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ABSTRACT

This paper introduces Hebbian Architecture Generation (HAG), a method
grounded in Hebbian plasticity principles, designed to optimize the structure of
Reservoir Computing networks. HAG adapts the synaptic weights in Recurrent
Neural Networks by dynamically forming connections between neurons that ex-
hibit high Pearson correlation. Unlike conventional reservoir computing models
that rely on static, randomly initialized connectivity matrices, HAG tailors the
reservoir architecture to specific tasks by autonomously optimizing network prop-
erties such as signal decorrelation and singular value spread. This task-specific
adaptability enhances the linear separability of input data, as supported by Cover’s
theorem, which posits that increasing the dimensionality of the feature space im-
proves pattern recognition. Experimental results show that HAG outperforms
traditional Echo State Networks across various predictive modeling and pattern
recognition benchmarks. By aligning with biological principles of structural plas-
ticity, HAG addresses limitations of static reservoir architectures, offering a bio-
logically plausible and highly adaptable alternative for improved performance in
dynamic learning environments.

1 INTRODUCTION

In this paper, we introduce Hebbian Architecture Generation (HAG), a novel approach that dynam-
ically adjusts the synaptic weights in Recurrent Neural Networks (RNNs) to improve the quality
of their representations. HAG is founded on Hebbian theory (Attneave et al., [1950), the princi-
ple that synaptic connections between co-activating neurons strengthen over time, encapsulated by
the maxim “neurons that fire together wire together.” Leveraging this idea of topology informed
by correlations, HAG dynamically constructs reservoir connectivity to better suit the task at hand,
addressing several core challenges in Reservoir Computing (RC).

RC, particularly through Echo State Networks (ESNs) (Jaeger, 2001)), provides a framework for
transforming input signals into high-dimensional dynamic states, as dictated by Cover’s theorem.
Cover’s theorem posits that increasing the dimensionality of a feature space enhances the likelihood
that complex data patterns become linearly separable, which is crucial for efficient learning in RC.
However, traditional ESNs, as highlighted by [Jaeger| (2005), face notable limitations in reservoir
suitability, unsupervised adaptation, or alignment with biological principles.

HAG addresses these limitations in several ways:

1. Task-specific: beginning with a blank connectivity matrix, HAG forms dynamic synaptic
connections, which inherently tailors the reservoir to the demands of specific tasks, moving
beyond the random, static connectivity found in traditional ESNs.

2. Unsupervised adaptation: It autonomously optimizes network properties such as singu-
lar value spread and signal decorrelation by leveraging high Pearson correlations between
neurons, thereby enhancing the linearity of the feature space.

3. Performance predictors: By focusing on measurable properties such as signal decorrela-
tion and feature space expansion, we provide specific criteria for assessing and enhancing
reservoir performance. This approach moves beyond the tautological notion that a reservoir
is suitable if it yields accurate models.
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4. Biological insights: Reflecting the principles of Hebbian and structural plasticity, HAG
mimics the adaptability of biological neural networks by forming new connections and
reorganizing correlated input features to optimize feature extraction.

Our experimental results demonstrate that HAG not only addresses those key challenges, but also
improves performance across multiple benchmarks compared to traditional RC approaches.

This paper first presents the necessary background (section [2) for echo state networks. We then
introduce the HAG algorithm, the motivation behind this rule, and the main elements of our exper-
iments in Section [3] Section [4] then covers the significant performance improvements on several
benchmarks for two versions of the HAG algorithm compared to traditional RC. Finally, in section ]
we show that our algorithm projects input data into a higher-dimensional space which leads to better
performance according to Cover’s theorem.

2 BACKGROUND

2.1 ECHO STATE NETWORKS

K input nodes reservoir with n nodes L output nodes

== - > input connexion (random)
—— reservoir connexion (unsupervised)
............ > output connexion (supervised)

Figure 1: Schematic architecture of ESNs

In ESNG, the challenge of capturing nonlinear relationships in data is addressed by transforming the
time series input into a high-dimensional space using a dynamical system (the reservoir) which in
the case of ESNGs is an artificial neural network of recurrently connected nodes. In this new feature
space, the complex, nonlinear relationships may become linear, enabling the use of simple linear
models, such as ridge regression, to accurately estimate the target variable. Notably, only the linear
readout layer is trained, while the reservoir remains fixed, reducing computational complexity and
enhancing training efficiency.

An illustration of the ESN framework (Lukosevicius & Jaeger, 2009) (Jaeger, 2001)) is given in Fig.
[Il It normally consists of a randomly initiated RNN of n neurons (the reservoir), and a trained
readout layer that creates the outputs as a linear combination of the reservoir neuron states.

The evolution of the vector states x of the n neurons is determined by the interactions between the
connection matrix W, the input matrix Wy, the input u[t] and the activation function o that we fix
as the hyperbolic tangent function, combined in the following equation:

X[t + 1] = o(W x x[t] + Win X u[t] + b) (1)

The purpose of the bias term b is to enrich the dynamics of the network, but is kept small through
bias scaling to avoid dominating the system. b is a 1 X n vector and dimension of the matrices
are n X n for W and 1 x n for Wj,. In ESNs, these weights are typically randomly initialized
from a chosen distribution, and modulated by input scaling (s;,) and bias scaling (sp) that are two
hyperparameters of the systems. However, as we explain below, mean-HAG uses a different weight
initialization scheme where these weights evolve during operation according to an unsupervised
rule.

Once W, Wi, and b are fixed, the desired output is obtained through the following equation :
Yt + 1] = Wout X X[t + 1] + bout 2

where Wout, bout are learned using ridge regression with regularization parameter A to prevent
overfitting by controlling the size of the output such that the generated train output, y[¢], optimally
approximates a desired target output, y**"9¢![t] (LukoSeviCius & Jaeger, 2009).
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3 METHODS

While Lukosevicius & Jaeger (2009) gives an overview of other unsupervised methods used to
improve RC, a detailed overview of the effect of biological rules on the dynamics of RC is given
in|Morales et al.[(2021). Additionally, the self-organizing recurrent network (SORN) introduced by
Lazar| (2009) focuses on spiking neurons and leverages multiple forms of plasticity to adapt a form
of spiking neural network.

Our approach differs from previously explored techniques on three points. First, our algorithm takes
inspiration from structural plasticity and starts from a blank connectivity matrix, and is then able
to create connections between neurons that are not connected. Second, our algorithm is based on
the Pearson correlation, which allows us to recombine frequently correlated input features, trans-
forming the data into a new feature space with reduced correlation. In this transformed space, the
input features are recombined into a higher-dimensional space where patterns become as linearly
independent as possible. Third, our reservoir uses solely excitatory connections, meaning that every
weight of the connection matrix is positive.

3.1 HAG ALGORITHM

We start from a blank echo state network with no connections except from the input connectivity.
The HAG algorithm dynamically adjusts synaptic weights w;; based on either variance or average
of the activity of the reservoir’s neurons. Those two types of homeostatic mechanisms lead to two
corresponding algorithms:

1. Mean Homeostasis Function (mean-HAG): Adjusts synaptic weights based on deviations
from a target mean activity rate.

2. Variance Homeostasis Function (variance-HAG): Adjusts synaptic weights by compar-
ing the standard deviation of neuron states to a target standard deviation.

A more detailed explanation on the HAG algorithm is provided in Appendix |B|with pseudo-code in

Every T time steps, we calculate for each neuron a growth indicator:

Az = Z(si = p) 3)

where s; represents either the average i-th neuron’s activity (x;)7 over period T for mean-HAG,
or the ¢-th neuron’s standard deviation o, 7 over period T for variance-HAG. We denote p, as the
activity target value and (3, as the rate spread (for mean-HAG), and p,, as the variance target and 3,
as the variance spread (for variance-HAG).

If Az; < —1, the neuron needs to increase its activity. In this case, one connection weight is
increased by dw. The creation of new connections is restricted to neurons that have been identified
as requiring additional connections. To choose which connection to increase, for every neuron that
has not yet achieved homeostasis, we compute pairwise Pearson correlation coefficients (Pearson,
1895) with every other neuron that is also not at homeostasis. We establish a connection with the
highest correlated neuron. Detailed description can be found in Appendix [B.2]

If Az; > 1, the neuron needs to decrease its activity. In this case, one connection weight is decreased
by dw. Unlike the creation of new connections, the pruning of connections is performed randomly,
independently of the state of the neuron’s partners, regardless of whether they also need to decrease
their activity or not.

The network is said to be at homeostasis if, for each neuron ¢, the absolute value of Az; is less than
1 (i.e. s; is between p — (8 and p + ). At this homeostasis the network maintains a desired level of
variance or average in neuronal activity as seen in Figure[2]

We impose a limit on the degree of the node, v. By design, the RNN will only have positive
connections, which ensures predictable increases in neuronal activity. This configuration restricts
the network to excitatory connections, which might limit the computational properties of the ESN.
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3.1.1 ENSURING CONVERGENCE
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Figure 2: Different neurons’ activities during training with mean-HAG algorithm. As new con-
nections are added every T period the average of neuron states (x;)r clearly converges within the
homeostatic range of activity

The mean-HAG algorithm dynamically adjusts neural connectivity based on deviations from target
mean activity rates. This ensures convergence during the learning phases as seen in Figure[2]

In contrast, the variance-HAG algorithm aims to increase variability, which could inadvertently
amplify the overall signal strength and lead to potential saturation. To counteract this, we employ a
homeostatic plasticity mechanism, when a neuron’s activity level exceeds a saturation threshold 6y,
the algorithm scales the weights by 7. This adjustment is crucial for maintaining network balance,
avoiding disruptive saturation, and ensuring the smooth convergence of the algorithm.

3.1.2 MOTIVATION

Reservoir Computing (RC) leverages the concept of transforming input data into a higher-
dimensional space where complex patterns become more linearly separable. This idea is rooted
in Cover’s theorem (Cover, |1965), which suggests that projecting data into a high-dimensional non-
linear space increases the likelihood of linear separability. Traditional Echo State Networks (ESNs)
achieve this transformation using randomly instantiated reservoirs. However, random reservoirs
may not optimally exploit the structure of the input data, potentially limiting their effectiveness in
separating complex patterns.

Our Hebbian Architecture Generation (HAG) algorithm is motivated by the need to enhance this
transformation process. By dynamically adjusting the reservoir’s connectivity based on neuron ac-
tivations, HAG aims to design a network structure that recombines the inputs into a larger manifold
compared to a randomly instantiated reservoir. This recombination effectively increases the di-
mensionality and richness of the feature space, improving the reservoir’s capacity to represent and
separate complex input patterns.

The HAG algorithm leverages Hebbian principles to form connections between highly correlated
neurons. By doing so, it tailors the reservoir to the specific characteristics of the input data, enhanc-
ing the linear separability of the transformed data. This targeted adaptation aligns with the insights
provided by Cover’s theorem but goes beyond by actively constructing a reservoir that better suits
the task at hand. Such an approach draws inspiration from biological systems, where plasticity
mechanisms dynamically shape neural networks’ states in response to input. Similar mechanisms
have been shown to drive the transitions between dynamic states in biological networks in response
to changes in input strength, mediated by homeostatic plasticity (Zierenberg et al.| [2018). These
findings underscore the importance of adaptive connectivity in optimizing dynamic representations.

3.2 DATASETS

ESNs have employed a diversity of benchmarks and datasets, as extensively documented in|Sun et al.
(2020). Our study employs a diverse array of datasets to assess the capabilities of our algorithm.
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We utilized ReservoirPy (Trouvain et al.,[2020), a library updated with contemporary advance-
ments, featuring a modular architecture for assembling ESNs and a suite of standard algorithms for
training the readout layer.

3.2.1 TASKS

The training of the ESN system occurs in two phases. Initially, for classification tasks such as speech
recognition, the reservoir processes input signals into high-dimensional representations, capturing
the dynamic state at the end of each input sequence. This state, representing the reservoir’s response
to the input, serves as the feature vector for training the readout layer using ridge regression to
determine the optimal output weights W .

For prediction tasks aimed at forecasting future values from past inputs, we adopt a sequence-to-
sequence approach. The reservoir updates its state at each time step, using the entire sequence of
states to train the readout layer. Here, W, is optimized to minimize the difference between the
predicted outputs and the actual targets at each time step.

3.2.2 CLASSIFICATION DATASETS

CatsDogs The CatsDogs dataset is the auditory counterpart to the classic image classification
task, containing WAV audio files—164 for cats (1,323 seconds) and 113 for dogs (598 sec-
onds)—recorded at 16 kHz.

SpokenArabicDigits The Spoken Arabic Digits dataset contains recordings of 88 individuals
pronouncing Arabic digits 0-9, with ten pronunciations per digit per speaker. It is commonly
used for testing speech recognition algorithms due to the phonetic diversity of Arabic numerals.
(Mouldi Beddal [2008))

Japanese Vowels The Japanese Vowels dataset includes recordings of nine male speakers pro-
nouncing sequences of Japanese vowels. It is frequently utilized in research on linguistic character-
istics and speaker identification technologies. (Mineichi Kudol|{1999)

FSDD The Free Spoken Digit Dataset (FSDD) is an open collection of English audio recordings
of spoken digits 0-9 by multiple speakers. Designed for experimenting with speech processing
techniques like classification and clustering, it provides a straightforward entry point into digital
speech processing. (Jackson et al., 2018)

SPEECHCOMMANDS The SPEECHCOMMANDS dataset comprises over 105,000 audio
files of short commands like “Yes,” “No,” “Up,” and “Down,” spoken by various speakers. Widely
used for training and benchmarking models in voice user interfaces. (Warden, |2018])

3.2.3 PREDICTION DATASETS

MackeyGlass Derived from a differential equation, the MackeyGlass dataset is noted for its use
in modeling nonlinear dynamics and chaos, making it a challenging dataset for time series prediction
models. (Mackey & Glass,|1977)

Lorenz The Lorenz dataset is based on the Lorenz attractor, a set of chaotic differential equations
used extensively in predicting nonlinear system behaviors and atmospheric studies. (Lorenz, [1963)

Sunspot (SILSO) The Sunspot dataset from SILSO includes smoothed monthly mean sunspot
numbers from 1749 to 2020, reflecting solar activity and serving as a proxy for the Sun’s magnetic
field strength. Its complexity makes it a significant test case for forecasting models in time series
analysis and solar studies. (SILSO World Data Center}, |2024)

3.3 PREPROCESSING

We adopt distinct preprocessing methods tailored to classification and prediction tasks, each lever-
aging the properties of audio signals to prepare data for analysis and model training.
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Figure 3: Preprocessing pipeline for classification datasets (here for FSDD) from raw time series
(left) to spectrogram (middle) and normalized features (right).
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Figure 4: Preprocessing pipeline for prediction datasets (here for Lorenz) from raw time series (left)
to features after filtering around main frequencies (middle) and normalized features (right). Here
the number of time steps in the time series are preserved to perform prediction tasks

In the classification tasks, we preprocess the audio signals by converting them into spectral represen-
tations using Mel-Frequency Cepstral Coefficients (MFCCs), computed with the 1ibrosa library
(McFee et al, [2015)). MFCCs are widely used in speech and audio processing to capture the timbral
aspects of sound by modeling the human auditory system’s response. They provide a compact rep-
resentation of the spectral properties of audio signals, making them suitable for classification tasks.
This process is illustrated in Figure 3]

Conversely, for prediction tasks, the preprocessing utilizes band-pass filters to isolate specific fre-
quency bands from the signal. This approach starts with the identification of peak frequencies.
Frequency bands are then defined around these peaks by calculating the bandwidth as half the dis-
tance to adjacent peak frequencies. This method effectively segments the time series into parts that
contain relevant information for predictive modeling. The filtered signals obtained from this process
constitute the feature set used for forecasting future events or states from past time series. Com-
pared to the method for classification tasks, this method preserves the number of time steps in the
time series, which is essential to perform prediction tasks. This process is illustrated in Figure [

For each dataset, the network size is set to just above 500 units by duplicating the multivariate input
a specific number of times. For example, the SpokenArabicDigits dataset uses a network size of 507,
achieved by duplicating its 13-dimensional spectrogram 39 times. Similarly, the Japanese Vowels
dataset has a network size of 504, with a 12-dimensional spectrogram duplicated 42 times.

3.4 HYPERPARAMETER SEARCH

To ensure robust model evaluation, we employed cross-validation strategies appropriate for each task
type. For classification tasks without predefined groups, we used Stratified K-Fold cross-validation
with shuffling to maintain class distribution across folds. When group-based classification was nec-
essary, Stratified Group K-Fold cross-validation was applied to preserve both class distribution and
group integrity, preventing data leakage. For time series prediction tasks, Time Series Split cross-
validation was utilized to respect temporal ordering and prevent future data leakage.

Hyperparameter tuning was performed using optuna (Akiba et al 2019), leveraging the Tree-
structured Parzen Estimator (TPE) sampler over 400 trials per dataset and algorithm variant. The
TPE sampler efficiently explores the hyperparameter space by focusing on promising regions, mak-

ing it suitable for our optimization tasks (Bergstra et al., 201T).
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Table 1: Mean cross-validation classification accuracy averaged over 3-folds for 400 trials.

E-ESN ESN IP-ESN mean-HAG variance-HAG

CatsDogs 61.6% 61.5% 83.0% 71.4% 76.8%
Japanese Vowels 952% 959%  98.5% 96.3% 94.4%
SpokenArabicDigits 56.1% 76.6% 71.4% 77.0% 82.8%
FSDD 28.0% 20.0% 72.9% 51.4% 44.6%
SPEECHCOMMANDS 58% 591% 7.1% 32.6% 34.0%

Table 2: Cross-validation NRMSE averaged over 3-folds for 400 trials

E-ESN ESN IP-ESN mean-HAG variance-HAG

MackeyGlass  0.070  0.068 0.055 0.066 0.063
Lorenz 0.20 0.14 0.147 0.21 0.14
Sunspot 0.0155 0.0202 0.0223 0.0195 0.0198

The hyperparameters optimized included input scaling, bias scaling, ridge regression coefficient,
and algorithm-specific parameters such as rate target and variance target. Table [5] summarizes the
hyperparameter ranges.

4 RESULTS

We evaluated the performance of the HAG algorithms (mean-HAG and variance-HAG) against base-
line models, including traditional ESNs, ESNs with only positive weights (E-ESNs), and Intrinsic
Plasticity ESNs (IP-ESNs) as described in|Schrauwen et al.|(2008). The results highlight the robust
improvements offered by the HAG algorithms, particularly in classification tasks. Details on the
hyperparameter search results can be found in[C.2]

4.1 CROSS VALIDATION PERFORMANCES

Tables|[I]and 2] present the mean cross-validation classification accuracies and normalized root mean
square errors (NRMSEs), respectively, averaged over 3-folds for 400 trials per model and dataset.

In classification tasks, the HAG algorithms consistently outperformed E-ESN and standard ESNS.
For example, on the SPEECHCOMMANDS dataset, variance-HAG achieved a notable accuracy of
34.0%, significantly outperforming the ESN (5.9%) and E-ESN (5.8%). The IP-ESN model demon-
strated strong performance on the CatsDogs, Japanese Vowels datasets and FSDD, achieving the
highest accuracies of 83.0%, 98.5% and 72.9%, respectively. However, on datasets such as Spo-
kenArabicDigits and SPEECHCOMMANDS, HAG algorithms surpassed IP-ESN, showing greater
adaptability to diverse datasets.

In prediction tasks, variance-HAG achieved competitive performance, matching the standard ESN
on the Lorenz dataset (NRMSE of 0.140). However, the IP-ESN model achieved the lowest NRMSE
on the MackeyGlass dataset (0.055), highlighting its strength in this type of task. On the Sunspot
dataset, E-ESN achieved the best NRMSE of 0.0155, but both HAG algorithms performed compa-
rably, demonstrating their versatility across different prediction challenges.

4.2 TEST PERFORMANCES

Tables [3] and ff] summarize the models’ test performance using the best hyperparameters identified
during cross-validation.

On the test datasets, the HAG algorithms maintained strong performance. On the SpokenArabicDig-
its dataset, mean-HAG achieved a remarkable accuracy of 95.4%, significantly outperforming IP-
ESN (57.8%). On the SPEECHCOMMANDS dataset, variance-HAG achieved the highest accuracy
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Table 3: Test classification accuracy over 8 trials on the test dataset using the whole training dataset

E-ESN ESN IP-ESN mean-HAG variance-HAG

CatsDogs 60.9% 604% 55.41% 68.8% 69.1%
Japanese Vowels 95.8% 96.7% 97.0% 98.4% 94.19%
SpokenArabicDigits 63.6% 74.8% 57.84% 95.4% 95.2%
FSDD 23.5% 253% 32.75% 46.3% 44.0%
SPEECHCOMMANDS 6.11% 694% 6.35% 17.3% 27.4%

Table 4: Mean NRMSE over 8 trials on the test dataset using the whole training dataset

E-ESN ESN IP-ESN mean-HAG variance-HAG

MackeyGlass 0.0518 0.0533  0.0734 0.0667 0.0663
Lorenz 0.174  0.187 0.174 0.173 0.159
Sunspot 0.0695 0.0376 0.0510 0.0342 0.0544

of 27.4%, a substantial improvement over all baselines. IP-ESN excelled on the CatsDogs, Japanese
Vowels and FSDD dataset during cross-validation but underperformed on the test set compared to
the HAG algorithms, suggesting potential overfitting.

In prediction tasks, variance-HAG achieved the lowest NRMSE on the Lorenz dataset (0.159), while
mean-HAG performed best on the Sunspot dataset (0.0342). IP-ESN anderperformed on the test
datasets.

The results demonstrate that the HAG algorithms, particularly variance-HAG, consistently outper-
form baseline models, including IP-ESN, in classification tasks. Their ability to dynamically adjust
synaptic weights based on Hebbian principles allows for improved representation of input data, en-
hancing accuracy and generalization. While IP-ESN achieved strong performance on some datasets,
its inconsistency across tasks highlights the advantage of HAG’s tailored reservoir dynamics, par-
ticularly on the most complex task of SPEECHCOMMANDS. In prediction tasks, HAG algorithms
showed competitive performance but did not consistently outperform E-ESN or IP-ESN. This sug-
gests that further optimization of the HAG approach is needed for time-series forecasting applica-
tions.

5 DISCUSSION

We hypothesize that our algorithm enhances the dynamics of ESNs by transforming redundant in-
puts into more informative representations. Leveraging Hebbian learning principles, our approach
projects input data into a new feature space with reduced feature correlation, enriching the pool of
features and increasing the likelihood of discovering linearly separable representations. This trans-
formation is expected to improve the network’s ability to perform complex tasks by creating a richer
set of features for downstream processing.

Aligned with our hypothesis based on Cover’s theorem, that increasing the dimensionality of neural
states simplifies problem-solving, we evaluate the dynamic richness of our reservoir, which is specif-
ically designed to increase neural state dimensionality. Following methodologies by |Gallicchio &
Micheli (2022)), we assess dynamic richness using Pearson correlation and Cumulative Explained
Variance (CEV). Detailed analysis, Pearson correlations and CEVs values for every dataset/function
combination are presented in Appendix

5.1 PEARSON CORRELATION

To elucidate the operational dynamics of our reservoir, we assess the correlation among neural states
using Pearson correlation (Pearsonl [1895)), which measures the linear relationship between neuron
activation states. This metric helps understand inter-neuronal connectivity and synchrony, directly
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impacting the network’s ability to process complex data patterns. By computing Pearson correlation
coefficients, we quantify initial levels of synchrony and track their evolution over time, offering
insights into the network’s dynamic restructuring in response to varying inputs. Detailed explanation
about this calculation can be found in Appendix [A.2]
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Figure 5: Comparison of the evolution of the average Pearson correlation between neural states be-
tween the mean-HAG-designed and randomly instantiated reservoirs on the same input data (FSDD
dataset). Lower Pearson correlation indicates better conditioning of the learning problem.

Figure [5] illustrates the correlation evolution within a high-performing HAG network compared to
a randomly initialized reservoir. Initially, the correlation metric is near unity, indicating highly
synchronized neuron states, a typical characteristic of freshly initialized networks where states are
scaled input vectors with a bias term, resulting in almost identical states. Over time, a pronounced
decline in mean correlation is evident, aligning with the HAG method’s objective to refine the con-
nectivity matrix by dynamically linking neurons based on correlation levels. This fosters a more
diverse and functionally rich neural dynamic, enhancing the reservoir’s computational capabilities.
The comparison supports our hypothesis that HAG networks better represent complex input data
than traditional ESNs.

It should be noted that similar patterns are observed across different graphs, highlighting the un-
derlying coherence in input data characteristics. The same pattern of Pearson correlation can be
observed in the inputs, that then influence neural state variations.

5.2 CUMULATIVE EXPLAINED VARIANCE
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Figure 6: Comparison of evolution of moving cumulative explained variance (with § = 0.9) on
the same input data (here with the SPEECHCOMMANDS datasets). Higher CEV indicates better
conditioning of the learning problem.

To quantify the reservoir’s dynamic behavior, we perform Principal Component Analysis (PCA) on
the reservoir states. This approach allows us to analyze how the variance in the reservoir’s state
space is distributed among different principal components, providing insight into the complexity
and richness of the dynamics.
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We denote H as the data matrix formed by collecting the reservoir states, where each column cor-
responds to a state vector at a particular time step. Performing PCA on H yields singular values
01,09,...,0y, arranged in decreasing order. These singular values are directly related to the vari-
ance explained by each principal component.

The proportion of variance explained by the j-th principal component is calculated as:

2

JIR— 4)
DY
The cumulative explained variance up to the d-th principal component is then given by:
d d 2
2j=107
Ci=) Rj=Gn—3 ®)
; Yk-10%

This cumulative measure indicates the total proportion of variance captured by the first d principal
components. To assess the effective dimensionality of the reservoir’s state space, we determine
the minimum number of principal components required to reach a predetermined threshold 6 of
cumulative explained variance:

D = arg mgn (Cy > 0) (6)

A higher value of D suggests that more principal components are needed to capture the same amount
of variance, indicating a richer and more complex dynamic structure within the reservoir.

Figure [6] presents the cumulative explained variance curves for both the HAG-designed reservoir
and the randomly instantiated reservoir on SPEECHCOMMANDS dataset. The HAG-designed
reservoir exhibits a more gradual increase in cumulative explained variance, requiring more principal
components to reach the threshold §. This implies a higher effective dimensionality compared to the
random reservoir, supporting our hypothesis that the HAG algorithm enhances the richness of the
reservoir’s dynamics.

6 CONCLUSION

We presented a new algorithm generating a connectivity matrix by identifying and connecting highly
correlated neural nodes within a reservoir. This algorithm contrasts with traditional random matrix
instantiation by creating a connectivity pattern that enhances decorrelation of reservoir states. By
aligning the connectivity within the reservoir to the intrinsic correlations of the system, the proposed
approach not only supports a new theoretical parallel with Hebbian plasticity but also demonstrates
practical superiority over conventional methods.

The dynamic adaptability of HAG not only addresses the limitations of static reservoirs in Echo
State Networks but also showcases the practical application of biologically-inspired algorithms in
improving computational efficiency and task-specific performance. The autonomy in synaptic ad-
justment provided by HAG points towards architectures that are more aligned with biological neural
processes, potentially leading to more robust and adaptable neural network models.

Our results underscore the utility of biologically-inspired design principles in computational mod-
els, emphasizing the potential of Hebbian learning rules not just as a theoretical construct but as a
practical tool in machine learning. By enhancing the linear separability of input data through dy-
namic structural adaptations, HAG represents a significant step forward in the evolution of neural
architecture search techniques, offering a flexible, efficient, and biologically relevant method to the
challenges of modern Al research.

Future research should delve deeper into understanding the mechanisms that enable HAG to perform
well with complex datasets. Additionally, exploring the scalability of HAG in larger and more
intricate systems will further validate its effectiveness and contribute to the development of more
intelligent and adaptable neural network models.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework. In The 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 2623-2631, 2019.

Fred Attneave, M. B., and D. O. Hebb. The organization of behavior; a neuropsychological theory.
The American Journal of Psychology, 63(4):633, October 1950. ISSN 0002-9556. doi: 10.2307/
1418888.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-parameter
optimization. In Proceedings of the 24th International Conference on Neural Information Pro-
cessing Systems, NIPS’11, pp. 2546-2554, Red Hook, NY, USA, 2011. Curran Associates Inc.
ISBN 9781618395993.

Thomas M. Cover. Geometrical and statistical properties of systems of linear inequalities with
applications in pattern recognition. IEEE Transactions on Electronic Computers, EC-14(3):326—
334, June 1965. ISSN 0367-7508. doi: 10.1109/pgec.1965.264137.

Claudio Gallicchio and Alessio Micheli. Architectural richness in deep reservoir computing. Neural
Computing and Applications, 35(34):24525-24542, January 2022. ISSN 1433-3058. doi: 10.
1007/s00521-021-06760-7.

Zohar Jackson, César Souza, Jason Flaks, Yuxin Pan, Hereman Nicolas, and Adhish Thite.
Jakobovski/free-spoken-digit-dataset: v1.0.8, 2018.

H. Jaeger. Short term memory in echo state networks. GMD Forschungszentrum Informationstech-
nik, 2001. doi: 10.24406/PUBLICA-FHG-291107.

H. Jaeger. Reservoir riddles: suggestions for echo state network research (extended abstract). In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., IJCNN-05.
IEEE, 2005. doi: 10.1109/ijcnn.2005.1556090.

Andreea Lazar. SORN: a self-organizing recurrent neural network. Frontiers in Computational
Neuroscience, 3, 2009. doi: 10.3389/neuro.10.023.2009.

Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2):
130-141, March 1963. ISSN 1520-0469. doi: 10.1175/1520-0469(1963)020(0130:dnf)2.0.c0;2.

Mantas LukoSevicius and Herbert Jaeger. Reservoir computing approaches to recurrent neural net-
work training. Computer Science Review, 3(3):127-149, 2009. doi: 10.1016/j.cosrev.2009.03.
005.

Michael C. Mackey and Leon Glass. Oscillation and chaos in physiological control systems. Science,
197(4300):287-289, 1977. doi: 10.1126/science.267326.

Brian McFee, Colin Raffel, Dawen Liang, Daniel Ellis, Matt McVicar, Eric Battenberg, and Oriol
Nieto. librosa: Audio and music signal analysis in python. In Proceedings of the 14th Python in
Science Conference, SciPy, pp. 18-24. SciPy, 2015. doi: 10.25080/majora-7b98e3ed-003.

Jun Toyama Mineichi Kudo. Japanese vowels, 1999.

Guillermo B. Morales, Claudio R. Mirasso, and Miguel C. Soriano. Unveiling the role of plasticity
rules in reservoir computing. Neurocomputing, 2021. doi: 10.1016/j.neucom.2020.05.127.

Nacereddine Hammami Mouldi Bedda. Spoken arabic digit, 2008.

Karl Pearson. Vii. note on regression and inheritance in the case of two parents. Proceedings of
the Royal Society of London, 58(347-352):240-242, December 1895. ISSN 2053-9126. doi:
10.1098/rspl.1895.0041.

Benjamin Schrauwen, Marion Wardermann, David Verstraeten, Jochen J. Steil, and Dirk Stroobandt.
Improving reservoirs using intrinsic plasticity. Neurocomputing, 71(7-9):1159-1171, March
2008. ISSN 0925-2312. doi: 10.1016/j.neucom.2007.12.020.

11



Under review as a conference paper at ICLR 2025

SILSO World Data Center. The International Sunspot Number. International Sunspot Number
Monthly Bulletin and online catalogue, 06 2024.

Chenxi Sun, Moxian Song, Shenda Hong, and Hongyan Li. A review of designs and applications of
echo state networks. CoRR, 2020.

Nathan Trouvain, Luca Pedrelli, Thanh Trung Dinh, and Xavier Hinaut. ReservoirPy: An
efficient and user-friendly library to design echo state networks. In Artificial Neural Net-
works and Machine Learning — ICANN 2020, pp. 494-505. Springer International Publish-
ing, 2020. doi: 10.1007/978-3-030-61616-8.40. URL https://doi.org/10.1007/
978-3-030-61616-8_40.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition, 2018.

Johannes Zierenberg, Jens Wilting, and Viola Priesemann. Homeostatic plasticity and external input
shape neural network dynamics. Physical Review X, 8(3):031018, July 2018. ISSN 2160-3308.
doi: 10.1103/physrevx.8.031018.

12


https://doi.org/10.1007/978-3-030-61616-8_40
https://doi.org/10.1007/978-3-030-61616-8_40

Under review as a conference paper at ICLR 2025

A PEARSON CORRELATION

To dynamically form connections in the reservoir, we leverage the Pearson correlation coefficient
(Pearson,|1895)) to identify neurons that exhibit strong linear relationships in their activation patterns.
This process is performed exclusively on neurons that have not yet achieved homeostasis, as defined
by the growth indicator Az.

A.1 PEARSON CORRELATION COEFFICIENT

For two neurons 4 and j, the Pearson correlation coefficient, r;;, measures the linear relationship
between their respective activation states, x;[t] and x;[t], over a time period T'. It is defined as:

= S (@lt] ~ E)(wslf) — 7)
VEL @il - 20250 ()10 - 2,02

; (7

where:
* x;[t] and x;[t] are the activation states of neurons ¢ and j at time ¢,
« T =7 Zthl x;[t] is the mean activation state of neuron ¢ over the period T,
e 7; = £ 321 ;[t] is the mean activation state of neuron j over the same period.

The coefficient r;; ranges from —1 (perfect negative correlation) to 1 (perfect positive correlation),
with 0 indicating no linear relationship.

A.2 PEARSON AS A MEASURE OF RICHNESS

Figure [3] illustrates the average Pearson correlation between the activations of all neurons in the
reservoir within each time window. Using a sliding window approach, the reservoir states are seg-
mented into overlapping windows of a fixed size. For each window, the pairwise Pearson correlation
coefficients, r;;, are calculated for all neuron pairs (i, j), excluding self-correlations (i = j).

The average Pearson correlation for a given time window is defined as:

1 N N
Hwindow = m Z Z Tij, ¥

i=1 j=i+1

where:

¢ N is the number of neurons in the reservoir,

* 75 is the Pearson correlation coefficient between neurons ¢ and j over the time window.

This metric, pwindow, represents the mean correlation between neuron activations in the window. By
plotting fiwindow fOr successive time windows, Figure E] shows how the average correlation evolves
during the pretraining phase.

Lower average correlations over time indicate reduced synchronization among neurons, reflecting
the reservoir’s increasing ability to generate a diverse and decorrelated feature space. This is a
desirable property in reservoirs, as it enhances their capacity to separate input patterns in a high-
dimensional space, aligning with the goals of effective reservoir design.

13
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B DETAILS ON THE HAG ALGORITHM

B.1 PSEUDO-CODE

Algorithm 1: HAG Algorithm

Input: Reservoir weights W, Input weights Wi, Bias b, Pretraining data X pretrain,
Hyperparameters (p, 3, 6w, ¥, Tmin, Tmax)

Output: Adjusted reservoir weights W

for each time increment T . yyen; Sampled from logspace between T,,;,, and T,,,,, do
for t < 1to Ty ens do

Update reservoir states:

x[t + 1] « o (Wx[t] + Wiyu[t] + b)

end

for each neuron i do

Compute activity measure s; (mean or variance over 7tyrent)
Compute growth indicator:

Az — % (si — p)

if Az; < —1 then
Find neuron j with highest Pearson correlation with neuron ¢
Increase weight:
Wij < Wij + dw
if degree(i) ; v then

| // Implement logic to maintain maximum degree
end
end
if Az; > +1 then
Randomly select a synapse w;; connected to neuron ¢ to decrease
w;; +— max(w;; — dw,0)

// Ensure non-negativity

end
if variance-HAG and x; exceeds saturation threshold 0, then
for each outgoing synapse w;; of neuron i do

\ Wij = Wij X Msat
end

end

end
end

B.2 CONNECTION FORMATION BASED ON PEARSON CORRELATION

Identifying the Most Correlated Pair. To form new connections, we consider only neurons ¢ and
j for which the growth indicator Az; or Az; satisfies:

Az; >1 or Az; > 1. 9)

For this subset of neurons, we compute pairwise correlation coefficients r;; for all pairs, with r;; as
defined in The pair (¢*, j*) with the highest absolute correlation is selected:

(i*,5%) = arg max 7451, (10)
2,7

where the maximization is performed over all neuron pairs (4, j) that have not yet achieved home-
ostasis.

14
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Establishing the Connection.

Once the most highly correlated pair (¢*, j*) is identified, a con-

nection is established between these two neurons by incrementing the corresponding weight w;» ;-
in the connectivity matrix W. The updated weight is given by:

Wi j* £ Wi j* + 6w,

where dw > 0 is the weight increment parameter.

This mechanism ensures that connections are formed preferentially between neurons that exhibit
high correlation, promoting the restructuring of the reservoir to enhance its dynamic representation

of input data.

Table 5: Hyperparameter ranges, settings, and notation

CATEGORY PARAMETER SYMBOL RANGE/SETTINGS
Input Scaling Sin 0.01 to 0.2, step 0.005
Bias Scaling Sp 0to 0.2, step 0.005

Shared Across Models  Ridge Coefficient A Logarithmic scale from 107% to 10!
Maximum degree ol Between 10 to 20
Weight Increment ow 0.001 to 0.1, step 0.001

k Rate Target Pr 0.5 to 1, step 0.01

mean-HAG Rate Spread By 0.01 to 0.4, step 0.005

Variance Target Pu 0.001 to 0.02, step 0.001
. Variance Spread By 0.001 to 0.02, step 0.001

variance-HAG Saturation Threshold Osat 0.8 to 0.98, step 0.02
Saturation scaling Nsat 0.8 to 0.98, step 0.02
Connection Selection - “random” or “pearson”
Connectivity P 0 to 1, no step

E-ESN/ESN Spectral Radius Ps 0.4 to 1.6, step 0.01

IP-ESN Target distribution’s mean W 0 to 1, no step
Target distribution’s variance  opp 0 to 1, no step
Activation Function o Hyperbolic Tangent (tanh)

. Wi», Connectivity - 1 (Full Connectivity)
Fixed Parameters Network Size Just above 500 neurons

Input Duplication

C DETAILS ON THE HYPERPARAMETER OPTIMIZATION

Equal duplication for each input variate

In this appendix, we present the detailed results of the hyperparameter optimization across the dif-
ferent datasets. The hyperparameters were optimized using Optuna over 400 trials per dataset.

The detailed hyperparameter settings serve as a reference for reproducing the results and offer in-
sights into how different parameters impact the performance of the different algorithm.
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Table 6: Optimized hyperparameters for the variance-HAG algorithm

Sin Sh A Pv By Osat Tsat dw Y
CatsDogs 0.030 0.000 10° 0.017 0.007 0.86 088 0.100 11
FSDD 0.155 0.020 107 0.011 0.001 0.82 094 0.087 14
Japanese Vowels 0.040 0.190 10~° 0.003 0.013 0.90 086 0.075 18
Lorenz 0.065 0.170 107 0.018 0.005 0.94 0.96 0.006 17
MackeyGlass 0.170 0.185 1072 0.019 0.007 0.80 094 0.076 10
SPEECHCOMMANDS 0.060 0.000 10~° 0.014 0.003 092 0.80 0.030 20
SpokenArabicDigits 0.060 0.040 107'° 0.014 0.001 0.82 096 0.057 16
Sunspot 0.180 0.135 107 0.017 0.005 0.94 094 0.028 14

Table 7: Optimized hyperparameters for the mean-HAG algorithm

Sin Sh A Pr Br ow Y
CatsDogs 0.120 0.100 10° 0.51 039 0.021 12
FSDD 0.200 0.075 10~ 0.56 0.39 0.050 10
Japanese Vowels 0.195 0.195 10=* 0.66 021 0.094 13
Lorenz 0.190 0.170 102 0.97 0.165 0.021 19
MackeyGlass 0.045 0.185 107 094 0295 0.043 10

SPEECHCOMMANDS 0.060 0.000 10~° 058 034 0.002 16
SpokenArabicDigits 0.075 0.035 1071° 0.3 038 0.025 11
Sunspot 0.050 0.105 107 0.51 0.265 0.087 13

C.1 HYPERPARAMETER DEFINITIONS:

 Input Scaling (sj,): Scaling factor applied to the input weights Wi
* Bias Scaling (s;): Scaling factor applied to the bias vector b.

* Ridge Coefficient ()\): Regularization parameter in ridge regression, where \ =
1 Oridge exponent

* Variance Target (p,): Target standard deviation of neuron states.

* Rate Spread (3,.): Spread parameter activity controlling the activity deviation from target
pr that is tolerated.

* Rate Target (p,.): Target activity of neuron states.
 Variance Spread (5,): Spread parameter controlling the sensitivity to deviations from p,,.

* Saturation Threshold (6s5¢): Threshold beyond which intrinsic plasticity mechanisms re-
duce synaptic weights.

* Saturation scaling (1sy¢): Factor by which synaptic weights are scaled when saturation
occurs.

* Weight Increment (Jw): Amount by which synaptic weights are increased during growth.
* Maximum Degree (v): Maximum number of synaptic partners per neuron.

* Mean of the target distribution for IP (x): Target mean for intrinsic plasticity normal-
ization.

¢ Variance of the target distribution for IP (o1p): Target standard deviation for intrinsic
plasticity normalization.

C.2 OPTIMIZED HYPERPARAMETERS FOR EACH ALGORITHM

Tables [7} [6] [8] [©] and [I0] summarize the optimal hyperparameters found for each dataset and algo-
rithm. Key insights include:
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Table 8: Optimized hyperparameters for E-ESN

Sin Sp A P Ps
CatsDogs 0.135 0.025 1075 0842 0.49
FSDD 0.175 0.14 1072 0.0040 0.92
Japanese Vowels 0.190 0.005 107 0.155 0.62
MackeyGlass 0.195 02 107! 0.0318 1.4

SPEECHCOMMANDS 0.040 0.05 10~!2 0.0038 1.02
SpokenArabicDigits 0.030 0.1 107'* 0.0049 1.0
Sunspot 0.055 0.005 107 0.0178 0.78

Table 9: Optimized hyperparameters for traditional ESN

Sin S A p Ps
CatsDogs 0.135 0.025 107¢ 0.842 0.49
FSDD 0.175 0.140 107 0.004 0.92
Japanese Vowels 0.190 0.005 102 0.155 0.62
MackeyGlass 0.130 0.045 10719 0.193 0.89

SPEECHCOMMANDS 0.135 0.005 10~'' 0.356 1.00
SpokenArabicDigits 0.035 0.005 10~* 0.003 0.61
Sunspot 0.025 0.110 10~ 0014 046

1. Variance-HAG and Mean-HAG: Effective in dynamically tailoring the reservoir to the
data, with significant reliance on p,,, p,, and 7y to optimize neuron activity and connectivity.

2. Traditional ESN and E-ESN: Spectral radius (p,) and connectivity (p) are critical for
matching the reservoir’s memory and dynamic properties to the dataset.

3. General Trends: High input scaling (si,) and low ridge coefficients (\) are commonly
effective across algorithms, reflecting the need for strong input signals and minimal regu-

larization.
Table 10: Optimized hyperparameters for IP-ESN
Sin 5b A p Ps p o
CatsDogs 0.18 0.08 10710 0462 046 0.733 0.142
FSDD 0.05 0.095 10~ 0.005 1.05 0.298 0.087
Japanese Vowels 0.14 0.06 1079 0327 056 088 0.719
Lorenz 0.09 0.06 1072 0.093 1.11 0.071 0.838
MackeyGlass 0.19 0.19 1077 0.048 045 0.158 0.363
SPEECHCOMMANDS 0.195 0.105 10~ 0.005 0.89 0.097 0.062
SpokenArabicDigits 0.03 0.125 107 0.015 0.82 0.318 0.582
Sunspot 0.01 0.145 107'' 0.138 0.64 0.758 0.782

D ADDITIONAL RESULTS AND ANALYSIS

To further substantiate the effectiveness of our Hebbian Architecture Generation (HAG) method,
we have expanded our experiments to include detailed results and additional metrics across our
datasets and reservoir configurations. Specifically, we provide an in-depth analysis of the spectral
radius, Pearson correlation coefficients among neuron activations, and the Cumulative Explained
Variance (CEV) in the reservoir states. These metrics offer insights into the dynamical properties
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of the reservoirs and their impact on performance. Table[IT]and [T2kummarizes the spectral radius,
average Pearson correlation, and CEV for each combination of dataset and reservoir configuration.
The spectral radius is measured from the connectivity matrix of the different networks obtained with
various rules, while Pearson correlation and CEV are measured based on neurons’ activity during
the test set inference for each dataset.

D.1 RESULTS
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Figure 7: Detailed Results for Spectral Radius, Pearson Correlation, Cumulative Explained Vari-
ance, and Test Scores across different reservoir configurations and Datasets. Each subfigure illus-
trates the respective metric for various algorithms across the evaluated datasets.

D.1.1 SPECTRAL RADII

The spectral radius is an important parameter in Echo State Networks (ESNs), influencing the echo
state property. Our results indicate that the HAG-based methods (Mean-HAG and Variance-HAG)
generally have higher spectral radii compared to the traditional E-ESN, particularly in datasets like
SPEECHCOMMANDS and CatsDogs (see Figure[7a). This suggests that the adaptive connectivity
in HAG methods allows the reservoir to have a high spectral radius while performing extremly well,
for instance the SPEECHCOMMANDS dataset.

D.1.2 PEARSON CORRELATION

The average Pearson correlation coefficient among neuron activations provides insight into the re-
dundancy and diversity of the reservoir states. Lower correlation values imply a more decorrelated
and thus more informative set of features for the readout layer.

In our experiments, the Variance-HAG method consistently achieved lower Pearson correlation co-
efficients compared to other methods across multiple datasets, as shown in Table [TT] and Table [I2]
and illustrated in Figure m For instance, in the SPEECHCOMMANDS dataset, Variance-HAG
achieved a correlation of 0.471, significantly lower than the 0.980 observed in the random E-ESN.
Similarly, in the MackeyGlass dataset, Variance-HAG achieved a correlation of 0.064, compared to
0.910 in the random E-ESN. This reduction in correlation indicates that Variance-HAG effectively
decorrelates neuron activations, potentially leading to better generalization and performance.
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D.1.3 CUMULATIVE EXPLAINED VARIANCE

The Cumulative Explained Variance (CEV) quantifies the dimensionality of the reservoir’s projected
feature space by identifying the number of principal components needed to explain a specified frac-
tion of the variance. Higher CEV values indicate that more components are required to capture the
system’s dynamics, which can reflect richer dynamics or increased complexity.

Our results show that the HAG methods doesn’t always exhibit higher CEV values. But it is impor-
tant to notice that it does on the most complex dataset (SPEECHCOMMAND) where our algorithm
shows the most impressive results.

Table 11: Spectral radius, Pearson Correlation, Cumulative Explained Variance (CEV), and test
scores for the different reservoir configurations across prediction datasets’ test data (average over 4
trials).

Dataset Algorithm SR Correlation CEV Test Scores
E-ESN 0.80+0.00 0.913+0.001 1.0£0.0 0.059+0.004
ESN 1.40+0.00 1.00=+£0.00 1.0£0.0 0.051+0.005

MackeyGlass IP-ESN 0.45+0.00 0.955+0.001 1.0£0.0 0.076+0.007

Mean-HAG 1.16 £0.00 0.517+£0.001 4.0£0.0 0.065=0.005
Variance-HAG  1.40£0.03 0.463 +0.001 5.0£0.0 0.060 £ 0.007

E-ESN 1.31£0.00 0.725+£0.004 4.0£0.0 0.068 £ 0.001
ESN 0.54+0.00 0.118 £0.005 6.0+£0.0 0.066 £ 0.001
Lorenz IP-ESN 1.11+0.00 0.871+£0.023 2.3+0.4 0.060+0.011

Mean-HAG 1.31£0.00 0.707£0.009 4.0£0.0 0.083 =+ 0.006
Variance-HAG 0.90 £0.02 0.493 £0.004 5.5+0.5 0.257+£0.027

E-ESN 0.46 +£0.00 0.691+0.011 4.0£0.0 0.505=£0.092
ESN 0.78£0.00 0.072+0.014 6.0£0.0 0.163+0.024
Sunspot IP-ESN 0.64 +0.00 0.882+0.004 2.0+0.0 0.610+£0.687

Mean-HAG 0.96 +£0.00 0.928+£0.002 1.0£0.0 0.051 £ 0.005
Variance-HAG 1.84 £ 0.00 0.466 £ 0.002 5.0+0.0 0.122+£0.020

D.2 DISCUSSION

The analysis of these metrics supports the efficacy of the HAG methods in improving reservoir
performance:

* Enhanced Dynamics: Higher spectral radii in HAG methods suggest a more powerful
dynamic regime, allowing the reservoir to better model temporal dependencies.

* Reduced Redundancy: Lower Pearson correlations indicate that HAG methods produce
more diverse neuron activations, reducing redundancy and providing richer information to
the readout layer.

* Enriched Feature Space: Higher CEV values demonstrate that HAG methods generate

a more informative and expansive feature space, facilitating better representation of input
dynamics.

However, while HAG algorithms excel in classification tasks by enhancing feature separability, their
performance in prediction tasks is more variable. As shown in Table[TT|and Table[12] Variance-HAG
does not always outperform traditional ESNs or other baseline models in prediction scenarios. This
inconsistency suggests that the mechanisms driving connectivity adjustments in HAG may be more
aligned with tasks requiring distinct feature separation rather than continuous temporal forecasting.

D.3 IMPLICATIONS FOR RESERVOIR DESIGN

Despite these shortcomings, the HAG methods offer valuable insights into how adaptive connec-
tivity can enhance reservoir performance. The ability to dynamically tailor the reservoir to specific
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Table 12: Spectral radius, Pearson Correlation, Cumulative Explained Variance (CEV), and test
scores for the different reservoir configurations across classification datasets’ test data (average over

4 trials).

Dataset Algorithm SR Correlation CEV Test Scores
E-ESN 0.424+0.00 0.4434+0.011 11.0£0.0 0.599 + 0.003
ESN 0.49+0.00 0.078 £0.005 14.0+£0.0 0.613 £ 0.003
CatsDogs IP-ESN 0.46 £0.00 0.469 +£0.013 11.0+0.0 0.535 £ 0.026
Mean-HAG 0.94+0.02 0.2494+0.001 11.0£0.0 0.684 + 0.003
Variance-HAG 1.44+0.20 0.230+£0.004 12.754+0.43 0.678 +0.017
E-ESN 0.69+0.00 0.306 +£0.008 7.0+0.0 0.957 £ 0.002
ESN 0.62+0.00 0.004 £0.000 8.0%+0.0 0.966 £ 0.005
JapaneseVowels IP-ESN 0.56 +0.00 0.203 +£0.008 7.0+0.0 0.968 + 0.003
Mean-HAG 1.00£0.02 0.149+0.007 8.0+ 0.0 0.987 £ 0.001
Variance-HAG 0.00 +0.00 0.031 +£0.000 8.0+0.0 0.945 £ 0.003
E-ESN 0.61+£0.01 0.268+0.020 11.54+0.5 0.634 £0.012
ESN 1.00£0.00 0.4014+0.068 10.0+1.22  0.740 £0.016
SpokenArabicDigits IP-ESN 0.82+0.00 0.626 +£0.017 7.0+0.0 0.582 £ 0.005
Mean-HAG 0.99+£0.01 0.1594+0.000 10.0+0.0 0.954 £ 0.002
Variance-HAG  1.41+0.01 0.157 +£0.003 10.25+0.43 0.952 £ 0.004
E-ESN 0.66 +0.00 0.618 £0.005 10.754+0.43 0.299 £ 0.004
ESN 0.93+0.01 0.1054+0.006 32.5+1.12 0.316 £0.010
FSDD IP-ESN 1.05+0.01 0.653£0.009 10.0+0.0 0.335 £ 0.007
Mean-HAG 0.95+0.00 0.4144+0.001 10.0£0.0 0.506 + 0.017
Variance-HAG 1.00+£0.04 0.293+£0.002 16.0£0.0 0.452 £ 0.006
E-ESN 1.00£0.00 0.980+0.001 1.0£0.0 0.060 £ 0.001
ESN 1.01£0.01 0.569+£0.028 5.754+0.83  0.068 &+ 0.001
SPEECHCOMMANDS IP-ESN 0.90+0.01 0.750 +£0.007 6.5+0.5 0.065 £ 0.002
Mean-HAG 1.02+0.00 0.581+£0.005 8.0+0.0 0.169 £ 0.004
Variance-HAG  1.66 £0.07 0.464 £0.009 12.25+0.43 0.272 £ 0.006

tasks by reducing neuron correlations and expanding the feature space underscores the potential of
biologically inspired design principles in neural network architecture.

It is important to note that enriching the feature space (lower Pearson correlation and higher CEV)
does not always translate into augmented performances across all tasks. This discrepancy may
stem from the inherent differences between classification and prediction tasks. Classification tasks
primarily benefit from enhanced feature separability, allowing for more accurate differentiation be-
tween classes. In contrast, prediction tasks rely heavily on the reservoir’s ability to capture and retain
temporal dependencies, which may not be directly enhanced by the structural adjustments made by
HAG.

In conclusion, the Hebbian Architecture Generation (HAG) method presents a robust framework
for enhancing reservoir computing, particularly in classification tasks, by leveraging biologically
inspired adaptive connectivity. While its efficacy in prediction tasks is promising, it highlights
the need for a nuanced approach that considers the distinct demands of different task types. The
adaptability and biological plausibility of HAG not only address the limitations of static reservoir
architectures but also pave the way for more versatile and efficient neural network models in diverse
learning environments.
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