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ABSTRACT

Diffusion models for image generation have achieved notable success in vari-
ous applications. However, these models often require tremendous storage over-
head and inference time cost, severely hampering their deployment on resource-
constrained devices. Post-training quantization (PTQ) has recently emerged as a
promising way to reduce the model size and the inference latency, by converting
the float-point values into lower bit-precision. Nevertheless, most existing PTQ
approaches neglect the accumulating quantization errors arising from the substan-
tial distribution variations across distinct layers and blocks at different timesteps,
thus suffering a significant accuracy degradation. To address these issues, we
propose a novel temporal distribution-aware quantization (DAQ) method for dif-
fusion models. DAQ firstly develops a distribution-aware finetuning framework
to dynamically suppress the accumulating quantization errors in the calibration
process. Subsequently, DAQ employs a full-precision noise estimation network to
optimize the quantized noise estimation network at each sampling timestep, fur-
ther aligning the quantizers with varying input distributions. We evaluate the pro-
posed method on the widely used public benchmarks for image generation tasks.
The experimental results clearly demonstrate that DAQ reaches the state-of-the-
art performance compared to existing works. We also display that DAQ can be
applied as a plug-and-play module to existing PTQ models, remarkably boosting
the overall performance. The source code will be released upon acceptance.

1 INTRODUCTION

In recent years, the diffusion model (Ho et al., 2020; Song et al., 2021b;a; Rombach et al., 2022)
has become a promising alternative of the conventional generative models including GAN (Good-
fellow et al., 2020) and VAE (Kingma & Welling, 2014), due to the high quality and diversity of its
generated images, as well as the stable training process. It has a wide range of applications such as
the super-resolution (Saharia et al., 2022; Li et al., 2022a; Kadkhodaie & Simoncelli, 2020), graph
generation (Niu et al., 2020), image translation (Sasaki et al., 2021), and image restoration (Song
et al., 2021b; Kadkhodaie & Simoncelli, 2020). Generally, the generation process of diffusion mod-
els involves gradually adding Gaussian noise to image data and then iteratively removing the noise
step by step through a noise estimation network. As this process typically takes hundreds or even
thousands of steps to find sampling trajectories for denoising, the diffusion model usually requires
tremendous storage overhead and inference time cost. For example, the representative Stable Diffu-
sion (Rombach et al., 2022) with DPM-Solver (Lu et al., 2022a) requires 16GB memory and 10GB
VRAM during inference, taking seconds to generate a 512×512 resolution image (He et al., 2024b).

The high computational complexity of diffusion models is mainly attributed to the following two
reasons. First, generating a single image requires hundreds or even thousands of denoising steps,
which involve repeatedly executing the estimation network. Second, the estimation network alone
introduces significant computational cost to the generation process (e.g. LDM, Stable Diffusion).
Despite that many approaches have been proposed to deal with the first issue by reducing the number
of estimation steps, balancing the number of steps with the quality of generated images remains a
bottleneck. In this paper, we aim to tackle with the second issue, i.e. accelerating the UNet-based
(Ronneberger et al., 2015) noise estimation network.
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Existing works on accelerating the noise estimation network have been focused on quantization (He
et al., 2024b; Shang et al., 2023; Li et al., 2023; So et al., 2024; He et al., 2024a; Wang et al., 2024;
Huang et al., 2024), distillation Meng et al. (2023); Sun et al. (2023); HUANG et al. (2023), and
pruning Li et al. (2022b). Among these techniques, the quantization method has received a lot of
attention by converting the weights and activations from floating-point numbers to low-bit-width
integers. Typically, quantizing a full-precision model to 8-bit can accelerate the inference process
by about 2.2 times (Jacob et al., 2018), with further reduction to 4-bit achieving an additional 59%
improvement over the 8-bit setting (He et al., 2024b). However, directly applying the quantization
methods designed for general purpose to diffusion models often yields poor performance, as the
diffusion models using the same network to denoise inputs with different distributions at various
timesteps, which is not handled by the general quantization methods. PTQ4DM (Shang et al., 2023)
and Q-Diffusion (Li et al., 2023) attempt solving this problem by incorporating multi-timestep cal-
ibration into the quantization process, while other approaches focus on the temporal characteristics
within the estimation network to mitigate the impact of multi-timestep distributions (So et al., 2024;
Huang et al., 2024). Despite these advancements, a significant performance drop persists when
models are quantized to bit-widths lower than 8-bit using post-training techniques. To pinpoint the
source of this performance degradation, we analyze quantization errors within the estimation net-
work across different timesteps. Our analysis reveal that the reconstruction granularities employed
in quantization are often inappropriate for diffusion models, leading to pronounced discrepancies
among quantized modules. Moreover, we identify substantial quantization errors in specific mod-
ules characterized by a wide range of activation distributions across timesteps, which contributes to
diminished performance when quantizing the estimation network to lower bit-widths.

To address the above issues, we propose a novel method dubbed temporal distribution-aware quan-
tization (DAQ) for diffusion models, to deal with the uneven distribution of internal quantization
errors within the network, as well as the accumulation of external quantization errors over multiple
sampling timesteps. Unlike previous approaches that focus on calibration components or optimize
specific modules separately (Li et al., 2023), we assess the degree of under-recovery in quantized
modules by analyzing relative quantization errors and input distributions. This enables our fine-
tuning framework to effectively mitigate quantization errors arising from dynamic activation dis-
tribution changes within network modules and the significant disparities among different quantized
modules. Furthermore, to reduce the accumulation of quantization errors across multiple sampling
timesteps in diffusion generative models, we present a parameter finetuning method that suppresses
cumulative errors over timesteps. We identify the modules and parameters requiring finetuning
based on their degree of under-recovery, using the output of the full-precision model at each sam-
pling timestep as a reference. This method allows for incremental finetuning of quantization factors,
thereby reducing cumulative quantization errors.

The main contributions of our work are summarized as follows:

• We propose a novel temporal distribution-aware quantization (DAQ) method for diffusion
models, by reducing the accumulating quantization errors arising from the substantial dis-
tribution variations across distinct layers and blocks at different timesteps.

• We develop a distribution-aware finetuning framework to dynamically suppress the accu-
mulating quantization errors in the calibration process, and employ a full-precision noise
estimation network to optimize the quantized noise estimation network for further aligning
the quantizers with varying input distributions. Both of them are plug-and-play modules
that are applicable to existing quantization approaches.

• We conduct extensive experiments on various benchmarks, which clearly demonstrate the
effectiveness of the proposed method compared to the state-of-the-art approaches.

2 RELATED WORK

Existing approaches for accelerating the inference of diffusion models can be roughly divided into
two categories. One category of approaches aims to find effective sampling trajectories, either by
reducing the number of steps required or by selecting more efficient steps. The other category
focuses on minimizing the time and memory overhead for each estimation in the denoising process.
In this paper, we introduce specialized quantization methods to enhance the single denoising process.
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These methods can be used as plugins to complement other quantization techniques for diffusion
models.

2.1 EFFICIENT DIFFUSION MODELS

In recent years, significant work has focused on accelerating the inference speed of diffusion models,
primarily by reducing the number of timesteps required for sampling. Some approaches attempt to
transform the diffusion process into a non-Markovian process while keeping the objective function
unchanged, thereby eliminating the dependency on chain sampling (Song et al., 2021a). Given
that diffusion models use continuous-time sampling, other methods have reformulated the denoising
problem into solving differential equations, utilizing differential equation solvers to quickly find
approximate solutions (Lu et al., 2022a; Bao et al., 2021; Liu et al., 2022; Lu et al., 2022b).

However, these methods often require the original training data and additional training processes,
making them unsuitable for low-resource scenarios. Consequently, some efforts have shifted towards
optimizing the denoising network itself by employing techniques such as distillation (Meng et al.,
2023; Sun et al., 2023; HUANG et al., 2023), pruning (Li et al., 2022b), and quantization (He et al.,
2024b; Shang et al., 2023; Li et al., 2023; So et al., 2024; He et al., 2024a; Wang et al., 2024; Huang
et al., 2024) to compress the network. Among these techniques, quantization is the most widely
used for optimizing denoising networks.

2.2 MODEL QUANTIZATION

Quantization is a widely-used compression method for reducing computational and memory costs.
To optimize the inference process across all timesteps, we focus on quantizing the noise estimation
model used in diffusion models. We specifically propose methods based on post-training quanti-
zation (PTQ) rather than quantization-aware training (QAT) due to PTQ’s ease of deployment and
widespread adoption. Unlike QAT, which requires retraining the quantized model, PTQ directly
quantizes the parameters, making its complexity dependent only on the parameters rather than the
original training process. As diffusion models increase in size, the advantages of PTQ-based meth-
ods become more pronounced.

PTQ typically compresses the bit-width of weights and activations within the network to reduce
memory and computational overhead. Quantization methods generally map data to lower-bit inte-
gers, and floating-point operations in a full-precision model are converted into corresponding integer
operations, enhancing the inference speed of the quantized model (Krishnamoorthi, 2018).

When using linear mapping to quantize a full-precision floating-point model, the weights and activa-
tions are typically quantized into low-bit-width integer representations, denoted as W̄ . This process
can be represented by the following equation:

W̄ = Clip
(

Round
(
W

S

)
+ Z,Cmin, Cmax

)
, (1)

where W represents the model parameters, S denotes the scaling factor, Z is the zero point offset,
and Cmin and Cmax are the lower and upper bounds of the mapping range, also known as the
quantization range. Round(·) and Clip(·) denote the rounding and clipping operations respectively.
A straightforward and effective approach to determining the quantization range and factor is to
directly minimize the error between a model’s outputs before and after quantization. Previous study
(Nahshan et al., 2021) has evaluated this using metrics such as L1 distance, cosine similarity, KL
divergence, and MSE, ultimately finding that the Lp norm (with p = 2.4) yields the best results
(Shang et al., 2023). Additionally, AdaRound (Nagel et al., 2020) introduced an adaptive method for
determining rounding directions, which maintains high accuracy even at 4-bit precision. However,
when applying PTQ, a small subset of data is still required as a calibration dataset to adjust the
network’s activations. Consequently, much of the research on PTQ methods has concentrated on
optimizing the calibration process.

Several studies have investigated the impact of calibration dataset size on quantization performance.
EasyQuant (Wu et al., 2020), for example, directly uses the training data to establish the upper and
lower bounds of the quantization range. ZeroQ (Cai et al., 2020) eliminates the need for original
training data by generating a calibration dataset from the model’s gradient information and utilizes
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mixed-precision quantization to determine the optimal bit-width. BRECQ (Li et al., 2021) examines
the trade-offs between layer-wise, block-wise, and whole-network calibration, concluding that block
reconstruction offers the most effective granularity. In this paper, we explore our framework based
on BRECQ. However, traditional PTQ methods do not perform well on diffusion models when we
directly apply them.

When quantizing diffusion models, the primary source of inference overhead is the noise estimation
network. Existing research has focused on quantizing this network due to its high resource demands
(Shang et al., 2023; Li et al., 2023). Given the significant costs associated with training these models,
PTQ methods are preferred. These methods require fewer resources, are highly portable, and offer
rapid quantization speeds.

In current studies, PTQ4DM (Shang et al., 2023) and Q-Diffusion (Li et al., 2023) analyze the dis-
tribution of calibration datasets, suggesting that uniformly sampling images from different timesteps
to form the calibration dataset for the noise estimation network can reduce quantization error. Q-
Diffusion also proposes an optimization strategy for UNet-based noise estimation networks. They
discovered that the residual networks used in UNet (Ronneberger et al., 2015) can amplify quantiza-
tion errors during skip connections due to varying levels of quantization recovery. To address this,
they designed a channel-separated quantization scheme for residual blocks (Li et al., 2023), achiev-
ing results comparable to full-precision models on W8A8 and W4A8 on the CIFAR-10 and LSUN
datasets. PTQD (He et al., 2024b) found that quantization errors in diffusion models contain Gaus-
sian noise. Considering that gaussian noise is inherent in diffusion models, they merged these noise
components and adjusted the variance of the Gaussian noise to reduce quantization errors. They also
used the signal-to-noise ratio to evaluate quantization effects and determine the optimal quantiza-
tion bit-widths at different timesteps, experimenting with mixed-precision quantization strategies on
the ImageNet and LSUN datasets. TDQ (So et al., 2024) employs a three-layer perceptron to map
sampling time encoding information to finetune parameters for correcting quantization factors. Effi-
cientDM (He et al., 2024a) adopts the QLoRA (Dettmers et al., 2024), directly finetuning quantiza-
tion factors during the quantization calibration process. TFMQ-DM (Huang et al., 2024) constructs
timestep-specific quantization modules to correct errors generated when embedding quantized time
information encoding modules. APQ-DM (Wang et al., 2024) groups different timesteps and sets
shared parameters across these groups to find suitable mapping ranges for quantization factors.

However, several issues remain in quantizing diffusion models. These include the use of uniform
quantization settings across different network modules, insufficient consideration of the distribu-
tion characteristics of activation values over time, and the accumulation of quantization errors over
multiple timesteps.

3 THE PROPOSED APPROACH

In this section, we propose a dynamic finetuning method that is aware of activation distribution
ranges to adapt to the multi-sampling time features of diffusion generative models. Furthermore, we
suppress cumulative errors during inference by post-processing the quantized models. We begin by
identifying the problems in existing quantization algorithms, then proceed with a detailed analysis,
and finally, we present our proposed solution.

3.1 SIGNIFICANT DIFFERENCE OF DISTRIBUTION BETWEEN DIFFERENT MODULES

3.1.1 DISTRIBUTION DIFFERENCE OF ACTIVATION

When quantizing the noise estimation network of DDIM (Song et al., 2021a), we observe that the
outputs of different modules deviate to varying degrees from those in full-precision diffusion mod-
els within a single sampling timestep. Additionally, there are notable differences in activation value
ranges and quantization errors across different quantized modules. This issue can be attributed to
two main factors. Firstly, the post-training quantization methods based on BRECQ (Li et al., 2021)
employ globally uniform quantization hyperparameters for modules with varying reconstruction
granularities within the network. Secondly, the calibration data samples used during post-training
quantization are typically insufficient, usually ranging from 200 to 5000 samples. This is signifi-
cantly smaller than the size of dataset used for training the pre-trained model, which may lead to
both overfitting and underfitting in different modules within the same quantized network.
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Figure 1: There are significant different behaviors between different modules in DDIM when ap-
plying the same quantization settings. Some modules need only 1000 iters while others might need
5000 iters or even more to get the quantization factors.

To validate this hypothesis, we analyze the quantization reconstruction of activation quantizers in
different modules across the entire network during the calibrating process of quantization factors.
The results in Figure 1 indicate that the number of iterations required for quantization reconstruc-
tion varies among different modules, suggesting that the network may exhibit both overfitting and
underfitting of activation quantizers when using a unified set of quantization reconstruction hyper-
parameters. To further illustrate this issue, we conduct experiments using different quantization
reconstruction hyperparameters based on BRECQ and identified underfitted activation quantizers
in the network. As shown in Figure 2 we find that their quantization loss could potentially be re-
duced by up to approximately 50%. In response, we set an error threshold to dynamically assess the
quantization reconstruction error, thereby mitigating the effects of overfitting and underfitting.
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Figure 2: We evaluated the method proposed by calculating mean squared error of activation in each
quantized modules. It shows that the bit width of activation affects the error obviously while our
framework could reduce it by up to 50%.

Moreover, the quantizers within the network are expected to be adapted to multiple sampling
timesteps, requiring a single quantizer in a quantized module to accommodate a range of distri-
butions across different timesteps. However, the noise estimation network with shared parameters
needs to run n times for n timesteps, with each timestep using image data whose distribution varies
with the sampling timestep as input. By comparing the activation value ranges in different modules
at various sampling timesteps, we observe that the same quantizer within a reconstruction module
generates activation values with significantly different distribution ranges when processing inputs
from different sampling timesteps. This implies that using the same quantization settings for all
timesteps is inappropriate, as different timesteps result in different activation distributions. There-
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fore, designing a quantization strategy that can dynamically perceive the distribution range of acti-
vation values at different sampling timesteps is crucial for effectively quantizing diffusion models.

3.1.2 DISTRIBUTION DIFFERENCE BETWEEN TIMESTEPS

In the noise estimation network, the input at each sampling timestep depends on the output from
the previous timestep. As a result, the quantization errors introduced by the quantized noise esti-
mation network accumulate over the sampling process, gradually diverging from the outputs of the
full-precision network. By comparing the outputs of the full-precision noise estimation network
with those of the quantized network at each sampling timestep, we observe that these quantization
errors indeed accumulate over time. For instance, the quantization error increases progressively and
reaches saturation after 40-50 timesteps when we quantize the DDIM to W4A8 with 100 sampling
timesteps. This observation highlights that addressing the accumulation of quantization errors over
sampling timesteps is a critical area of focus in the research of quantization methods for diffusion
models.

3.2 FINETUNING THE DIFFUSION MODELS

3.2.1 DISTRIBUTION-AWARED DYNAMIC FINETUNING FRAMEWORK FOR QUANTIZERS

As mentioned above, the activation distributions differ significantly across quantized modules, often
resulting in imbalanced quantization errors within a single timestep. This imbalance can degrade
the performance of lower-bit quantization for diffusion models, as it becomes challenging to ade-
quately represent the activation distribution range with low-bit quantizers. To address this issue, we
introduce distribution-awared finetuning parameters for the activation quantizers. We use calibration
data to finetune the quantization factors for each activation quantizer, similar to the reconstruction
process. Specifically, these finetuning parameters are integrated into the quantization factors and
subsequently removed, ensuring no additional storage or computational costs are incurred.

For the issue of varying convergence degrees in the quantization reconstruction process across net-
work modules, we hypothesize that the input distribution range (Xrange), relative quantization error
(Qerr), and the degree of under-recovery (η) are positively correlated. A broader input distribution
range can lead to larger clipping errors during quantization, making these clipping errors a more
significant component of the total quantization error than rounding errors. However, the error value
alone is not the only factor to consider, as it is also related to the reconstruction granularity. This
means that some modules with smaller input distribution ranges can still produce significant relative
quantization errors. To address this, we evaluated the degree of under-recovery (η) using the distri-
bution range and relative quantization error during the quantization reconstruction. We then inserted
finetuning parameters into modules that either had the top β% of Xrange or relative quantization
errors greater than γ%. This approach was intended to accelerate the convergence of quantization
factors within these activation quantizers. In this paper, β was set to 10 and γ to 20.

η ∝ Xrange, Qerr. (2)

During the quantization process, we first scale the full-precision data Xfp using the scaling factor S.
Rounding errors are introduced through the rounding operation. After adding the offset Z, clipping
errors are introduced using the clip operation. The quantization result Xquant is obtained after
dequantization. Subsequently, using the quantization factors S and Z, the simulated quantized data
Xquant can be restored to full-precision data Xdequant, replacing Xfp and passing it to subsequent
modules.

Xquant = Clip
(

Round
(
Xfp

S

)
+ Z

)
, (3)

Xdequant = (Xquant − Z) · S. (4)

When inserting finetuning parameters FS and FZ to finetune the quantization factors, the quantiza-
tion formula would be transformed into:

F (Xint) = Round
(

Xfp

S · FS

)
+ (Z + Round (FZ)) , (5)
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F (Xquant) = Clip(F (Xint), Cmin, Cmax), (6)

F (Xdequant) = (F (Xquant)− Z̄) · S̄. (7)

In particular, when the finetuning parameters FS = 1 and FZ = 0, the function F (Xdequant)
yields Xdequant. Thus, this finetuning method initializes with FS = 1 and FZ = 0 to ensure
that the finetuned quantized model does not deviate significantly from the original quantized model.
During inference, the finetuning parameters can be merged into the quantization factors in the basic
quantization framework, modifying the original quantization factors S and Z to S̄ and Z̄.

As the input distribution ranges vary across multiple sampling timesteps, traditional quantization
methods often result in significant errors when using a single set of quantization factors for activation
value distributions across different timesteps. To address this, we introduced temporal finetuning
parameters Ft to dynamically adjust the scaling range. The adjusted quantization process can be
expressed as:

F (Xint) = Round
(

Round
(
X ∗ fp
S · FS

)
· Ft

)
+ (Z + FZ). (8)

This adjustment allows the quantization factors to better align with the varying activation distribu-
tions over different sampling timesteps.

Experimental results show that the introduction of Ft outperformed the sole inclusion of FS and FZ ,
resulting in better IS and FID metrics. Additionally, the activation quantization errors of W4A6 with
finetuning are significantly lower than those of W4A6 without finetuning, and closer to the perfor-
mance of W4A8. This performance improvement aligns with the use of a distribution range-aware
dynamic finetuning framework for quantization factors under the W4A6 quantization bit width.

In summary, when finetuning quantization factors using the proposed method, we consider the sam-
pling timesteps, the activation distribution range (Xrange) within a single quantizer, and the original
quantization factors (S and Z). The decision to finetune is based on the degree of under-recovery
(η) of the quantizer. Finally, the original quantization factors are integrated with the finetuning
parameters (FS and FZ) during the inference stage.

3.2.2 TIMEWISE FINETUNE FOR SELECTIVE QUANTIZATION PARAMETERS

As diffusion models estimate noise multiple times using the same network, quantized models often
accumulate quantization errors over multiple sampling timesteps, leading to significant deviations.
To address this issue, we design a post-processing method that operates at each timestep to reduce
the impact of these errors. We use the full-precision network as a reference for the quantized network
to minimize the difference between the quantized model and the original model. At each timestep,
we compare the output of the quantized model with that of the full-precision model to calculate
the error. This helps the quantized modules achieve performance closer to that of the full-precision
network. By guiding the quantized model to suppress cumulative quantization errors at each step,
we can improve overall accuracy and stability.

Also, given the large scale of parameters in diffusion generative models, finetuning all parameters
is prohibitively time-consuming and computationally expensive. Therefore, we selectively finetune
specific quantizer parameters in certain modules to reconstruct the quantization error at the network
level based on the degree of under-recovery (η). This approach effectively suppresses the cumulative
quantization error over multiple sampling timesteps.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 IMPLEMENTATION DETAILS

4.1.1 MODELS AND METRICS

To validate the effectiveness of our method, we quantize two widely adopted network architectures:
DDIM (Song et al., 2021a) and LDM (Rombach et al., 2022). For the DDIM experiments, we use the
CIFAR-10 (Krizhevsky, 2009) dataset. For LDM, we conduct experiments using ImageNet (Deng
et al., 2009) and LSUN (Yu et al., 2015). We assess the performance of the diffusion models using
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Inception Score (IS) (Salimans et al., 2016) and Frechet Inception Distance (FID) (Heusel et al.,
2017). The results are obtained by sampling 50,000 images and evaluating them with both ADM’s
TensorFlow evaluation suite and torch-fidelity. All experiments are conducted using an RTX 3090
GPU and implemented with the PyTorch framework.

4.1.2 QUANTIZATION SETTINGS

When quantizing the noise estimation network, we utilize the AdaRound quantizer (Nagel et al.,
2020) for the weights and the uniform quantizer for the activations. For calibrating the quantization
factors, we employ 5120 images uniformly sampled from 20 timesteps (256 images per timestep)
as calibration data, with a batch size of 32 during calibration. For quantization reconstruction, we
implement a post-training quantization framework based on BRECQ (Li et al., 2021). Residual
modules and attention modules in the network are reconstructed at the block granularity, while other
parts are reconstructed at the layer granularity.

Methods Bits(W/A) CIFAR-10 ImageNet
IS↑ FID↓ IS↑ FID↓

Full Prec. W32A32 9.12 4.22 235.64 10.91
PTQ4DM W8A8 9.31 14.18 161.75 12.59

Q-Diffusion W8A8 9.48 3.75 187.65 12.80
PTQD W8A8 - - 153.92 11.94
TDQ W8A8 8.85 5.99 - -

APQ-DM W8A8 9.07 4.24 179.13 11.58
TFMQ-DM W8A8 9.07 4.24 198.86 10.79

Ours W8A8 9.67 3.38 216.04 12.05
Q-Diffusion W4A8 9.12 4.93 212.51 10.68

PTQD W4A8 - - 214.73 10.40
TFMQ-DM W4A8 9.13 4.78 221.82 10.29

Ours W4A8 9.49 4.08 213.44 10.23
PTQ4DM W6A6 - - 140.86 13.68

Q-Diffusion W6A6 8.76 9.19 146.41 13.94
APQ-DM W6A6 9.06 6.57 178.64 11.58

TFMQ-DM W6A6 8.84 9.59 - -
Ours W6A6 9.40 4.61 218.28 10.67

Table 1: Quantization results for unconditional image generation with DDIM on CIFAR-10 32 × 32
and conditional image generation with LDM-4 on ImageNet 256 × 256.

4.2 MAIN RESULTS

In this section, we compare out proposed method with the state-of-the-art post-training quantization
methods including PTQ4DM (Shang et al., 2023), Q-Diffusion (Li et al., 2023), PTQD (He et al.,
2024b), APQ-DM (Wang et al., 2024) and TFMQ-DM (Huang et al., 2024). The IS and FID scores
of these frameworks are acquired by their released results or our implementation according to the
officially released code.

Unconditional generation involves sampling a random variable in diffusion models to produce im-
ages with distributions similar to those in the training datasets. We evaluate our post-training quan-
tization methods on the CIFAR-10 (32 × 32), LSUN-Church-Outdoor (256 × 256), and LSUN-
Bedroom (256 × 256) datasets (Yu et al., 2015). The quality of image generation is presented in
Tables 1 and 2, respectively.

While PTQ4DM and Q-Diffusion introduce methods to form the calibration dataset (Shang et al.,
2023; Li et al., 2023), TFMQ-DM focuses on timestep-specific quantization modules (Huang et al.,
2024). APQ-DM groups different timesteps and sets shared parameters across these groups to de-
termine appropriate mapping ranges for quantization factors (Wang et al., 2024). However, these
methods overlook the quantization differences between various modules within the estimation net-
work.
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Methods Bits(W/A) Churches Bedrooms
FID↓ FID↓

Full Prec. W32A32 4.12 2.98
PTQ4DM W8A8 4.80 4.75

Q-Diffusion W8A8 4.41 4.51
PTQD W8A8 4.89 3.75

APQ-DM W8A8 4.02 3.88
TFMQ-DM W8A8 4.01 3.14

Ours W8A8 3.68 3.73
PTQ4DM W4A8 4.97 20.72

Q-Diffusion W4A8 4.66 6.40
PTQD W4A8 5.10 5.94

TFMQ-DM W4A8 4.14 3.68
Ours W4A8 4.17 3.71

PTQ4DM W6A6 11.05 11.10
Q-Diffusion W6A6 10.90 10.10
APQ-DM W6A6 6.90 9.88

Ours W6A6 8.41 9.04

Table 2: Quantization results for unconditional image generation with LDM-8 on LSUN-Churches
256 × 256 and LDM-4 on LSUN-Bedrooms 256 × 256.

As a result, our method surpasses the state-of-the-art results, achieving an improvement of 0.34
(9.40 vs. 9.06) in IS and 1.94 (4.61 vs. 6.57) in FID on the CIFAR-10 dataset. Also, Table 1 shows
the quantization results on the ImageNet 256 × 256 dataset. We employ a denoising process with
20 iterations, setting eta and cfg to 0.0 and 3.0 respectively. Compared to APQ-DM (Wang et al.,
2024), our method achieves a FID reduction of 0.91 on W6A6. The computational cost remains
consistent with baseline methods. In this paper, we implement our method based on Q-Diffusion,
and the results showed in Table 1, 2 demonstrate improved performance across all datasets and
models. Additionally, our method can be implemented as a plugin for other quantization methods for
diffusion models, as it reduces quantization error from a different perspective compared to existing
methods.

Methods Bits(W/A) CIFAR-10
IS↑ FID↓

Full Prec. W32A32 9.12 4.22
TDQ W8A8 9.58 3.77

TDQ + Ours W8A8 9.58 3.47
EfficientDM W4A8 9.30 4.67

EfficientDM + Ours W4A8 9.43 4.18
Q-Diffusion W4A8 9.12 4.93

Q-Diffusion + Ours W4A8 9.43 4.02

Table 3: Quantization results with DDIM on CIFAR-10 32×32, + Ours represents the application of
our proposed method.

To further verify that the method proposed in this paper can be applied as a plugin to other quantiza-
tion methods, we reproduce results from TDQ (So et al., 2024), EfficientDM (He et al., 2024a), and
Q-Diffusion (Li et al., 2023), and then apply our method on top of them. The experimental results in
Table 3 confirm that our optimization direction for quantizing diffusion models is indeed orthogonal
to other methods.

4.3 ABLATION STUDY

In order to demonstrate the influence of the distribution-aware dynamic finetuning framework for
quantization factors and the cumulative error suppression method, we conduct the ablation experi-
ments on the DDIM (Song et al., 2021a). And the results in Table 4 show that both the distribution-
aware dynamic finetuning framework for quantization factors and the temporal finetuning method

9
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Methods Bits(W/A) CIFAR-10
IS↑ FID↓

Full Prec. W32A32 9.12 4.22
Baseline W8A8 9.38 3.75

+DA W8A8 9.48 3.85
+PT W8A8 9.46 3.72

+DA +PT W8A8 9.67 3.38
Baseline W6A6 8.76 9.19

+DA W6A6 8.96 6.75
+PT W6A6 9.31 8.10

+Ours(+DA +PT) W6A6 9.40 4.61

Table 4: The effect of different methods proposed in the paper. The experiment is conducted over
DDIM on CIFAR-10 32 × 32.

outperform the baseline methods on W8A8, W6A6, and W4A8. Here, +DA (Distribution Aware)
indicates the application of the distribution-aware dynamic finetuning framework for quantization
factors, and +PT (Parameters Finetuning) indicates the application of the temporal parameters fine-
tuning method for cumulative error suppression.

When we quantize DDIM to W8A8, both the IS and FID metrics improve after applying the DA
and PT methods, although the FID metrics showed no significant difference compared to the base-
line methods. However, when both methods are combined, the performance shows significant im-
provement. This enhancement can be attributed to the fact that the original quantization factors of
the quantizer have limited representational capacity and face performance bottlenecks. Our meth-
ods help the original quantizer escape local optima and find better quantization parameters through
multi-dimensional optimization. Moreover, using the DA and PT methods individually achieved
better results in IS and FID metrics compared to the baseline methods. The combined use of both
methods also resulted in better model performance when quantizing diffusion models to W8A8 and
W6A6.

5 CONCLUSION

This research investigates quantization methods for diffusion generative models. By considering the
activation distribution of noise estimation networks and addressing imbalanced quantization across
different modules, we have enhanced existing post-training quantization techniques. Our improve-
ments consistently surpass the best available post-training quantization compression methods at the
same bit-width. Furthermore, our method is orthogonal to other approaches, making it suitable as a
plugin for existing quantization techniques. However, this work has some limitations. The granu-
larity division strategy for quantization reconstruction, adopted from BRECQ (Li et al., 2021) and
Q-Diffusion (Li et al., 2023), results in an uneven distribution of quantization errors within the net-
work. This indicates the need for a more detailed examination of internal quantization granularity.
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A APPENDIX

A.1 ACTIVATION RANGES ACROSS MODULES

We find that activation value ranges vary significantly across different modules, with pronounced
quantization errors observed in the ResBlock and Downsample layers, as shown in Figure 3. This
observation suggests that a distribution-aware approach is crucial for quantizing diffusion models,
as it allows for targeted reduction of quantization errors across different modules.

Figure 3: Activation ranges across different modules for DDIM on CIFAR-10 32 × 32 with 100
denoising steps are measured. Also, We calculate the MSE between the full-precision DDIM and
the quantized model.

A.2 MORE DETAILS OF EXPERIMENTS

We sample the calibration and reconstruct modules following the settings of Q-Diffusion with an
RTX 3090 GPU, and then apply our finetuning methods after the reconstruction process in each
module. However, there are notable differences between various quantization frameworks for dif-
fusion models. We reproduce other methods using either their released code or the algorithms de-
scribed in their publication. Additionally, the IS and FID scores are measured differently across
these methods, which may lead to significant variations in performance compared to the results they
reported. We reproduce the SOTA TFMQ-DM method on CIFAR-10 and implement our method on
it. As shown in Table 5, we achieve better IS and FID scores on W8A8, W4A8, and W6A6. These
results indicate that our approach can be effectively extended to other quantization frameworks.

A.3 RANGES OF THE HYPERPARAMETERS

In this section, we further explore the ranges of several hyperparameters in Table 6, including cali-
bration size and iterations of reconstructions. The results show that using 256 images for calibration
is sufficient, as larger calibration sizes do not improve the performance of the quantized models.
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Methods Bits(W/A) IS↑ FID↓
Full Prec. W32A32 9.12 4.22

TFMQ-DM W8A8 9.07 4.28
TFMQ-DM + Ours W8A8 9.19 4.12

TFMQ-DM W4A8 9.03 7.68
TFMQ-DM + Ours W4A8 9.09 6.79

TFMQ-DM W6A6 8.84 9.59
TFMQ-DM + Ours W6A6 8.96 7.82

Table 5: We reproduce TFMQ-DM for DDIM on CIFAR-10 32 × 32 according to the released code
and apply our method to their framework.

Additionally, performing more than 40k reconstruction iterations has a noticeably negative impact
on FID scores. Consequently, we selected the hyperparameters that provided the best performance
within the tested ranges.

Bits(W/A) Images in Calibration IS↑ FID↓ Iterations IS↑ FID↓
W32A32 - 9.12 4.22 - 9.12 4.22

W4A8 64 8.57 4.89 20k 9.28 4.76
W4A8 128 8.95 4.61 40k 9.43 4.02
W4A8 256 9.19 4.27 60k 9.18 5.65
W4A8 512 9.04 4.47 80k 9.03 5.87
W4A8 1024 9.09 4.59 100k 9.14 5.41

Table 6: Quantization results for DDIM on CIFAR-10 32 × 32 with different calibration size and
different reconstruction iterations.. Each image in the calibration will be sampled in 20 timesteps,
which means the size of calibration is 20 × the number of images.

A.4 VISUALIZATION RESULTS

In this section, we randomly sample from W6A6 quantized diffusion models, and Figure 4 displays
the generated images. These generated images demonstrate competitive performance and closely
resemble real-world pictures.

(a)

(b)

Figure 4: (a) contains samples from W6A6 quantized LDM-8 model on LSUN-Churches 256 ×
256. (b) contains samples from W6A6 quantized LDM-4 model on LSUN-Bedrooms 256 × 256.
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