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Abstract

Safety validation, which assesses the safety of an autonomous system’s motion
planning decisions, is critical for the safe deployment of autonomous vehicles.
Existing input validation techniques from other machine learning domains, such as
image classification, face unique challenges in motion planning due to its contex-
tual properties, including complex inputs and one-to-many mapping. Furthermore,
current output validation methods in autonomous driving primarily focus on open-
loop trajectory prediction, which is ill-suited for the closed-loop nature of motion
planning. We introduce REDOUBT, the first systematic safety validation frame-
work for autonomous vehicle motion planning that employs a duo mechanism,
simultaneously inspecting input distributions and output uncertainty. REDOUBT
identifies previously overlooked unsafe modes arising from the interplay of In-
Distribution/Out-of-Distribution (OOD) scenarios and certain/uncertain planning
decisions. We develop specialized solutions for both OOD detection via latent
flow matching and decision uncertainty estimation via an energy-based approach.
Our extensive experiments demonstrate that both modules outperform existing
approaches, under both open-loop and closed-loop evaluation settings. Our codes
are available at: https://github.com/sgNicola/Redoubt.

1 Introduction

Motion planning—the process of generating a trajectory for the ego-vehicle based on sensed traffic
scenario data—is a cornerstone of autonomous driving. Learning-based motion planning methods [48,
54, 47, 45, 7], which leverage datasets of human driving behavior to train autonomous systems, have
gained increasing attention due to their potential for greater adaptability compared to traditional
rule-based approaches. Despite significant advances, autonomous vehicles continue to struggle with
the full complexity of real-world driving scenarios [11, 29, 28, 42].

Safety validation for motion planning, which assesses whether a vehicle’s decisions are safe in a
given scenario, is thus critical. When an unsafe decision is detected, the validation module can: (1)
immediately override the decision and initiate fallback measures (e.g., manual takeover [1]) to ensure
short-term safety, and (2) flag the scenario as “challenging” to prioritize improvement in subsequent
continual learning iterations [37, 41]. Safety validation could reduce or prevent tragedies like the
March 29, 2025, Xiaomi SU7 incident, which resulted in three fatalities [12]. Nevertheless, such a
systematic safety validation framework is currently lacking—a gap our this work seeks to address.

Safety validation can potentially be approached via two main angles: input inspection and output
inspection. In the first category, input inspection, we draw inspiration from Out-of-Distribution
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(OOD) detection in other machine learning fields, such as image classification [49, 3], to establish a
novel approach for assessing safety levels in autonomous driving. This approach determines whether
a given input falls within the trained model’s familiar data distribution: it is termed In-Distribution
(InD) if it does, and otherwise Out-of-Distribution (OOD) [51]. In our context, if a traffic scenario is
identified as OOD, the system could downgrade the safety score of the resulting decision. However,
input inspection strategies based on OOD detection have not yet been used in motion planning,
and adapting them poses unique challenges. Unlike classification tasks, motion planning requires
predicting distributions over plausible future trajectories conditioned on complex, context-dependent
inputs [52]. This one-to-many mapping obscures the underlying data distribution, making it difficult
to define meaningful feature distances or confidence margins for OOD detection.

In the second category, output inspection, safety validation assesses the uncertainty of the autonomous
system’s output and deems those with high uncertainty as unsafe. However, these approaches are
mainly designed for trajectory prediction rather than motion planning [35, 16]. In a nutshell, trajectory
prediction predicts the future paths of other road agents, e.g., vehicles, pedestrians, and cyclists,
based on their current/past behavior and environmental context, while motion planning determines
the ego vehicle’s own trajectory to navigate safely and efficiently toward a goal, considering predicted
trajectories of others. Safety validation for trajectory prediction faces significant barriers when
applied to motion planning. This is because trajectory prediction is typically validated in an open-loop
setting [39, 36], where predicted trajectories of surrounding agents are compared against ground-truth
logs from recorded datasets. In contrast, motion planning operates in a closed-loop manner: the
ego-vehicle continuously uses feedback from its current state and the dynamic environment to update
and adjust its plans in real time [17]. Consequently, applying existing output inspection approaches
directly to motion planning could lead to critical failures, such as falsely certifying the ego vehicle’s
trajectory as safe when it actually results in collisions or road departures [10].

We propose REDOUBT, the first framework to systematically integrate input inspection through OOD
detection and output inspection via uncertainty estimation for the safety validation of autonomous
vehicle motion planning.

First, we develop specialized solutions for OOD scenario detection and uncertain decision estimation
within the context of autonomous vehicle motion planning. We identify distributional shifts by
estimating distribution likelihoods in the latent space using flow matching. Specifically, we employ a
velocity field, enhanced with Gaussian Fourier Projection to capture temporal dynamics, to match
target distributions and enable a principled estimation of distributional shifts in trajectory evolution.
For estimating planning decision uncertainty under closed-loop dynamics, we introduce an energy-
based approach that assigns risk-sensitive energy scores. These scores, computed based on future
distances to obstacles or surrounding agents, provide a dense and continuous measure of safety risk,
unlike sparse binary violation labels. During inference, we aggregate energy scores and trajectory
probabilities to assess safety risks under closed-loop execution.

Moreover, REDOUBT employs a duo validation approach—simultaneously inspecting input distri-
butions (traffic scenarios) and output uncertainty (planning decisions). The key insight behind this
duo strategy, supported by our experiments, is that input and output validation are complementary,
not interchangeable. By jointly validating both dimensions, it categorizes driving situations into
four types: (a) InD scenario + certain decision → Safe, (b) InD scenario + uncertain decision
→ Unsafe, (c) OOD scenario + certain decision → Unsafe, and (d) OOD scenario + uncertain
decision → Unsafe. Notably, REDOUBT uniquely identifies situations (b) and (c), which have been
overlooked by existing approaches that rely solely on input or output inspection, thereby offering
more comprehensive safety guarantees. In summary, our contributions are:

• We propose a novel duo safety validation approach for autonomous driving motion planning that
concurrently inspects both input and output, revealing two previously overlooked unsafe situations.

• We design a latent flow matching method to estimate distributional shifts and detect OOD traffic
scenarios, effectively modeling the multi-modal and dynamic nature of planning contexts.

• We present an energy-based risk prediction approach that integrates risk signals and trajectory
probabilities to estimate driving decision uncertainty without requiring explicit violation labels.

• We outperform previous approaches on the nuPlan dataset in both OOD detection and decision
uncertainty estimation. Our method demonstrates superior performance in both open-loop and
closed-loop settings.
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2 Related Work

Out-of-Distribution (OOD) Detection. OOD detection has been extensively studied in image
classification [32, 53, 50] but remains underexplored in motion planning. Post-hoc methods such
as Maximum Softmax Probability [19], MaxLogit [18], and energy-based scoring [34] derive OOD
scores from the output layer of trained classifiers, offering simplicity and ease of implementation.
Feature-space methods, including Mahalanobis distance [26] and k-Nearest Neighbor (KNN) ap-
proaches [40], estimate distributional deviation based on distances in the learned representation space.
However, applying these methods to motion planning is challenging—post-hoc scores often yield
overconfident predictions, while feature-space methods struggle with the one-to-many mapping and
complex inputs, which obscure the data distribution.

Motion Planning. Motion planning aims to generate safe and efficient trajectories for autonomous
agents. Hybrid methods, such as GC-PGP [10], integrate learning-based models with rule-based
priors through centerline selection algorithms, achieving a balance between adaptability and safety.
Fully learning-based models, including GameFormer [22] and PlanTF [8], leverage scene encoding to
learn decision-making policies, generate multi-modal trajectory candidates, and select optimal plans
based on trajectory probabilities and constraint satisfaction. Methods such as PLUTO [7] address
distribution shift via contrastive learning, using data augmentations to shape latent representations.
PlanScope [46] incorporates auxiliary losses based on Euclidean Signed Distance Fields (ESDF) to
model cost and enforce safety constraints during planning. While these approaches have significantly
advanced the performance of learning-based motion planning, they primarily overlook OOD detection.

Uncertainty Estimation. Uncertainty estimation in motion prediction has emerged as a valuable
tool for safety validation of trajectory forecasts [36]. For example, Joodu [44] uses imitation
error as a proxy for uncertainty, while Filos et al.[13] leverage disagreement among predicted
trajectories to detect potential distribution shifts. DECODE [27] employs normalizing flows for
domain awareness and selects the model with the highest likelihood to generate trajectory predictions.
SOTIF [38] measures perceptual uncertainty with entropy, providing signals that guide risk evaluation
in downstream motion prediction. Other works incorporate uncertainty arising from map inaccuracies
and occlusions into trajectory prediction[16], and utilize trajectory distribution entropy to quantify
predictive uncertainty [35]. Despite their utility, these uncertainty estimation approaches remain
largely restricted to open-loop settings, relying on surrogate metrics such as imitation loss. These
metrics fail to capture critical closed-loop risks—including collisions and road departures.

3 Methodology

This section introduces the REDOUBT framework, which consists of two key modules (dashed boxes
in Figure 1): (1) an Out-of-Distribution (OOD) Detection module based on Flow Matching and (2) a
Decision Uncertainty Estimation module. REDOUBT is orthogonal to and can be integrated with
various existing motion planning solutions to validate the safety of their planned trajectories.

3.1 Learning-based Motion Planning

To begin, we outline the background of modern ML-based motion planning models. These models
leverage scene encoders to transform multi-modal driving contexts into high-dimensional latent
representations [23, 7], which encapsulate semantic and contextual information essential for trajectory
prediction [25, 24, 33]. Formally, the driving context is encoded as a scene representation x =
{EE , EA, EO, EM}, where EE denotes the ego vehicle state, EA the states of dynamic agents, EO

static object features, and EM map information. The model predicts future trajectories for dynamic
agents, denoted as Y 1:Tf

1:Nd
= {y1:Tf

1 , . . . , y
1:Tf

Nd
}. Furthermore, it generates a set of Nm multi-modal

ego trajectories, represented as Y 1:Tf

0 = {(y1:Tf

0,i , pi)}Nm
i=1 where pi is the probability associated with

the i-th candidate trajectory. The final trajectory τ∗ is selected by optimizing pi while adhering to
traffic-related constraints. Building on this, we propose a latent-space-driven framework for OOD
detection and decision uncertainty estimation.

3



Latent DistributionPrior Distribution

Velocity 
Field

Log-Likelihood

Collision/Off-road 

Imitation Error
Uncertainty 
Estimation

Trajectory Decoder

Scene Encoder

Scene 
Encoding

Scene

OOD Score

Uncertainty

𝐸! 𝐸" 𝐸# 𝐸$

Flow Matching

Figure 1: Overview of the proposed REDOUBT framework. The OOD Detection module utilizes
Flow Matching to model the In-Distribution density of the latent space, learning a velocity field
to transform the prior known distribution into the target distribution. The Decision Uncertainty
Estimation module predicts collision and off-road violations, as well as imitation errors. The final
decision-making process considers both the OOD score and the decision uncertainty.

3.2 OOD Detection based on Flow Matching

The OOD Detection module is designed to identify “unfamiliar” input scenarios and trigger a signal
of potential danger. Similar to OOD detection approaches in other domains (e.g., [15, 53]), it
can be described as employing a score function to determine whether a given input belongs to
the In-Distribution (InD) or the Out-of-Distribution (OOD). We derive this score function from
advancements in the generative AI field, applying it for safety validation. The core intuition is that
generative models create a score to evaluate the similarity between the current distribution and the
target distribution, guiding their path toward the target. Leveraging this concept in a novel way, we
use the score to measure an input traffic scenario’s proximity to the InD density.

Preliminary on Flow Matching. Flow Matching (FM) is a recently proposed paradigm for training
generative models by transforming a simple source distribution into a target data distribution [30,
31, 9]. The aim of FM is to learn a time-dependent flow ϕt that continuously maps samples from
a known source distribution, typically a standard Gaussian, to the target distribution [2]. This flow
ϕt : [0, 1] × Rd → Rd is defined by an ordinary differential equation (ODE) parameterized by a
velocity field ut:

dϕt(x)

dt
= ut(ϕt(x)). (1)

The time-dependent probability path (pt)0≤t≤1, which smoothly interpolates between the source
distribution p0 = p and the target distribution p1 = q. A velocity field ut is suggested to generate
this probability path. To learn the velocity field, a neural network uθ

t is used to approximate the target
velocity field ut. The parameters θ of the neural network are typically estimated by minimizing the
following objective function:

LFM (θ) = Et∼U [0,1],x∼pt
∥uθ

t (x)− ut(x)∥2, (2)

where ut(x) represents the target velocity field derived from the continuity equation.

Velocity Field. Let z ∈ Rd represent the latent encoding of a motion planning trajectory obtained
from the scene encoder. We define a time-dependent flow ϕt(z), governed by a neural velocity field
uθ
t , which evolves along an interpolation path from a known prior distribution p0 to the target data

distribution p1. To incorporate the temporal dimension, we employ a Gaussian Fourier Projection to
embed the scalar time t into a high-dimensional feature vector. The time embedding is given by:

γ(t) = [sin(2πtW ), cos(2πtW )] , W ∈ Rdt/2, (3)

where W is a projection matrix that encodes multi-frequency information. This time embedding is
then processed by a residual Multi-Layer Perceptron (MLP) architecture.

4



The velocity field is trained using a velocity matching loss, which minimizes the discrepancy between
the predicted flow velocity uθ

t (zt) and the velocity dzt

dt along the interpolation path. The loss function
is given by:

Lflow = Et∼U [0,1],(z0,z1)∼π0,1

[∥∥∥∥uθ
t (zt)−

dzt
dt

∥∥∥∥2
]
, (4)

where zt is sampled along an interpolation path between z0 and z1, with velocity dzt

dt along the path.
Here, π0,1 defines the joint distribution of z0 and z1, and the interpolation is guided by the Affine
Probability Path under a Conditional Optimal Transport schedule [14].

Computing Log-Likelihood. Once the velocity field is trained, the log-likelihood of a sample
z1 ∼ p1 can be computed by solving the flow ODE backward in time using an Euler solver. For
the prior distribution p0, we adopt a Gaussian Mixture Model (GMM) with Nm components to
represent the multi-modal latent space. Using the Instantaneous Change of Variables formula [6], the
log-likelihood of the target distribution is expressed as:

log p1(z1) = log

(
1

Nm

Nm∑
i=1

N (z0 | µi, σ
2
i I)

)
−
∫ 1

0

∇ · uθ
t (zt) dt, (5)

where N (z0 | µi, σ
2
i I) represents the i-th Gaussian component of the prior distribution, characterized

by mean µi and isotropic covariance matrix σ2
i I. The GMM contains Nm components, each with

an equal mixture weight of 1/Nm. The term, −
∫ 1

0
∇ · uθ

t (zt) dt, is the divergence integral, which
quantifies the density evolution as the sample flows from z1 to z0 under the velocity field uθ

t (zt).

3.3 Decision Uncertainty Estimation

The Decision Uncertainty Estimation module is a multi-output network designed to predict various
uncertainty metrics for planned trajectories, encompassing both open-loop and closed-loop measures.
First, in open-loop settings, uncertainty is represented by imitation error, often quantified using
Average Displacement Error (ADE): ADE = 1

Tf

∑Tf

t=1 ∥yt − ŷt∥2, where yt is the ground truth
trajectory, and ŷt is the predicted trajectory. Second, in closed-loop dynamics, uncertainty is indicated
by two metrics: 1) No-Fault Collisions (NFC), which refer to collisions that could have been avoided
with proper planning, and 2) Drivable Area Compliance (DAC), which assesses whether the ego
vehicle operates within the mapped drivable area. Safety violations are represented as Boolean values
(0: no violation, 1: violation). In the absence of violation labels during closed-loop no-feedback
training, we propose a geometry-driven Violation Energy Score as pseudo-labels [43]. Leveraging
signed distance as a physically intuitive metric, it transforms trajectories into continuous risk signals,
capturing finer-grained risk features and addressing data scarcity in collision and driving area violation
scenarios. The Violation Energy Score is further combined with trajectory probability to estimate
decision uncertainty.

Violation Energy Score. At first, we construct the cost map using the Euclidean Signed Distance
Field(ESDF) according to prior work [7, 54]. Non-drivable regions, such as obstacles and off-road
areas, are rasterized into a binary mask. A distance transform is applied to compute a signed distance
field, encoding the shortest distance of each pixel to the nearest obstacle or boundary. The vehicle
is approximated as a set of N covering circles, each with a predefined radius Rc. Each point in the
trajectory τ = {yt | t = 1, . . . , Tf} is projected onto the ESDF, where bilinear interpolation is used
to calculate the signed distance dti between the i-th covering circle at time t and the nearest semantic
region. A penalty is applied when dti < Rc, enforcing adherence to drivable area constraints.

The violation energy for a given trajectory is defined as:

E =
1

Tf

Tf∑
t=1

N∑
i=1

Mt
i · φ(dti), (6)

where Tf is the trajectory length, N is the number of covering circles, Mt
i is a binary mask indicating

whether the i-th circle at time t intersects a region of interest (e.g., obstacles or boundaries), and
φ(dti) is a penalty function quantifying the risk associated with the signed distance dti.
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To address different safety constraints, we define two penalty functions: φnfc(d
t
i) for No at-fault

Collisions (NFC) and φdac(d
t
i) for Drivable Area Compliance (DAC). The NFC penalty is defined as:

φnfc(d
t
i) = max(0, exp(Rc − dti)− 1), (7)

which grows exponentially as dti approaches or falls below Rc. This emphasizes the critical im-
portance of avoiding overlaps with obstacles. When dti ≥ Rc, the penalty is zero, indicating a
safe distance. This exponential design ensures heightened sensitivity near obstacles, particularly in
dynamic or high-risk scenarios.

The DAC penalty is defined as:

φdac(d
t
i) = max(0, Rc − dti), (8)

which increases linearly as dti approaches the boundary (dti < Rc). This formulation encourages
smooth corrective actions and avoids over-penalizing minor deviations. For dti ≥ Rc, the penalty is
zero, indicating compliance.

Training Objective. The Ek(τ) is transformed into a soft binary indicator by comparing it to a
threshold ϵ. The module predicts this signal using a likelihood prediction head, which outputs the
logits fk(τ). These logits are optimized using the Binary Cross-Entropy Loss with Logits, defined as:

Lc =
∑

k∈{nfc,dac}

BCEWithLogits(fk(τ), I[Ek(τ) > ϵ]), (9)

where I[Ek(τ) > ϵ] is the threshold indicator for each safety objective (k ∈ {nfc, dac}), and Ek(τ) is
the Violation Energy Score associated with the respective constraint. The total loss function combines
the constraint loss Lc with an imitation loss Limitation, which predicts the imitation error of the driven
trajectory. The total loss is given by:

Ltotal = Limitation + Lc = ∥e− ê∥2 + Lc, (10)

where e is the ground-truth imitation error, and ê is the predicted imitation error. During inference,
the module predicts Ênfc = σ(fnfc(τ)), the estimated probability of a collision violation, and
Êdac = σ(fdac(τ)), the estimated probability of a drivable area compliance violation. Additionally,
the predicted imitation error ê is output to estimate trajectory imitation performance.

3.4 Ensemble with Trajectory Probability

As mentioned in Section 3.1, motion planning generates Nm candidate trajectories Y
1:Tf

0 =

{(y1:Tf

0,i , pi)}Nm
i=1, where pi denotes the probability of the i-th candidate trajectory. The final tra-

jectory τ∗ is selected by maximizing pi, subject to traffic and safety constraints. To align with the
planner’s decision-making, we combine the module-predicted score with trajectory probabilities.
Instead of directly using softmax probabilities, according to [20], we adopt an energy-based score Ep

to reflect the planner’s confidence in its planned trajectory τ∗. The InD score quantifies a scenario’s
similarity with the training distribution and is defined as:

Ep = log

Nm∑
i=1

exp(pi), EInD = λ log p1(z1) + (1− λ)Ep, (11)

where log p1(z1) represents the normalized log-likelihood of the scene context from Flow Matching.
A high Ep indicates the planner is confident in its distribution of candidate trajectories.

For decision uncertainty estimation,

Enfc = λÊnfc + (1− λ)Ep, Edac = λÊdac + (1− λ)Ep, (12)

where Ênfc and Êdac are the predicted collision and compliance risks. Normalization ensures that
all risk terms and Ep are on a comparable scale. The hyperparameter λ ∈ [0, 1] controls the relative
weighting of the predicted violation risks versus the trajectory’s confidence.
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4 Experiments

We first outline our experimental settings. Next, we present the quantitative results for the OOD
Detection module and the Decision Uncertainty Estimation module, respectively, followed by ablation
studies. These results demonstrate that each module significantly outperforms existing methods,
offering more reliable safety validation. Finally, we provide qualitative demonstrations showing that
the duo validation approach REDOUBT, based on these two modules, effectively categorizes driving
situations into four types. Notably, it uncovers two unsafe situations overlooked by existing works,
achieving more comprehensive safety guarantees for autonomous vehicles.

4.1 Experimental Setups

Dataset. We conduct our evaluations using nuPlan [4], which is currently the most widely used
and the only large-scale dataset for motion planning evaluation. This dataset has 73 unique and
well-labeled scenario types, defined by low-level driving attributes. We partition the dataset based on
scenario frequency, following a strategy similar to that used in Shifts [36]. Specifically, the top 50%
most frequent scenario types—which account for 95% of the total data—are categorized as the In-
Distribution (InD) set, while the remaining, less common scenarios constitute the Out-of-Distribution
(OOD) set. For more details, please refer to Appendix A.1

Our evaluations are carried out across three planning evaluation modes defined by the nuPlan [4]: (1)
Open-loop (OP): The evaluation is conducted using log replay. Notably, open-loop tests have limited
value for motion planning, which continuously interacts with environments. However, they remain
relevant in scenarios with mainly static obstacles, so we include them for evaluation completeness.
(2) Closed-loop Non-Reactive (CNR): Both the ego vehicle and other agents can deviate from their
original trajectories, but the agents are non-reactive. (3) Closed-loop Reactive (CR): Both the ego
vehicle and other agents can deviate, and the agents are reactive to the ego vehicle’s behavior.

Planners. Our REDOUBT framework can be universally applied to various motion planning
solutions to validate the safety of their planning results. To evaluate its effectiveness and model-
agnostic nature, we integrate REDOUBT into the latent spaces of four diverse learning-based motion
planners introduced in Related Work 2: PlanTF, PLUTO, GameFormer, and PlanScope. For
implementation details, please refer to Appendix A.2.

Baselines. REDOUBT is evaluated on: (1) OOD Detection and (2) Decision Uncertainty Estimation.
For OOD Detection, we compare against post hoc methods (MSP [19], MaxLogit [18], Entropy [35],
Energy [34]) and feature-space methods (Mahalanobis Distance (MDS) [26], KNN [40], lGMM [44]).

For decision uncertainty estimation, we evaluate in Closed-loop (CNR and CR) and Open-loop (OP)
settings. Closed-loop metrics include (1) No At-Fault Collisions (NFC), assessing whether the ego
vehicle avoids fault-based collisions, and (2) Drivable Area Compliance (DAC), checking trajectory
adherence to drivable areas. In the OP setting, we compute Average Displacement Error (ADE)
within a bounded region. NFC and DAC are compared with the Energy score method, while ADE is
evaluated against Shifts [36] baselines: Model Averaging (MA) and VAR [13].

Evaluation Metrics. We evaluate OOD detection using: (1) the false positive rate (FPR95) of OOD
samples when the true positive rate of InD samples is 95%, and (2) the area under the receiver
operating characteristic curve (AUROC). For decision uncertainty estimation, we consider: (1) the
false positive rate (FPR95) of (No At-Fault Collision)/(Driving Area Compliance) samples when the
true positive rate of violation samples is 95%, and (2) the AUROC. For imitation error, we use the
area under the error-retention curve (R-AUC), which tracks trajectory imitation error as ground-truth
labels progressively replace predictions in descending order of predicted error.

4.2 Evaluation of OOD Detection

Our method consistently outperforms existing OOD detection approaches across all three evaluation
modes. As shown in Table 1, which compares OOD detection methods trained with the same four
motion planning models, our approach achieves notable improvements in both FPR95 reduction and
AUROC increase in OP, CNR, and CR modes. These advancements stem from the effective density
estimation of InD features. Moreover, our method demonstrates strong performance across various
motion planners, highlighting its versatility and reliability under diverse evaluation conditions.
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Table 1: Comparison with OOD detection methods trained with the four motion planning models
across three evaluation modes on nuPlan dataset. ↑ indicates larger values are better and vice versa.
The best result in each column is shown in bolded. OP: Open-loop evaluation mode. CNR: Closed-
loop non-reactive evaluation mode. CR: Closed-loop reactive evaluation mode.

Mode Method PlanTF PLUTO GameFormer PlanScope Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OP

MSP 88.92 64.29 79.70 74.15 91.16 62.13 83.85 71.37 85.91 67.99
MaxLogit 69.04 75.14 64.99 74.06 93.84 54.08 83.86 71.65 77.93 68.73
Entropy 88.96 58.77 71.56 62.64 96.77 50.89 84.24 66.87 85.38 59.79
Energy 67.77 75.93 65.17 76.50 87.43 55.56 73.74 74.17 73.53 70.54
MDS 94.54 65.81 69.02 80.55 70.05 70.43 81.32 76.74 78.73 73.38
KNN 89.31 66.87 71.05 79.03 62.66 80.24 84.44 76.70 76.87 75.71

lGMM 94.54 65.81 66.30 79.51 87.28 70.72 72.38 79.87 80.13 73.98
REDOUBT(Ours) 51.02 84.48 53.54 85.50 59.59 84.82 56.18 85.83 55.08 85.16

CNR

MSP 91.22 59.50 80.94 73.56 91.60 59.65 84.23 70.68 87.00 65.85
MaxLogit 77.79 69.68 66.84 78.24 92.81 52.71 76.53 74.61 78.49 68.81
Entropy 92.21 55.83 75.17 62.79 95.96 51.39 82.07 65.65 86.35 58.91
Energy 76.75 70.19 65.44 76.55 92.81 52.72 74.64 74.41 77.41 68.47
MDS 92.39 65.45 63.49 81.50 68.74 71.68 69.39 80.09 73.50 74.68
KNN 90.56 66.05 74.99 78.46 65.80 77.58 75.85 78.10 76.80 75.05

lGMM 88.77 67.10 76.51 77.83 68.88 77.26 67.89 79.93 75.51 75.53
REDOUBT(Ours) 65.11 81.41 57.11 84.83 66.35 80.22 50.10 85.54 59.67 83.00

CR

MSP 88.03 58.26 84.19 69.20 94.94 51.94 85.99 65.52 88.29 61.23
MaxLogit 81.79 64.98 71.93 72.83 91.77 58.47 74.96 70.67 80.11 66.74
Entropy 93.29 51.17 75.17 62.79 94.00 53.35 83.11 65.27 86.39 58.15
Energy 81.25 65.36 71.38 70.36 93.84 54.08 73.25 71.25 79.93 65.26
MDS 90.84 69.52 68.13 79.83 68.81 71.47 70.81 73.71 74.65 73.63
KNN 90.01 66.14 73.23 78.66 67.17 77.01 67.00 80.82 74.35 75.66

lGMM 86.31 71.74 74.41 77.37 69.33 76.63 73.34 76.96 75.85 75.68
REDOUBT(Ours) 61.81 81.81 59.14 82.58 66.83 80.32 58.12 83.47 61.48 82.05

Figure 2: Retention curves of uncertainty estimation in open-loop evaluation across different planners.
The ADE is plotted over the retention fraction. Lower R-AUC values indicate better performance.
The oracle retention curve (green) is obtained by sorting samples in descending order of true ADE.
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(d) PlanScope

4.3 Evaluation of Decision Uncertainty Estimation

Closed-loop Evaluation. Table 2 presents the evaluation results of uncertainty estimation, including
No At-fault Collision (NFC) and Driving Area Compliance (DAC) under the closed-loop non-reactive
and closed-loop reactive modes. Our method demonstrates superior performance across all four
motion planners. For example, for predicting NFC violations, our method improves the average
AUROC by 12.81% and 10.03% in the CNR mode and the CR mode, respectively.
Table 2: Comparison of NFC and DAC estimation results, trained with the four motion planning
models and evaluated under the CNR and CR modes on nuPlan dataset.

Mode Uncertainty Method PlanTF PLUTO GameFormer PlanScope Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CNR

NFC
Energy 79.33 63.10 89.52 66.36 91.63 52.93 73.40 57.30 83.47 59.92

REDOUBT(Ours) 70.93 70.45 68.04 71.62 56.85 74.44 57.30 74.41 63.28 72.73

DAC
Energy 76.88 59.01 76.70 63.31 95.38 51.19 69.36 66.21 79.58 59.93

REDOUBT(Ours) 55.13 82.33 52.97 77.33 52.36 75.38 55.94 75.00 54.10 77.51

CR

NFC
Energy 82.74 64.39 82.27 71.58 87.88 59.62 80.84 67.24 83.43 65.71

REDOUBT(Ours) 67.04 71.97 58.29 78.11 57.34 73.37 49.22 79.51 57.97 75.74

DAC
Energy 66.98 70.88 80.26 55.73 80.53 67.95 69.67 73.70 74.36 67.07

REDOUBT(Ours) 52.24 84.03 58.59 76.90 51.63 76.90 48.67 80.00 52.78 79.46

Open-loop Evaluation. The retention curves of uncertainty estimation under the open-loop evaluation
mode, as shown in Figure 2, demonstrate that our method consistently performs closer to the Oracle
retention compared to the best baselines across multiple planners. For example, in the PlanTF planner,
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our method achieves an ADE R-AUC of 0.263, which is closer to the Oracle value of 0.239, compared
to the best baseline (0.282). This indicates that our method exhibits better uncertainty calibration, as
it effectively aligns uncertainty estimates with the true ADE.

4.4 Evaluation of Duo Safety Validation

Table 3: Duo safety validation under closed-loop
reactive mode: recall across OOD detection and
decision uncertainty estimation

Method PlanTF PLUTO GameFormer PlanScope Avg.
lGMM 53.50 65.88 51.81 49.95 55.29
Energy 59.52 65.82 64.97 72.61 65.73

REDOUBT 90.24 90.52 91.34 90.02 90.53
Category Decomposition of Recall by Scenario Category

InD+Uncertain 0.70 1.26 1.79 0.87 1.16
OOD+Certain 10.04 15.61 10.50 6.78 10.73

OOD+Uncertain 79.50 73.65 79.05 82.37 78.64

We evaluate the full REDOUBT system under a
closed-loop reactive setting, jointly using OOD
detection and decision uncertainty estimation.
We report recall as the primary metric, measur-
ing coverage of potential unsafe scenarios. Here,
potential unsafe scenarios comprise three cate-
gories: InD + Uncertain (InD inputs with driving
violations), OOD + Uncertain (OOD inputs with
driving violations), and OOD + Certain (OOD
inputs without driving violations). Further qual-
itative analysis of unsafe scenarios is provided
in Section 4.6.

REDOUBT attains 90.53% recall, substantially outperforming strong baselines—55.29% for driving
uncertainty estimation and 65.73% for OOD detection alone. This indicates that the unified design
captures a broader set of unsafe cases.

We further decompose recall by category. OOD + Uncertain constitutes the majority (78.64%).
InD + Uncertain accounts for 1.16%; despite its small share, these cases are safety critical. OOD
+ Certain contributes an additional 10.73%, reflecting OOD situations that may not immediately
cause violations but remain hazardous under distribution shift. These results underscore the value of
unifying OOD detection with decision uncertainty estimation for safety validation.

4.5 Ablation Studies

We conduct ablation experiments to evaluate the importance of the component design in our method.

Table 4: Effects of Trajectory Probability Energy
Ep on OOD detection and Uncertainty Estimation.

Metric Method OOD NFC DAC
OP CNR CR CNR CR CNR CR

FPR95 ↓ w/o Ep 62.08 71.06 63.47 71.85 69.42 62.86 56.15
w/Ep 55.08 59.67 61.48 63.28 57.97 54.10 52.78

AUROC ↑ w/o Ep 83.23 78.47 80.82 68.18 72.12 77.02 78.58
w/Ep 85.16 83.00 82.05 72.73 75.74 77.51 79.46

Table 5: Effects of GFP module and GMM Prior.

Mode Module FPR95 ↓ AUROC ↑

OP
w/o GFP 61.67 82.88

w/o GMM 61.11 84.42
REDOUBT 55.08 85.16

CNR
w/o GFP 62.67 82.15

w/o GMM 61.68 82.79
REDOUBT 59.67 83.00

CR
w/o GFP 63.68 80.87

w/o GMM 70.33 75.46
REDOUBT 61.48 82.05

Impact of Trajectory Probability Energy. We
analyze the impact of incorporating the trajec-
tory probability energy (Ep) on OOD detection
and NFC and DAC estimation. Table 4 sum-
marizes the average evaluation results without
(w/o) and with Ep (REDOUBT). Notably, the
inclusion of Ep significantly enhances OOD de-
tection under all modes and NFC and DAC es-
timation under the CNR and CR modes. These
findings demonstrate Ep’s effectiveness in im-
proving OOD detection and uncertainty estima-
tion, as it is enhanced by encoding trajectory
probability information. Additionally, we ana-
lyze the sensitivity of the ensemble weight λ,
which balances the contributions of flow match-
ing and Ep in Appendix B.4.

Impact of Gaussian Fourier Projection. Ta-
ble 5 demonstrates the impact of the Gaussian
Fourier Projection (GFP) on OOD detection performance across three modes (OP, CNR, and CR).
GFP, which embeds the scalar time t into a high-dimensional feature vector, consistently improves
AUROC scores. These results prove the effectiveness of GFP in capturing temporal features for better
OOD detection. Further details are provided in Appendix B.2.

Impact of Gaussian Mixture Model Prior. The ablation study in Table 5 examines the impact of
using a Gaussian Mixture Model (GMM) prior in flow matching, compared to a Standard Normal
distribution. The results consistently demonstrate that the GMM prior enhances Out-of-Distribution
(OOD) detection performance across all modes. Further details are provided in Appendix B.3.
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4.6 Demonstration of Duo Safety Validation

REDOUBT simultaneously inspects input distributions and output uncertainty, categorizing driving
situations into four combinations based on the interplay of InD/OOD scenarios and certain/uncertain
planning decisions. See Figure 3 for examples of each category.

(a) InD + Certain
(Safe)

(b) InD + Uncertain
(Unsafe)

(c) OOD + Certain
(Unsafe)

(d) OOD + Uncertain
(Unsafe)

Figure 3: Safety categorization in REDOUBT: (a) InD + Certain (Safe, e.g., straight intersection
traversal); (b) InD + Uncertain (Unsafe, e.g., high-density left turns with trained-but-failed scenarios);
(c) OOD + Certain (Unsafe, e.g., overconfident unprotected cross-turns); (d) OOD + Uncertain
(Unsafe, e.g., exiting drivable areas at drop-off locations). The scenarios illustrated include: Orange
lines for the planned trajectory of the motion planner, Blue lines for the predicted trajectories of
agents, and Gray lines for the candidate trajectories by the planner.

REDOUBT identifies two previously overlooked unsafe modes and illustrates them with represen-
tative failures. First, the InD + Uncertain scenario is overlooked by an input-only inspection that
treats all InD as safe. Even in familiar scenarios, inherent complexity can induce uncertain decisions
and unsafe outcomes. In Case (b), the High-Density Traffic during Left Turns scenario involves a
left-turn maneuver in a high-density traffic environment, which is a common challenge for motion
planners. Although this category of scenario was encountered during training, we observed that the
planned trajectory by PlanScope planner and the candidate trajectories still resulted in a collision
with surrounding vehicles. This failure highlights the complexity of high-density interactions where
subtle variations can lead to collisions despite prior training exposure.

Second, the OOD + Certain scenario is overlooked by output-only inspection that treats all “certain”
decisions as safe. Rare scenarios can induce overconfident decisions that remain hazardous under
shift. In Case (c), the Unprotected Cross-Turns scenario involves unprotected cross-turns, a category
of scene that was not observed during training. Despite the absence of such scenarios in the training
data, the planner still needs to output decisions. In Case (d), the Traversing Pickup/Drop-Off Areas
scenario involves the ego vehicle traversing a drop-off area while not stopping. Such scenarios were
also not present in the training data, and we observed that the planned trajectory drifted outside the
drivable area. This failure illustrates the planner’s limitations in handling complex, context-specific
scenarios that require precise spatial reasoning and awareness.

5 Conclusion

In this work, we propose REDOUBT, a duo safety validation framework for autonomous vehicle
motion planning that addresses two critical aspects: OOD detection and decision uncertainty esti-
mation. Our approach introduces a latent flow matching method to model distributional shifts and
detect OOD traffic scenarios, effectively capturing the planning contexts’ multi-modal and dynamic
nature. Additionally, we design an energy-based risk prediction method that integrates trajectory
probabilities and risk signals to estimate decision uncertainty without relying on explicit violation la-
bels. Experiments and ablation studies on the nuPlan dataset validate the effectiveness and versatility
of REDOUBT, demonstrating its ability to identify previously overlooked unsafe situations.
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Justification: We will release the code upon acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 4, we have briefly introduced the experimental setups about datasets,
model setups, and evaluation metrics. Furthermore, we have provided full details of experi-
mental settings in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the ablation study to evaluate the significance of each component design in
our method, and the factors of variability are clearly stated in Section 4.5. In Appendix B,
we have provided the full results of this experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

Guidelines: We have provided sufficient information on the computer resources, such as the
type, amount, and memory of compute workers GPU required for the experiments in the
reproducibility statement at the Appendix A.2.

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics, and the authors remain anonymous.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential broader impact of this paper in Appendix E.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used assets in the paper are properly credited, and the datasets used in this
paper are properly licensed.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Experimental Details

A.1 Training Settings

The training dataset contains a total of 300,000 scenarios, including specific InD scenario types. The
evaluation dataset consists of 19,685 scenarios, with fixed scenario tokens. For each scenario type
(except for the "Unknown" scenario, which cannot be verified based on the scenario type), either 500
scenarios are included, or, if fewer than 500 scenarios are available, all the available scenarios are
used. All planners are trained exclusively on the InD dataset and evaluated on the full dataset, which
includes both InD and OOD scenarios.

A.2 Implementation Details

Motion Planning Model. Our experiments are conducted on a server with 8 NVIDIA RTX 5880 Ada
GPUs and the Pytorch platform. The training experiments consist of two phases. In the first phase,
each planner is trained according to its original settings. Specifically, PlanTF is trained with a batch
size of 128, a weight decay of 1× 10−4, and for 25 epochs [8]. The learning rate starts at 1× 10−3

and decays to zero following a cosine schedule. PLUTO is also trained with a batch size of 128 and a
weight decay of 1× 10−4 for 25 epochs [7]. Its learning rate is linearly increased to 1× 10−3 over
the first 3 epochs and then follows a cosine decay. GameFormer is trained with a batch size of 32, a
weight decay of 0.01, and for 20 epochs [22]. The learning rate starts at 1× 10−4 and halves every 2
epochs after the 10th epoch. PlanScope is trained with a batch size of 32 per GPU for 25 epochs,
with 3 warm-up epochs, using the Adam optimizer and an initial learning rate of 1× 10−3 [46].

REDOUBT Model. In the second phase, the flow matching and uncertainty prediction modules
are optimized separately. The flow matching module is trained for 2000 epochs using the Adam
optimizer, a batch size of 1024, and a cosine learning rate schedule with an initial learning rate of
1× 10−3. The uncertainty prediction module is trained for 25 epochs, also using the Adam optimizer,
a batch size of 1024, and a fixed learning rate of 1 × 10−3. During this phase, the weights of the
scene encoder and trajectory prediction decoder are frozen to preserve motion planning performance.

B Additional Ablation Studies

Table 6: Detailed results of the ablation study on Trajectory Probability Energy Ep.

Evaluation Mode Method PlanTF PLUTO GameFormer PlanScope Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OOD

OP w/o Ep 62.20 82.19 62.60 82.30 62.93 83.67 60.60 84.74 62.08 83.23
w/ Ep 51.02 84.48 53.54 85.50 59.59 84.82 56.18 85.83 55.08 85.16

CNR w/o Ep 90.48 69.10 65.35 81.52 66.83 79.92 61.58 83.32 71.06 78.47
w/ Ep 65.11 81.41 57.11 84.83 66.35 80.22 50.10 85.54 59.67 83.00

CR w/o Ep 65.77 80.43 65.84 80.40 66.89 79.64 55.38 82.82 63.47 80.82
w/ Ep 61.81 81.81 59.14 82.58 66.83 80.32 58.12 83.47 61.48 82.05

NFC
CNR w/o Ep 74.78 69.01 71.68 68.11 76.62 62.96 64.30 72.62 71.85 68.18

w/ Ep 70.93 70.45 68.04 71.62 56.85 74.44 57.30 74.41 63.28 72.73

CR w/o Ep 73.31 69.55 72.90 76.77 59.12 71.08 72.34 71.09 69.42 72.12
w/ Ep 67.04 71.97 58.29 78.11 57.34 73.37 49.22 79.51 57.97 75.74

DAC
CNR w/o Ep 55.72 82.28 71.86 75.53 52.35 75.33 71.49 74.94 62.86 77.02

w/ Ep 55.13 82.33 52.97 77.33 52.36 75.38 55.94 75.00 54.10 77.51

CR w/o Ep 53.55 83.55 69.02 76.69 52.12 75.58 49.90 78.50 56.15 78.58
w/ Ep 52.24 84.03 58.59 76.90 51.63 76.90 48.67 80.00 52.78 79.46

B.1 Impact of Trajectory Probability Energy

Table 6 compares performance with and without the inclusion of trajectory probability energy (Ep)
across various models and evaluation scenarios. The results demonstrate that incorporating Ep

consistently enhances performance across all metrics (FPR95 and AUROC), as evidenced by lower
FPR95 values and higher AUROC scores. The improvements are particularly significant in the OOD
and NFC evaluations, where Ep significantly reduces FPR95 and increases AUROC, especially for
models such as PlanTF and PlanScope.
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Table 7: Detailed results of the ablation study on Gaussian Fourier Projection (GFP).

Mode Module PlanTF PLUTO GameFormer PlanScope Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OP w/o GFP 69.34 82.23 56.42 83.20 65.32 80.30 55.58 85.77 61.67 82.88
w/ GFP 51.02 84.48 53.54 85.50 59.59 84.82 56.18 85.83 55.08 85.16

CNR w/o GFP 63.88 80.73 62.87 82.15 66.69 80.23 57.25 85.49 62.67 82.15
w/ GFP 65.11 81.41 57.11 84.83 66.35 80.22 50.10 85.54 59.67 83.00

CR w/o GFP 65.74 79.10 65.20 81.54 56.85 80.72 66.94 82.13 63.68 80.87
w/ GFP 61.81 81.81 59.14 82.58 66.83 80.32 58.12 83.47 61.48 82.05

B.2 Impact of Gaussian Fourier Projection

Table 7 presents a comparison of OOD detection performance before and after removing the Gaussian
Fourier Projection (GFP) in the velocity field module of flow matching. The results indicate that
incorporating the GFP improves the overall OOD detection performance across all four planners.

Table 8: Detailed results of the ablation study on Gaussian Mixture Model (GMM).

Mode Module PlanTF PLUTO GameFormer PlanScope Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OP w/o GMM 62.05 82.55 63.21 85.73 62.66 83.64 56.53 85.76 61.11 84.42
w/ GMM 51.02 84.48 53.54 85.50 59.59 84.82 56.18 85.83 55.08 85.16

CNR w/o GMM 67.56 81.08 55.72 85.31 62.76 80.17 60.66 84.59 61.68 82.79
w/ GMM 65.11 81.41 57.11 84.83 66.35 80.22 50.10 85.54 59.67 83.00

CR w/o GMM 75.45 73.64 71.38 73.97 62.80 80.36 71.70 73.86 70.33 75.46
w/ GMM 61.81 81.81 59.14 82.58 66.83 80.32 58.12 83.47 61.48 82.05

B.3 Impact of Gaussian Mixture Model Prior

Table 8 presents a comparison of OOD detection performance before and after replacing the Gaussian
Mixture Model (GMM) with a standard distribution. The results indicate that GMM prior distribution
is more effective.

Table 9: Inference time of REDOUBT on different motion planners.

Planner PlanTF PLUTO GameFormer PlanScope
Inf. Time 3.12 ms 3.30 ms 10.79 ms 3.25 ms

Figure 4: Ablation study on λ: (a) OOD Detection (OP Mode), (b) NFC Estimation (CNR Mode),
and (c) DAC Estimation (CNR Mode).
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(a) OOD Detection (OP Mode)
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(b) NFC Estimation (CNR Mode)
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(c) DAC Estimation (CNR Mode)

B.4 Hyperparameter Sensitivity

Figure 4 contains three subfigures illustrating performance trends for OOD detection under the
OP mode, NFC estimation, and DAC estimation under the CNR mode. Each subfigure shows the
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performance of various planners as λ varies from 0 to 1, where λ = 0 represents the configuration
without Flow Matching, and λ = 1 represents the configuration without Ep. The results indicate
that the optimal range for λ lies between 0.5 and 0.8. For example, OOD detection with λ = 0.8
achieves the optimal performance for GameFormer. The hyperparameter averages the strengths of
both methods, avoiding the shortcomings of relying exclusively on one.

C Inference Time

Table 9 illustrates the inference time of REDOUBT on different motion planners. REDOUBT
introduces an additional inference time of only 3.12 to 10.79 ms. Considering that the original planner
operates at 20 Hz (resulting in a latency of 50 ms per frame), the extra latency from REDOUBT is
minimal. Importantly, the total latency remains well below the maximum threshold of 1000 ms per
inference mandated by the nuPlan benchmark [17]. These results demonstrate that REDOUBT is
computationally efficient and capable of meeting the real-time performance requirements of modern
motion planners.

D Limitations

We use nuPlan for validation because it is currently the only large-scale dataset specifically designed
for motion planning, offering both open-loop and closed-loop evaluation settings. Most existing
ML-based motion planners [22, 8, 46, 7]are exclusively trained and tested on nuPlan due to the lack
of other comparable motion planning datasets. We recognize that further validation on additional
datasets would enhance the generalizability of our framework, and we aim to include them in the
future when new datasets become publicly available.

E Broader Impacts

This paper presents REDOUBT, a novel duo safety validation framework for motion planning
in autonomous driving. Autonomous driving is a safety-critical domain where rigorous safety
validation is crucial to prevent potentially hazardous decisions. REDOUBT is the first systematic
safety validation framework that employs a duo mechanism to simultaneously inspect both input
distributions and output uncertainty. This dual inspection approach reveals two previously overlooked
unsafe scenarios arising from the interplay between InD/OOD inputs and certain/uncertain planning
decisions.

To address these scenarios, we propose two specialized solutions: (1) OOD detection using latent
flow matching, and (2) decision uncertainty estimation via an energy-based approach. Extensive
experiments demonstrate that both modules significantly outperform existing methods under both
open-loop and closed-loop evaluation settings. By improving the safety and reliability of autonomous
driving systems, REDOUBT offers broad applicability across industries, contributing to safer and
more dependable autonomous vehicles.

Notably, several leading autonomous driving companies, such as Momenta [5], have already adopted
learning-based planners in their systems. Our method is well-suited for such deployments, as it
integrates seamlessly into the pipeline. Specifically, the input to our method would be the latent space
representation from the autonomous driving stack, and the output would include whether it represents
an OOD scenario and risk probabilities of potential driving violations.

Several practical challenges need to be addressed for real-world deployment. Our approach could
identify more unsafe scenarios than traditional methods. This raises the question of how to balance
sensitivity and specificity in decision making [21]. To address these challenges, we propose that
the output of our method serves as helpful, supplementary information to existing decision-making
mechanisms within the stack. For instance, it could integrate with existing systems to trigger takeover
requests as needed. Additionally, our system could be optionally enabled to prioritize safety in
specific scenarios, such as high-risk environments or areas prone to OOD events.
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