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Abstract
We study how embodied agents can use passive
data, such as videos, to guide the discovery of
useful and diverse skills. Existing datasets have
the potential to be an abundant and rich source of
examples for robot learning, revealing not only
what tasks to do, but also how to achieve them.
Without structural priors, existing approaches to
skill discovery are often underspecified and in-
effective in real-world, high-DoF settings. Our
approach uses the temporal information in videos
to learn structured representations of the world
that can then be used to create shaped rewards
for efficiently learning from open-ended play and
fine-tuning to target tasks. We demonstrate the
ability to effectively learn skills by leveraging
action-free video data in a kitchen manipulation
setting and on synthetic control tasks.

1. Introduction
Internet video has the potential to be an effective and low-
cost source of data for robot learning. When learning from
such prior data, an agent must be able to adapt the extracted
knowledge so that it is useful in the agent’s own observa-
tion and action spaces. One approach to ensuring that such
knowledge is useful is by learning skills that realize the
behavior observed in the prior data. Learning such skills
provides an opportunity to replicate behavior present in
diverse internet videos in any given embodied agent’s en-
vironment without any extrinsic reward, which can then be
used for solving any downstream tasks more quickly. How
should an agent go about learning such skills from the prior
data without any extrinsic reward?
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Most prior work on learning from video has learned repre-
sentations which are directly evaluated through downstream
TD-learning or imitation learning, assuming access to ex-
pert actions or environment rewards. However, the notion
of learning skills and representations in an unsupervised
manner when given access to an embodied agent has been
largely unexplored. On the other hand, most prior methods
that discover unsupervised skills do so using an intrinsic
reward that maximizes mutual information of skills, but
leads to collapse in many scenarios. We view learning from
video data as a way of enforcing a strong prior that prefers
to visit certain states or perform certain behaviors. When
acting in embodied settings, we propose optimizing for skill
representations that align with the behavior seen in the prior
data.

This paper discusses how such a framework can used to
learn behaviors from video data. Our approach encodes
skills from prior data and learns a value function corre-
sponding to the behavior described by the encoded skill. We
then define an intrinsic reward for an embodied agent using
the value function and skill encoder trained on prior data.
Finally, we adapt the value model on the data collected by
the embodied agent. Optimizing the intrinsic reward and
adapting the value model both help bridge the gap between
desired behavior (i.e. that in the prior data) and realized
behavior (i.e. that in the embodied agent’s environment).
An outline of our approach is presented in Figure 1.

Overall, 1) we introduce a framework for learning from
video data when an agent is embodied with varying obser-
vation/action spaces without extrinsic reward, 2) show how
skill discovery can be made feasible by providing structure
through preferences/intentions in the prior video data and 3)
show preliminary results on learning skills and representa-
tions from prior data across a PointMass and a pixel-based
simulated Kitchen environment.

2. Related Work
Unsupervised Skill Discovery. Prior work on skill discov-
ery often operates in an unsupervised fashion with a learned
skill-conditioned policy (Eysenbach et al., 2018a; Sharma
et al., 2019; Laskin et al., 2022). Generally, the skill is a
continuous random variable which is used to sample actions
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Figure 1. Schematic for Learning Skills from Video. We learn a discrete skill encoding given states in the video, and use it to condition
a behavior value model. The embodied agent then uses the value model as an intrinsic reward function to learn video skills in it’s own
environment. The behavior value model is adapted using the data collected by the embodied agent.

from the policy. The reward for the policy learning is usu-
ally some form of discriminator output that incentivizes the
agent to produce skills that are more discernible. Most meth-
ods falling in this category lead to objectives that encourage
covering all possible states, which has been shown to be
quite unstable in practice.

State Distribution Matching. A separate line of work
mimics state distributions that correspond to expert data.
These works estimate a state density model and reward the
policy for matching this density with that of the prior data.
GAIL (Ho and Ermon, 2016) uses state-action pairs from
an expert to learn a discriminator function while using its
score to reward the policy. Our approach is similar insofar
as we use a discriminator to define the intrinsic reward, i.e.,
the cosine similarity. However, the discriminator is defined
over skills (from the video data) instead of being defined
over state occupancy. Furthermore, we also do not use any
action information from the video data. SMM (Lee et al.,
2019) rewards the policy for matching an estimated state
density with a target state distribution. The main caveat is
that SMM assumes a given target distribution, as well as
that estimating state densities can be arbitrarily complex for
diverse video data.

GAIL from observations and similar approaches (Torabi
et al., 2019b;d;a;c; Peng et al., 2022) learn an observation-
only discriminator to use as an intrinsic reward. Unlike
GAIL-based approaches, our algorithm does not rely on
potentially unstable adversarial training and obtains skill-
conditioned policies by align inferred skills with state transi-
tions seen in the data. Furthermore, we utilize a contrastive

learning objective as opposed to a MSE-based formulations
in prior work. BCO (Torabi et al., 2018a) infers actions
using an inverse model and then runs behavior cloning over
them. However, it does not account for the distribution mis-
match between the state-action pairs produced by the expert
and the agent.

Learning from Video. Recent work has introduced training
representations useful for motor control on large datasets.
These representations are trained to be temporally consistent
by defining the current and future states in a video trajectory
as positive contrastive pairs. Our representation learning
objective is also defined around temporal consistency and
achieves this through some form of contrastive learning.
However, crucially, we optimize for learning minimal infor-
mation containing skills (through discrete skills) which puts
emphasis on learning representations of behaviors instead
of time-consistent state representations, as in VIP (Ma et al.,
2022) and R3M (Nair et al., 2022). Furthermore, once a
representation is learnt, we use that to discover skills that are
seen in the video data, whereas VIP/R3M consider learning
the representation as the end goal and so directly evaluate its
quality with behavior cloning. Recently, the ICVF (Ghosh
et al., 2023) model has been used to learn representations by
capturing intent-conditioned value functions. Besides not
learning skills in an unsupervised setting, ICVFs also do
not condition on a latent intent and instead uses state-level
goals as a proxy for intents.



Algorithm 1 Video-guided Skill Discovery

1: Input: Prior video data Dprior
2: State encoder networks ϕ and ψ
3: Skill encoder and decoder qenc, qdec
4: Sample skill z from a categorical distribution before every episode
5: for m = 1, . . . ,M do
6: Take action at ∼ π(· | xt, z), observe xt+1, and add to the replay buffer Donline
7: for N updates do
8: Sample prior data batch as {xt, xt+k}Bj=1 from Dprior ▷ update on prior/video data
9: Shuffle xt+k to get negatives xneg

t+k

10: Cluster skills in prior data by encoding and decoding zenc = qenc(xt), zdec = qdec(xt+k)
11: Optimize prior data value loss Lvalue = cos(ϕ(xt, zenc), ψ(xt+k))− cos(ϕ(xt, zenc), ψ(x

neg
t+k))

12: Optimize skill clustering loss Lskill = infoNCE(zenc, zdec)
13: Sample agent data batch as {xt, xt+k}Bj=1 from Donline ▷ update on agent data
14: Shuffle xt+k to get negatives xneg

t+k

15: Optimize agent data value loss Lvalue = − cos(ϕ(xt), ψ(x
neg
t+k)) ▷ update on agent policy

16: Run DDPG update on π(a|xt, z) for reward r = ϕ(xt, z)
Tψ(xt+k) + ||z − qenc(xt)||2

17: end for
18: end for

3. Discovering Skills with Video Guidance
We are interested in controlling an agent in an environment
provided access to a video dataset, with the goal of acquiring
useful skills for performing downstream tasks. Intuitively,
for such an agent, learning decomposes into three phases:
first, a pretraining phase during which the agent can train
on this prior data; second, an embodied skill acquisition
phase, in which the agent is given unsupervised access to
the environment; and finally, a downstream finetuning phase,
where an extrinsic reward is specified which the agent must
learn to maximize as quickly as possible.

Problem Setup: Formally, the agent acts in an Markov
control process M := (S,A, P ) with state space S, action
space A, and transition kernel P (s′|s, a). During the down-
stream finetuning phase, the agent will be asked to maximize
expected discounted return for a task reward r(s) coming
from some distribution p(r). The agent does not know the
task distribution; rather, it is provided with a dataset D =
{τi}ni=1 of video state trajectories τi := (x0, x1, . . . , xT )
corresponding to acting optimally according to rewards from
this distribution. For simplicity of exposition, we notate the
video as coming from the same observation space of the
agent from hereon, but in our experiments, we also consider
settings where image videos are used to guide a robot with
visual and proprioceptory inputs.

We motivate our approach by the following intuition: prior
video data not only specifies what is interesting to achieve,
but also how such behaviors might be achieved. Corre-
spondingly, the high-level objective of our agent will be to
generate useful tasks (in some appropriately defined task
space), i.e. the “what to achieve” part, and to model the

value of achieving said tasks, i.e. the “how to achieve” part.
We capture the notion of tasks by encoding a skill based on
current and future states z = enc(xt, xt+k). We capture the
notion of value by defining a linear function composing the
current and future state representations, conditioned on a
task z, ϕ(xt, z)Tψ(xt+k). The overall recipe then looks like
the following: 1) Capture prior data in representations of
current and future states ϕ(xt) and ϕ(xt+k), so as to encode
the prior behavior into a skill variable z, 2) Use the encoded
z and the corresponding value model to reward the policy
of the embodied agent for going to future states that are
aligned with the behavior seen in the prior data, 3) adapt ϕ,
ψ and z according to what trajectories are actually seen by
the embodied agent. We now describe each of these steps in
more detail.

Learning Representations from Prior Data. We learn
state representations by encoding any current state xt and
future state xt+k into representations ϕ(xt) and ψ(xt+k).
The skill variable is separately encoded using the current and
future states, z = enc(xt), where enc() denotes a simple
neural network transformation. The skill variable gives us
a notion of what behavior was followed from the current
state to get to a future state. We learn the skill encoding
by decoding a skill from given future states (i.e. which
skills are most likely given a batch of future states), and
matching those with the encoded skill. We use the encoded
skill to get an estimate of the value of a followed behavior
V = ϕ(xt, z)

Tψ(xt+k). This value function is trained using
contrastive learning, where actual future states form the
positive samples, while random states (those belonging to
other trajectories) form the negative samples. These two
objectives lead to training a skill model and skill conditioned



Table 1. Comparison with Baselines on Point Mass

Prior Data Ours GCRL DISCERN GAIfO DIAYN

value model, with only access to prior data. Next we discuss
how these two models can be used to learn skills and how
should these be adapted for the embodied agent.

Learning Skills for Embodied Agent. Having trained
the value model and the skill encoder, we can look to
learn policies that match certain skills. We do this by
simply defining an intrinsic reward for a skill conditioned
policy π(a|x, z) which follows directly from the value
model, i.e. rvalue = V = ϕ(xt, z)

Tψ(xt+k), where xt
and xt+k are states seen by the embodied agent. Fur-
thermore, to match the behavior of the skill-conditioned
policy to that of the skill model trained on the prior data,
we add a separate skill matching term to the reward, i.e.
rskill = ||z− enc(xt, xt+k)||2. The overall reward therefore
is r(s, z) = rvalue + rskill. The first term guides the agent
in learning how to perform a skill while the second term
encourages the agent to map its skills, i.e. those that it uses
to collect data, to that of the skill encoder trained on the
video data.

Adapting the Representations with Agent Data. Once the
embodied agent interacts with the environment in an unsu-
pervised manner, it is natural to have a notion for adapting
the pretrained value model given the agent’s interaction. We
do this by training the value model only on the negatives of
the contrastive loss, V = ϕ(xt, z)

T ψ(x′t+k), where x′t+k

denote the negative pairs, i.e. future states that are not ob-
served when following skill z from state xt. Note that the
negative pairs of the value model help adapt the representa-
tions that comprise the value model, while the positve pairs
of the value model help adapt the skill policy through the

value component of the intrinsic reward rvalue. Also note
that adversarial approaches use a similar looking objective
but regard all current and future state pairs as negatives. On
the other hand, we remain “weakly-adversarial” since the
negatives are defined only by the future states that the agent
did not visit in its current trajectory.

We describe the complete working of our method in Algo-
rithm 1, denoting each of the three major steps from above
as “update on prior/video data”, “update on agent policy,”
and “update on agent data” respectively.

4. Experiments
In this section, we test our approach for two primary require-
ments. The first is that of reaching multiple goals through
the learnt skills. If the video data contains diverse or multi-
goal reaching behavior, we should be able to capture all such
possible behaviors. Secondly, we test whether our method is
able to learn a notion of skills/behaviors present in the video
data, and does not simply learn to capture state occupancy.
This is important since as the video data gets more complex,
any method that learns to capture state occupancy will likely
suffer from the gap between the agent’s current environment
and the video data. This is to say that the intrinsic reward
we described above should have a notion of what task or
behavior was followed.

We choose two different domains to test how well our
method fits the above two requirements. Firstly, we have a
2D PointMass with prior data coming in the form of state
trajectories. Secondly, we have a pixel-based Kitchen envi-
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Figure 2. Trajectories from our approach with different sampled skills. We use video of the arm performing different tasks in the kitchen
setting to learn a policy conditioned on skills z. We visualize three rollouts of different skills from our trained policy, manipulating the left
door (left), light switch (center), and right door (right).

ronment (Gupta et al., 2019) where prior data comes in the
form of videos of expert-like skills.

Baselines. We largely compare with two categories of
baseline methods in the PointMass setting—skill discov-
ery methods and state distribution matching methods. For
skill discovery, we include DIYAN, and for state distribution
matching we include DISCERN and GAIL from observa-
tions (GAIfO). We also consider a GCRL baseline which
simply samples the goals from the prior data.

GCRL: GCRL performs goal-conditioned RL on a mixture
of agent and prior data with hindsight experience replay
(Andrychowicz et al., 2017).

DISCERN: DISCERN adapts GCRL to additionally use a
contrastive classifier of goal attainment as a reward
term (Warde-Farley et al., 2018).

GAIfO: GAIfO learns an adversarial discriminator which
encourages distinguishing between agent and prior
data, and is then used as an intrinsic reward for the
agent policy (Torabi et al., 2018b).

DIAYN: DIAYN learns a skill-conditioned policy by maxi-
mizing a diversity based intrinsic reward (Eysenbach
et al., 2018b).

PointMass. We consider a simple 2D point mass envi-
ronment with continuous states and discretized actions to
analyse our method on a toy setting. We first gather some
prior data that defines what kind of behavior we would want
to discover. We consider three kinds of prior data distribu-
tions: 1) where the agent starts from the center goes in the
four cardinal directions with equal likelihood, 2) where the
agent goes to the diagonal directions, and 3) where the agent

goes into the four diagonal directions and then bifurcates
again into two diverging trajectories . We train an online
agent with this prior data and learn to match those behaviors
by running Algorithm 1.

Table 1 shows a comparison of the learnt behaviors/skills
for all methods across the three different kinds of prior
data distributions. We see that methods like DISCERN and
GCRL which use goals sampled from the prior data as a way
to bootstrap online learning are unable to recover the correct
skills, whereas DIAYN recovers skills that are diverse but
not aligned with the prior data behavior. GAIfO is able to
recover similar behavior as in the prior data, but lacks a
notion of individual skills, i.e. the agent in this case learns
to traverse any states that are seen in the prior data, while
lacking a coherent sense of how two skills differ in their
behavior. Finally, our method is able to cluster the prior data
into meaningful skills and use them to learn value models
(intrinsic reward) to recover similar behavior as in the prior
data.

Kitchen from Videos. We use the Kitchen-v3 setup in (Nair
et al., 2022) and collect video data by running SAC on the
proprioceptive state with an extrinsic reward corresponding
to doing multiple tasks such as opening door, turning on
light, opening microwave etc. Given this video data, we
use a fixed, pretrained R3M representation and use it as
a base-level representation. Note that we can learn a rep-
resentation end-to-end using our objective, however since
our focus is on understanding the skill discovery problem,
we choose to use a pretrained representation. To that end,
we add additional layers to the fixed R3M representation
to describe the behavior value model and use them as the



intrinsic reward for a skill conditioned policy, just as in the
pointmass experiments. Evaluation trajectories from our
approach are presented in Figure 2.

5. Conclusion
We present an approach for recovering and fine-tuning skills
from prior video data by learning structured representations
of the world. We show our approach is able to better match
behaviors and extract interpretable, discrete skills in several
PointMass settings relative to past skill discovery and imi-
tation from observation baselines. We additionally test our
approach in a simulated kitchen robot manipulation setting.
We show our approach is able to extract distinct skills by
using video data with further online fine-tuning.

Limitations and Future Work

For the pixel-based Kitchen experiments, we do not re-
cover a one-to-one correspondence between the discrete
skill variable and the observed behavior, thus leaving room
for improvement towards cleanly segregating the skills and
corresponding policy trajectories. Moreover, although our
method can learn to discover skills with guidance from
video, we did not discuss the setting where the video data
has a distribution shift from the online agent. This could
involve having cross-embodied agents as well as shifts in
observation spaces. Advances in vision-based representa-
tion learning could help mitigate this issue. Finally, future
work could include video data with more diverse ways to
perform certain skills even without the ability to discover
some skills, potentially because of a limited action space for
the online agent.

References
Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas

Schneider, Rachel Fong, Peter Welinder, Bob Mc-
Grew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. Hindsight Experience Replay. In Advances
in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and
Sergey Levine. Diversity is all you need: Learn-
ing skills without a reward function. arXiv preprint
arXiv:1802.06070, 2018a.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and
Sergey Levine. Diversity is All You Need: Learning
Skills without a Reward Function, October 2018b.

Dibya Ghosh, Chethan Bhateja, and Sergey Levine. Rein-
forcement learning from passive data via latent intentions.
arXiv preprint arXiv:2304.04782, 2023.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey
Levine, and Karol Hausman. Relay policy learning: Solv-
ing long-horizon tasks via imitation and reinforcement
learning. arXiv preprint arXiv:1910.11956, 2019.

Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. Advances in neural information pro-
cessing systems, 29, 2016.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats,
Aravind Rajeswaran, and Pieter Abbeel. Cic: Contrastive
intrinsic control for unsupervised skill discovery. arXiv
preprint arXiv:2202.00161, 2022.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing,
Sergey Levine, and Ruslan Salakhutdinov. Efficient ex-
ploration via state marginal matching. arXiv preprint
arXiv:1906.05274, 2019.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayara-
man, Osbert Bastani, Vikash Kumar, and Amy Zhang.
Vip: Towards universal visual reward and represen-
tation via value-implicit pre-training. arXiv preprint
arXiv:2210.00030, 2022.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea
Finn, and Abhinav Gupta. R3m: A universal visual
representation for robot manipulation. arXiv preprint
arXiv:2203.12601, 2022.

Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine,
and Sanja Fidler. Ase: Large-scale reusable adversar-
ial skill embeddings for physically simulated charac-
ters. ACM Transactions On Graphics (TOG), 41(4):1–17,
2022.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Ku-
mar, and Karol Hausman. Dynamics-aware unsupervised
discovery of skills. arXiv preprint arXiv:1907.01657,
2019.

Faraz Torabi, Garrett Warnell, and Peter Stone. Be-
havioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral
Cloning from Observation, May 2018b.

Faraz Torabi, Sean Geiger, Garrett Warnell, and Peter Stone.
Sample-efficient Adversarial Imitation Learning from Ob-
servation, June 2019a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Imitation
learning from video by leveraging proprioception. arXiv
preprint arXiv:1905.09335, 2019b.

Faraz Torabi, Garrett Warnell, and Peter Stone. Adver-
sarial imitation learning from state-only demonstrations.



In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, pages 2229–
2231, 2019c.

Faraz Torabi, Garrett Warnell, and Peter Stone. Recent
Advances in Imitation Learning from Observation, June
2019d.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni,
Catalin Ionescu, Steven Hansen, and Volodymyr Mnih.
Unsupervised Control Through Non-Parametric Discrim-
inative Rewards, November 2018.


