br(2)I(Cy) + (1 - 1(C1))]
< (m—=1)C(BF) +EendEwyan,, . o0 [(1 —I(C1))]
< (m=1)C(BF) + Eonp[l = Pwpr,, (0 (C1)]
< (m—1)C(Br) + 25
The theorem is proved. O

C.3 PROOF OF THEOREM[17]

Theorem 17. If ||JF||cc < 1t/2, Wr ~ U n(N), and m = 2, then C(B=, AB?)'DQ?7Z/[m,n()\)) <
e""/AC(Bx). Furthermore, if \ > ny/In(1 + €), then C(B=, AB?D%,Um,n()\)) < (14 ¢)C(Bx).

Proof. Lety € {0, 1} be the label of z. Denote U = W, 1_y — W, € R"™and Z = Wg1_, —
Wg,, € R We have

VLice(F(z).y)

Fi y(r)(v(}_l y () _V(Fye))

Il
w2
@.

[0}
=

eFy (@) L o F1—y (@)

(
(5
Evufl_y(sc)) EAE)N
(

Vz Vz
- Ww,y)

(1

w2
2

0g
=
L
|

<

From equation equation[20] we have

sign( VLva(f(z),y))
F1oy (@)

Sign(ﬁ(wx,l—y - Wm,y + WR,l—y - WR,y))-
= sign(U + Z).

For i € [n], sign(U;) = sign(U; + Z;) if and only if (Z; < —U; when U; < 0) or (Z; > —U;
when U; > 0), where Z;, U, are respectively the i-th coordinates of Z,U. Since Wg ~ U, n(N),

18
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Z = Wg,1—y—Wg,y is the difference of two uniform distributions in [—\, A]. By Lemma[24] U; > 0

implies P(Z; > —U,;) = T(\, |U;]) < T(A, ), and U; < 0 implies P(Z; < —U;) = T(A, |Uy]) <

T(A, 1). Hence, no matter what is the value of U, we always have P(sign(U) = sign(U + Z)) <
2

T (X, )", where T(\, ) = 1 — G2,

Moreover, for i € [n], if sign(U;) # sign(U; + Z;), we have (Z; > 0 when U; < 0) or (Z; < 0 when

U; > 0). So, P(sign(U;) # sign(U; + Z;)) < 1/2 < T'(\, ), since T'(A, p) is always > 1/2.

Since {Z; }ic[n is iid, by Lemma[24} for a random vector V € {—1,1}" we have

waum,n(x)(ﬁgn(W) =V)

= Pwprtty,,0)(sign(U + 2) =V)

= s Pwanas,, o0 (sign(Us + Zi) = Vi)

= L= (sign(Us) = Vi)Pwpnis,,, . ) (sign(Us) = sign(Us + Z;))
+I(sign(U;) # Vi)Pwr~is,, . (r) (sign(Us) # sign(U; + Z;)))

< IIiZ, (Aign(Us) = VI)T (A, p) + L(sign(Us) # Vi)T (X, 1))

= T\ p"

For V € {—1,1}", denote Q(z, V) = I(Bx(x + pV) # Br(z)). We have

C(Bz, A, p2 Un.n(N) -
= EonDoBWgnity,. 0 1B (z + psign(VEEEL M) o B (a)]
oo (S v e 11yn PWanity, v (sign(TEZEL) = V)Q(a, V)]
(T(A, N))nEz~D@[(ZV6{—1,1}n Q(z,V))]

(2T(\, 1))"C(Br)

IAIA

where T(\, 1) = 1— A% We have (27'(\, )" = (2— 22H—Muyn — (14 Dupyn < (14
k)™ < em/?. Therefore, C(Bx, Ap, p3 ,Umn(N)) < €"*/*C(Br). The theorem is proved. ~ [J

C.4 PROOF OF THEOREM[I§]

Theorem 18. Assume ||Tr||co < /4, ||Brllee < B, and A € Ry satisfying pe=2B=nu/24V
2(2X + p)m. Furthermore, assume that the samples are normalized, that is, ||z|lcc = 1. If

Wg ~ Upn(N), then C(B=, AB?ﬁpz?,umyn(A)) < (m-1C(BF)+ (m—;)nu + (m\;XQ)Q.

Proof. The proof is similar to that of Theorem T3] So certain details of the proof are omitted. From
equation equation 20} we have

ViesF@)y) _ S0 (WritWei—Wry—Wa,y)e” i@
Vax - > eFi(x) .

Let m, = arg max#y{(WR,i, x)} and consider two conditions C; and Co:

Conditions Cy: (Wg,,.,2) > (Wgj,2) +VAforall j € [m]\ {y,m.}.

Conditions Cs: [|[Wrm, — Wryll—co > p.

Note that condition Cs implies sign((Wg,; — Wg,y + W, ; — Wy ) = signh(Wg; — Wgy).

We give the probabilities for conditions C; and C5 to be valid. From the proof of Theorem [I3]
(m—2)?

EonDPWrn My () (C1) 21— 2,

19
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Let f(z) be the density function of Wg

. Then

Pyt () (Ca2)

> Pwpnttnn ) I[WR —
(mgl)ﬂ )n

> (1-
Zl—m-

For V € {—1,1}", itis also easy to see

WR7CU||—OO > /-1/7VZ 7é y)

P(sign(Wrm, — Wry) =V, C1, Ca)
< P(sign(Wg,m, — Wry) =V)
= Ei<y P(my =i,sign(Wgry) =V) + Zi>y P(my =i,sign(Wg,;) = V)
< Zi<y P(Sign(WR,y) =V)+ Zi>y P(Sign(WR,i) =V)
_ om—1
= m=l

If conditions C; and C, are satisfied, then for any y € [m] \ {y, m,}, we have

IWaim, + Wam, — Wy — Way||—coe” ma(®
> u/2e?w (z)
> M/zefj(w)Jrﬁ—zB—nu/g
= u/QG’Qb*”“/Qeﬁ@fj(r)
> (2A 4 p)ymeTi @
> m||WR,j + Wm,j - WR7y — Wx,y”ooefj(m)
which means
Sign(zgl(WRﬂ' +Wei— Wry — Wr,y)ffi(x))
= Sign((WR,mz + Wz,mz - WR,y - Wx’y)e}—mw ($)>7
and hence
Sign(w)
— e?i(w)
= Sign( i1 (Wr, l+gginl M;R(j) Wa,y)
= Slgn(z (WR 7 + Wz T WR,y — W ’y) ‘Fl(w))
= sign(Wrm, + Wam, — Wy — W, )el me @)
= sign(Wgrm, + Wam, — Wry — Way)
- Sign(WR My - Wgr y)
Hence

Ew ity 0 [L(Br(x + psign(VEeEZ @) )y 2 B (2))I(Cy, C)]

ng{ 1,1} P(sign(Wg,m,

m—1
< 2’"

— 1)C(BxF).

= (m

Ew nntty ) I(Br(z + psign(Wa,m,
- WRw)

Yver11yn UBr(z + pV) # Br(z))

—Whry)) # Bf(fr

NI(C1, Ca)]
=V, C1, Co)I(Bx(

it
v+ pV) # Br(x)
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Finally, we have
C(va AB— Diaum n( )) -
B Do Bt 0 [I(Br (z + psign(VEeELZ D0 )) o Br(a))]

< EonnoEwpntt,, 0 [I(Br(z + psign(VECEZELD) )) o4 By (1))
I(Cy, C2) + (1= I(Ch)) + (1 = I(C))]
< (m—1CBF) +EsnnsEwgnas,, ,o0)[(1 = I(C1)) + (1 — 1(C2))]
< (m=1)C(BF) +Eenpo[l = Pwpmis,, . (3) (C1)] + Ezpo [1 = P ets,, o (1) (C2)]
< (m—1)C(Br) + ey (m\;;ﬂ
The theorem is proved. O

D INFORMATION-THEORETICALLY SAFETY AGAINST MULTI STEP ATTACK

In this section, we consider muilt-step attacks such as PGD. The original model gradient-based attack
with k steps is defined as follows:

Definition 27. Let F : 1" — R™ be a network and Dx(x,y) : I" x R — R™ be an attack direction
depending on sample (x,y), network output F(x), and gradient %&/@. Agr sk R" = R is
called an original model gradient-based attack for a bias classifier Br based on attack direction D
with k steps if

Apyprn(t) =2+ 7 ZDf (), (22)

where v1 = x and v; = xj_1 + pDr(x;—1),j =2, - ,k.

The problem with multi-steps attacks is that the adversarial noise § found by the multi-steps attack
may not meet the conditions ||§]|oc = €, where € is the budget of attack. So, we define that

Ci(Br) = % Yver_11y Benn[I(Bx(@ + p1 V) # Bx(),¥|p1| < p)], and the B which is
defined in equation @is called information-theoretically safe against Az_ p_. 1, if

C(Bz, A Dy ks M) < C1(Br). (23)

We will demonstrate that multi-steps attacks are also information-theoretically safety for an appropri-
ate distribution of Wg, to be defined as follows.

Definition 28. Let V,, ,,(\) be the distribution in R™*™ constructed as follows.
(1) Randomly select a vector V in {—1,1}";

(2) Elements of the i-th row of Vy, () are randomly selected in Z((2i — 1)\, 2i\)™ o V, where o is
the element-wise product.

Now we will show that, with this distribution and attack direction equation[_lzfl, the bias classifier is
information-theoretically safety.

Theorem 29. For A € Ry, if || J7||coc < A/2, Wr ~ Vy n(N), and DY is defined in equation
then B+ is information-theoretically safe against the attack AB?,D} e

Proof. Similar to the proof of equation equation[T5] we have

P k ng v Y %
Lk =T+ Zz sign(—<— - —5 )

=T+ p Z _, sign(W. vine; — Waiy, ¥ WRin,, — Wr,y) 24)
=Tty Zz 1Sign(Wen,, — Wry,).
Since Wg € Vinn(A), we have sign(Wr n, —Wr,y,) =V orsign(Wg,,, —Wg,,) = =V, where

V is the random vector in Deﬁnition@ Thus, for some s € [0, k], we have mgn(Zf:l sign(Wr ., —
Whr,y,)) = sign(sV) = sV.

As, p
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So we have that:

(B]-‘v-A D]:JWM) N
Ewpnt[Eznp[1(B (AB D7k(7)) # Bx(z))]]
Eve(-1,1}» [Ecnp[I (Br(z + s,V ) # Br(x))]]

Zve{ 1,13 Eanp|I (Br(z + p1 V) # Br(z),¥|p1| < p)]

IN I

Where s, is a value in [—p, p|, as shown in the above. This is what we want, so the theorem is
proved. O

If with attack direction equation and m = 2, the bias classifier is also information-theoretically
safety.

Theorem 30. For m = 2,\ € Ry, if ||[J£|lec < A/2, Wi ~ Vinn()), and D% is defined in
equation@ then B= is information-theoretically safe against attack AB?,D;_ -
Proof. The theorem can be proved by combing the proofs of Theorems[I4]and [29]

At last, we show that C; (Bx) is also very small. Following the sectionand similar as table the
value of C; (Bx) is shown in the below:

Table 7: Value of C1(Brw)),C1(Bre).

MNIST CIFAR-10
C(FM)  1.02% 1.30%
C(FP)  1.04% 1.42%

Compare with table[3] the value of C; is about 0.2% larger than C.

E MORE EXPERIMENTS AND DETAIL

Following the section[5.1] some results under FGSM attack and AutoAttack are given.

Table 8: Adversarial accuracy with the original model gradient-based attack(FGSM).
Network MNIST CIFAR-10 | Network MNIST CIFAR-10
Bresy  98.70%  80.16% Brs2  98.60%  80.05%
Brey 98.73%  80.85% Bre 98.77%  80.63%
Bren  98.30%  79.42% Bre 98.45%  79.46%

Table 9: Adversarial accuracy with the original model gradient-based attack(Auto Attack but remove
the black box attack from it).

Network MNIST CIFAR-10 | Network MNIST CIFAR-10

Brey  98.64%  80.13% Brea  9847%  80.03%

Brey 98.67%  80.87% Bre 98.72%  80.60%

Brey  98.20%  79.39% Bre 9841%  79.32%

It is easy to see that bias classifier has almost achieve Information-theoretically safety under FGSM
and AutoAttack.

O
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