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ABSTRACT

Deep learning has become the cornerstone of recent advances in artificial in-
telligence. However, the presence of adversarial samples makes deep learning
vulnerable in safety-critical applications. Moreover, adversarial examples have
been shown to be unavoidable in some degree. So how to keep the network secure
under adversarial attacks? To address this issue, we propose the bias classifier.
This approach employs the bias component of a neural network, using ReLU as
its activation function, as a classifier. The bias classifier has been shown to uni-
versally approximate any classification problem with a high degree of probability.
Moreover, it can be made information-theoretically safe against the original model
gradient-based attack in the sense that any such attack produces a completely
random attacking direction for any given input. Thus, the bias classifier provably
achieves the maximum possible robust accuracy under specified attacks. Experi-
ments are used to validate our theoretical results and to show that the bias classifier
is accurate and robust for simple models.

1 INTRODUCTION

Deep learning has become the most powerful machine learning method, which has been successfully
applied in computer vision, natural language processing, and many other fields. However, the
existence of adversarial samples (Szegedy, 2013; Biggio et al., 2013) makes deep learning vulnerable
in safety-critical applications such as autonomous driving (Cao et al., 2019), face recognition (Dong
et al., 2019), and medical image processing (Ma et al., 2021). Although many effective methods to
defend adversaries have been proposed (Xu et al., 2020), adversarial examples have been shown to be
inevitable in certain sense (Azulay & Weiss, 2019; Shafahi et al., 2019a; Bastounis et al., 2021; Yu
et al., 2023; Gao et al., 2022).

In (Shafahi et al., 2019a), it is shown that for certain data distributions and network F , if F gives the
correct result for a benign sample x, then x must have an adversarial example. In (Bastounis et al.,
2021), it is proven that for any network F with a fixed structure, there exists a dataset D such that
if F is accurate on D then F has adversarial examples. In (Yu et al., 2023), it is proven that if the
network is large enough, then small perturbation of the network parameters will lead to adversarial
examples. On the other hand, for a given dataset D, it is shown that there exists a network which is
robust for D with a given budget (Li et al., 2022a; Yu et al., 2024), but the network is too large to be
practical. Furthermore, in order to be robustly generalizable, the network must have an exponential
number of parameters (Li et al., 2022a).

There are many methods to improve the robustness of networks (Xu et al., 2020). Adversarial
training (Madry, 2017) is one of the most used defenses and has been shown to be optimal in certain
sense (Gao et al., 2022). However, the robust accuracy for networks developed through adversarial
training is not very high for moderately complex dataset such as CIFAR-10. Besides, the application
of diffusion models for input purification achieves good results to some extent (Nie et al., 2022). But
all these defenses cannot give the provable highest robust accuracy.

Since theoretical and experimental results show that adversarial examples cannot be totally eliminated
for the commonly used network structures and the practical robust accuracies do not achieve provable
highest values, we may ask the following basic question about the neural network security.
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Question. For neural networks with a given structure, for instance VGG-19 or ResNet-18, is it
possible to provably achieve the highest possible robust accuracy under certain attacks?

In this paper, we present a partial answer to the above question by introducing the bias classifier,
that is, using the bias part of a deep neural network (DNN) as the classifier. We show that the bias
classifier can be made information-theoretically safe for certain attacks in the sense that the success
rate of adversarial attack is close to that of a random direction attack. Since random direction attack
can be considered the weakest attack, robust accuracy under this attack is the highest possible, and in
this sense, the information-theoretically safe bias classifier gives the highest robust accuracy.

Let I = [0, 1] and F : In → Rm be a classification DNN and m the number of labels, using ReLU as
the activation function. For any x ∈ In, there exist Wx ∈ Rm×n and Bx ∈ Rm such that

F(x) =Wxx+Bx.

By the bias classifier, we mean to use F’s bias part BF (x) = Bx : In → Rm as a classifier. The
contributions of this paper are summarized below.

First, the universal classification power of the bias classifier is proved. Precisely, it is shown that for
any classification problem G : In → [m], there exists a DNN whose bias part gives the correct label
G(x) for x ∈ In with arbitrarily high probability.

Second, the bias classifier can be provably safe against certain gradient-based attacks of the form:
A(x, y) = x + ρDA(x, y) : In → In, where ρ ∈ R+ is the attack coefficient and DA(x, y) ∈
{−1, 1}n is the attack direction. A neural network F : In → Rm is called information-theoretically
safe against an attack A, if a random attack direction DA(x, y) is generated for any input sample x.
The robust accuracy under such an attack A is equal to the robust accuracy under an attack using
the random attack direction. It is clear that such an attack gives the highest possible robust accuracy,
which can be achieved practically. This seems to be the first time that the concept of information-
theoretically safe classifier is proposed for adversarial attacks. The notion of information-theoretically
safe is borrowed from cryptography (Goldreich, 2001), which means that the ciphertext yields no
information regarding the plaintext for cyphers that are perfectly random.

Third, an effective training method for the bias classifier is proposed. It is observed that the adversarial
training introduced in (Madry, 2017) significantly increases the classification power of the bias part.
Using the adversarial training to the loss function LCE(BF (x), y) + γLCE(F(x), y) further increases
the classification power of the bias part, and hence is used to train the bias classifier.

Finally, experimental results are used to validate the theoretical results and to show that the bias
classifier is quite accurate and robust on some simple tasks. We first use experiments to show that
the bias classifier is indeed informtion-theoretically safe by achieving the highest possible robust
accuracy. We then use simple networks such as Lenet-5 for MNIST and VGG-19 for CIFAR-10 to
illustrate the practical performance of the bias classifier. Following (Carlini et al., 2019), we show
that the bias classifier is quite robust against major attacks, such as gradient-based white box attack,
black box attack, AutoAttack, and BDPA attack (Athalye et al., 2018).

2 RELATED WORK

Adversarial Defenses. There exist two main approaches to obtain more robust DNNs: using a better
training method or a better structured DNN. Of course, the two approaches can be combined.

Many new defensive structures for DNNs were proposed (Xu et al., 2020). Closely related to this
paper, gradient masking or obfuscation defenses try to make the gradient information of the DNN
unuseful, so that attacks based on gradient cannot work directly (Athalye et al., 2018). Gradient
masking methods include the shattered gradients (Buckman et al., 2018; Guo et al., 2017), the
stochastic gradients (Dhillon et al., 2018; Xie et al., 2017), the exploding gradients (Song et al., 2017;
Samangouei, 2018), and the quantization methods (Bernhard et al., 2019; Khalid et al., 2019; Song
et al., 2021). In (Athalye et al., 2018), it was shown that most of these defences can be circumvented
by properly learning the gradients. Other models were also introduced to defend adversarial samples,
including the ensemble adversarial training (Tramèr et al., 2017), denoising layer (Xie et al., 2019),
and difference-privacy noise layer (Lecuyer et al., 2019),
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The bias classifier introduced in this paper is similar to gradient obfuscation defense, but is eseentially
different and has the following novel properties. First, the bias classifier has zero gradient, unlike
other methods, which try to make the gradients approximately zero. Second, we show that BPDA
attack cannot break the bias classifier in our experimental settings, while the BPDA attack can
break most gradient obfuscated defences (Athalye et al., 2018). Finally, the bias classifier can be
made provably robust against the original model gradient-based attack. Previous random gradient
obfuscation models do not claim provably robustness.

Many effective methods have been proposed to train more robust DNNs to defend adversarial
attacks (Xu et al., 2020; Shafahi et al., 2019b; Zhang et al., 2019; Wu et al., 2020; Nie et al., 2022).
Adversarial training (Madry, 2017) is one of the best practical defenses and can achieve optimal
adversarial accuracy in certain sense (Gao et al., 2022). In this paper, adversarial training (Madry,
2017) is used for a new loss function to train the bias classifier.

Provable Robustness. Provable or certified robustness for DNNs can be achieved by verification or
by deriving explicit robust radius bounds or boundaries. Certified verification aims to decide whether
a trained DNN is robust by computing the robust boundaries (Li et al., 2023; Wang et al., 2021;
Li et al., 2022b). Explicit lower bounds for robust radius are given for DNNs trained with various
approaches such as randomized smoothing (Cohen et al., 2019) or L2 regulations (Yu & Gao, 2023).
In (Hein & Andriushchenko, 2017; Raghunathan et al., 2018), some security boundaries were given.
Compared to the above approaches, our approach is more practical in that our models are trained like
the usual adversarial training, while certified verification usually requires heavy computation, such as
SMT solving (Katz et al., 2017) and only works for small DNNs, and the explicit robust radius is
usually very small (Yu & Gao, 2023) to be useful for commonly used DNN models.

3 BIAS CLASSIFIER

In this section, we define the bias classifier and prove the universal power of the bias classifier. We
also provide a training algorithm for the bias classifier.

3.1 BIAS CLASSIFIER

Let I = [0, 1] and [n] = {1, . . . , n}. For n,m,L ∈ N+, let F : In → Rm be a classification DNN
with L hidden layers. Each hidden layer of F uses ReLU as activity functions, and the output layer is
an affine transformation. We write F : In → Rm as

F(x0) =WL+1xL + bL+1 and xl = ReLU(Wlxl−1 + bl) ∈ Rnl , l ∈ [L], (1)

where x0 ∈ In, n0 = n, nL+1 = m, Wl ∈ Rnl×nl−1 , bl ∈ Rnl . Denote ΘF = {Wl, bl}L+1
l=1 to be

the parameter set of F . For a label l ∈ [m] and x ∈ In, denote by F (l)(x) the l-th coordinate of
F(x). The classification result of F is F̂(x) = argmaxl∈[m]F (l)(x).

Let F be a network defined as before, for any x ∈ In, we have

F(x) =WF (x) + BF (x) =Wxx+Bx, (2)

where Wx = JF (x) =
∇F(t)
∇t |x is the Jacobian of F at x and BF (x) = Bx is the bias of F at x. We

will let the bias part BF : In → Rm be used as a classifier and is called the bias classifier, which can
be computed from F as follows:

BF (x) = F(x)−WF (x) = F(x)− ∇F(t)

∇t
|x · x = F(x)− JF (x) · x. (3)

Remark 1. Due to the property of the ReLU function, F is a piecewise linear function. A linear
region of F is a closed maximal connected subset of the input space In, on which F is linear. On
each linear region A of F , there exist WA ∈ Rm×n and BA ∈ Rm, such that F(x) =WAx+BA

for x ∈ A. Obviously, WA = Wx and BA = Bx for x ∈ A. It is clear that there exists a finite
number of linear regions and In is the union of these linear regions (Goodfellow et al., 2014). As a
consequence, the bias classifier is a piecewise constant function with a finite number of values.
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3.2 BIAS CLASSIFIER HAS UNIVERSAL POWER FOR CLASSIFICATION

We will prove that for any classification function G : In → [m], there exists a bias classifier
BF (x) : In → Rm such that B̂F (x) can be arbitrarily close to G, where B̂F (x) is the classification
result of BF (x). Specifically, we define classification functions as follows (Cybenko, 1989).
Definition 2. G : In → [m] is called a classification function, if In = ∪m

i=1Pi is a partition of In
into m disjoint and measurable subsets and G(x) = i if and only if x ∈ Pi.
Remark 3. Real-world classification problems such as MNIST or CIFAR-10 can be treated as
classification functions as follows. Let O ⊂ In be the objects to be classified. For x ∈ O and r ∈ R+,
when r is small enough, it is reasonable to treat all objects in

B(x, r) = {x+ η | η ∈ Rn, ||η||∞ < r}
as images that have the same label as x. Furthermore, for all elements in In \ ∪x∈OB(x, r), we may
assign a new label. In this way, all elements of In have a label.

The following existence theorem shows that the bias classifier has the power to interpolate any
classification functions with arbvitray high probability.
Theorem 4. Let G : In → [m] be a classification function. Then for any ϵ ∈ (0, 1/2), there
exists a neural network F : In → Rm and an open set D ⊂ In with volume V (D) < ϵ, such that
B̂F (x, y) = G(x) for x ∈ I \D.

Proof Idea. By the universal approximation theorem given in (Cybenko, 1989), we can construct a
neural network G : In → Rm with a step activation function that can approximateG(x). Furthermore,
we show that G can be modified such that all entries in its bias are nonzero. Furthermore, a neural
network F : In → Rm with ReLU as the activation function can be obtained from G, which satisfies
the condition of Theorem 4. Details of the proof are given in Appendix A.

3.3 TRAINING THE BIAS CLASSIFIER

Given a training set S ⊂ In × [m], normal training is to solve the following optimization problem:

min
F

∑
(x,y)∈S

LCE(F(x), y). (4)

Adversarial training (Madry, 2017) is to solve the following optimization problem:

min
F

∑
(x,y)∈S

max
||ζ||<ε

LCE(F(x+ ζ), y) (5)

where ε ∈ R+ is a given small number. As shown in table 1, adversarial training helps to improve the
power of the bias classifier. In order to further increase the power of the bias classifier BF and to
keep the training procedure efficient to update the parameters, we use the following loss function to
train the bias classifier

min
F

∑
(x,y)∈S

[LCE(BF (x+ ζx,y,F ), y) + γLCE(F(x+ ζx,y,F ), y)]

ζx,y,F = argmax||ζ||<εLCE(F(x+ ζ), y)

(6)

where γ ∈ R+ is a hyperparameter. This loss function tries to add the performance of bias classifier
in the adversarial data into the loss function. Because bias classifier does not have gradients, it is
difficult to quickly find adversarial samples by using gradients, so we use the adversarial samples
from the original network as a substitution. Please note that the parameters have derivatives for each
part of equation 6 , so training can proceed.

By Table 1, easy to see that adversarial training for the bias classifier in equation 6 further increases
the power of the bias part.

Table 1: Accuracies of network Lenet-5 for MNIST on the test set.
Training Methods BF F
Normal training equation 4 15.62% 99.09%
Adversarial training equation 5 98.77% 99.19%
Adversarial training for bias classifier equation 6 99.09 % 99.43%
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4 INFORMATION-THEORETICALLY SAFE BIAS CLASSIFIER

In this section, we will first define a common attack method of bias classifier and Information-
theoretically safe, and then build a information-theoretically safe bias classifier based on such attack
methods and prove it.

4.1 ORIGINAL MODEL GRADIENT-BASED ATTACK

The most popular methods to generate adversarial examples for network F , such as FGSM (Goodfel-
low et al., 2014) or PGD (Madry, 2017), use gradient ∇F(x)

∇x to make the loss function larger. For
example, adversarial examples are generated by FGSM as follows

x→ x+ ρ sign(
∇LCE(F(x), y)

∇x
) (7)

for a small parameter ρ ∈ R+. Motivated by this fact, we introduce the concept of gradient-based
attack. We mainly consider one-step attack , the multistep attacks are discussed in Appendix D.
Definition 5. Let F : In → Rm be a network, ρ ∈ R+, and DF (x, y) : In × R → Rn. Then

AF,DF (x, y) = x+ ρ DF (x, y) : Rn+1 → Rn (8)

is called a gradient-based attack for F if the attack direction DF (x, y) depends only on the sample
(x, y), the network output F(x), and the gradient ∇F(x)

∇x .

For example, the FGSM attack is a gradient-based attack based on attack direction DF (x, y) =

sign(∇LCE(F(x),y)
∇x ), because ∇LCE(F(x),y)

∇x can be calculated by (x, y), F(x) and ∇F(x)
∇x .

Since the gradient of BF is zero, we cannot directly use a gradient-based attack on BF , but an obvious
alternative attack to BF is to use the gradients of F , which leads to the following definition.
Definition 6. F and DF (x, y) are following Definition 5. Then

ABF ,DF (x, y) = x+ ρ DF (x, y) : Rn+1 → Rn (9)

is called an original model gradient-based attack for BF based on attack direction DF .

4.2 INFORMATION-THEORETICALLY SAFETY

In this section, we define the concept of information-theoretically safety. Let FR be a neural network
that involves a random variable R satisfying the distribution R. Safety of FR against an attack A can
be measured by the following adversarial creation rate:

C(FR,A,R) = ER∼R[E(x,y)∼D[I(F̂R(A(x, y)) ̸= F̂R(x))]] (10)

where D is the data distribution. Attack A is called a random direction attack if A(x, y) is a random
direction in {−1, 1}n for any (x, y) ∼ D.
Definition 7. The above mentioned neural network FR is called information-theoretically safe
against an attack A, if

C(FR,A,R) ≤ infR∼R C(FR), (11)

where C(FR) =
1
2n

∑
V ∈{−1,1}n E(x,y)∼D[I(F̂R(x+ ρ V ) ̸= F̂R(x))] is the creation rate of adver-

sarial examples for random direction attack against network FR.

We now show how to build an information-theoretically safe bias classifier under original model
gradient-based attack mentioned in Section 4.1. First train a network F : In → Rm with the method
in Section 3.3. Let WR be sampled from a distribution M of random matrices in Rm,n and let

F(x) = F(x) +WRx = (Wx +WR)x+Bx

BF (x) = F(x)− ∇F(x)
∇x · x = F(x)− JF · x.

(12)

It is easy to see that BF = BF , that is, the bias classifiers for F and F are the same. Therefore, we
have

inf
WR∼M

C(BF ) = C(BF ). (13)

5
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Remark 8. C(BF ) is the creation rate of adversarial examples for random direction attack against
BF , which is always small for common networks F as shown in Table 3. Thus, if BF is information-
theoretically safe against attack A, then the adversarial accuracy under attack A is equal to that
of random direction attack, which is the highest possible value for the adversarial accuracy. If BF
is not information-theoretically safe against A, then we can use the value C(BF ,A,M)/C(BF ) to
measure the safety of BF relative to the information-theoretically safety.
Remark 9. When m or n is large, WR contains many parameters. This is not a problem. First,
WR is generated randomly and does not need to be trained. Second, in practice, we can introduce
randomness using fewer parameters. For example, we can first generate a CNN FR ∈ In → Rm

without bias part and with random weights and then use FR(x) instead of WRx in equation 12.

4.3 INFORMATION-THEORETICALLY SAFETY AGAINST CARLINI-WAGNER ATTACK

We first consider the Carlini-Wagner attack (Carlini & Wagner, 2017) ABF ,D1
F

, which is a gradient-
based attack using the following attack direction:

D1
F (x, y) = sign(

∇Fnx
(x)

∇x
− ∇Fy(x)

∇x
) (14)

where nx = argmaxi ̸=y{F (i)(x)}.

Denote ||W ||∞ = maxi,j |wi,j | for W ∈ Rm×n and denote ||x||−∞ = mini∈[n]{|xi|} for x ∈ Rn.
We consider two types of random matrix for WR in equation 12 to be defined below.
Definition 10. Let I(a, b) be the uniform distribution in [a, b] ⊂ R. For λ ∈ R+, denote Um,n(λ)
to be the random matrices whose entries are in I(−λ, λ) and denote Mm,n(λ) to be the random
matrices such that the entries of its i-row are in (I(−2iλ,−(2i− 1)λ) ∪ I((2i− 1)λ, 2iλ))n.

For the distribution Mm,n(λ), the following theorem shows that BF is information-theoretically safe
for attack ABF ,D1

F
if λ is large.

Theorem 11. For λ ∈ R+, if ||JF ||∞ < λ/2 and WR ∼ Mm,n(λ), then BF in equation 12 is
information-theoretically safe against attack ABF ,D1

F
.

Proof. From equation 2 and equation 12, JF = ∇F(x)
∇x = Wx +WR. Let WR,i and Wx,i be the

i-rows of WR and Wx, respectively. Since WR ∼ Mm,n(λ), we have ||WR,i −WR,j ||−∞ > λ for
i ̸= j. Since ||F||∞ = ||∇F(x)

∇x ||∞ = |Wx|∞ < λ/2, we have ||Wx,i −Wx,j ||∞ < λ for i ̸= j.
From ||WR,i −WR,j ||−∞ > λ and ||Wx,i −Wx,j ||∞ < λ for i ̸= j, we have

ABF ,D1
F
(x) = x+ ρ sign(∇Fnx (x)

∇x − ∇Fy(x)
∇x )

= x+ ρ sign(Wx,nx −Wx,y +WR,nx −WR,y)
= x+ ρ sign(WR,nx −WR,y).

(15)

Since WR ∼ Mm,n(λ), Ŵ =WR,nx −WR,y is a random vector whose entries are in [−b2,−b1]∪
[b1, b2] for some b1, b2 ∈ R, and thus we have that:

C(BF ,ABF ,D1
F
,Mm,n(λ)) = EWR∼Mm,n(λ)[Ex∼D[I(B̂F (ABF ,D1

F
(x)) ̸= B̂F (x))]]

= EWR∼Mm,n(λ)[Ex∼D[I(B̂F (x+ ρsign(WR)) ̸= B̂F (x))]]

= 1
2n

∑
V ∈{−1,1}n Ex∼D[I(B̂F (x+ ρ V ) ̸= B̂F (x))]

= C(BF ) = infWR∼Mm,n(λ) C(BF ),

where equation 13 is used in the last equation. The theorem is proved.

Remark 12. The original model gradient-based attack requires that only the values of the network
and its gradient are known, and its structure is kept as a secret. This is a very strong condition.
On the other hand, the reward is also very high: the maximum possible adversarial accuracy can
be provably achieved for commonly used networks and attacks. Networks possessing such strong
security attributes could be employed in operations demanding assured safety, under strict condition.

For the simpler distribution Um,n(λ), the following theorem shows that BF is approximately safe for
attack ABF ,D1

F
under certain conditions. The proof of the theorem is given in Appendix B.
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Theorem 13. If ||JF ||∞ < µ/2 and WR ∼ Um,n(λ), then C(BF ,ABF ,D1
F
,Um,n(λ)) ≤ C(BF ) +

µn/λ. Furthermore, if λ > µn/(ϵC(BF )), then C(BF ,ABF ,D1
F
,Um,n(λ)) ≤ (1 + ϵ)C(BF ).

By Remark 8, Theorem 13 implies that BF is close to information-theoretically safe under attack
ABF ,D1

F
if we use a sufficiently large λ.

4.4 INFORMATION-THEORETICALLY SAFETY AGAINST FGSM ATTACK

In this section, we consider the FGSM attack ABF ,D2
F
(x) (Goodfellow et al., 2014), which is a

gradient-based attack using the following attack direction:

D2
F (x, y) = sign(

∇LCE(F(x), y)

∇x
). (16)

The following theorem shows that BF in equation 12 is safe against the FGSM attack for binary
classification problems. All proofs are given in Appendix C.
Theorem 14. For λ ∈ R+, if ||JF ||∞ < λ/2, WR ∼ Mm,n(λ), andm = 2, then BF is information-
theoretically safe against attack ABF ,D2

F
.

When m > 2, we have the following result.
Theorem 15. Let ||JF ||∞ < µ/2, ||BF ||∞ < β, and λ ∈ R+ satisfy λ > µ and (λ −
µ)e−2β−nµ+

√
λ > (2mλ + µ)m. Furthermore, assume that the samples are normalized, that

is, ||x||∞ = 1. If WR ∼ Mm,n(λ), then C(BF ,ABF ,D2
F
,Mm,n(λ)) ≤ (m− 1)C(BF ) +

(m−2)2√
λ

.

Remark 16. We can choose a large λ to make the term (m−2)2

2
√
λη

small. From Table 3, C(BF ) is very
small for MNIST and CIFAR-10. So, by Theorem 15, BF is approximately safe if m is small. If m is
large, we cannot deduce the safety of BF from Theorem 15. Please note that this does not imply that
the bias classifier is not safe, because the upper bound given in Theorem 15 may not be tight, and
more research on the upper bound of C(BF ,ABF ,D2

F
,Mm,n(λ)) is needed.

In the remainder of this section, we consider the safety of BF when WR ∼ Um,n(λ).
Theorem 17. If ||JF ||∞ < µ/2, WR ∼ Um,n(λ), and m = 2, then C(BF ,ABF ,D2

F
,Um,n(λ)) ≤

enµ/λC(BF ). Furthermore, if λ > nµ/ ln(1 + ϵ), then C(BF ,ABF ,D2
F
,Um,n(λ)) ≤ (1 + ϵ)C(BF ).

For the general m, we have

Theorem 18. Assume ||JF ||∞ < µ/4, ||BF ||∞ < β, and λ ∈ R+ satisfying µe−2β−nµ/2+
√
λ >

2(2λ + µ)m. Furthermore, assume that the samples are normalized, that is, ||x||∞ = 1. If
WR ∼ Um,n(λ), then C(BF ,ABF ,D2

F
,Um,n(λ)) ≤ (m− 1)C(BF ) +

(m−1)nµ
λ + (m−2)2√

λ
.

Theorem 17 shows that, for binary classification, BF is close to information-theoretically safe against
FGSM under distribution Um,n(λ) for sufficiently large λ. Theorem 18 shows that the result is
approximately valid if m is small. Refer to Remark 16 for a more detailed discussion.

5 EXPERIMENTS

In this section, experiments are used to validate the theoretical results and to show that the bias
classifier achieves comparable results in terms of accuracy and robustness for simple models.

Basic settings We consider the datasets MNIST and CIFAR10, and the following two bias classi-
fiers:

BF(1) : F (1) is VGG16 for CIFAR10 (Lenet-5 for MNIST), trained with equation 6
BF(2) : F (2) is ResNet18 for CIFAR10 (VGG9 for MNIST), trained with equation 6

(17)

We train 200 epoches and learning rate 0.04, halve at 100 and 150 epoches. Use PGD-10 to find
adversarial in the training, and attack budget is L∞ norm 0.1 for MNIST and 8/255 for CIFAR-10,
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the same budget is also used in the test after training. The accuracy and adversarial accuracy under
original based AutoAttack of these two bias classifiers are shown in table 2, the bias classifier itself
does not have good ability to improve robustness, but by using the ideas in equation 12, it can achieve
the information-theoretically safety, as shown in the following section.

Table 2: Accuracy(A) and Adversarial Accuracy (AA) on the test sets.
DNN MNIST(A) CIFAR-10(A) MNIST(AA) CIFAR-10(AA)
BF(1) 99.14% 81.33% 98.50% 31.25%
BF(2) 99.06% 81.64% 98.03% 22.54%

5.1 PROVABLE ROBUSTNESS AGAINST ORIGINAL MODEL GRADIENT-BASED ATTACK

In this section, we use experimental results to validate the theoretical results in Section 4.

Rates of adversaries for random samples We estimate the adversarial creation rates for random
direction attack. In Table 3, we estimate the value of C(BF ) defined in equation 11 for ρ = 0.1
(or ρ = 8/255 for CIFAR-10), we do it as follows. Randomly take 10000 samples in testset, for
each sample, randomly take 1000 random noise in {−0.1, 0.1}n for MNIST ({−8/255, 8/255}n for
CIFAR-10) and add them separately to the sample, where n is the dimension of the samples. At last,
we estimate the value of C(BF ) on these samples. We can see that C(BF(1)), C(BF(2)) are very small,
which means that random attacks have little effect in generating adversarial examples. Equivalently,
the adversarial accuracy for random direction attack is near 100%.

Information-theoretically safety of the bias classifier Following equation 12, let F (5,i) = F (i) +
W5x, where i ∈ {1, 2} and F (i) are given in equation 17, W5 ∼ U10,784(100) for MNIST, and
W5 ∼ U10,3072(100) for CIFAR-10. Let F (6,i) = F (i) +W6x, W6 ∼ M10,784(100) for MNIST,
and W6 ∼ M10,3072(100) for CIFAR-10. Following Remark 9, let F (7,i) = F (i) + FR, where FR

is a CNN with two hidden layers for MNIST and CIFAR-10.

We use original model gradient-based PGD-10 to attack these model and the results are given in Table
5. The results under other attack methods are shown in the Appendix E.

We will show that these bias classifiers almost achieve information-theoretically safety for both
MNIST and CIFAR-10. By the definition of information-theoretically safety, we just need to show
that the attack success rate of the original model gradient-based attack and random attack are almost
the same. By attack success rate, we refer to the proportion of samples for which the network gives
the correct label but assigns an incorrect label after attack.

According to Table 3, C(BF(i)) is also about 1% for MNIST and CIFAR-10, and this is approximately
the success rate of the random direction attack. By Table 2, the accuracy of BF(i) is about 81% for
CIFAR-10 and about 99% for MNIST. By Table 5, the adversarial accuracy of BF(i) is about 80% for
CIFAR-10 and more than 98% for MNIST. The difference between the corresponding values is about
1%, which means that the attack success rate of the original model gradient-based attack is almost
the same as that of the random direction attack. Therefore, information-theoretical safety is achieved.

It is worth mentioning that the bias classifier gives the highest possible adversarial accuracy for
MNIST and CIFAR-10. By Table 2, the accuracy of BF(i) is about 99% for MNIST and 81% for
CIFAR-10. Since the adversarial accuracy is generally less than the accuracy, BF(i) achieves the
highest possible adversarial accuracy.

Table 3: Value of C(BF(1)), C(BF(2)).

MNIST CIFAR-10
C(BF(1)) 0.78% 1.09%
C(BF(2)) 0.82% 1.11%

Table 4: Adversarial accuracy with the BPDA attack.
Network MNIST CIFAR-10
BF(1) 98.18% 69.51%
BF(2) 97.83% 64.14%
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Table 5: Adversarial accuracy with the original model gradient-based attack.
Network MNIST CIFAR-10 Network MNIST CIFAR-10
BF(5,1) 98.67% 80.15% BF(5,2) 98.54% 80.02%
BF(6,1) 98.70% 80.86% BF(6,2) 98.73% 80.62%
BF(7,1) 98.25% 79.41% BF(7,2) 98.44% 79.48%

5.2 EVALUATION OF THE BIAS CLASSIFIER UNDER GRADIENT-INDEPENDENT ATTACK

The above section shows the information-theoretically safety under the original model gradient-based
attack. In this section, we mainly consider the black box attack and the attack against non-gradient
networks. We assume that under such attacks of BF , the attacker can directly obtain the output of
BF . In this case, and consider that for i = 1, 2, there are BF(i) = BF(5,i) = BF(6,i) = BF(7,i) , so we
just need to directly consider the attacks on BFi .

To compare, we also consider the following networks:

F (3) : VGG16 for CIFAR10 (VGG9 for MNIST), trained with equation 5;
F (4) : ResNet18 for CIFAR10 (Lenet5 for MNIST), trained with equation 5;
F (5) : VGG16 for CIFAR10 (VGG9 for MNIST), trained with TRADES (Zhang et al., 2019);
F (6) : ResNet18 for CIFAR10 (Lenet5 for MNIST), trained with TRADES (Zhang et al., 2019).

(18)

Black-box attacks We further compare the robustness of BF(1) , BF(2) and F (i), i = 3, 4, 5, 6
against three black-box attacks: the surrogate model attack, the limited queries and information
black-box attack (LQI) (Ilyas et al., 2018), and the zeroth order optimization (ZOO) based black-box
attack (Chen et al., 2017). Moreover, to increase the power of the surrogate model attack, for any
given bias classifier BF , three new networks F j(j = 1, 2, 3) are trained with the data {(x,BF (x))},
and by (Papernot et al., 2017), let F j have similar structure with F to increase the transferability: F1

has the same structure with F ; F2 is obtained by increasing depth of F ; F3 is obtained by increasing
the channels of each hidden layer of F . For a sample x, create an adversary xj with F j for j = 1, 2, 3
by AutoAttack, and x is considered to have an adversary if one of xj is an adversary to BF .

The results are given in Table 6. For the bias classifier, compared to Table 2, we can see that these
black-box attacks are weaker than the white box attack, which is reasonable, and the bias classifier
has the defense capability at the same level as other networks.

Table 6: Adversarial accuracy under the black-box attack.
network MNIST CIFAR-10

surrogate model LQI ZOO surrogate model LQI ZOO
BF(1) 98.81% 99.01% 98.15% 73.51% 77.20% 68.15%
BF(2) 98.63% 98.91% 98.22% 72.11% 76.60% 68.20%
F (3) 98.52% 98.94% 98.49% 70.85% 75.21% 67.17%
F (4) 98.18% 98.26% 98.25% 69.61% 74.51% 68.28%
F (5) 98.73% 98.39% 98.15% 72.69% 77.84% 69.61%
F (6) 98.46% 98.68% 98.32% 71.48% 78.35% 67.68%

BPDA attack on the bias classifier The Backward Pass Differentiable Approximation (BPDA) is
a powerful adversarial attack which was used to successfully attacked several gradient obfuscated
defences (Athalye et al., 2018). In this section, we show that BPDA cannot break the bias classifier,
which shows that the bias classifier is essentially different from gradient obfuscated defences.

The idea of BPDA is to approximate the non-differentiable layer with a differentiable function. To
attack BF (x) with BPDA, a two-layer network F̃ is trained with the data (F(x),BF (x)) and the
network F̃ ◦ F is used to generate adversarial examples for BF (x). The results are given in Table
4. Since the gradients of F (i), i = 3, 4, 5, 6 are available, it is not necessary to use BPDA and their
results are not given.
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Compared to Table 6, we can see that BPDA is a little stronger than the black-box attacks, as
expected, because it is specifically designed for non-gradient networks. In particular, BPDA is unable
to compromise the bias classifier in the same way it can bypass gradient obfuscation defenses (Athalye
et al., 2018).

6 CONCLUSION

In this paper, we show that the bias part of a DNN can be effectively trained as a classifier. The bias
classifier is shown to have universal power to approximate classification problems. Furthermore, the
bias classifier can be made provably robust in certain sense. This answers the important question of
how to design neural networks that provably achieve the highest possible adversarial accuracy for
certain attacks. Finally, experimental results are used to show that the bias classifier is comparable to
other defensive DNNs of similar sizes against major types of adversarial attack.

Limitations and Future Research. The biggest problem is how to design a network suitable for
bias classifier, in this paper, we still use the classic network structure V GG or ResNet, but they
may not suitable for bias classifier. For further research, the estimations in Theorems 15 and 18 are
not optimal, and better estimations are desirable. Moreover, how to design a more suitable network
structure for bias classifier is also an interesting question.
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A PROOF OF THEOREM 4

Theorem 4. Let G : In → [m] be a classification function. Then for any ϵ ∈ (0, 1/2), there
exists a neural network F : In → Rm and an open set D ⊂ In with volume V (D) < ϵ, such that
B̂F (x, y) = G(x) for x ∈ I \D.

We first prove several lemmas. In this section, the notation in Theorem 4 will be used. Let Γ : R → R
be the following activation function:

Γ(x) =

{
0 if x ≤ 0
1 if x > 0

.

Lemma 19 (Theorem 5 in (Cybenko, 1989)). Let G : In → [m] be a classification function. Then
for any ϵ > 0, there exist N ∈ N+, W ∈ RN×n, b ∈ RN , U ∈ R1×N , and a set D ⊂ In with
V (D) < ϵ, such that

G(x) = U · Γ(Wx+ b) : In → R
and |G(x)−G(x)| < ϵ for x ∈ In \D.

The following lemma shows that there exists a DNN with one hidden layer and activation function Γ,
which can simulate any classification function.
Lemma 20. Let G : In → [m] be a classification function. For any ϵ ∈ (0, 1/2), there exist N ∈ N+,
W ∈ RN×n, b ∈ RN , U ∈ Rm×N , and a set D ⊂ In with V (D) < ϵ, such that

G(x) = U · Γ(Wx+ b) : In → Rm (19)

and Ĝ(x) = G(x) for any x ∈ In/D.

Proof. For each l ∈ [m], define a classification function Fl : In → {0, 1}: Fl(x) = 1 if G(x) = l,
and Fl(x) = 0 otherwise. By Lemma 19, for all l ∈ [m], there existN ∈ N+, Wl ∈ RN×n, bl ∈ RN ,
Ul ∈ R1×N , and Dl ⊂ In with V (Dl) < ϵ/m such that

F (l)(x) = Ul · Γ(Wlx+ bl) : In → R

satisfies |F (l)(x)− Fl(x)| < ϵ for x ∈ In \Dl.

We now define G in equation 19 such that Gl(x) = F (l)(x). We just need to define N,W, b, U .
Let N = Nm, W ∈ RN×n, b ∈ RN , where the l-th row of W is the l2-th row of Wl1 and the
l-th row of b is the l2-th row of bl1 , where l = l1N + l2, 0 ≤ l2 < N , and 0 ≤ l1 < m. Let
U ∈ Rm×N be formed as follows: for j ∈ [m], the j-th row of U are zeros except the (j − 1)N -th
to the ((j − 1)N +N − 1)-th rows, and the values of the ((j − 1)N + k)-th place of the j-th row of
U equal to the values of the k-th place of Ul, where k = 0, 1, . . . , N − 1.

Let D =
⋃m

i=1Dl ⊂ In. It is easy to see that V (D) < ϵ. Then for x ∈ Oy and l ̸= y, we have
Gy(x) = F (y)(x) > Fy(x) − ϵ = 1 − ϵ and Gl(x) = F (y)(x) < ϵ. Since ϵ ∈ (0, 1/2), we have
Gy(x) > Gl(x) for x ∈ In \D and x ∈ Oy and hance y = Ĝ(x). The lemma is proved.

Lemma 21. Let W ∈ R1×n have nonzero entries and b ∈ R. For any a > 0, let Za = {x ∈
In | |Wx+ b| < a}. Then V (Za) ≤ 2a

√
n
n−1

/||W ||2.

Proof. Let U = {U1, . . . , Un} be a unit orthogonal basis of Rn and U1 = W
||W ||2 . If Ti =

maxx,y∈Za
{⟨x− y, Ui⟩}, then we have V (Za) ≤ Πn

i=1Ti.

For i > 1, we have Ti ≤ maxx,y∈Za
||x− y||2 ≤

√
n. Moreover, for any x, y ∈ Za, we have

⟨x− y, U1⟩ = ⟨x− y,W ⟩/||W ||2 = (Wx+ b−Wy − b)/||W ||2 ≤ 2a/||W ||2
which means T1 ≤ 2a/||W ||2. Then we have

V (Za) ≤ Πn
i=1Ti ≤ 2a

√
n
n−1

/||W ||2.

The lemma is proved.
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Lemma 22. The bias vector b in Lemma 20 can be chosen such that each entry of b is not zero.

Proof. By Lemma 20, there exist N ∈ N+, W ∈ RN×n, b ∈ RN , U ∈ Rm×N , and D1 ⊂ In with
V (D1) < ϵ/2, such that

G(x) = U · Γ(Wx+ b)

makes Ĝ(x) = G(x) for x ∈ In \D1.

Let γ = ϵWm

4N
√
nn−1 , where Wm = ||W ||2,∞. Assume b̂ = b− I0(|b|)γ, where I0(x) = 1− sign(x)

and when I0 is treated as a vector map, it acts on each vector entry, respectively. From the construction,
b̂ does not have zero entries, because b̂i = bi if bi ̸= 0, and b̂i = γ if bi = 0, where bi and b̂i are
respectively the i-th rows of b and b̂.

Let Wi be the i-th row of W and Zi = {z ∈ Rn | |Wiz + bi| < γ}. By Lemma 21, we have
V (Zi

⋂
In) < 2γ

√
n
n−1

/Wm. We write Cn =
√
n
n−1

/Wm.

Let Z = {x ∈ Rn |Γ(Wx+ b) ̸= Γ(Wx+ b̂)}. We will show that Z = ∪N
i=1Zi. If Γ(Wx+ b) ̸=

Γ(Wx+ b̂), then there exists an i ∈ [N ] such that Wix+ bi > 0 and Wix+ b̂i < 0, or Wix+ bi < 0

andWix+ b̂i > 0. IfWix+bi > 0 andWix+ b̂i < 0, thenWix+ b̂i =Wix+bi−I0(|b|)γ < 0 and
hence |Wix+ bi| ≤ γ. Similarly, if Wix+ bi < 0 and Wix+ b̂i > 0, we also have |Wix+ bi| ≤ γ,
which implies x ∈ Zi. As a consequence, Z = ∪N

i=1Zi.

From Z = ∪N
i=1Zi, we have V (Z

⋂
In) < 2γNCn < ϵ/2, since γ = ϵ

4NCn
. Let D =

D1

⋃
(Z

⋂
In) ⊂ In. Then V (D) < V (D1) + V (Z

⋂
In) < ϵ.

Finally, let
G1(x) = U · Γ(Wx+ b̂).

Then, for x ∈ In \D, we have Γ(Wx+ b) = Γ(Wx+ b̂) and hence Ĝ1(x) = Ĝ(x) = G(x). That
is, Ĝ1 = G(x) for x ∈ In/D and G1 satisfies the conditions of the lemma.

Lemma 23. Let G : In → Rm be a one-hidden-layer DNN with activation function Γ(x), and any
coordinate of its bias vector is nonzero. Then there exists a DNN F , which has the same structure as
G, except that the activation function of F is ReLU, such that BF (x) = G(x) for all x ∈ In.

Proof. Assume G(x) = U · Γ(Wx + b) + c. Let F(x) = UFReLU(Wx + b) + c, where UF =
Udiag( 1

bi
) and bi is the i-th entry of b. We will show that F satisfies the condition of the lemma. By

the definition of Γ, the constant part of ReLU(Wx+ b) is b ◦ Γ(Wx+ b), where ◦ is the point-wise
product. So, BF (x) = UF (b◦Γ(Wx+b))+c = Udiag( 1

bi
)(b◦Γ(Wx+b))+c = UΓ(WX+b)+c.

BF (x) = G(x) and the lemma is proved.

Proof of Theorem 4. By Lemma 20, there exists a D ⊂ In with V (D) < ϵ and a network G with
one-hidden-layer and with activation function Γ(x), such that Ĝ(x) = G(x). By Lemma 22, all the
parameters in the bias of G are nonzero. Then by Lemma 23, we can obtain a network F with ReLU
as the activation function such that BF (x) = G(x), and the theorem is proved.

B PROOFS OF SECTION 4.3

We first prove a lemma.

Lemma 24. Let x1, x2 ∼ I(−λ, λ) and z = x1 − x2. Then for a ∈ [0, 2λ], we have P(z < a) =

P(z > −a) = 1 − (2λ−a)2

8λ2 , which is denoted as T (λ, a) = 1 − (2λ−a)2

8λ2 . In addition, T (λ, a)
increases with a and T (λ, a) ∈ [0.5, 1].

Proof. Let f(z) be the density function of z. Then f(z) = 0, if z ≥ 2λ or z ≤ −2λ; f(z) = 2λ+z
4λ2 , if

0 ≥ z ≥ −2λ; f(z) = 2λ−z
4λ2 , if 0 ≤ z ≤ 2λ. Therefore, P(z < a) = P(z > −a) = 1− (2λ−a)2

8λ2 .

14
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We now prove Theorem 13. The key idea of the proof is to consider two cases ||WR,nx
−WR,y||−∞ <

µ and ||WR,nx
−WR,y||−∞ > µ, where the first case can be handled with Lemma 24 and the second

case can be proved similar to Theorem 11.

Theorem 13. If ||JF ||∞ < µ/2 and WR ∼ Um,n(λ), then C(BF ,ABF ,D1
F
,Um,n(λ)) ≤ C(BF ) +

µn/λ. Furthermore, if λ > µn/(ϵC(BF )), then C(BF ,ABF ,D1
F
,Um,n(λ)) ≤ (1 + ϵ)C(BF ).

Proof. Similarly to equation 15, if ||WR,nx
−WR,y||−∞ > µ, then we have

ABF ,D1
F
(x) = x+ ρ sign(WR,nx

−WR,y).

Since V =WR,nx
−WR,y is a random vector whose values are in [−2λ, 2λ], sign(V ) is a random

vector in {−1, 1}n. By Lemma 24 and B̂F (x) = B̂F (x),

C(BF ,ABF ,D1
F
,Um,n(λ))

= Ex∼D EWR∼Um,n(λ)[I(B̂F (ABF ,D1
F
(x)) ̸= B̂F (x))]

≤ Ex∼D EWR∼Um,n(λ)[I(||WR,nx
−WR,y||−∞ ≤ µ)+

I(||WR,nx
−WR,y||−∞ > µ)[I(B̂F (ABF ,D1

F
(x)) ̸= B̂F (x))]

≤ (1− 2n(1− T (λ, µ))n) + Ex∼D
∑

V ∈{−1,1}n I(B̂F (x+ ρV ) ̸= B̂F (x))]

≤ (1− 2n(1− T (λ, µ))n) + C(BF )

where T (λ, µ) = 1− (2λ−µ)2

8λ2 is introduced in Lemma 24. We have 2n(1− T (λ, µ))n = (2− 2 +
4λ2+µ2−4λµ

4λ2 )n = (1− 4λµ−µ2

4λ2 )n ≥ 1− n 4λµ−µ2

4λ2 ≥ 1− nµ/λ. So,

C(BF ,ABF ,D1
F
,Um,n(λ)) ≤ 1− 2n(1− T (λ, µ))n + C(BF ) ≤ C(BF ) + nµ/λ = C(BF ) + nµ/λ.

The theorem is proved.

C PROOFS OF SECTION 4.4

C.1 PROOF OF THEOREM 14

Theorem 14. For λ ∈ R+, if ||JF ||∞ < λ/2, WR ∼ Mm,n(λ), andm = 2, then BF is information-
theoretically safe against attack ABF ,D2

F
.

Proof. Let y ∈ {0, 1} be the label of x. Use the notation introduced in the proof of Theorem 11.
Since the loss function is LCE and m = 2, we have

∇LCE(F(x),y)
∇x =

∑m
i=1 eFi (Wx,i−Wx,y+WR,i−WR,y)∑m

i=1 eFi(x)

= eF1−y(x)∑m
i=1 eFi(x)

(Wx,1−y −Wx,y +WR,1−y −WR,y).
(20)

The last equality comes from m = 2. Since ||Wx,i −Wx,j ||∞ < λ and ||WR,i −WR,j ||−∞ > λ for

i ̸= j, we have D2
F (x, y) = sign(∇LCE(F(x),y)

∇x ) = sign(WR,1−y −WR,y) which is a random vector
in {−1, 1}n, similar to the proof of Theorem 11. The theorem is proved.

C.2 PROOF OF THEOREM 15

We first prove two lemmas.

Lemma 25. Let {ui}ni=1 be a set of iid random variables with values in [−λ, λ] and u =
∑n

i=1 xiui,
where xi ∈ R such that |xi| > a > 0 for some i. Let the density function of u be f(x). Then
f(x) < 1

2λa for all x.

15
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Proof. Assume |xn| > a and fn(x) is the distribution function of xnun. We have

P(u < m) =

∫ {λ|xi|}n−1
i=1

{−λ|xi|}n−1
i=1

(Πn−1
i=1

1

2λ|xi|
)fn(m−

n−1∑
i=1

ti)dt1t2 . . . tn−1.

Since 0 < f ′n(x) ≤ 1
2λ|xn| and f(x) = ∇P(u<x)

∇x , we have

f(x)

= ∇P(u<x)
∇x

=

∇

∫ {λ|xi|}
n−1
i=1

{−λ|xi|}
n−1
i=1

(Πn−1
i=1

1
2λ|xi|

)fn(x−
∑n−1

i=1 ti)dt1t2...tn−1

∇x

=

∫ {λ|xi|}n−1
i=1

{−λ|xi|}n−1
i=1

(Πn−1
i=1

1
2λ|xi| )

∇fn(x−
∑n−1

i=1 ti)

∇x dt1t2 . . . tn−1

≤
∫ {λ|xi|}n−1

i=1

{−λ|xi|}n−1
i=1

(Πn−1
i=1

1
2λ|xi| )

1
2λ|xn|dt1t2 . . . tn−1

≤ 1
2λ|xn|

≤ 1
2λa .

The lemma is proved.

Lemma 26. Let {ui}ni=1 be a set of iid variables, fi the density function of ui, and fi(x) < a for all
x ∈ R. Then we have

P(|ui − uj | > ψ for ∀i ̸= j) > Πn−1
i=0 (1− 2iψa).

Proof. Let Dk be the event |ui − uj | > ψ for ∀i, j ≤ k, and Fk : Rk → R the joint probability
density function of {ui}ki=1 under condition Dk. Then we have

P(Dk)

= P(Dk, Dk−1)

= P(Dk∥Dk−1)P(Dk−1)

= P(|uk − ui| > ψ for ∀i < k∥Dk−1)P(Dk−1)

= P(Dk−1)
∫∞k−1

−∞k−1

∫∞
−∞ Fk−1(t1, . . . , tk−1)fk(tk)I(|tk − ti| > ψ ∀i < k)dtkdt1 . . . tk−1

> P(Dk−1)
∫∞k−1

−∞k−1

∫∞
−∞ Fk−1(t1, . . . , tk−1)(fk(tk)− aI(|tk − ti| < ψ ∃i < k))dtkdt1 . . . tk−1

= P(Dk−1)(1−
∫∞k−1

−∞k−1

∫∞
−∞ aFk−1(t1, . . . , tk−1)I(|tk − ti| < ψ ∃i < k)dtkdt1 . . . tk−1)

> P(Dk−1)(1−
∫∞k−1

−∞k−1 2a(k − 1)ψFk−1(t1, . . . , tk−1)dt1 . . . tk−1)

= P(Dk−1)(1− 2a(k − 1)ψ).

Since P(D0) = 1, we have

P(|ui − uj | > ψ for ∀i ̸= j)

= P(Dn)

> P(Dn−1)(1− 2(n− 1)ψa)

> P(Dn−2)(1− 2(n− 1)ψa)(1− 2(n− 2)ψa)

> . . .

> Πn−1
i=0 (1− 2iψa).

The lemma is proved.
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Theorem 15. Let ||JF ||∞ < µ/2, ||BF ||∞ < β, and λ ∈ R+ satisfy λ > µ and (λ −
µ)e−2β−nµ+

√
λ > (2mλ + µ)m. Furthermore, assume that the samples are normalized, that

is, ||x||∞ = 1. If WR ∼ Mm,n(λ), then C(BF ,ABF ,D2
F
,Mm,n(λ)) ≤ (m− 1)C(BF ) +

(m−2)2√
λ

.

Proof. From equation 2 and equation 12, we have F(x) =Wxx+Bx and F(x) = (Wx+WR)x+Bx.
Let x be a sample with label y. From equation equation 20, we have

∇LCE(F(x),y)
∇x =

∑m
i=1(WR,i−WR,y+Wx,i−Wx,y)e

Fi(x)∑m
i=1 eFi(x)

.

Let mx = argmaxi ̸=y{⟨WR,i, x⟩} and consider the condition:

Condition C1: ⟨WR,mx , x⟩ > ⟨WR,j , x⟩+
√
λ for all j ∈ [m] \ {y,mx}.

We first give the probability for condition C1 to be valid. By Lemmas 25 and 26 and due to |x|∞ = 1,
we have

Ex∼DPWR∼Mm,n(λ)(C1)

≥ Ex∼DPWR∼Mm,n(λ)(|⟨WR,j , x⟩ − ⟨WR,i, x⟩| >
√
λ,∀i, j ∈ [m]/{y}, i ̸= j)

≥ Ex∼DΠ
m−2
i=1 (1− 2i

√
λ

2λ|x|∞ )

≥ (1− m−2√
λ
)m−2

≥ 1− (m−2)2√
λ

.

(21)

Let ||x||−∞ = mini∈[n]{|x|i} for x ∈ Rn. Since |∇F(x)
∇x |∞ < µ/2 and WR ∼ Mm,n(λ), we have

||WR,i +WR,j ||−∞ > λ, ||WR,i +WR,j ||∞ < 2mλ and ||Wx,i +Wx,j ||∞ < µ for any i ̸= j. If
condition C1 is satisfied, then for any j ∈ [m] \ {y,mx}, we have

Fmx
(x)−F j(x)

= (WR,mx +Wx,mx −WR,j −Wx,j)x+ Bx,mx − Bx,j

= (WR,mx
−WR,j)x+ (Wx,mx

−Wx,j)x+ Bx,mx
− Bx,j

>
√
λ− nµ− 2β.

Further considering the hypothesis (λ− µ)e−2β−nµ+
√
λ > (2mλ+ µ)m, we have

||WR,mx
−WR,y +Wx,mx

−Wx,y||−∞e
Fmx (x)

> (λ− µ)eFmx (x)

> (λ− µ)eFj(x)+
√
λ−2β−nµ

= (λ− µ)e−2β−nµe
√
λeFj(x)

> (2mλ+ µ)meFj(x)

> m||(WR,j −WR,y +Wx,j −Wx,y)||∞eFj(x)

which means

sign(
∑m

i=1(WR,i −WR,y +Wx,i −Wx,y)e
Fi(x)) = sign((WR,mx

−WR,y +Wx,mx
−Wx,y)e

Fmx (x)).

Because of this, we have

sign(∇L(F(x),y)
∇x )

= sign(
∑m

i=1(WR,i−WR,y+Wx,i−Wx,y)e
Fi(x)∑m

i=1 eFi(x)
)

= sign(
∑m

i=1(WR,i −WR,y +Wx,i −Wx,y)e
Fi(x))

= sign((WR,mx
−WR,y +Wx,mx

−Wx,y)e
Fmx (x))

= sign((WR,mx
−WR,y +Wx,mx

−Wx,y)

= sign(WR,mx −WR,y).

17
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Let V be a random vector in {0, 1}n. Then the probability for the sign of WR,mx
−WR,y to be V is

P(sign(WR,mx −WR,y) = V,C1)

≤ P(sign(WR,mx
−WR,y) = V )

=
∑

i<y P(mx = i, sign(WR,y) = V ) +
∑

i>y P(mx = i, sign(WR,i) = V )

≤
∑

i<y P(sign(WR,y) = V ) +
∑

i>y P(sign(WR,i) = V )

= m−1
2n .

So we have

EWR∼Mm,n(λ)[I(B̂F (x+ ρsign(∇LCE(F(x),y)
∇x )) ̸= B̂F (x))I(C1)]

= EWR∼Mm,n(λ)[I(B̂F (x+ ρsign(WR,mx
−WR,y)) ̸= B̂F (x))I(C1)]

=
∑

V ∈{−1,1}n P(sign(WR,mx −WR,y) = V, C1)I(B̂F (x+ ρV ) ̸= B̂F (x))

≤
∑

V ∈{−1,1}n(m− 1)/(2n)I(B̂F (x+ ρV ) ̸= B̂F (x))

= (m− 1)C(BF ).

Finally, from equation 21 we have

C(BF ,ABF ,D2
F
,Mm,n(λ))

= EWR∼Mm,n(λ)Ex∼D[I(B̂F (x+ ρsign(∇L(F(x),y)
∇x )) ̸= B̂F (x))]

≤ Ex∼DEWR∼Mm,n(λ)[I(B̂F (x+ ρsign(∇L(F(x),y)
∇x )) ̸= B̂F (x))I(C1) + (1− I(C1))]

≤ (m− 1)C(BF ) + Ex∼DEWR∼Mm,n(λ)[(1− I(C1))]

≤ (m− 1)C(BF ) + Ex∼D[1− PWR∼Mm,n(λ)(C1)]

≤ (m− 1)C(BF ) +
(m−2)2√

λ
.

The theorem is proved.

C.3 PROOF OF THEOREM 17

Theorem 17. If ||JF ||∞ < µ/2, WR ∼ Um,n(λ), and m = 2, then C(BF ,ABF ,D2
F
,Um,n(λ)) ≤

enµ/λC(BF ). Furthermore, if λ > nµ/ ln(1 + ϵ), then C(BF ,ABF ,D2
F
,Um,n(λ)) ≤ (1 + ϵ)C(BF ).

Proof. Let y ∈ {0, 1} be the label of x. Denote U =Wx,1−y −Wx,y ∈ R1×n and Z =WR,1−y −
WR,y ∈ R1×n. We have

sign(∇LCE(F(x),y)
∇x )

= sign( e
F1−y(x)(

∇(F1−y(x))

∇x −∇(Fy(x))

∇x )

eFy(x)+eF1−y(x) )

= sign(∇(F1−y(x))
∇x − ∇(Fy(x))

∇x )
= sign(Wx,1−y −Wx,y)
= sign(U).

From equation equation 20, we have

sign(∇LCE(F(x),y)
∇x )

= sign( eF1−y(x)∑m
i=1 eFi(x)

(Wx,1−y −Wx,y +WR,1−y −WR,y)).

= sign(U + Z).

For i ∈ [n], sign(Ui) = sign(Ui + Zi) if and only if (Zi ≤ −Ui when Ui ≤ 0) or (Zi ≥ −Ui

when Ui ≥ 0), where Zi, Ui are respectively the i-th coordinates of Z,U . Since WR ∼ Um,n(λ),

18
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Z =WR,1−y−WR,y is the difference of two uniform distributions in [−λ, λ]. By Lemma 24, Ui > 0
implies P(Zi ≥ −Ui) = T (λ, |Ui|) < T (λ, µ), and Ui < 0 implies P(Zi ≤ −Ui) = T (λ, |Ui|) <
T (λ, µ). Hence, no matter what is the value of U , we always have P(sign(U) = sign(U + Z)) <

T (λ, µ)n, where T (λ, µ) = 1− (2λ−µ)2

8λ2 .

Moreover, for i ∈ [n], if sign(Ui) ̸= sign(Ui +Zi), we have (Zi > 0 when Ui < 0) or (Zi < 0 when
Ui > 0). So, P(sign(Ui) ̸= sign(Ui + Zi)) < 1/2 < T (λ, µ), since T (λ, µ) is always ≥ 1/2.

Since {Zi}i∈[n] is iid, by Lemma 24, for a random vector V ∈ {−1, 1}n we have

PWR∼Um,n(λ)(sign(∇LCE(F(x),y)
∇x ) = V )

= PWR∼Um,n(λ)(sign(U + Z) = V )

=
∏n

i=1 PWR∼Um,n(λ)(sign(Ui + Zi) = Vi)

=
∏n

i=1(I(sign(Ui) = Vi)PWR∼Um,n(λ)(sign(Ui) = sign(Ui + Zi))

+I(sign(Ui) ̸= Vi)PWR∼Um,n(λ)(sign(Ui) ̸= sign(Ui + Zi)))

≤
∏n

i=1(I(sign(Ui) = Vi)T (λ, µ) + I(sign(Ui) ̸= Vi)T (λ, µ))

= T (λ, µ)n.

For V ∈ {−1, 1}n, denote Q(x, V ) = I(B̂F (x+ ρV ) ̸= B̂F (x)). We have

C(BF ,ABF ,D2
F
,Um,n(λ))

= Ex∼DOEWR∼Um,n(λ)[I(B̂F (x+ ρsign(∇LCE(F(x),y)
∇x )) ̸= B̂F (x))]]

= Ex∼DO [
∑

V ∈{−1,1}n PWR∼Um,n(λ)(sign(∇LCEF(x),y)
∇x ) = V )Q(x, V )]

≤ (T (λ, µ))nEx∼DO [(
∑

V ∈{−1,1}n Q(x, V ))]

≤ (2T (λ, µ))nC(BF )

where T (λ, µ) = 1− (2λ−µ)2

8λ2 . We have (2T (λ, µ))n = (2− 4λ2+µ2−4λµ
4λ2 )n = (1+ 4λµ−µ2

4λ2 )n ≤ (1+
µ
λ )

n ≤ enµ/λ. Therefore, C(BF ,ABF ,D2
F
,Um,n(λ)) < enµ/λC(BF ). The theorem is proved.

C.4 PROOF OF THEOREM 18

Theorem 18. Assume ||JF ||∞ < µ/4, ||BF ||∞ < β, and λ ∈ R+ satisfying µe−2β−nµ/2+
√
λ >

2(2λ + µ)m. Furthermore, assume that the samples are normalized, that is, ||x||∞ = 1. If
WR ∼ Um,n(λ), then C(BF ,ABF ,D2

F
,Um,n(λ)) ≤ (m− 1)C(BF ) +

(m−1)nµ
λ + (m−2)2√

λ
.

Proof. The proof is similar to that of Theorem 15. So certain details of the proof are omitted. From
equation equation 20, we have

∇LCE(F(x),y)
∇x =

∑m
i=1(WR,i+Wx,i−WR,y−Wx,y)e

Fi(x)∑m
i=1 eFi(x)

.

Let mx = argmaxi ̸=y{⟨WR,i, x⟩} and consider two conditions C1 and C2:

Conditions C1: ⟨WR,mx
, x⟩ > ⟨WR,j , x⟩+

√
λ for all j ∈ [m] \ {y,mx}.

Conditions C2: ||WR,mx
−WR,y||−∞ > µ.

Note that condition C2 implies sign((WR,i −WR,y +Wx,i −Wx,y) = sign(WR,i −WR,y).

We give the probabilities for conditions C1 and C2 to be valid. From the proof of Theorem 15,

Ex∼DPWR∼Mm,n(λ)(C1) ≥ 1− (m−2)2√
λ

.
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Let f(x) be the density function of WR,mx
. Then

PWR∼Um,n(λ)(C2)
≥ PWR∼Um,n(λ)(||WR,i −WR,y||−∞ > µ,∀i ̸= y)

≥ (1− (m−1)µ
λ )n

≥ 1− (m−1)nµ
λ .

For V ∈ {−1, 1}n, it is also easy to see

P(sign(WR,mx
−WR,y) = V, C1, C2)

≤ P(sign(WR,mx −WR,y) = V )

=
∑

i<y P(mx = i, sign(WR,y) = V ) +
∑

i>y P(mx = i, sign(WR,i) = V )

≤
∑

i<y P(sign(WR,y) = V ) +
∑

i>y P(sign(WR,i) = V )

= m−1
2n .

If conditions C1 and C2 are satisfied, then for any y ∈ [m] \ {y,mx}, we have

||WR,mx
+Wx,mx

−WR,y −Wx,y||−∞e
Fmx (x)

> µ/2eFmx (x)

> µ/2eFj(x)+
√
λ−2β−nµ/2

= µ/2e−2b−nµ/2e
√
λeFj(x)

> (2λ+ µ)meFj(x)

> m||WR,j +Wx,j −WR,y −Wx,y||∞eFj(x)

which means

sign(
∑m

i=1(WR,i +Wx,i −WR,y −Wx,y)e
Fi(x))

= sign((WR,mx +Wx,mx −WR,y −Wx,y)e
Fmx (x)),

and hence

sign(∇LCE(F(x),y)
∇x )

= sign(
∑m

i=1(WR,i+Wx,i−WR,y−Wx,y)e
Fi(x)∑m

i=1 eFi(x)
)

= sign(
∑m

i=1(WR,i +Wx,i −WR,y −Wx,y)e
Fi(x))

= sign((WR,mx
+Wx,mx

−WR,y −Wx,y)e
Fmx (x))

= sign(WR,mx +Wx,mx −WR,y −Wx,y)

= sign(WR,mx
−WR,y).

Hence

EWR∼Um,n(λ)[I(B̂F (x+ ρsign(∇LCE(F(x),y)
∇x )) ̸= B̂F (x))I(C1, C2)]

= EWR∼Um,n(λ)[I(B̂F (x+ ρsign(WR,mx
−WR,y)) ̸= B̂F (x))I(C1, C2)]

=
∑

V ∈{−1,1}n P(sign(WR,mx −WR,y) = V, C1, C2)I(B̂F (x+ ρV ) ̸= B̂F (x))

≤ m−1
2n

∑
V ∈{−1,1}n I(B̂F (x+ ρV ) ̸= B̂F (x))

= (m− 1)C(BF ).
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Finally, we have

C(BF ,ABF ,D2
F
,Um,n(λ))

= Ex∼DOEWR∼Um,n(λ)[I(B̂F (x+ ρsign(∇LCE(F(x),y)
∇x )) ̸= B̂F (x))]

≤ Ex∼DOEWR∼Um,n(λ)[I(B̂F (x+ ρsign(∇LCE(F(x),y)
∇x )) ̸= B̂F (x))

I(C1, C2) + (1− I(C1)) + (1− I(C2))]

≤ (m− 1)C(BF ) + Ex∼DOEWR∼Um,n(λ)[(1− I(C1)) + (1− I(C2))]

≤ (m− 1)C(BF ) + Ex∼DO [1− PWR∼Um,n(λ)(C1)] + Ex∼DO [1− PWR∼Um,n(λ)(C2)]

≤ (m− 1)C(BF ) +
(m−1)nµ

λ + (m−2)2√
λ

.

The theorem is proved.

D INFORMATION-THEORETICALLY SAFETY AGAINST MULTI STEP ATTACK

In this section, we consider muilt-step attacks such as PGD. The original model gradient-based attack
with k steps is defined as follows:
Definition 27. Let F : In → Rm be a network and DF (x, y) : In × R → Rn be an attack direction
depending on sample (x, y), network output F(x), and gradient ∇F(x)

∇x . ABF ,DF ,k : Rn → Rn is
called an original model gradient-based attack for a bias classifier BF based on attack direction DF
with k steps if

ABF ,DF ,k(x) = x+
ρ

k

k∑
i=1

DF (xi), (22)

where x1 = x and xj = xj−1 + ρDF (xj−1), j = 2, · · · , k.

The problem with multi-steps attacks is that the adversarial noise δ found by the multi-steps attack
may not meet the conditions ||δ||∞ = ϵ, where ϵ is the budget of attack. So, we define that
C1(BF ) = 1

2n

∑
V ∈{−1,1}n Ex∼D[I(B̂F (x + ρ1 V ) ̸= B̂F (x),∀|ρ1| ≤ ρ)], and the BF which is

defined in equation 12 is called information-theoretically safe against ABF ,DF ,k, if

C(BF ,ABF ,DF ,k,M) ≤ C1(BF ). (23)

We will demonstrate that multi-steps attacks are also information-theoretically safety for an appropri-
ate distribution of WR, to be defined as follows.
Definition 28. Let Vm,n(λ) be the distribution in Rm×n constructed as follows.

(1) Randomly select a vector V in {−1, 1}n;

(2) Elements of the i-th row of Vm,n(λ) are randomly selected in I((2i− 1)λ, 2iλ)n ◦ V , where ◦ is
the element-wise product.

Now we will show that, with this distribution and attack direction equation 14, the bias classifier is
information-theoretically safety.
Theorem 29. For λ ∈ R+, if ||JF ||∞ < λ/2, WR ∼ Vm,n(λ), and D1

F is defined in equation 14,
then BF is information-theoretically safe against the attack ABF ,D1

F ,k.

Proof. Similar to the proof of equation equation 15, we have

ABF ,D1
F ,k = x+ ρ

k

∑k
i=1 sign(

∇Fnxi
(xi)

∇xi
− ∇Fyi

(xi)

∇xi
)

= x+ ρ
k

∑k
i=1 sign(Wxi,nxi

−Wxi,yi
+WR,nxi

−WR,yi
)

= x+ ρ
k

∑k
i=1 sign(WR,nxi

−WR,yi
).

(24)

SinceWR ∈ Vm,n(λ), we have sign(WR,nxi
−WR,yi) = V or sign(WR,nxi

−WR,yi) = −V , where
V is the random vector in Definition 28. Thus, for some s ∈ [0, k], we have sign(

∑k
i=1 sign(WR,nxi

−
WR,yi)) = sign(sV ) = sV .
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So we have that:

C(BF ,ABF ,DF ,k,M)

= EWR∼M[Ex∼D[I(B̂F (ABF ,DF ,k(x)) ̸= B̂F (x))]]

= EV ∈{−1,1}n [Ex∼D[I(B̂F (x+ sxV ) ̸= B̂F (x))]]

≤ 1
2n

∑
V ∈{−1,1}n Ex∼D[I(B̂F (x+ ρ1 V ) ̸= B̂F (x),∀|ρ1| ≤ ρ)]

Where sx is a value in [−ρ, ρ], as shown in the above. This is what we want, so the theorem is
proved.

If with attack direction equation 16 and m = 2, the bias classifier is also information-theoretically
safety.
Theorem 30. For m = 2, λ ∈ R+, if ||JF ||∞ < λ/2, WR ∼ Vm,n(λ), and D2

F is defined in
equation 16, then BF is information-theoretically safe against attack ABF ,D2

F ,k.

Proof. The theorem can be proved by combing the proofs of Theorems 14 and 29.

At last, we show that C1(BF ) is also very small. Following the section 5 and similar as table 3, the
value of C1(BF ) is shown in the below:

Table 7: Value of C1(BF(1)), C1(BF(2)).

MNIST CIFAR-10
C(F (1)) 1.02% 1.30%
C(F (2)) 1.04% 1.42%

Compare with table 3, the value of C1 is about 0.2% larger than C.

E MORE EXPERIMENTS AND DETAIL

Following the section 5.1, some results under FGSM attack and AutoAttack are given.

Table 8: Adversarial accuracy with the original model gradient-based attack(FGSM).
Network MNIST CIFAR-10 Network MNIST CIFAR-10
BF(5,1) 98.70% 80.16% BF(5,2) 98.60% 80.05%
BF(6,1) 98.73% 80.85% BF(6,2) 98.77% 80.63%
BF(7,1) 98.30% 79.42% BF(7,2) 98.45% 79.46%

Table 9: Adversarial accuracy with the original model gradient-based attack(Auto Attack but remove
the black box attack from it).

Network MNIST CIFAR-10 Network MNIST CIFAR-10
BF(5,1) 98.64% 80.13% BF(5,2) 98.47% 80.03%
BF(6,1) 98.67% 80.87% BF(6,2) 98.72% 80.60%
BF(7,1) 98.20% 79.39% BF(7,2) 98.41% 79.32%

It is easy to see that bias classifier has almost achieve Information-theoretically safety under FGSM
and AutoAttack.
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